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Abstract

Variational quantum algorithms, a class of quantum heuristics, are promising candidates for the demonstration of useful
quantum computation. Finding the best way to amplify the performance of these methods on hardware is an important task.
Here, we evaluate the optimization of quantum heuristics with an existing class of techniques called “meta-learners.” We
compare the performance of a meta-learner to evolutionary strategies, L-BFGS-B and Nelder-Mead approaches, for two
quantum heuristics (quantum alternating operator ansatz and variational quantum eigensolver), on three problems, in three
simulation environments. We show that the meta-learner comes near to the global optima more frequently than all other
optimizers we tested in a noisy parameter setting environment. We also find that the meta-learner is generally more resistant
to noise, for example, seeing a smaller reduction in performance in Noisy and Sampling environments, and performs better
on average by a “gain” metric than its closest comparable competitor L-BFGS-B. Finally, we present evidence that indicates
the meta-learner trained on small problems will generalize to larger problems. These results are an important indication that
meta-learning and associated machine learning methods will be integral to the useful application of noisy near-term quantum

computers.

Keywords Variational quantum algorithms - Meta-learning - Optimization - Quantum alternating operator ansatz -

Variational quantum eigensolver - Long short-term memory

1 Introduction

Machine learning is a powerful tool for tackling challenging
computational problems (Vandal et al. 2017; Libbrecht and
Noble 2015; Berral et al. 2010). A recent explosion in the
number of machine learning applications is driven by the
availability of data, improved computational resources and
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deep learning innovations (Jordan and Mitchell 2015; Mehta
et al. 2019; LeCun et al. 2015). Interestingly, machine
learning has also been applied to the problem of improving
machine learning models, in a field known as meta-learning
(Vilalta and Drissi 2002; Lemke et al. 2015).

In general, meta-learning is the study of models which
“learn to learn.” A prominent example of a meta-learner
model is one that learns how to optimize parameters of a
function (Andrychowicz et al. 2016; Li and Malik 2016;
Ravi and Larochelle 2016; Chen et al. 2017). Traditionally,
this function might be a neural network (Andrychowicz
et al. 2016) or a black-box (Chen et al. 2017). Meta-
learning and other new methods, including Auto-ML
(Feurer et al. 2015), are changing the way we train, use
and deploy machine learning models (Munkhdalai and Yu
2017; Santoro et al. 2016; Nichol et al. 2018). Here, we
use a meta-learner to find good parameters for quantum
heuristics, and compare that approach to other parameter
optimization strategies.

Figure 1 shows an example of what the implementation
of a meta-learner might look like, in the context of
optimizing the parameters of a parametrized quantum
circuit, illustrated as a quantum processing unit (QPU).
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Fig. 1 Meta-learner training on a Quantum Processing Unit (QPU—
green). This diagram illustrates how the meta-learner used in this
work can optimize the parameters of a quantum circuit (see Section 3
for a full description). Here, we outline a high-level description for
each time-step, such as T — 2 (shown). A model, in our case a
long short-term memory (LSTM) recurrent neural network (blue)
(Section 2), takes in the gradients of the cost function. The LSTM
outputs parameters ¢ for the QPU to try at the next step. This procedure
takes place over several time-steps in a process known as unrolling.
The costs from each time-step are summed to compute the loss, £
(purple), at time T

In this work, we refer to a QPU and a quantum circuit
interchangeably.

Recent progress in quantum computing hardware has
encouraged the development of quantum heuristic algo-
rithms that can be simulated on near-term devices (Mohseni
etal. 2017; Preskill 2018). One important heuristic approach
involves a class of algorithms known as variational quantum
algorithms. Variational quantum algorithms are “hybrid”
quantum-classical algorithms in which a quantum circuit is
run multiple times with variable parameters, and a classical
outer loop is used to optimize those parameters (see Fig. 2).
The Variational Quantum Eigensolver (VQE) (Peruzzo et al.
2014), quantum approximate optimization algorithm and
its generalization Quantum Alternating Operator Ansatz
(QAOA) (Farhi 2014; Hadfield et al. 2019) are examples of
algorithms that can be implemented in this variational set-
ting. These algorithms are effective in optimization (Guer-
reschi and Matsuura 2019; Rieffel et al. 2019; Niu et al.
2019) and simulation of quantum systems (Hempel et al.
2018; O’Malley et al. 2016; Rubin 2016). The classical sub-
routine is an optimization of parameters and is an important
part of the algorithm both in terms of the quality of solution
found and the speed at which it is found.

Techniques for the classical outer loop optimization are
well-studied (Peruzzo et al. 2014; Wecker et al. 2016;
2015; Guerreschi and Smelyanskiy 2017; Guerreschi and
Matsuura 2019; Nannicini 2019) and several standard
optimization schemes can be used. However, optimization
in this context is difficult, due to technological restrictions
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Fig.2 A single time-step of a general variational quantum algorithm,
where the classical processing unit (CPU—blue) outputs parameters
¢ dependent on some evaluation, in this case the expectation
value (H) by the quantum processing unit (QPU—green). The
quantum subroutine is encoded by a quantum circuit U(¢) (Fig. 3)
parameterized by ¢, and it is responsible for generating a state [y (¢)).
This state is measured in order to extract relevant information (e.g.,
expectation value of a Hamiltonian). The classical subroutine suggests
parameters ¢ based on the values provided by a quantum computer,
and sends new parameters back to the quantum device. This process
is repeated until the given goal is met, i.e., convergence to a problem
solution (e.g., the ground state of a Hamiltonian)

(e.g., hardware noise), and to theoretical limitations such
as the stochastic nature of quantum measurements (Knill
et al. 2007) or the barren plateaus problem (McClean et al.
2018). Therefore, it is imperative to improve not only the
quantum part of the hybrid algorithms, but also to provide a
better and more robust framework for classical optimization.
Here, we focus on the classical optimization subroutine and
suggest meta-learning as a viable tool for parameter setting
in quantum circuits. Moreover, we demonstrate that these
methods, in general, are resistant to noisy data, concluding
that these methods may be especially useful for algorithms
implemented with noisy quantum hardware.

