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An annotation-free whole-slide training approach
to pathological classification of lung cancer types
using deep learning
Chi-Long Chen 1,2,3,9, Chi-Chung Chen 4,9, Wei-Hsiang Yu 4, Szu-Hua Chen 4, Yu-Chan Chang 5,

Tai-I Hsu6, Michael Hsiao 6, Chao-Yuan Yeh 4✉ & Cheng-Yu Chen7,8✉

Deep learning for digital pathology is hindered by the extremely high spatial resolution of

whole-slide images (WSIs). Most studies have employed patch-based methods, which often

require detailed annotation of image patches. This typically involves laborious free-hand

contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from

scaling up training with numerous WSIs, we develop a method for training neural networks

on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory

mechanism to overcome the memory constraint of compute accelerators. Experiments

conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves

areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adeno-

carcinoma and squamous cell carcinoma classification on the testing set, respectively. Fur-

thermore, the method demonstrates higher classification performance than multiple-instance

learning as well as strong localization results for small lesions through class activation

mapping.
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In recent decades, lung cancer has been among the most fre-
quently diagnosed cancers and the leading cause of cancer-
related mortality worldwide, including in Taiwan1. Nonsmall-

cell lung cancer (NSCLC) accounts for ~85% of newly diagnosed
lung cancer cases, with two major histological types: adeno-
carcinoma and squamous cell carcinoma, accounting for nearly
50% and 30% of NSCLC, respectively2. Invasive adenocarcinoma
of the lungs is a malignant epithelial tumor with five major
patterns: lepidic, acinar, papillary, micropapillary, and solid.
Squamous cell carcinoma is a malignant epithelial tumor with
squamous differentiation and/or keratinization. Proper patholo-
gic diagnosis can be challenging in many cases because mor-
phological differences among lung cancer types are subtle.
Examples of the pathological features of adenocarcinoma and
squamous cell carcinoma are presented in Fig. 1.

Deep neural networks (DNNs), especially convolutional neural
networks (CNNs), have become the dominant method for image
recognition; in 2012, their performance surpassed most tradi-
tional image analysis algorithms in the ImageNet Large Scale
Visual Recognition Challenge3–6. In medical fields, deep learning
algorithms have also been demonstrated to achieve human-level
performance on several tasks, including tumor identification and
segmentation in computed tomography or magnetic resonance
imaging7,8, cardiovascular risk assessment using color fundus
images9, and pneumonia detection in chest X-rays10. However,
the analysis of digital whole-slide images (WSIs) remains chal-
lenging because of their extremely high spatial resolution com-
pared with other medical imaging modalities.

Restricted by computing limitations, most histopathology studies
have used a two-stage patch-based workflow: a patch-level CNN is
trained using patches cropped from a WSI, followed by a slide-level
algorithm being trained on features extracted by the patch-level
model to reveal the final diagnosis. These patch-based methods
have yielded successful results in cancer identification11–19, cancer
type classification14,20, cancer metastasis detection13,16–18, and
prognosis analysis21,22. However, such methods require experi-
enced pathologists to perform substantial annotation.

To leverage slide-level labels directly, multiple-instance learn-
ing (MIL)19,23,24 follows the same two-stage workflow as the
traditional method while organizing the training procedure dif-
ferently. In MIL for slide-level cancer classification, if patches
with the highest scores (k patches that are most likely to be
cancerous) on the slide are identified as carcinoma, the slide

should be classified as cancer; otherwise, when patches with top
scores are normal, the slide is classified as benign. By using the
slide-level ground truth as weak supervision, MIL successfully
reduces the annotation burden; however, recent studies have
indicated that even state-of-the-art weak supervision methods still
cannot achieve the average performance of strong supervision
methods in most image recognition tasks such as object detection,
semantic segmentation, and instance segmentation25–27. Unlike
the MIL method, which selects the top k patches as slide repre-
sentatives to train models iteratively, the streaming CNN28,29

proposed by Pinckaers et al. incorporates patching into a back-
propagation algorithm to achieve end-to-end training of large
images. Specifically, the streaming CNN collects and updates loss
gradients of patches of a WSI during training with a specially
designed update schedule; hence, it can retain all image infor-
mation with limited computing resources. However, patching
feature maps during training disrupts some operations that
require all of the feature maps’ information, such as the most
commonly used batch normalization layer; thus, careful model
design and tuning are required.

In this study, we developed a whole-slide training method that
incorporates the unified memory (UM) mechanism and several
GPU memory optimization techniques to train standard CNNs
with extremely large image inputs without modification in either
training pipelines or model architectures. The results of experi-
ments revealed that the proposed method can be directly applied
to WSI classification and outperforms the MIL method. The
study’s contributions are summarized as follows: (1) We propose
a training approach to train CNNs on WSIs using slide-level
labels without dividing the input image or feature maps into
patches. (2) Our method has superior performance, achieving
area under the receiver operating characteristic curve (AUC)
scores of 0.9594 and 0.9414 for adenocarcinoma and squamous
cell carcinoma classification, respectively. (3) Critical regions of
our model highlighted by the class activation map (CAM)30

technique reveal a high correspondence to cancerous regions
identified by pathologists.

Results
Unless otherwise specified, experiments were conducted with
slides scanned at ×20 magnification, which were downscaled to
×4 magnification (i.e., resized to 0.2 times the original size) to
train both the whole-slide and MIL models. After downscaling to

Fig. 1 Examples of pathological images of major lung cancers. Pathological images of adenocarcinoma and squamous cell carcinoma are displayed in
a and b, respectively.
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×4 magnification, most tissue on the slides could be included with
a height and width of 21,500 pixels. The downsampled images
were then padded to 21,500 × 21,500 to ensure identical size. We
used ResNet-503 with fixup initialization31 for all experiments.
The models were trained as a ternary classifier for adenocarci-
noma, squamous cell carcinoma, or non-cancer. Models were
trained on 5606 slides and evaluated on 1397 slides collected from
Taipei Medical University Hospital (TMUH), Taipei Municipal
Wanfang Hospital (WFH), and Taipei Medical University
Shuang-Ho Hospital (SHH). Finally, model performances for
lung cancer type classification in lung specimens were measured
using the AUC.

MIL model performance. We conducted experiments using both
standard and state-of-the-art variants of MIL. First, slide images
were sliced into nonoverlapping 224 × 224 patches as instances
for the following training procedure. In the standard MIL
approach, we evaluated the performances when k was set as 1, 3,
or 5, where k was the number of patches selected per slide during
the training phase. Variants of MIL included expectation
maximization-based methods19 with logistic regression and sup-
port vector machine slide-level aggregation, denoted by EM-
CNN-LR and EM-CNN-SVM, respectively. Furthermore, MIL
with max feature aggregation and random forest slide-level
aggregation, denoted by CNN-MaxFeat-based RF24, and MIL
with recurrent neural network slide-level aggregation, denoted by
MIL-RNN23, were evaluated.

