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ABSTRACT RNA-binding proteins (RBPs) play crucial roles in gene regulation. The advent of
high-throughput experimental methods, has generated a huge volume of experimentally verified binding
sites of RNA-binding proteins and greatly advanced the genome-wide studies of RNA—protein interactions.
Many computational approaches have been proposed, including deep learning models, which have achieved
remarkable performance on the identification of RNA—protein binding affinities and sites. In this review,
we discuss machine learning and deep learning approaches, mainly focusing on the prediction of RNA and
proteins binding sites on RNAs by deep learning. Furthermore, we discuss the advantages and disadvantages
of these approaches. The workflow of deep learning is also revealed. We recommend some promising future
directions of deep learning models in the study of RBP-binding sites on RNAs, especially the embedding,
generative adversarial net, and attention model. Extraction and visualization methods involving motif are
illustrated. Finally, we summarize the previous studies, and then compare the performance on different

dataset.

INDEX TERMS Binding site, deep learning, motif discovery, RNA-binding protein.

I. INTRODUCTION

RNA-binding proteins (RBPs) play important roles in various
cellular processes, such as alternative splicing, RNA edit-
ing, and mRNA localization [1], [2]. Identifying the binding
sites of RBPs on RNAs is also crucial for understanding
the mechanism behind many biological processes. RBPs are
involved in several stages of post-transcriptional regulation.
For example, HuR binds to target mRNA to enhance its
stability and translation [3], whereas, TIA-1 and TIAR inhibit
mRNA translation [4]. In addition, the dysregulation of RBPs
and the mutation of binding target may lead to abnormalities
and diseases [5], including muscular atrophies and neurolog-
ical disorders. Thus, decoding the overview of RBP binding
sites can give deeper insights into many biological mecha-
nisms [6].

The knowledge of RBPs is vitally important for multiple
aspects of gene expression regulation. It has been demon-
strated that RBPs take over 5-10% of the eukaryotic pro-
teome [7] and its number exceeds 1000 [8]. Although some
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experimental methods such as in vitro EMSA [9] and in
vivo fluorescence [10] are powerful tools in characteriz-
ing RNA-protein interactions before the development of
high-throughput techniques, they are time-consuming and
expensive, and not all interactions can be successfully
identified. Recently, several high-throughput sequencing-
based approaches, e.g., CLIP-seq [11], SELEX [12] and
RNAcompete [13], have indeed advanced the genome-wide
studies of RBP binding sites and binding affinities, but they
are also time-consuming and costly. Moreover, false positives
and false negatives remain in the collected data due to exper-
imental noise and the limitations of current techniques, such
as limited mapping of splice sites. To acquire the accuracy
information of binding sites in a timely manner, a series of
RBP have been developed by means of binding sites bioin-
formatics tools [14]-[16]. In view of this, the computational
methods were focused in the current study.

Machine learning methods are widely used and successful
methodologies to learn features and relationships from data.
Indeed, some well-known algorithms of traditional machine
learning have been applied in predicting of RNA binding
proteins. Hilal et al. designed the RNAcontext [17], deriving
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FIGURE 1. Deep learning workflow in RNA and protein binding sites prediction. (A). A dataset should be randomly split into training, validation and
testing sets. Positive and negative samples should be balanced so that the predictor learns salient features rather than confounding factors. (B). The
appropriate architecture is selected and trained in RNA protein binding sites prediction. For example, CNNs capture binding motifs, and RNNs capture
long term information. (C). True positive (TP), false positive (FP), false negative (FN) and true negative (TN) rates are evaluated. When there are more
negative than positive examples, precision and recall are often considered. Area Under Curve (AUC) is the area under the Receiver Operating
Characteristic (ROC) curve and is also an important evaluation index. (D). The learned model is interpreted by visualizing motifs using sequence logo.