We compare the performance of optimizers for parameter
setting in quantum heuristics, specifically variational
quantum algorithms. The optimization methods we compare
are L-BFGS-B (Byrd et al. 1995), Nelder-Mead (Nelder and
Mead 1965), evolutionary strategies (Salimans et al. 2017)
and a Long Short Term Memory (LSTM) recurrent neural
network model (Hochreiter and Schmidhuber 1997)—the
meta-learner. While in the production of this work, we
noticed similar research (Verdon et al. 2019) exploring
the potential of gradient-free meta-learning techniques as
initializers. Here, we use a gradient-based version of the
meta-learner as a standalone optimizer (not an initializer),
and a larger set of other optimizers. Though we include
a diverse range of techniques, clearly, there are other
optimizers that might be used, for example SPSA (James
and et al. 1992; Spall et al. 2006; Moll et al. 2018;
Kandala et al. 2017); however, our analysis focuses on those
described above.

This comparison is performed in three different simu-
lation environments: Wave Function, Sampling, and Noisy.
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The Noisy environment is an exact wave function simulation
with parameter setting noise. The simulation environments
are defined in detail in Section 3.

The first heuristic we explore for this comparison
is QAOA (Farhi 2014; Hadfield et al. 2019) for the
MAX-2-SAT and Graph Bisection constraint satisfaction
problems (Papadimitriou 1994). Second, VQE (Peruzzo
et al. 2014) is used for estimating the ground state of
Free Fermions models a special subclass of Fermi-Hubbard
models (1963). We show that, broadly speaking, the meta-
learner performs as well or better than the other optimizers,
measured by a “gain” metric defined in Section 4. Most
notably, the meta-learner is observed to be more robust
to noise. This is highlighted through showing the number
of near-optimal solutions found in each problem by the
different optimizers over all simulation environments. The
takeaway of this paper is that these methods show promise,
specifically the features of robustness and adaptability to
hardware, and how meta-learning might be applied to noisy
near-term devices.

In Section 2, we describe the background of the heuristics
and optimizers. Then, in Section 3, we outline the general
setup including problems, the optimizers, and the simulation
environments. Section 4 details the methods, including the
metrics, optimizer configuration, and meta-learner training.
In Section 5, we discuss our results. Finally, in Section 6,
the work is summarized and we suggest paths forward.

2 Background
2.1 Quantum alternating operator ansatz

The quantum approximate optimization algorithm (Farhi
2014) and its generalization the quantum alternating
operator ansatz (Hadfield et al. 2019) (QAOA) form
families of parameterized quantum circuits for generating
solutions to combinatorial optimization problems. After
initializing a suitable quantum state, a QAOA circuit
consists of a fixed number p blocks (see Fig. 3), where each
block is composed of a phase unitary generated from the
cost function we seek to optimize, followed by a mixing
unitary. The phase unitary typically yields a sequence of
multiqubit Pauli-Z rotations each with phase angle y. In the
original proposal of Farhi et al. (Farhi 2014), the mixing
unitary is a Pauli-X rotation of angle B on each qubit.
However, extending the protocol to more general encodings
and problem constraints naturally leads to a variety of more
sophisticated families of mixing operators (Hadfield et al.
2017; Hadfield et al. 2019). At the end of the circuit a
measurement is performed in the computational (Pauli-Z)
basis to return a candidate problem solution.
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Fig.3 General parameterized quantum circuit, with arbitrary unitaries
Uj(¢;), input state |0), and classical register ¢, where ¢ =
[¢1, P2, ..., pn] are the parameters of the circuit. Though the unitaries
do not necessarily act on all qubits, we have arranged them here in
“blocks,” similar to the general architectures of QAOA and VQE,
where a block of operations may be repeated many times in a circuit,
with different parameters. In the case of VQE, a block might be a series
of single-qubit rotations or a set of entangling gates (such as CNOT),
and for QAOA, a block might be a phase unitary encoding the cost
function or a mixing unitary for searching the solution space

An important open research area is to develop strate-
gies for determining good sets of algorithm parameters
(i.e., the y and B values for each block) which yield good
(approximate or exact) solutions with nonnegligible proba-
bility. These parameters may be determined a priori through
analysis, or searched for as part of a classical-quantum
hybrid algorithm using a variational or other approach. Prior
work on parameter setting in QAOA includes analytic solu-
tions for special cases (Wang et al. 2018), comparison of
analytical and finite difference methods (Guerreschi and
Smelyanskiy 2017), a method for learning a model for a
good schedule (Wecker et al. 2016), and comparison of
standard approaches over problem classes (Nannicini 2019).

We evaluate parameter setting strategies for QAOA
for MAX-2-SAT and Graph Bisection, both NP-hard
combinatorial optimization problems (Papadimitriou 1994;
Ausiello et al. 2012). We use standard (Farhi 2014)
and generalized (Hadfield et al. 2019) QAOA methods,
respectively. The latter problem mapping is of particular
interest as it utilizes an advanced family of QAOA mixing
operators from Hadfield et al. (2019) that has recently been
demonstrated to give advantages over the standard mixer
(Wang et al. 2019).