The model performance results are listed in Table 1. Among
standard MIL models with different k values, the MIL model with
k= 3 achieved the optimal testing AUC scores of 0.9188
(0.9052–0.9324) and 0.9032 (0.8825–0.9240) for adenocarcinoma
and squamous cell carcinoma classification, respectively. This
result indicated that k= 3 is an appropriate bag size that can
ensure that true positive patches are sampled in positive cases
while patches that might be normal tissue are not sampled in
cases of a small cancerous lesion.

By contrast, EM-CNN-LR and EM-CNN-SVM achieved AUC
scores of 0.76–0.83, meaning they performed worse than standard
MIL. This suggests that the interpatch aggregation method, which
sums class probabilities of patches, may not be suitable for a
heterogenous data set—namely, one composed of both resections
and biopsies. Summing patch results tends to result in slides with
numerous positive patches being classified as positive and those
with few positive patches being classified as negative. Our data
set, however, consisted of biopsy and resection slides, and the
lesion sizes in the biopsy slides were much smaller and likely to be
ignored.

Finally, both CNN-MaxFeat-based RF (AUC= 0.9345, P=
2.938e−4 for adenocarcinoma and AUC= 0.9071, P= 0.6459 for
squamous cell carcinoma) and MIL-RNN (AUC= 0.9310, P=
1.003e−3 for adenocarcinoma and AUC= 0.9239, P= 1.472e−3
for squamous cell carcinoma) outperformed standard MIL
(k= 3), demonstrating the effectiveness of these patch aggrega-
tion methods.

Model performance of the whole-slide training method. By
leveraging the UM mechanism, our proposed whole-slide training
method trained and evaluated an entire 21,500 × 21,500 image
end-to-end without any patching procedure and additional
aggregation models to derive slide predictions. Moreover, the
ResNet-50 with two variants of final pooling operations, namely
global average pooling (GAP) and global max pooling (GMP),
were evaluated.

As presented in Table 1, the whole-slide training method with
GAP layers achieved AUC scores of 0.6506 (0.6213–0.6798) for
adenocarcinoma and 0.5597 (0.5176–0.6018) for squamous cell
carcinoma classification, indicating the model only captures
limited information from inputs. Although GAP layers are widely
adopted in state-of-the-art CNN models3–6 in most natural image
classification methods, their application to ultrahigh-resolution
images is prone to losing subtle information presented by tiny
features. Such inefficiency leads to significant degradation of

Table 1 Model performances of various MIL methods and our proposed whole-slide training method.

Method AUCs of ADC AUCs of SqCC

Results on the standard testing data set (n= 1397)
MIL (k= 1) 0.8922 (0.8759–0.9084) 0.8513 (0.8262–0.8765)
MIL (k= 3) 0.9188 (0.9052–0.9324) 0.9032 (0.8825–0.9240)
MIL (k= 5) 0.9124 (0.8977–0.9270) 0.8912 (0.8682–0.9142)
EM-CNN-LR 0.7700 (0.7457–0.7944) 0.8247 (0.7960–0.8534)
EM-CNN-SVM 0.7671 (0.7427–0.7916) 0.7726 (0.7358–0.8094)
CNN-MaxFeat-based RF (k= 3) 0.9345 (0.9223–0.9467) 0.9071 (0.8855–0.9286)
MIL-RNN (k= 3) 0.9310 (0.9185–0.9435) 0.9239 (0.9047–0.9431)
Whole-slide training (GAP) 0.6506 (0.6213–0.6798) 0.5597 (0.5176–0.6018)
Whole-slide training (GMP) 0.9594 (0.9500–0.9689) 0.9414 (0.9234–0.9593)

Results on the small lesion data set (n= 476)
CNN-MaxFeat-based RF (k= 3) 0.8823 (0.8129–0.9517) 0.8727 (0.8111–0.9343)
MIL-RNN (k= 3) 0.8681 (0.7902–0.9460) 0.9100 (0.8625–0.9574)
Whole-slide training (GMP) 0.9384 (0.8849–0.9919) 0.9202 (0.8740–0.9664)

Results on TCGA-diagnostic data set (n= 1044)
CNN-MaxFeat-based RF (k= 3) 0.8319 (0.8062–0.8576) 0.8447 (0.8219–0.8674)
MIL-RNN (k= 3) 0.8601 (0.8374–0.8827) 0.8752 (0.8550–0.8955)
Whole-slide training (GMP) 0.8950 (0.8764–0.9137) 0.8990 (0.8811–0.9169)

Results on TCGA-tissue data set (n= 2167)
CNN-MaxFeat-based RF (k= 3) 0.6933 (0.6714–0.7153) 0.6609 (0.6381–0.6836)
MIL-RNN (k= 3) 0.7096 (0.6880–0.7312) 0.6312 (0.6079–0.6546)
Whole-slide Training (GMP) 0.7413 (0.7207–0.7619) 0.7348 (0.7141–0.7555)

Performances are measured by area under the receiver operating characteristic curves (AUCs) of classifying lung adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) on the standard testing
data set (n= 1397), the small lesion data set (n= 476), the TCGA-diagnostic data set (n= 1044), and the TCGA-tissue data set (n= 2167). All measurements were taken from distinct samples. The
95% confidence intervals were estimated by Delong’s method.
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model performance compared with the whole-slide training
method with GMP layers.

By contrast, the whole-slide training method with GMP layers
achieved AUC scores of 0.9594 (0.9500–0.9689) for adenocarci-
noma and 0.9414 (0.9234–0.9593) for squamous cell carcinoma,
which were significantly superior to those achieved by the other
approaches, including CNN-MaxFeat-based RF (P= 3.565e−7
and 3.189e−4 for classifying adenocarcinoma and squamous cell
carcinoma, respectively) and MIL-RNN (P= 2.279e−9 and
0.02498 for classifying adenocarcinoma and squamous cell

carcinoma, respectively). Receiver operating characteristic
(ROC) curves for the aforementioned models are presented in
Fig. 2a, b.

As illustrated in Fig. 3, the learning curves of the MIL method
and our proposed method demonstrated significantly different
patterns in the early training stage. The performance of our
proposed method increased sharply during the first few epochs
and converged gradually in the remaining training time. This is a
typical learning pattern when training DNNs because models
tend to seek and learn features that can be easily divided into high

a bAdenocarcinoma, Standard testset (n=1,397) Squamous Cell Carcinoma, Standard testset (n=1,397) c dAdenocarcinoma, Small lesion dataset (n=476) Squamous Cell Carcinoma, Small lesion dataset (n=476)

e fAdenocarcinoma, TCGA-diagnos�c dataset (n=1,044) Squamous Cell Carcinoma, TCGA-diagnos�c dataset (n=1,044) g hAdenocarcinoma, TCGA-�ssue dataset (n=2,167) Squamous Cell Carcinoma, TCGA-�ssue dataset (n=2,167)

Fig. 2 Receiver operating characteristic (ROC) curves of methods on classifying adenocarcinoma and squamous cell carcinoma. Area under the ROC
curve (AUC) was measured for each data set and method. All the measurements were taken from distinct samples. a, b ROC curves on the standard
testing data set (n= 1397). c, d ROC curves on the small lesion data set (n= 476). e, f ROC curves on TCGA-diagnostic data set (n= 1044). g, h ROC
curves on TCGA-tissue data set (n= 2167). The dark blue, cyan, and red lines represent CNN-MaxFeat-based RF, MIL-RNN, and whole-slide training
method, respectively.