a position weight matrix (PWM) model and structural context
preferences from RNAcompete [13] and CLIP data [18].
Orenstein et al. introduced the RCK [19] that utilizes the
same input and optimization procedure as RNAcontext to
infer model parameters. RCK could capture local preference
better and achieve higher efficiency in the context of k-mer.
Graphprot [18] was based on sequence- and structural-
preference. The secondary structure of each RNA sequence
was represented as combinatorial graphs in Graphprot.
Li et al. [20] predicted protein-RNA binding residues using
deep boosting-based approach via a total of 168 sequence
features. For traditional machine learning, obtaining mean-
ingful or task-related features is indispensable for perfor-
mance, but features extracted require domain knowledge and
designing manually by experts. However, deep learning has
overcome those drawbacks by integrating the feature engi-
neering step into a learning step. Instead of extracting features
manually, deep learning obtains the informative representa-
tions by a self-taught manner [21]. Deep learning belongs
to a class of machine learning, which can incorporate large-
scale datasets, learn highly complex patterns, and incor-
porate existing knowledge. convolutional neural network
(CNN) [22] was first applied to DeepBind [23] to model
the mapping from sequence to binding strength and capture
sequence motif automatically, which has attracted huge atten-
tion. Different from DeepBind, iDeepS [24] took structures
into consideration for RBP binding specificity. It trained two
individual CNNs and a long short-term memory network
(LSTM) [25] for sequences and structures to capture bind-
ing sequence and structure motifs of RBPs. Considering the
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complementarity of multiple sources of data, e.g., sequences,
structures, region type, Gene Ontology (GO) and clip-
cobinding, Pan et al. proposed iDeep [26]. It inte-
grated deep belief networks (DBNs) [27] and a CNN.
Zhang et al. proposed deepnet-rbp [28], which incorporated
sequence, secondary structure and tertiary structure features
using DBNSs. In contrast to current CNN methods, Graph-
Prot2 [29] encoded input sequences as graphs, allowing the
addition of base pair information in the form of graph edges
and supporting variable length input. Till now, stacks of shal-
low models and combinations of different models are used
frequently.

In this review, we summarize the recent progress of RBP
binding sites, focusing on deep learning methods. We gen-
eralize available datasets that have been validated by bio-
logical experiments to build training datasets in section II.
Importantly, we expand the basic theory in detail behind
the different deep learning model in section III, such as
CNN-LSTM, embedding, generative adversarial net (GAN),
attention model, etc. In section IV, we introduce the applica-
tions of deep learning and machine learning in the prediction
of RBP binding sites. We also show how to extract and
evaluate motifs based on deep learning methods. In addi-
tion, we encode the data and answer questions that may
arise during training in section V, including overfitting,
hyperparameter adjustment, etc. Finally, we discuss the chal-
lenges and potential defects of the RBP binding sites predic-
tion method based on deep learning. Deep learning workflow
in RNA protein binding sites prediction is shown in the
figure 1.
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Il. PROBLEM FORMULATION AND DATASETS

A. PROBLEM FORMULATION

RBP, is a class of ribonucleoprotein complex. When RBP
binds to single or double stranded RNA, it is called interaction
of RNA and protein. Generally, when the minimum distance
between specific amino acid residues on protein and specific
base on RNA is less than 3108, it is considered that protein
and RNA are bounded [30]. There also exists an interac-
tion between RNA and protein. In this study, RBP-binding
sites prediction is a classification problem. Formulating the
prediction of RBP-binding sites is divided into two cate-
gories, based on whether binding occurs and how many
sites binding to RBP. Whether or not binding occurs can
be defined as a binary classification problem. For binary
classification, the positive sequence is labeled as 1 and the
negative sequence is labeled as 0. Here, a specific model is
trained for each RBP. How many sites binding to RBP can
be defined as a multi-classification problem, and the label is
the type of RBP. In multi-classification, the number of labels
is the sum of all the specific RBP types plus the non-binding
sites, with only one general model to make prediction unlike
the specific model. Here, non-binding sites are such sites that
do not bind to all RBP in multi-classification.

B. DATASETS
At present, the frequently used datasets for identifying RBP
binding sites are RNAcompete dataset [31], RBP-24 [18],
RBP-31 [32], and RBP-67 [33] dataset.
RNAcompete-derived datasets consist of the measured
binding preferences of 9 RBPs named HuR, Vtslp, PTB,
FUSIP1, U1A, SF2/ASF, SLM2, RBM4 and YBI. In each
RNAcompete experiment, the bindings of one protein to
around 240000 short synthetic RNAs (30-40 nucleotides
long) are measured, covering 24 different eukaryotes in total.
The dataset includes 244 experiments, each of which contains
the binding strength between a single protein and more than
240,000 RNA sequences. RNAcompete assesses an RBP’s
binding affinity for each sequence in an RNA pool. The
estimate of affinity is based on the relative enrichment of
that RNA sequence in the bound fraction versus the total
RNA pool (as measured by transformed microarray inten-
sity ratios). RNA pool is divided into two separate sets,
Set A and Set B. A specific protein binds to a set of pre-
designed oligomers and measures binding by hybridizing
with complementary probes on the microarray. This dataset
is used by many models, such as GraphProt [18], RCK [19],
Deepbind [23], RNAContext [17], DLPRB [34], etc.
RBP-24 dataset covers 24 experiments of 21 RBPs,
in which 23 datasets are attained from doRiNA [35], and
the remaining one which measured the PTB binding sites by
HITS-CLIP is attained from [36]. The RBP binding positive
sites are identified by the CLIP-based experiments, and they
can be downloaded from doRiNA. The nonbinding negative
sites are derived by shuffling the coordinates of binding
sites within all genes with at least one binding site using
bedtools shuffle [37]. In general, 80% of the training data
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are selected as training set, the remaining 20% as valida-
tion set. The independent testing set is derived directly from
testing set. The dataset is available at http://www.bioinf.uni-
freiburg.de/Software/GraphProt.