2.2 Variational quantum eigensolver

The VQE (Peruzzo et al. 2014) is a hybrid optimization
scheme built on the variational principle. It aims to estimate
the ground-state energy of a problem Hamiltonian through
iterative improvements of a trial wave function. The trial
wave function is prepared as a quantum state using a
parameterized quantum circuit, and the expectation value of
the Hamiltonian with respect to this state is measured. This
energy value is then passed to a classical device, which uses
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optimization techniques (SPSA, BFGS, etc.) to update the
parameters. The process is repeated for a fixed number of
iterations, or until a given accuracy achieved.

The initial demonstration of VQE used Nelder-Mead,
a standard derivative-free approach, for parameter setting
after observing that gradient descent methods did not
converge (Peruzzo et al. 2014). Since then, examples in
the literature include the use of Simultaneous Perturbation
Stochastic Approximation (SPSA) in Moll et al. (2018),
where the authors argue simultaneous perturbation methods
might be particularly useful for fermionic problems, but
classical problems (such as MaxCut) may favor more
standard techniques (i.e., gradient descent). Other routines
used include COBLYA, L-BFGS-B, Nelder-Mead, and
Powell in Romero et al. (2018). Finally, in Moseley et al.
(2018), the authors explore the use of Bayesian optimization
for parameter setting in VQE.

2.3 Meta-learning

Meta-learning is the study of how to design machine
learning models to learn fast, well, and with few training
examples (Bengio et al. 1990). One specific case is a model,
referred to here as a meta-learner (Ravi and Larochelle
2016), which learns how to optimize other models. A
model is a parameterized function. Meta-learners are not
limited to training machine learning models; they can be
trained to optimize general functions (Chen et al. 2017).
In the specific area of using models to optimize other
models, early research explored Guided Policy Search
(Li and Malik 2016), which has been superceded by
LSTMs (Andrychowicz et al. 2016; Chen et al. 2017; Bello
et al. 2017; Wichrowska et al. 2017). An LSTM is a
recurrent neural network, developed to mitigate vanishing
or exploding gradients prominent in other recurrent neural
network architectures (Bengio et al. 1994; Hochreiter 1998).
It consists of a cell state, a hidden state, and gates, and all
three together are called an LSTM cell. At each time-step,
changes are made to the cell state dependent on the hidden
state, the gates (which are models), and the data input to
the LSTM cell. The hidden state is changed dependent on
the gates and the input. The cell state and hidden state are
then passed to the LSTM cell at the next time-step. A full
treatment of an LSTM is given in reference Hochreiter and
Schmidhuber (1997). An LSTM is good for learning long-
term (over many time-steps) dependencies, like those in
optimization.

Meta-learners have been used for fast general opti-
mization of models with few training examples (Ravi and
Larochelle 2016): Given random initial parameters we seek
to achieve a fast convergence to “good” (defined by some
metric) general parameters. This same problem feature
appears for QAOA, where good parameters may follow
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Fig.4 Effective single-qubit rotation gate fidelity plotted as a function
of the noise on input parameters. Parameters are sampled from a
normal distribution with standard deviation o and centered on the
target input value

some common distribution across problems (Wecker et al.
2016). A meta-learner could be used to find general good
parameters, and fine-tuning left to some other optimizer
(Verdon et al. 2017), though this approach was not explored
here (Fig. 4).

3 Setup
3.1 Simulation environments

We compare optimization methods in “Wave Function,”
“Sampling,” and “Noisy” simulation environments. The Wave
Function case is an exact wave function simulation. For Sam-
pling, the simulation emulates sampling from a hardware-
implemented quantum circuit, where the variance of the
expectation value evaluations is dependent on the number of
samples taken from the device. In these experiments, we set
the number of shots (samples from the device) to 1024.
Lastly, in the Noisy case, we have modelled only parame-
ter setting noise in an exact wave function simulation, which
is a coherent imperfection resulting in a pure state.! We
assume exact, up to numerical precision, computation of the
expectation value (via some theoretical quantum computer
which can compute the expectation value of a Hamilto-
nian given a state up to arbitrary precision). Then, for each
single-qubit rotation gate, we added normally distributed,
standard deviation o = 0.1, noise to the parameters at

10ther noise models, such as dephasing or depolarizing noise, generate
mixed states, which is out of scope of this paper. Additionally, it is
argued that the optimal set of circuit parameters has similar form for
noisy and noiseless cases (for more information, see, for example, Xue
et al. 2019; Marshall et al. 2020)
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each optimization step. In order to determine o, we eval-
uate the relationship between the fidelity of an arbitrary
rotation (composed of three single-qubit Pauli rotation gates
Rz(@)Ry(B)Rz(y)), around the Bloch sphere and the noise
o (see Fig. 4). Assuming industry standard single-qubit gate
rotations of 99% (Krantz et al. 2019) a value of 0 = 0.1 is
approximated resulting in the noise in rotations illustrated
in Fig. 5 . All simulations were performed with Rigetti For-
est (2019) simulators and circuit simulations performed on
an Intel(R) Core(TM) 17-8750H CPU with 6 cores.