Fig. 3 Learning curves of MIL and whole-slide training method. The lines represent the loss (a) and the accuracy (b) of MIL (dark blue) and whole-slide
training method (red) for the training set (dotted) and the validation set (solid). The x axis represents the numbers of elapsed training epochs.
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dimensional representation spaces first, which contributes to a
drastic improvement in accuracy. Along with the training
procedure, most of the obvious features were used and model
performance saturated gradually. Subtle features were extracted in
later training stages because the models attempted to minimize
losses through seeking high dimensional planes, which led to
further refinement of the models. By contrast, the learning curves
of MIL were relatively smooth during the first few epochs. The
MIL training procedure relies on its work-in-progress model to
choose representative tiles from WSIs before training the
classifier. However, models in the early training stage exhibited
random-guess behavior because they had not yet learned any
information. Those wrongly selected tiles would inevitably
misguide the models and thus slow the convergence rate.

Visualization. Although CNNs have achieved impressive per-
formance in classification tasks, more intriguing is how the
models make decisions. Visualization is the most straightforward
approach for investigating how models learn to solve a given task.
Different visualization approaches were applied to different
models because the internal properties were not the same between
the MIL and whole-slide models.

For the MIL model, prediction maps of slides could be simply
derived through assembling the probabilities of tiles forwarded by
the patch-level classifier. For the whole-slide training method, the
CAM30 technique was adopted to visualize discriminative regions
related to particular categories of cancer.

As depicted in Fig. 4, both the MIL model and whole-slide
model could discover representative information, which was
highlighted by heatmaps after iteratively learning from slide-level
diagnosis. Furthermore, our method, coupled with CAM,
revealed a more comprehensive ability to highlight all suspicious
areas on the slide, especially small lesions.

Model performance on the small lesion testing data set. To
investigate the performances of different models on hard cases,
we picked 69 slides with small lesions (i.e., tumor area < 10% of
tissue area) along with 407 non-cancer slides from the standard

testing data set. Slides in this sub-data set were particularly prone
to misclassification by pathologists because of the small percen-
tages of cancerous tissue regions. We compared the whole-slide
training method, CNN-MaxFeat-based RF, and MIL-RNN on this
subset.

The ROC curves and AUC scores of the three models in
Fig. 2c, d and Table 1 indicate the performances on the small
lesion testing data set. The results demonstrated that slides with a
small lesion were more difficult to distinguish; moreover, the
AUC scores of all models dropped to some extent—from 0.01 to
0.07—when compared with those tested on the standard testing
data set. Nevertheless, our method exhibited superior perfor-
mance on slides with small lesions when compared with CNN-
MaxFeat-based RF (P= 0.1171 for adenocarcinoma and P=
0.08036 for squamous cell carcinoma) and MIL-RNN (P=
0.02924 for adenocarcinoma and P= 0.5760 for squamous cell
carcinoma).

Model performance on Cancer Genome Atlas data sets. To
examine the generalization ability of the models, two lung cancer
data sets, namely LUAD (lung adenocarcinoma) and LUSC (lung
squamous cell carcinoma) from The Cancer Genome Atlas
(TCGA) public data set, were included in the study. The TCGA-
LUAD and TCGA-LUSC diagnostic slide data consist of
532 slides of adenocarcinoma and 512 slides of squamous cell
carcinoma, respectively. Because color characteristics varied
greatly between slides in the TCGA diagnostic data set and our
data set, we applied the Vahadane stain normalization algo-
rithm32 as part of image preprocessing to match the color spec-
trum distribution of the training slides with that of the TCGA
slides32–34. We compared our method (with GMP layers), CNN-
MaxFeat-based RF, and MIL-RNN on this subdataset, all of
which were trained on the whole training data set.

As illustrated in Fig. 2e, f and Table 1, AUC scores were
reduced when testing on the TCGA diagnostic data set for all
methods. Specifically, our method achieved an AUC score of
0.8950 (0.8764–0.9137) for classifying adenocarcinoma on TCGA
diagnostic slides, which is worse than the score on the standard

Fig. 4 Visualization of heatmaps generated by models. Both heatmaps are upscaled to fit the original image size using a bicubic interpolation. The colors
of the overlaid heatmaps represent the predicted probabilities of being a tumor, as defined in the color bar. a Whole-slide view on a slide containing
adenocarcinoma lesions. b Heatmap of MIL on a whole-slide view. c Heatmap of whole-image method. d Zoom-in view with human annotations (blue
contours). e Zoom-in view of MIL heatmap. f Zoom-in view of heatmap generated by whole-slide training method.
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testing data set (AUC= 0.9594 [0.9500–0.9689], P= 1.987e−9).
However, the whole-slide training method still demonstrated a
greater model generalization ability compared with CNN-
MaxFeat-based RF (P= 2.138e−9 for adenocarcinoma and P=
2.849e−8 for squamous cell carcinoma) and MIL-RNN (P=
1.033e−4 for adenocarcinoma and P= 5.221e−3 for squamous
cell carcinoma).

We further examined model performance on the TCGA tissue
data set, which is composed of 1067 and 1100 fresh-frozen section
slides of adenocarcinoma and squamous cell carcinoma, respec-
tively. As depicted in Fig. 2g, h and Table 1, AUC scores were
significantly lower when the models inferred from the TCGA
tissue data set, as was expected. One of the most critical factors is
ice crystal artifacts caused by the procedure of freezing sections.
These artifacts heavily distort morphological features that are
critical for classifying the types of lung cancer. Moreover, given a
large domain discrepancy between the distributions of training
(formalin-fixed paraffin-embedded [FFPE]-slide domain) and
testing data sets (frozen-slide domain), model performance was
reduced considerably.

Impact of data set size and image resolution. The prediction
performance and robustness of DNNs can be improved simply by
feeding them more data. However, this also increases the
requirement of computational resources. Histopathological ima-
ges scanned at a ×40 magnification typically have a total number
of pixels in the billions. Training DNNs on histopathological
images with such extreme resolutions requires staggering
amounts of computational resources to iterate through all data. In
this study, for example, the number of pixels in the 9662 WSIs
was at least 1000 times greater than that of ImageNet images.
Campanella et al.23 went further and collected 44,732 WSIs to
train MIL models. Striking a balance between model accuracy and
resource conservation is critical when training models on WSIs.
We evaluated the trade-off between model performance and data
set scale by downscaling the training set size or image resolution
of the whole data set. To control confounding factors, the model
architecture setup (ResNet-50 GMP with fixup initialization) and
hyperparameters were identical across all experiments. Finally,
model performance was evaluated using AUC scores on the
standard testing data set.