In RBP-31 dataset, the CLIP-seq data consists of
19 proteins with 31 experiments. Each nucleotide in the
interaction site cluster derived from CLIP-seq is considered
a binding site. In order to reduce redundancy, further random
sampling of positive binding sites with the highest number
of cDNA, there is no continuous site in the genome. Finally,
only one of the sites with the highest cDNA count is selected
as the positive sample. The negative site is extracted from any
of 31 experiments that are not identified as interacting. In the
experiment, there are 4000 cross-linking sites for training,
1000 samples for model optimization and validation, and
another 1000 samples for independent testing. The dataset is
available at https://github.com/mstrazar/ionmf.

RBP-67 dataset is constructed from RNAcommender [33].
Proteins interact RNA with 72226 UTRs (untranslated
regions in mRNAs) for a total of 502178 interactions
from the AURA 2 database [38]. The AURA 2 database
includes a manually curated and comprehensive catalogue
of experimentally determined interactions between human
RBPs and UTRSs (untranslated regions in mRNAs), including
67 distinct RBPs. Distinct RBP has different number of bind-
ing sites. Positive samples can be directly extracted from
experimentally generated binding sites. The nonbinding neg-
ative sites are derived by shuffling the coordinates of binding
sites within all genes with at least one binding site using
bedtools shuffle. Pan er al. [39] also investigated that how
many RNAs had multiple binding proteins, and found that
74.7% of RNAs had at least two binding proteins.

The subsequences with peak expression level in CLIP-seq
serve as positive samples, and without binding sites of region
in CLIP-seq belong to negative samples. Therefore, the label
of samples is determined by experiments whether they inter-
act with the corresponding RBP. In addition, RNA sequence
needs to de-redundant by CD-HIT [40]. Although many
datasets have been proposed, in most studies only part of
datasets for prediction of RBP.

Ill. DEEP LEARNING ALGORITHMS

Deep learning has become a field with many practical appli-
cations and active research topics, which has been applied
to image processing [41], speech recognition [42], transla-
tion, etc. A deep learning model typically contains a num-
ber of representation layers, all of which are automatically
learned from the training data. Learning means finding a set
of weights for all layers so that the network can correctly
match each RNA sequence to corresponding label. In this
section, we will introduce four typical deep learning models,
namely CNN [22], recurrent Neural Network (RNN) [43],
DBN [27] and graph convolutional networks (GCN). In addi-
tion, we will introduce stacked deep neural network model for
predicting RBP binding sites, such as CNN-LSTM, Embed-
ding, GAN, attention model, etc.
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FIGURE 2. (A) Convolutional neural network is used to process the sequence, including Convolution layer, ReLU activation, and pooling layer. In general,
softmax is also required in the end of model. (B). The framework of LSTM is shown with three gates. (C). It is the framework of DBN, which consists of
RBM. (D). Sequence and base pair information are input to GCN for discrimination.

A. CONVENTIONAL DEEP LEARNING MODELS

1) CONVOLUTIONAL NEURAL NETWORK

CNN is a kind of neural network specially processing data
with grid structure. Convolutional networks perform well in
many applications, such as sequential data [44] and image
data [45]. We first encode RNA sequences into one-hot
encoding showing the presence of nucleotide A, C, G,
and U. Then the one-hot encode matrix is fed into a CNN,
which involves convolution, activation, and pooling opera-
tions. one-hot encoding will be introduced in section V. The
CNN layer preserves the spatial information and output fea-
ture maps for subsequent processing. The advantage of CNN
is that it no longer separates feature extraction and model
learning into two independent steps like traditional statisti-
cal learning algorithms. It adopts a data-driven approach to
learn the feature and classification model from the original
input simultaneously, reducing the potential mismatch effect
between feature extraction and learning classification model.
The CNN model has been widely applied to the prediction of
RNA binding proteins of DNA or RNA.