3.2 Optimizers
3.2.1 Local optimizers

Nelder-Mead and L-BFGS-B are gradient-free and gradient-
based approaches, respectively, which are standard local
optimizers (Guerreschi and Smelyanskiy 2017; Wecker
et al. 2016; 2015; Nannicini 2019). Local optimizers have
a notion of location in the solution space. They search for
candidate solutions from this location. They are usually
fast and are susceptible to finding local minima. L-BFGS-
B is a local optimizer and has access to the gradients.
Out of all optimizers chosen it is the closest to the meta-
learner in terms of information available to the optimizer
and computational burden (i.e., the cost of computing
the gradients). Nelder-Mead was chosen as it appears
throughout the literature (Peruzzo et al. 2014; Guerreschi
and Smelyanskiy 2017; Verdon et al. 2017; Romero et al.
2018) and provides a widely recognized benchmark.

10)

J
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Fig. 5 Rotation of initial state |0) (green) by rotation operator
Rz (w/4)Ry (r/3) Rz (0) to new state (orange arrow, red point). When
noise of ¢ = 0.1 is applied to the parameter setting we see a
distribution of final states (blue) over 100 trials

3.2.2 Evolutionary strategies

Evolutionary strategies are a class of global black-box opti-
mization techniques: A population of candidate solutions
(individuals) are maintained, which are evaluated based on
some cost function. Genetic algorithms and evolutionary strate-
gies have been used for decades. More recent work has shown
these techniques to be competitive in problems of reinforce-
ment learning (Vidnerova and Neruda 2017; Salimans et al.
2017).

All implementations of evolutionary strategies are
population-based optimizers. In the initial iteration, the
process amounts to a random search. In each iteration,
solutions with lower costs are more likely to be selected as
parents (though all solutions have a nonzero probability of
selection). Different methods for selecting parents exist, but
we used binary tournament selection, in which two pairs of
individuals are selected, and the individual with the lowest
cost from each pair is chosen to be a parent.

In more precise terms, parents are the candidate solutions
selected to participate in crossover. Crossover takes two
parent solutions and produces two children solutions by
randomly exchanging the bitstring defining the first parent
with the second. Each child replaces its parent in the
population of candidate solutions. The process is repeated,
so costs for each child are evaluated, and these children
are used as parents for the next iteration (Beasley et al.
1993). In our case, the bitstring is divided into n subsections,
where n is the number of parameters passed to the quantum
heuristic. Each subsection is converted to an integer using
Gray encoding and then interpolated into a real value in the
range [—m/2, w/2]. Gray codes are used as they avoid the
Hamming walls found in more standard binary encodings
(Charbonneau 2002).

It is the bitstrings that are operated on by the genetic
algorithm. When two individuals are selected to reproduce,
arandom crossover point, b, is selected with probability P,.
Two children are generated, one with bits left of b, from
the first parent and bits to the right of b, originating from
the second parent. The other child is given the opposite
arrangement. Intuitively, if b, is in the region of the bitstring
allocated to parameter ¢y, the first child will have angles
identical to the first parent before ¢ and angles identical to
the second parent after ¢;. Again, the second child has the
opposite arrangement. The effect on parameter ¢ is more
difficult to describe. Finally, after crossover is complete,
each bit in each child’s bitstring (chromosome) is then
flipped (mutated) with probability P,,. Mutation is useful
for letting the algorithm explore candidate solutions that
may not be accessible through crossover alone.

Evolutionary strategies are highly parallelizable, robust,
and relatively inexpensive (Salimans et al. 2017) making

@ Springer
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them a good candidate for the optimization of quantum
heuristics.

3.2.3 Meta-learning on quantum circuits

The meta-learner used in this work is an LSTM, shown
unrolled in time in Fig. 1. Unrolling is the process of
iteratively updating the inputs, x, cell state, and hidden state,
referred to together as s, of the LSTM. Inputs to the model
were the gradients of the cost function w.r.t. the parameters,
preprocessed by methods outlined in the original work
(Andrychowicz et al. 2016). At each time-step, they are

r

(=1, exp(r)V(H)"),

ey

p (w sign(V(H)’)) if |V(H)| > e

otherwise
where r is a scaling parameter, here set to 10, following
standard practice (Andrychowicz et al. 2016; Ravi and
Larochelle 2016). The terms V(H)' are the gradients of
the expectation value of the Hamiltonian at time-step ¢,
with respect to the parameters ¢’. This preprocessing
handles potentially exponentially large gradient values
while maintaining sign information. Explicitly, the meta-
learner used here is a local optimizer. At some point ¢’
in the parameter space, where t is the time-step of the
optimization, the gradients x’ are computed and passed to
the LSTM as input. The LSTM outputs an update A¢’, and
the new point in the parameter space is given by ¢'T! =
@' + A@'. It is possible to use these models for derivative-
free optimization (Chen et al. 2017), however, given that
the gradient evaluations can be efficiently performed on
a quantum computer, scaling linearly with the number
of gates, and that the optimizers usually perform better
with access to gradients, we use architectures here that
exploit this information. In reference McClean et al. (2018),
the authors show that the gradients of the cost function
of parameterized quantum circuits may be exponentially
small as a function of the number of qubits, the result
of a phenomena called the concentration of quantum
observables. In cases where this concentration is an issue,
there may be strategies to mitigate this effect (Grant et al.
2019), though it is not an issue in the small problem sizes
used here.

Though only one model (a set of weights and biases)
defines the meta-learner, it was applied in a “coordinate-
wise” way: For each parameter a different cell state and
hidden state of the LSTM are maintained throughout the
optimization. Notably, this means that the size of the meta-
learning model is only indirectly dependent on the number
of parameters in the problem. We used a gradient-based
approach, exploiting the parameter-shift rule (Schuld et al.
2019) for computing the gradients of the loss function with

@ Springer

respect to the parameters. These were used at both training
and test time.