As illustrated in Fig. 5, the reductions in training data set size
and image magnification level reduced the models’ performance
on the testing set. For instance, the testing AUCs of the training
model on the full data set (5045 slides) were significantly higher
(P= 7.251e−6 for adenocarcinoma and P= 1.222e−2 for
squamous cell carcinoma) than those on half the data set
(2519 slides). Similarly, reducing the image resolution to ×2
lowered the AUCs (P= 1.779e−6 for adenocarcinoma and P=
3.249e−3 for squamous cell carcinoma). These experiment results
suggested the need for a massive amount of high-resolution slide
data to allow models to capture detailed information, thus
providing improved performance.

Notably, even though the reduction in resolution affected
model performance, the AUCs of the whole-slide training method
on downsampled slides were still high, and those using ×1
magnification were higher than 0.9 (0.9252 for adenocarcinoma
and 0.9061 for squamous cell carcinoma). Compared with MIL
methods trained using ×4 magnification, our method trained
using ×2 magnification achieved a competitive result with CNN-
MaxFeat-based RF (AUC= 0.9412 vs 0.9345, P= 0.2378 for
adenocarcinoma and AUC= 0.9205 vs 0.9071, P= 0.1994 for
squamous cell carcinoma). The results also indicated that our
method trained using ×2 magnification was not significantly
inferior to the MIL-RNN method trained using ×4 magnification
on the identification of both adenocarcinoma (AUC= 0.9412 vs
0.9310, P= 0.06015) and squamous cell carcinoma (AUC=
0.9205 vs 0.9239, P= 0.6865). Therefore, given limited computa-
tional resources, reducing the resolution is a viable strategy for
shortening the training time and acquiring acceptable model
accuracy for tasks such as the classification of lung cancer types.

3-Class classifier versus multiple binary classifiers. According to
information theory, the output probabilities of most classification
algorithms are designed to minimize the entropy regardless of the
number of target classes, meaning that splitting a single multiple-
class classification task into multiple binary classification pro-
blems may not lead to better results. In the current study, splitting
a single model that identifies patterns of adenocarcinoma, squa-
mous cell carcinoma, and non-cancer into multiple individual
models did not achieve better results. Our experiment results
revealed no significant differences between individual classifiers
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Fig. 5 Data set size and image resolution impact on whole-slide training method. The performances were measured by area under the ROC curve (AUC)
of classifying adenocarcinoma (ADC, dark blue box-and-whiskers) and squamous cell carcinoma (SqCC, red box-and-whiskers) over the standard testing
data set (n= 1397). The AUC distribution of each configuration was obtained based on the sampled AUCs by bootstrapping over 100 iterations. A box-
and-whisker is drawn to represent each distribution with center (Q2, the median AUC), bounds of box (Q1 and Q3, the first and third quartiles of AUC),
bounds of whiskers (the minimal and maximal AUCs within the range obtained by adding Q2 by ±1.5 times the distance between Q3 and Q1), and outlier
points (AUCs out the range). The tables below report the exact AUC without bootstrapping and the confidence interval calculated by Delong’s method of
each configuration. a Performance of models trained with reduced numbers of slides. b Performance of models trained with lower image resolution.
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and the 3-class model. The AUC scores were 0.9548
(0.9450–0.9646) for adenocarcinoma and 0.9414 (0.9239–0.9588)
for squamous cell carcinoma.

Throughput comparison and memory consumption. Subse-
quently, we compared the computing throughputs of training and
inference among the different methods by measuring the number
of slides processed per minute. All experiments were conducted
on two image resolutions, namely 21,500 × 21,500 (×4 magnifi-
cation) and 11,000 × 11,000 (×2 magnification). Specifically, we
adopted standard MIL with k= 1 as the representative to measure
performance because throughputs among variants of MIL
methods are close. Our proposed method fit images directly
without dividing the input. To avoid the out-of-memory problem,
we leveraged and optimized the UM mechanism to offload
temporary data to host memory efficiently through graph editing
and mixed precision35. Compared with vanilla UM, the
throughput of the whole-slide training method could be accel-
erated by 6.26× through the incorporation of both optimized
memory access and mixed-precision training, as illustrated in
Fig. 6a. Moreover, our proposed method can integrate ortho-
gonally with synchronized data parallelism, the most commonly
used distributed training approach, for further acceleration. We
conducted experiments on TAIWANIA 2 with a hardware con-
figuration of 16 GPUs; the training process achieved a 64.60×
throughput compared with a single GPU, non-optimized one, as
illustrated in Fig. 6c.

The MIL method follows the patch-based protocol and
patches can be placed on GPUs without additional CPU–GPU
swapping, and high efficiency is retained during both the
training and inference phases. As illustrated in Fig. 6,
throughputs of the MIL method were 3.5× and 15.7× faster

than our proposed method under the training phase when the
sizes of inputs were 11,000 × 11,000 and 21,500 × 21,500,
respectively. Notably, the throughput of our method was 1.3×
faster than that of the MIL method when the size of the input
was 11,000 × 11,000, whereas it was 16.4× slower when the size
was 21,500 × 21,500 during the inference phase. This suggests
that the memory overhead of our method did not expand
linearly, resulting in a throughput gap between different input
sizes. On average, our method took 100 GPU-days and 1200
GPU-days to reach convergence when experimenting with ×2
and ×4 magnification, whereas the MIL method took 30 GPU-
days and 120 GPU-days in the training phase. As for the
inference phase, our proposed method took 1.5 GPU-hours and
80 GPU-hours to complete 1397 WSIs with ×2 and ×4
magnification, whereas the MIL method took 1.5 GPU-hours
and 5 GPU-hours for the same experimental conditions.