All model training requires some loss function. We chose
the summed losses,

T
L) =Ey [Z wzf(¢z)} , &)
=0

where E is the expectation over all training instances f
and T is a time-horizon (the number of steps the LSTM
is unrolled before losses from the time-steps ¢+ < T are
accumulated and backpropagated, and the model parameters
updated). The hyperparameters w; are included, though are
set to w;, = 1 for all ¢ in these training runs. This can
be adjusted to weigh finding optimal solutions later in
the optimization more favorably, a practice for balancing
exploitation and exploration. In situations where exploration
is more important, other loss functions can be used, such as
the expected improvement or observed improvement (Chen
et al. 2017). However, in this instance, we chose a loss
function to rapidly converge, meaning fewer calls to the
QPU. This has the effect of converging to local minima
in some cases, though we found that this loss function
performed better than the other gradient-based optimizer
(L-BFGS-B) for these problems.

3.3 Problems
3.3.1 Free Fermions model

Hubbard Hamiltonians have a simple form, as follows:
~1 i jy Lot 1)@l g0 +a) ,ai0) ()
+U Y af vairal jaiy — 0 Yoo 6 paio,

where aZ o, Qi,c are creation and annihilation operators,
respectively, of a particle at site i with spin o. In this model
there is a hopping term ¢, a many body interaction term U
and an onsite chemical potential term . This model gained
importance as being a possible candidate Hamiltonian to
describe superconductivity in cuprate materials. However,
recent numerical studies have shown that there are some
significant differences between the model and what is seen
in experiments, such as the periodicity of charged stripes
that the model supports (LeBlanc et al. 2015; Schulz 1993;
Huang et al. 2017). However, the model is quite interesting
itself, with many different phases of interest. The model
is also quite difficult to solve, especially when going to
large lattice sizes and large values of U/t. This has led to
many studies and much method development on classical
computers, and is still widely researched today.

For VQE, we look for the ground state of the simplified
spinless three-site Free Fermions model with unequal
coupling strengths #;; € [-2,2] and U = p = 0, Fig. 6.

H =
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Fig. 6 Sketch of a spinless three-qubit Free Fermions model that is
used for the VQE optimization. Coupling strengths are not necessarily
equal and take values from [—2, 2]

The Hamiltonian of this model can be mapped through the
Jordan-Wigner transformation (Jordan and Wigner 1928) to
the qubit Hamiltonian

1 A A A A A A
Hpp = 5 <112X1X2 +t12Y1Y2 +123X2X3
+123Y2 Y3 + 113X1 22 X3 +fl3?122?3> 4

where X s b , and 7 are the Pauli-X , Pauli-Y, and
Pauli-Z matrices, respectively. Based on the results of
Woitzik (2018, 2020), we use a circuit composed of 3
blocks. Each block consists of three single-qubit rotations
Rz(@)Ry(B)Rz(y) applied to all qubits, followed by
entangling CNOT gates acting on qubits (1,2) and (2,3),
where the first entry is the control qubit and the second is
the target.

3.3.2 MAX-2-SAT

Given a Boolean formula on n variables in conjunctive
normal form (i.e., the AND of a number of disjunctive
two-variable OR clauses), MAX-SAT is the NP-hard
problem of determining the maximum number of clauses
which may be simultaneously satisfied. The best classical
efficient algorithm known achieves only a constant factor
approximation in the worst case, as deciding whether a
solution exists that obtains better than a particular constant
factor is NP-complete (Papadimitriou 1994). For MAX-2-
SAT, where each clause consists of two literals, the number
of satisfied clauses can be expressed as

C = Z )E,-\/ij )

(.J)€E

where x; in each clause represents the binary variable x;
or its negation, and E is the set of clauses. We use an
n-qubit problem encoding where the jth qubit logical
states [0);, [1); encode the possible values of each x;.
Transforming to Ising spin variables (Hadfield 2018)

and substituting with Pauli-Z matrices lead to the cost
Hamiltonian

~ 1 G o
C = Z il ZOY1 + 2Dy (6)
(i,j)eE

which is minimized when the number of satisfied clauses
is maximized. The sign factors +1 or —1 in C correspond
to whether each clause contains x; or its negation,
respectively. Note that C and C are not equivalent; C gives
a maximization problem, while c gives a minimization
problem, with the same set of solutions.

For our QAOA implementation of MAX-2-SAT we use
the original (Farhi 2014) initial state |s) = J127 > X,

phase operator Up(a y) = exp(—iya), and mixing
operator Uy (B) = exp(—if Z?:l )A((j)). The instances we
consider below have n = 8 qubits, 8 clauses, and QAOA
circuit depth p = 3. We further explore instances with
n =12 and p =5 (Fig. 9).

3.3.3 Graph Bisection

Given a graph with an even number of nodes, the Graph
Bisection problem is to partition the nodes into two sets of
equal size such that the number of edges across the two sets
is minimized. The best classical efficient algorithm known
for this problem provably yields only a log-factor worst-
case approximation ratio (Krauthgamer and Feige 2006).
Both this problem and its maximization variant are NP-hard
(Papadimitriou 1994).

For an n-node graph with edge set £ we encode the
possible node partitions with n binary variables, where x;
encodes the placement of the jth vertex. In this encoding,
from the problem constraints the set of feasible solutions
is encoded by strings x of Hamming weight n/2. The cost
function to minimize can be expressed as

C= Z XOR(xi, Xj) @)
(i,))€E

under the condition Z;zl xj = n/2. Transforming again to

Ising variables gives the cost Hamiltonian

o1 S (- 2070) ®
(i,j)eE
A mapping to QAOA for this problem was given in
(Hadfield et al. 2019, App. A.3.2) from which we derive
our construction. We again encode possible partitions x
with the n-qubit computational basis states |x). For each
problem instance we uniformly at random select a string
y of Hamming weight n/2 and use the feasible initial
state |y). The phase operator Up(a y) = exp(—iy@) is
constructed in the usual way from the cost Hamiltonian.
For the mixing operator we employ a special case of the
XY-mixer proposed in Hadfield et al. (2019). This class of
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mixers affects state transitions only between states of the
same Hamming weight, which will importantly restrict the
quantum state evolution to the feasible subspace. For each
node j =1, ..., n, we define the XY partial mixer

Uj(B) = exp (—iﬂ (;}(j)f((ﬂrl) + 1}(1)1}(./41)))

with 0+ := (U We define the overall mixer to be the
ordered product Uy (B) = U, (B) ... Ua(B)U;1(B). Observe
that as each partial mixer preserves feasibility, so does
Uy (B), and so QAOA will only output feasible solution
samples. We consider problem instances with n = 8 qubits,
8 edges, and QAOA circuit depth p = 3.

4 Methods
4.1 Metrics

Here, we outline two metrics used to evaluate and compare
the optimizers. The first metric used is the gain, G, to the
minimum,

Jr—Ji

g Ef |:fmin_fl:| (9)
where E is the expectation value over all instances f,
fr is the converged cost of the optimizer, f; is the
initial cost (determined by the initial parameters) and
Sfmin 1s the ground-state energy. fnin was determined by
evaluating all possible solutions in the cases of MAX-2-
SAT and Graph Bisection, and by exact diagonalization
of the Hamiltonian for finding the ground state of the
Free Fermions model. This number is the expectation over
instances f of the “gain” to the global minimum from the
initialized parameters. In the case of local optimizers (meta-
learner, L-BFGS-B, Nelder-Mead) we initialized to the
same parameters. The metric outlines the average progress
to the global minimum from an initialization. Secondly, the
quality of the final solution was also evaluated by a distance
to global minima metric, D,

_ |fmin - fF|
|fmin - fmax|

where fiax 1S the maximum possible energy. This metric
gives a sense of the closeness to the global minima, as a
percentage of the extent.

D * 100 (10)

4.2 Configuring optimizers

We evaluated the optimizers on 20 problems from 5 random
initializations each, to increase the probability of reaching
the ground state by all optimizers. The initializations were
kept the same between the local optimizers (L-BFGF-B,
Nelder-Mead, and meta-learner).

@ Springer

Evolutionary strategies used 5 different random initial-
izations for each problem. L-BFGS-B and Nelder-Mead
were implemented using Scipy (Jones et al. 2001), where the
gradients for L-BFGS-B were computed by analytic means
and quantum circuit simulation. We implemented and con-
figured the evolutionary strategies methods in-house. For
all tests, a small population size of 20 was used to limit
the number of calls to the simulator (sizes on the order of
100 are typical and may improve performance). Both MAX-
2-SAT and Graph Bisection problems with QAOA used
m = 60 bits to represent parameters. VQE simulations had
more parameters to optimize, so m = 297 bits were used
for these problems. All tests used a probability of crossover
of P, = 0.9, and a probability of mutation of P, = 0.01.
These parameters were selected by a sparse grid search.

On these small problems, the SciPy default hyperparam-
eters of standard optimizers L-BFGS-B and Nelder-Mead
were found to give generally good performance. Any tun-
ing did not contribute meaningfully to the performance,
though we expect at larger problem sizes more tuning
will be required as the optimization landscape increases in
ruggedness. We found these hyperparameters generalized
well.

4.3 Training the meta-learner

For the MAX-2-SAT and Graph Bisection problems the
model was trained on just 200 problems, whereas in the
case of optimizing Free Fermions models the meta-learning
model quickly converged and training was truncated at 100
problems. The loss function is given in Eq. (2), where values
w; = 1V t are used. For the preprocessing of the gradients,
the hyperparameter » in Eq. (1) is set to 10. For all training
an Adam optimizer (Kingma and Ba 2014) was used with a
learning rate of 0.003, o = 0.9, 1 = 0.999, ¢ = 1.0-8 and
zero weight decay. These training schedules were consistent
across simulation type (Wave Function, Sampling, and
Noisy). We included a “curriculum” method, implemented
in Chen et al. (2017), whereby the time-horizon of the meta-
learner is extended slowly throughout the training cycle.
This was started at 3 iterations and capped at 10, at the
end of the training cycle. Optimization was terminated if
it converged, under standard convergence criteria. Overall,
9 models were trained (3 simulation environments x 3
problem classes).

5 Discussion and results

Figure 7 shows the performance of the optimizers measured
by the gain metric in the three simulation environments. The
gain metric converges in the same sense as an optimizer
converging on one problem instance, this is as expected
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Fig. 7 Left to right columns: Free Fermions models, Graph Bisec-
tion and MAX-2-SAT problems. Top to bottom rows: Wave Function,
Sampling, and Noisy simulations, defined in Section 3. Optimizers:
Evolutionary strategies (blue), Nelder-Mead (green), L-BFGS-B (red),
meta-learner (purple). x-axis: Shared within a column, QPU iteration
is number of calls to the QPU. y-axis: Shared within a row, G, the gain,
is the value computed by Eq. (9) and represents the average progress
toward the minimum from the initial evaluation of (H). L-BFGS-B
and the meta-learner have access to the gradient and make numerous
calls to auxiliary quantum circuits (simulated in the same environment

given it is an average over many problem instances. A
value close to 1 is desirable, indicating the ability of an
optimizer to progress to the global minima from a starting
point. Figure 8 shows the total number of near-optimal
solutions found by each optimizer. We define near-optimal
as finding a solution within 2% of the global optima
computed by Eq. (10). The closest comparable competitor
to the meta-learner in these plots is L-BFGS-B, given both
optimizers had access to the gradients. This is reflected in
their performance, particularly in Fig. 7.