Although our proposed method is not constrained by GPU
memory size because UM is enabled, adequate host-memory
space is required to store intermediate data produced during
model training. We measured the host-memory consumption
among the different methods on both 11,000 × 11,000 and
21,500 × 21,500 inputs by subtracting the peak host-memory
usage from that during an idle state. As indicated in Fig. 6, the
memory consumption of the MIL method remained constant in
the training and inference stages on both image sizes. No
matter how large an input image is, MIL processes one patch at
a time, requiring a fixed size of temporary memory space for
patch processing. By contrast, the memory consumption of our
method scales with the input resolution to store global context
information. With memory optimization and mixed-precision
training, our method consumed less than half of the memory
consumed by the non-optimized version during training.
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Fig. 6 Throughput and memory consumption of training and inference on our proposed method against non-optimized version and MIL. For throughput
tests, we measured the execution time of 30 training iterations of each configuration to acquire the distribution. All boxes-and-whiskers in a–c represent a
distribution with center (Q2, the median), the bounds of box (Q1 and Q3, the first and third quartile), and the bounds of whisker (the minimal and maximal
values within the range obtained by Q2 ± 1.5 × (Q3 – Q1)). a Training throughputs of whole-slide method, non-optimized version, and MIL on 11,000 ×
11,000 (blue) and 21,500 × 21,500 (red) images with a single GPU. Note that the configuration of training 21,500 × 21,500 images by non-optimized
whole-slide training method is not executable due to incurring out-of-host-memory error. b Inference throughputs of models with a single GPU. c Training
throughputs of our method with multiple GPUs. d Host-memory consumption of our method w/ and w/o optimization and MIL on 11,000 × 11,000 (dark
blue) and 21,500 × 21,500 (red) images during training phase. Training 21,500 × 21,500 images by non-optimized whole-slide training method encounters
an out-of-memory error, implies the memory consumption is higher than the host-memory capacity of a node, 768 GB. e Host-memory consumption of
models during inference phase.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21467-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1193 | https://doi.org/10.1038/s41467-021-21467-y |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Discussion
Patch-based methods have been popular in deep learning for
digital pathology because they readily circumvent the memory
constraints of compute accelerators. Supervised patch-based
methods require patch-wise annotations that are not plausible
to employ in routine pathology. Moreover, generating detailed
annotations on WSIs is extremely laborious; an expert can take 1
h to annotate just portions of a single WSI. Furthermore, borders
between tissue types are often ambiguous, leading to incon-
sistencies between pathologists. The high variability of tissue
morphology makes it difficult to cover all possible examples
during annotation. These shortcomings expose deep learning
models to strong bias from expert-defined annotations and make
them difficult to learn comprehensively. To avoid the annotation
burden and selection bias of experts, most recent studies have
applied weak supervision methods, which can train deep learning
models to explore relationships inside WSIs, resulting in direct
clinical diagnoses.

Training cancer classifiers without detailed annotations alle-
viates the burden of experts and allows DNN models to benefit
from numerous WSIs with readily available sign-out diagnoses. In
previous studies, methods for detecting cancer using strongly
supervised models trained with patch-wise annotations11–19 still
outperformed weakly supervised models. However, research on
weakly supervised models for cancer detection is gaining popu-
larity because annotation is too costly and because models trained
through strong supervision are limited by how targets are
annotated.

Although MIL can be trained with weak labels such as slide
diagnosis, several drawbacks may possibly affect model perfor-
mance: (1) Incorrectly selected patches in early training iterations
may trap models in the local minimum because of random
initialization. In some situations, models even stop improving
after the first few epochs. (2) MIL attempts to utilize the k-most
representative patches while abandoning other related informa-
tion contained in others. However, the size of the k-most repre-
sentative patches is a hyperparameter and the truly informative
regions may vary from slide to slide. The k-most representative
patches may either overtake irrelevant patches as positives or lack
the capacity to include atypical patterns that are crucial for
diagnoses.

Instead of modifying algorithms and the training pipeline
toward weak supervision, thus avoiding the out-of-memory
problem, we consider it more straightforward to leverage the
UM mechanism to train CNNs directly with numerous images
without modifying the training pipeline. UM enables GPUs to
access the host memory directly, which expands the capacity from
gigabytes to terabytes. The UM mechanism works by swapping
data between GPU and host memory, which is slow because of
frequent data exchange through the Peripheral Component
Interconnect Express (PCIe) interface. Limiting the use of
working memory can result in significant acceleration, as we
demonstrated in this study. However, training CNNs on images
larger than 20,000 × 20,000 pixels is prohibitively slow. Even-
tually, limitations in host memory will occur. Therefore, further
research into more memory-efficient algorithms or training
methods is necessary. The present research processed WSIs at a
magnification equivalent to a ×4 objective lens. To address image
recognition problems that require resolutions at ×20 or ×40
magnification, it is likely beneficial to take a two-step approach:
first, a ×4 image should be used to locate crucial regions in the
WSIs, and second, ×40 images of those regions should be used for
the final image recognition task. This process would closely
resemble the real-life practice of pathologists.

Campanella et al.23 demonstrated that MIL can achieve
excellent results by using a WSI data set with only slide-level

labels. In this study, we demonstrated that using entire WSIs for
training can achieve superior results. Two possible explanations
may account for this. The first is that given the randomness in the
sampling process, MIL requires a much greater number of
training samples to reach the same level of performance. The
second is that, given the lack of ground truth at the patch level, a
ceiling exists to the performance MIL can achieve. Therefore,
further research comparing the two methods using data sets with
tens of thousands of WSIs may be necessary.

The lesion localization of our model through CAM revealed
good coverage in most cases. Notably, however, the semantics of
CAM in our proposed method was slightly different from cancer
cell location. Areas highlighted by CAM were highly related to
predictions; DNNs use distinguishable features across the given
data set to classify an image into groups, which may introduce
frequent side effects such as contextual bias. For instance, a
classifier trained to learn cars and boats will highlight not only the
boat itself but also water because boats are always accompanied
by water. In our case, the CAM for squamous cell carcinoma
highlighted not only cancerous regions but also necrotic regions
(Supplementary Fig. 1). Despite the fact that necrosis can be
caused by diseases other than squamous cell carcinoma, such as
physical injury or infection, these diseases rarely mandate biop-
sies and therefore were underrepresented in the training data set.
The model thus learned necrosis to be an identifying feature of
squamous cell carcinoma.

Because deep learning models collect all possible clues to make
decisions, the model unavoidably learns that such weak relations,
or halo effects, are useful when differentiating adenocarcinoma
from squamous cell carcinoma. Similar to Li et al.36, who added
extra supervision to guide attention maps, one method for
resolving this problem is to add a small number of slides anno-
tated in detail to specify cancer cells. These annotations provide
hints for models to separate cancerous representations from
weakly related representations. In future studies, such integration
for leveraging both slide-level annotations and limited-detail
annotations can be developed to achieve a more comprehensive
and precise model.

Compared with the development of artificial intelligence (AI)
in radiology, progress in pathology AI has been slow. We reason
that this is not for the lack of data but rather the burden of
annotation. A large medical center can generate up to half a
million slides per year, yet a typical digital pathology AI project
uses only hundreds of slides. The scope of a pathology AI project
is most often constrained by annotation, which is inherently slow
because it is performed at a microscopic level. Our methods pave
the way for more rapid progress in pathology AI research through
reducing the need for detailed annotation. Our method can be
applied to various classification tasks and potentially even to
multilabel learning—for example, for determining the presence of
multiple tissue subtypes in a lung tumor section. We expect our
method to be most useful when it can be combined with strongly
supervised methods, which would enable it to leverage a large
amount of weakly labeled data to achieve a crude understanding;
subsequently, a small strategically annotated data set could be
used to fine-tune its performance, thus achieving superior lesion
localization and precise semantics in multilabel classification or
subclassification tasks.