It is important to recognize that the comparison in Fig. 7
has limited scope. Optimization is a hard problem: There
are many ways to improve application specific performance
of different algorithms and metrics to evaluate that
performance. For example, the gradient-based optimizers

QPU iteration

— Nelder-Mead

QPU iteration

Key

— L-BFGS-B —— Meta-learner

as the expectation value evaluation circuits) to compute the gradients.
The number of calls to evaluate gradients of parameters is N, = 2M,
where M is the number of parameterized gates in the circuit. The QPU
iteration variable captures this, i.e., is the total number of calls to a
QPU for an optimizer. Error bars are the standard error on the mean,
o /+/n where n is the number of examples and o' the standard devi-
ation of the performance of the optimizers. Note that negative values
of G are observed, corresponding to on average performing worse than
the initial evaluation

(meta-learner and L-BFGS-B) evaluate auxiliary quantum
circuits many times in order to compute the gradients.
Recognizing there are always limitations to comparing
optimization methods, we draw conservative conclusions.

5.1 General performance

Additionally to meta-learning functioning as an optimizer
in variational quantum algorithms, we find competitive
performance of this meta-learning algorithm, at small
instance size, over a range of problem classes, using the gain
metric G defined in Eq. (9) (see Fig. 7).

The metric G was used to evaluate and compare the
optimizers, though this value can hide significant features.
For example, an optimizer that finds good (but not optimal)
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Fig.8 Bubble and bar plots of the frequency of near-optimal solutions.
The size of each bubble is dependent on the total number of times
an optimizer came within 2% of the global optima across all problem
instances (computed by Eq. (10)); the largest bubble is L-BFGS-B in
the Wave Function environment (115). Repetitions are included, i.e.,
if an optimization ended in a near-optimal solution it was counted,
regardless of whether it was found in a previous optimization. We
found that if one optimizer performed well in one task, it performed
well, relative to the other optimizers, in another (by this metric), so
each bubble is not divided into each problem class. The right bar plot
represents the summation across optimizers within a simulation type.
The bottom bar plot represents the summation within an optimizer
across simulation types. (N, Noisy; S, Sampling; W, Wave Function)

solutions frequently will perform better than an optimizer
that finds bad solutions frequently and optimal solutions
infrequently. There are other cases that the reader may have
in mind. This particular example is addressed in Fig. 8.
The number of times the optimizer comes within 2% of
the ground state (across all problems), as calculated by
Eq. (10), is counted. We observe an expected reduction in
performance as noise is increased; this is discussed further
in the subsection below.

5.2 Noise

As expected, there is a reduction in performance for all
optimizers as “noise” increases: Performance is worse in
Sampling than in Wave Function and is worse in Noisy than
in Sampling. What is notable is that the meta-learner is
more resilient to this increase in noise than other methods.
For example, in Free Fermions model problems, L-BFGS-B
performance reduces by 0.35 whereas the meta-learner only
reduces by 0.2, from around the same starting point (Free
Fermions models column, Fig. 7). This pattern is repeated
across problem classes, to varying degrees. We believe this
is a promising sign that meta-learning will be especially
useful in noisy near-term quantum heuristics implemented
on hardware. In the case of simulation, we believe this
resistance can be explained by the optimizer knowing how
to find generally good parameters, having learned from

@ Springer

noisy systems already. This needs to be distinguished from
another potential benefit of these algorithms, where the
models learn how to optimize in the presence of hardware-
specific traits. In the latter case, the meta-learner may
learn a model that accounts for hardware-specific noise.
Further, in Fig. 8, we see a reduction in performance,
measured by the total number of near-optimal solutions,
for all optimizers. However, this effect is least apparent in
the global optimizer (evolutionary strategies) and the meta-
learner. Additionally, the meta-learner finds significantly
more near-optimal solutions (80) for Noisy simulation than
the next best optimizer (evolutionary strategies—17). These
are promising results on the potential use cases of these
optimizers in hybrid algorithms implemented on noisy
quantum hardware.

5.3 Evolutionary strategies

Evolutionary strategies exhibit an oscillatory behavior when
gain to global optima versus function call is plotted, the
first generation corresponds to a random search, then the
fittest individual (i.e., best solution) found in the previous
generation is evaluated first in the next generation. Hence,
we observe a spike in performance every 21 evaluations
(the size of the population plus the fittest individual). As
such we only plot every 21 iterations, giving a smooth
curve. We reiterate here that given other performance/time
metrics, including for example if optimizers are parallelized,
other analysis including different comparison metrics will
be needed to determine the respective use cases of
meta-learners vs evolutionary strategies. Indeed, while
Fig. 7 suggests that evolutionary strategies perform well
for particularly hard problems (Graph Bisection, Noisy),
preliminary results in Fig. 8 indicate that the meta-learner
tends to outperform evolutionary strategies when searching
for a near-optimal solution.

5.4 Problems and algorithms

The Free Fermions models were the simplest to solve (they
are small problems confined to parameter values [—2,2]).
This is reflected in the performance of the gradient-based
optimizers. Evolutionary strategies underperform. This is
most likely a result of the size of the parameter space:
Though the problem size (in terms of the number of
variables) is smaller, there are significantly more parameters
in this implementations we have considered of VQE (24)
than QAOA (6).

Of the two classical optimization problems we consider,
the Graph Bisection problem is harder than MAX-2-SAT, in
the sense of worse classical approximability. While MAX-
2-SAT can be approximated up to a constant factor, the best
classical efficient algorithms known for Graph Bisection
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perform worse with increasing problem size (Papadimitriou
1994; Ausiello et al. 2012). This contrast appears in the
performance of all optimizers: In general, every optimizer
performs worse in Graph Bisection than in MAX-2-SAT by
the gain metric.

5.5 Scaling

Figure 9 provides evidence that the meta-learner model
may be generalized. A model trained on smaller QAOA
problem instances (n = 8, p = 3) is extended to larger
problems (n = 12, p = 5). We chose L-BFGS-B for this
comparison as it is the closest comparable competitor in
terms of information available and performance. The meta-
learner is competitive with or even better than L-BFGS-B,
as evaluated by the Gain metric, in the initial optimization
though appears to have worse asymptotic behavior. This
may be because the meta-learner encourages large steps in
the initial optimization, where the margin for error on the
step is larger than when further in the minima. At a high
level, the initial and final steps can be thought of as regions
with distinct properties, it is unsurprising the meta-learner
performs differently in each region.

This small demonstration is not extensive enough to
make any serious conclusions regarding the generalization
of the meta-learner for optimizing quantum circuits, though
itindicates similar findings in the field that these models can
extend to larger system sizes (Andrychowicz et al. 2016).

6 Conclusion

In this work we compared the performance of a range
of optimizers (L-BFGS-B, Nelder-Mead, evolutionary
strategies, and a meta-learner) across problem classes
(MAX-2-SAT, Graph Bisection, and Free Fermions Models)

of quantum heuristics (QAOA and VQE) in three simulation
environments (Wave Function, Sampling, and Noisy). We
highlight three observations. The first is that the meta-
learner outperforms L-BFGS-B (the closest comparable
competitor) in most cases, when measured by an average
percent gain metric G. Secondly, the meta-learner performs
better than all optimizers in the Noisy environment,
measured by a total number of near-optimal solutions
metric D. Finally, the meta-learner generalizes to slightly
larger systems for QAOA problems, which reflects other
findings in the field. We conclude that these are promising
results for the future applications of these tools to
optimizing quantum heuristics, because these tools need to
be robust to noise and we are often looking for near-optimal
solutions.

During the production of this work, a related preprint
(Verdon et al. 2019) was posted online. In that preprint,
the authors consider only gradient-free implementations of
meta-learners. Their training set is orders of magnitude larger,
as the meta-learner is learning to optimize from more
limited information. However, taking into account the QPU
calls required to compute the gradients, N, = 2M where
M is the number of parameterized gates, their gradient-free
implementation required significantly fewer queries to a QPU
during optimization. As both architectures have different
advantages and trade-offs between resource overhead,
training time, and performance should be considered for
a given use case. Their conclusions are similar to ours
regarding the potential of meta-learning methods, and
suggest using them as an initialization strategy.

The meta-learning methods evaluated here are relatively
new and are expected to continue to improve in design and
performance (Wichrowska et al. 2017). There are several
paths forward, we highlight some here. Though there is no
investigation into the scaling of meta-learner performance
to larger problem sizes, this in part is limited by the inability
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to simulate large quantum systems quickly, and exacerbated
by the further burden of computing the gradients. It is an
open question as to how meta-learners will perform with
quantum heuristics applied to larger problem sizes. In a
closely related vein, these methods will be explored on
hardware implementations, for two reasons. The first is
that quantum computing will soon be beyond the realm of
reasonable simulation times, and testing these algorithms
on systems with higher number of variables will have
to be done on hardware. The second is that these meta-
learners may be able to learn hardware-specific features.
For example, in this work the meta-learner is a single
model applied to different parameters. This approach is
called “coordinatewise.” If instead applied in a “qubitwise”
fashion, where different models are trained for parameters
corresponding to each qubit in a given hardware graph, there
may be local variability in the physics of each qubit that the
meta-learner accounts for in its model and optimization.

In terms of further investigations into the specifics of the
problems and quantum heuristics considered, we emphasize
that our QAOA implementation of Graph Bisection used
a different type of mixer and initial state than MAX-2-
SAT. An important question to answer is to what degree
the differences in performance we observed between MAX-
2-SAT and Graph Bisection are due to the change of
mixer and initial state, as opposed to the change of
problem structure. Additional possible mixer variants and
initial states for Graph Bisection are suggested in Hadfield
et al. (2019), which we expect to further affect QAOA
performance, and hence also affect the performance of our
parameter optimization approaches. An important open area
of research is to better characterize the relative power of
different QAOA mixers and the inherent trade-offs in terms
of performance, resource requirements, and the difficulty
of finding good algorithm parameters. In this direction,
recent work (Wang et al. 2019) has demonstrated that
superposition states may perform better than computational
basis states as QAOA initial states.

Finally, heuristics play a prominent role in solving
real-world problems: They provide practical solutions—
not necessarily optimal—for complex problems (where an
optimal solution is prohibitively expensive), with reasonable
amount of resources (time, memory etc.). Therefore, we see
significant potential for applications of quantum heuristics,
implemented not only on near-term quantum devices—
especially for variational quantum algorithms—but also for
hybrid computing in fault-tolerant architectures. Thus, it is
imperative to characterize the classical components, such as
the meta-learner, that learn properties of quantum devices
toward the deployment of effective quantum heuristics for
important practical applications.
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