Methods
Data set. A total of 9662 hematoxylin and eosin (H&E) stained formalin-fixed
paraffin-embedded (FFPE) specimens collected from 2843 patients were retrieved
from TMUH, WFH, and SHH within the period from 2018 to 2019. For each case,
it might have at least one H&E slide gathering from either biopsy or different parts
of the resected lung tissue and diagnosed as the dominant type of cancer or non-
cancer tissue. Lung specimens were sampled by either biopsy (32%, 3075 slides) or
resection (68%, 6587 slides).
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Because of a lack of samples in certain types of rare lung cancer, we filtered out
cases that have less than 500 samples. As a result, the cases diagnosed as small-cell
carcinoma and large-cell carcinoma were excluded. The final data set contains
7003 slides, including 3876 cases of adenocarcinoma, 1088 cases of squamous cell
carcinoma, and 2039 cases of non-cancer tissues. The diagnoses were confirmed by
at least two pathologists.

The data set was randomly split into training, validation, and testing sets,
containing 5045, 561, and 1397 slides, respectively, using a stratified sampling
method. Detailed numbers of slides from each site are listed in Table 2. Unless
otherwise specified, experiments were conducted using this cross-site data set
configuration.

To investigate the model performance on hard cases, we used only cancerous
cases that have small lesions (i.e., tumor area < 10% of tissue area), in addition to
benign cases, of the testing set. This subset comprises 476 slides in total, including
30 slides of adenocarcinoma and 39 slides of squamous cell carcinoma, and
407 slides of benign cases.

The access of data was compliant with policies (NO.1080506_1) approved by
the Office of Legal Affairs, Taipei Medical University and National Legislation For
Research. The data collections were allowed proceeding after informed consents
were obtained from participants. All WSIs were de-identified and do not contain
any patient information or label text except for slide-level diagnosis. The collected
data are limited to research use only.

All slides were scanned by Hamamatsu NanoZoomer XR in ×20 magnification
(0.46 μm per pixel). The original resolution of each slide image differs with width
up to 110,592 pixels (average: 65,683 pixels) and height up to 55,552 pixels
(average: 40,593 pixels).

To evaluate cross-site generalization ability of models, the TCGA lung cancer
slides were also included in the current study. The TCGA-diagnostic data set
contains 532 H&E stained FFPE tissue slides of adenocarcinoma from TCGA-
LUAD diagnostic data (9 slides were abandoned since no magnification
information was provided) and 512 slides of squamous cell carcinoma from
TCGA-LUSC diagnostic data. All the slides were scanned by Aperio scanner in
either ×20 (0.50 μm per pixel) or ×40 magnification (0.25 μm per pixel). For
resolution consistency, these slides were rescaled in proper factor to meet the pixel
spacing with that of our slides (0.46 μm per pixel). Furthermore, we used the stain
normalization method proposed by Vahadane et al.32 to unify the color style of the
TCGA slide images. For the supplementary study of model performances on non-
FFPE slides, frozen sectioned slides from TCGA-LUAD and TCGA-LUSC tissue
data sets were evaluated, including 1,067 slides of adenocarcinoma and 1100 slides
of squamous cell carcinoma cases.

Multiple-instance learning. Most image binary classification tasks can be for-
mulated into a MIL problem by dividing an image into multiple partial regions if
the following criterion is met: a bag, or an image, is labeled as positive when the
target shows up in at least one instance, or local region; and labeled as negative if
the target is absent from all instances. Hence, any positive bag can be represented
by using several critical instances only whereas no suspicious instances should be
left in negative bags.

This property makes training models with bag-level labels become possible by
applying positive bag-level labels to critical instances in positive bags and negative
bag-level labels to all instances in negative bags. During training, the MIL
iteratively selects high-score instances from each bag when training a classifier.

To be more specific, the MIL method can be separated into two alternative
steps: instance selection and classifier optimization, as illustrated in Fig. 7. During
instance selection, an instance selector, which computes the probability of positive

over instances of bags, is used to mine k-most positive instances from each bag.
With selected instances, a classifier is trained to maximize the probability of
instances selected from positive bags while minimizing the probability of instances
selected from negative instances.

In the end of MIL, the classifier will be able to mine the most relative patterns of
positive cases and the label of any given bag can be inferred by naive aggregation
methods such as taking the maximum scores (max pooling) or averaging scores of
k-most instances.

Deciding numbers of instances to represent a given image is an issue without
consensus. Typically, aggregating with max pooling (i.e., k= 1) is the most
common implementation among related literatures, especially during the training
phase23, since a positive bag-level label only implies at least one positive instance.
Setting k > 1 may lead to instances oversampling when true positive instances are
less than k in a given bag, making the model tend to predict as negative on these
bags. Though the side-effect of using k > 1 may occur in some situations especially
when the critical pattern is relatively tiny, setting an appropriate size of k greater
than 1 is shown to be more robust since the model is less likely to be affected by
outlier instances. To strike the balance, many variants of MIL were proposed.
Expectation-maximization (EM) MIL19 is proposed to dynamically select k by
leveraging spatial relationships among instances during model training and
evaluation. Several works19,23,24 train a bag-level aggregation model to combine the
prediction results of all instances.

MIL methods on lung cancer type classification. The lung cancer classification
task with only slide-level labels can be considered as a MIL problem since a slide is
labeled as either adenocarcinoma, squamous cell carcinoma, or non-cancer tissues.

As illustrated in Fig. 7, we treated each slide as independent bags and cropped
patches of 224 × 224 pixels inside each bag as instances to train a classifier and
aggregated prediction of instances using the widely adopted max-pooling method.
For the instance classifier, a ResNet-503 with fixup initialization31 was
implemented. While the dominant lung cancer type classification mainly relies on
inspecting tissue-level morphology rather than cell-level morphology as shown in
Fig. 1, we generate instances at ×2 and ×4 magnification to provide sufficient
observation scope for the classifier. During model training, we applied the
following data augmentation to improve its robustness: flipping, translation,
rotation, and color augmentations, including random contrast (multiplication by
0.5–1.5), brightness (multiplication by 0.65–1.35), hue (addition by −32–32) and
value (addition by −32–32).

Additionally, instances belonging to the background (i.e., all the RGB values
larger than 220) were ignored, which drastically reduced the total number of
instances by 80% and speeded up the whole training process. After background
removal, 9.2 million, 1.0 million, and 2.6 million tiles were included in the training,
validation, and testing data set, respectively. To select representative instances of
each bag, we set k= 1, 3, or 5 in different trials to pick up instance(s) that is/are
most likely to be either adenocarcinoma or squamous cell carcinoma instance and
mark instances of bags to its corresponding slide-level annotations.

Several previous works, including the EM-CNN-LR, EM-CNN-SVM, CNN-
MaxFeat-based RF, and MIL-RNN, were also implemented as benchmarks for our
proposed method. EM-CNN-LR19 and EM-CNN-SVM19 both leverage expectation
maximization (EM) to dynamically tune k. During each training iteration, the
patch prediction map is firstly applied to Gaussian blurring with a 3 × 3 rectangle
kernel. Representative tiles were selected if their prediction scores on the blurred
prediction map were higher than image-level threshold, 0.1th-percentile score
among patches in an image, or class-level threshold, 0.05th-percentile score of a
class. To train the bag-level model, class histograms of patch prediction results are
calculated by summing up all the class probabilities of all the patches, and then are
fed into a bag-level classifier, a logistic regressor (LR), or a support vector machine
(SVM) with radial basis function (RBF) kernel, for final predictions. Instead of
averaging values directly, CNN-MaxFeat-based RF24 trains an additional random
forest aggregation model on top of patch results. Specifically, feature vectors were
extracted by selecting patches of highest probability from each block through a
patch-level model, which is trained by standard MIL with k= 3. These feature
vectors are then averaged and fed into a random forest model for final predictions.
Finally, the MIL-RNN23 method trains a recurrent neural network (RNN) with 128
hidden units to aggregate top-k instances selected by a standard patch-level model.
To fairly compare the performances with each other, all the MIL variants adopted
ResNet-50 with fixup initialization among all the experiments.

Whole-slide training method. As a workaround algorithm for hardware memory
constraints issue, the MIL alters typical CNNs training pipeline and thus produces
several drawbacks. First, instances were nearly randomly selected in the early
training phase because of the random initialization of the classifier. These selected
instances in the early stage strongly affect the trend of the selection strategy of the
classifier in the following training process. In some situations, wrongly selected
instances, for instance, accompany hyperplasia tissues but not cancer cells itself,
may lead the classifier to fall into a local minimum and thus stop improving after a
few epochs.

Second, the top-k representative instances may undertake informative regions
or overtake irrelevant regions into account, which limits models to learn targets
comprehensively. Since overtaking irrelevant instances as positives could be more

Table 2 Case numbers of digital slides collected from
TMUH, WFH, and SHH.

Non-cancer Adenocarcinoma Squamous cell carcinoma

Training set (total: 5045 slides)
TMUH 953 401 98
WFH 509 1123 318
SHH 7 1271 365

Validation set (total: 561 slides)
TMUH 103 46 11
WFH 58 123 38
SHH 2 138 42

Testing set (total: 1397 slides)
TMUH 264 111 27
WFH 141 311 88
SHH 2 352 101

A total of 7003 slides were collected in the current study, including 2039 cases of non-cancer,
3876 cases of adenocarcinoma, and 1088 cases of squamous cell carcinoma.
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severe to the training procedure, most implementations set k= 1 to take the most
relevant instance only, which turns out that models will lack capacities to include
atypical patterns that are crucial to diagnosis.

By contrast, we propose a whole-slide training method that incorporates the
standard CNN architecture with the unified memory (UM) mechanism to support
inputs of hundreds of millions of pixels directly to train the models as usual
(Fig. 7). Because convolutional layers generate outputs by doing numerous local
transformations over height and width dimensions of input, increasing input sizes
merely brings more local transformation loadings to CNN models, and therefore, is
algorithmically feasible for using whole slide images as inputs. However, the
memory consumption scales with the extremely high image resolution of slides will
exceed the limit of GPU memory easily. By analyzing memory footprints, it is
obvious that not all tensors are required at the same time; therefore, offloading
tensors out of GPUs can reduce the in-time resource demands for GPUs.

As a CUDA feature, unified memory (UM) allows GPUs to grant direct access
to host memory, which provides terabytes of memory instantly to accommodate
most intermediate tensors during forward- and back-propagation. Basically, UM
shares the same idea with virtual memory. A unified memory space consists of
pages, each of which is virtually addressed and physically stored in either GPU or
host memory. Once the total number of pages is out of maximal GPU capacity, a
limited number of pages can be placed on the GPU memory, whereas the rest pages
will be placed on the host memory. Pages stored in GPU memory can be directly
accessed by GPU cores. Otherwise, the system will trigger an on-demand data
migration that moves the targeted pages from host to GPU memory beforehand.
Oftentimes, when GPU memory is full, a page on GPU memory will be evicted to

host memory simultaneously to spare space for the requested pages. Such a process,
called data swapping, allows GPUs to access all content in a unified memory
allocation as long as there is enough host-memory space for swapping. Introducing
UM in Tensorflow can simply be fulfilled by replacing all GPU memory allocation
requests, invoked by cudaMalloc, by unified memory allocation, invoked by
cudaMallocManaged. Because UM is transparent, all the tedious swapping
operations are done in the background and no other modifications should be made
for Tensorflow.

Performance optimization of whole-slide training method. While UM cir-
cumvents the problem with memory constraint, the frequent data swapping
between the host memory and GPUs through a slow hardware link, PCIe, tre-
mendously slow down the training throughput. To address this, two memory
optimization techniques, Group Execution and Group Prefetch, were proposed to
increase the efficiency by manipulating data swapping during runtime.

Group Execution encourages data swapped in GPU memory to be exhaustively
used before swapping out to host memory to reduce the swapping amount. During
the training process of most deep learning frameworks, multiple operations are
executed in parallel to leverage all computing resources. Because each operation
requires a certain amount of memory space to keep intermediate data, excessive
parallelism needs more space, sometimes larger than that offered by GPU. At that
moment, plenty of data are frequently moved back and forth between GPU and
host memory, strongly increasing the swapping amount, referred to as “thrashing”.
To curb thrashing, Group Execution was implemented to ensure the total memory
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consumption of simultaneously executing operations can fit in GPU memory. In
Group Execution, neighboring operations are grouped, such that their total
intermediate data size is smaller than GPU memory size. Groups are executed
sequentially so that concurrent execution of operations only exists within a
group scope.

Group Prefetch preloads data required by the upcoming operations in advance
to prevent memory stalls. While UM allows GPU programs on-demand access to
data stored in host memory when executing an operation, the access is inefficient.
First, the transfer rate (3.6 GB/s) of on-demand access is not as fast as that of
explicit copy (10.3 GB/s). Second, GPU cores idle when data is being loaded on-
demand. To solve the issues, Group Prefetch prefetches the data required by the
next group via explicit copy when the current one is being processed. This enables
computations and communications to be performed in parallel.

Specifically, the grouping is done before the training process begins. Operations
are first organized into a sequence by topological sorting. Second, the grouping
program iteratively calculates the total memory consumptions of the first n
operations and finds the optimal n just under the memory limit. Third, the first n
operations are marked as the first group, and the remaining groups are made by
repeating the same process. Finally, the sequential execution between groups is
implemented by inserting control dependencies in the operation graph that can be
identified by a deep learning framework to force computation ordering. Likewise,
prefetch operations are added into the operation graph, each of which uses control
dependencies to force the prefetch being called sometime within the duration of
a group.

To gain further optimization training speed of our method, we also adopted the
mixed-precision training35 and data parallelism distributed strategy. With mixed-
precision training, data except for precision-sensitive values including gradients
and feature maps before average pooling layers are stored and computed with 16-
bit half-precision floating-point number format, which not only reduces memory
requirement but also speeds up computation by using Tensor Cores. In the
meanwhile, we used data parallelism distributed strategy to process different
samples on multiple GPUs and apply averaged gradients after iterations. To
compensate for the loss in randomness between batches caused by the smoothness
of averaging gradients collected from different nodes, we set the initial learning rate
as the default learning rate multiplied by the square root of the number of GPUs37.

MIL assumption in the whole-slide training. Training a classifier of natural
images and a classifier of WSIs are drastically different due to the difference in scale
of image size.

Typically, an image of 224 × 224 spatial resolution will be condensed into 2048
feature maps of 7 × 7 spatial resolution after multiple stacks of convolutional and
downsampling layers in the ResNet. Because these layers use sliding window
operations, each 7 × 7 feature map remains the same spatial arrangement as the
input image. To be more precise, these layers can be deemed as a function that each
pixel on the feature map encodes a certain size of region on the original input into a
single 2048-dimensional embedding vector.

The projection size of a pixel of feature maps corresponding to the original
input can be referred to as a receptive field38. Information beyond a receptive field
has no means to be encoded. According to the operations of ResNet50, the
receptive field of the final feature map is 483 × 483, which is larger than its
common input size: 224 × 224. As a result, receptive fields of pixels on the final
feature maps have already covered all information of the image.

The following global average pooling (GAP) layer is commonly applied to
average feature maps of 7 × 7 × 2048 into a 1 × 1 × 2048 vector. However, the
receptive field of any given pixel on the final feature maps will no longer cover the
whole image when enlarging the input into tens of thousands of pixels along with
its height and width. Such difference is critical in the cancer classification of WSIs.
Since malignant regions may be relatively tiny compared to the whole tissues in the
positive slides, only very few receptive fields cover critical areas.

With the majority voting aggregation, or the global averaging pooling (GAP), at
the end of feature maps, critical signals were further diluted by signals coming from
feature maps that are not relevant to patterns of cancers. It ultimately constraints
the model to identify slides with small cancerous areas.

Inspired by the MIL, we replace the GAP layer by the global max-pooling
(GMP) layer, which only keeps the max value of each element of the 2048-long
vectors, as illustrated in Fig. 8. Large values appearing in the embedding vector
implies meaningful features are extracted. By adopting GMP, those large values are
kept and thus distinguishable signals behind them are preserved.

In addition, having an appropriate size of receptive field is crucial for models to
encode necessary information for identifying lung cancer main types. The size of
the receptive field of ResNet50 is 483 × 483 pixels. Since the receptive field of the
model is fixed according to the model architecture, the physical size of receptive
fields will vary depending on different magnifications of whole-slide images. To be
more precise, the receptive field is around 1111 × 1111 µm2 and 2222 × 2222 µm2

for ×4 and ×2 magnification, respectively. While the field of view (FOV) for
pathologists to analyze tissue-level morphology at ×100 magnification of a
microscope is approximately 200 × 200 µm2, the receptive fields of our model are
sufficient to encode information for identifying lung cancer types.

Whole-slide training method on lung cancer type classification. As illustrated
in Fig. 7, despite the complexity in the engineering effort for acceleration, the
whole-slide training method is logically equivalent to training a deep neural net-
work end-to-end. We used ResNet-503 with fixup initialization31 as the model
architecture to keep the same experiment condition as MIL classifiers. WSIs were
resized to ×2 and ×4 magnifications and then padded to 11,000 × 11,000 pixels and
21,500 × 21,500 pixels, respectively, with white color. For each training iteration,
each training sample underwent the same augmentation process as that in the MIL
training pipeline.

Experiment setup. We conducted all experiments on TAIWANIA 2, a multi-GPU,
multi-node supercomputing environment. Each node is equipped with 8× Tesla
V100 32GB-HBM2 GPUs. The software stack for GPU acceleration included
CUDA 10.0 and cuDNN 7.6. We used OpenSlide (version 3.4.1) for slide loading,
TensorFlow (version 1.15.3) for model building and training, and Horovod39

(version 0.19.0), Open MPI (version 4.0.1), and MPI for Python (version 3.0.3) to
enable multi-GPU parallel training. All the experiments were executed with batch
size 8, 1 sample per GPU. Models are optimized by minimizing 3-class categorical
cross entropy as the loss function, calculated by Eq. (1),

L ¼ �ynormallnð~ynormalÞ � yADClnð~yADCÞ � ySqCCln ~ySqCC
� �

ð1Þ

where y denotes the ground-truth label and ỹ denotes the model prediction on a
certain main type.

The weights of all the training models are initialized by ImageNet pretrained
weights. Along with the training progress, the kernel weights were gradually
updated with the process called gradient descent. We used the Adam optimizer40

(with an initial learning rate of 2e−5 and decays to 2e−6 when validation loss does
not improve in 24 epochs) to train the model and evaluate the performance per 100
training steps as an epoch. During the training process, only the set of weights
achieving the lowest validation loss is saved for evaluation.

Statistics. We use the area under receiver operating characteristics (Area Under
ROC, AUC) as evaluation metrics to measure the slide-level performance of dif-
ferent methods. The 95% confidence interval was obtained using Delong’s
method41. When comparing the AUCs of two models, the P-value was also cal-
culated by the Delong test with a two-sided hypothesis. To evaluate the significance
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Fig. 8 Aggregation operations in MIL and in whole-slide training method. a In multiple-instance learning (MIL), a “max” operation is performed to select
the most representative patches by their mapped predicted scores. b In the whole-slide training method, the front part of the model encodes the entire
image into an embedding feature map, where each vector along the channel axis corresponds to a receptive field. The following GMP (or GAP) layer
embeds 2048 max (or average) operations to reduce the spatial dimension. Then, a dense layer performs a linear transformation followed by an activation
function on the reduced 2048-length vector for a slide-level prediction.
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level of the AUC of a model, we adopted a dummy model that always returns 0.5 as
the null hypothesis.

For examining throughputs of different methods, the elapsed times of a model
to train on a batch were recorded. We repeated the same procedure 30 times to
estimate the distribution of elapsed times.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data of models’ predictions, learning curves, and throughputs are provided as
Supplementary Data 1. The slide data from TMUH, WFH, and SHH are not publicly
available due to patient privacy constraints, but are available upon reasonable request
from the corresponding author Chao-Yuan Yeh or Cheng-Yu Chen. The slide data
supporting the cross-site generalization capability in this study are obtained from TCGA
via the Genomic Data Commons Data Portal (https://gdc.cancer.gov).

Code availability
The source code of this study can be downloaded from https://github.com/aetherAI/
whole-slide-cnn 42 and https://github.com/aetherAI/tensorflow-huge-model-support 43

under the CC BY-NC-SA 4.0 license. Whole-slide CNN Training Pipeline provides
scripts to reproduce the results in this study, including model training, inference,
visualization, and statistics calculation, etc. Also, the pipeline is seamlessly adaptable to
other pathological cases. Tensorflow Huge Model Support as a standalone Python library
enables high-efficient unified memory training for Tensorflow.
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