As is shown in the figure 2.A, in forward propagation, let
each filter slide over the width and height of the input data,
and then compute the inner product of the entire filter and
the input data at any point. A two-dimensional activation dia-
gram is generated, and each spatial position on the activation
diagram represents the response of the original sequence to
the filter. On each convolutional layer, there will be a set of
filters, with number of 16 or 102 according to the previous
studies [26]. At present, CNN is used because the filter has
strong interpretability. The number of filters is related to the
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type of motif. Pooling operations include maximum pooling
and average pooling. Pooling operation aims at reducing the
dimension of matrix, which can retain the most representative
elements in the matrix after the convolution operation and
speed up the matrix operation. Generally, the input data is
two-dimensional and represents the global RNA sequence
information. In addition, Pan and Shen [46] also used
k-mer to treat multiple subsequences in global sequence as
RGB channels in an image, which is three-dimensional.

2) RECURRENT NEURAL NETWORK

RNN is widely used in NLP fields, such as automatic trans-
lation [47], emotion analysis [48], and human-computer dia-
logue. It could be used to process sequence data of any length.
Timestep is a very important concept in RNN. At different
timestep, memories are stored and flowed in hidden cells, and
each hidden cell has an output. On the basis of the different
propagation direction, bidirectional RNN emerged, which
enables the network to adjust the current state according to
the past and future state. Because of vanishing gradient and
explosion gradient problems, it is difficult to obtain long-term
dependence for RNN training. In order to solve the problem
of long-term dependence, LSTM [43], gated recurrent unit
(GRU), and other relevant variants are proposed to improve
RNN. The details of LSTM are shown in the figure 2.B.
LSTM cell is given in the following formulas.

¢; = tanh(Wey % a;—1 + Wer % x; + b) (D
U =oWy *a;—1 + Wy % x, + by) )
Oy = oWy % as—1 + Wor % x; + by) 3
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FtZO'(Wf[ *atfl—}—Wﬁ *.xl“i‘bf) (4)
Cr = U[*E[+F[*C[_1 (5)
ay = Ot*Ct (6)

where o is the Sigmoid function, and tanh is a function
to push the values to be between —1 and 1. ¢, U;, Oy,
and F; represent outputs of the memory gate, update gate,
forget gate, output gate, respectively. ¢ represents timestep.
Wer, War, Wor, and Wy represent weights in the 7 timestep.
be, by, b, and by are biases. U; updates the state at timestep ¢,
and F; removes the state to be forgotten. Next, ¢; and a; are
transferred to the next unit, as is shown in figure 2.B. x; is
input data. It is worthwhile to note that the initial values with
¢; = 0 and a; = 0. Three gates are designed to enhance the
ability of LSTM to capture long-term dependence. However,
RNN and variants are less used to predict RNA protein bind-
ing sites, because RNN has poor interpretability and cannot
process excessively long sequences. Since the length of RNA
sequences exceeds 500, the long-term dependence problem
cannot be well solved. Therefore, it is not appropriate to deal
with RNN directly. CNN is utilized to reduce the dimension
and then concatenate RNN so as to solve this problem.

3) DEEP BELIEF NETWORK

DBN [27] is another deep learning algorithm to learn high-
level features from massive data, which is also a popular
choice for constructing the computational models in RBP pre-
diction [26] recently. DBN is a probabilistic generation model
composed of multiple layers of neurons. The visible layer is
used to input training data, while the hidden layers are used to
extract features. So hidden layer neurons also called feature
detector. The components of DBN are Restricted Boltzmann
Machines (RBM) [26]. The training process of DBN is car-
ried out layer by layer, as is shown in the figure 2.C. In each
layer, data vectors are used to infer the hidden layer, which is
then treated as the data vector of the next layer. In fact, each
RBM can be also used as a separate cluster. RBM has only
two layers of neurons. The first layer, called the visible layer,
consists of visible units for input to training data. Another
layer is called the hidden layer, accordingly, and is made
up of hidden units that act as feature detectors. It’s worth
noting that many studies have shown that the CNN and DBN
have their own advantages owing to different deep learning
architectures. For example, CNN is more appropriate for
sequential data, and DBN prefers numeric input. It prompts us
to consider how to combine the advantages of CNN and DBN
to better predict the RBP binding sites and find the sequence
motifs.

4) GRAPH CONVOLUTIONAL NETWORK

GCN [49] performs a convolution on a graph rather than on
an image composed of pixels. Graph is composed of several
nodes and the edge connecting two nodes, which is used to
describe the relationship between different nodes. All nodes
connected with this node are its neighbors. GraphProt2 [29]
provides predictions for the entire site and profile for the input
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sequence, that is, a score for the entire sequence or a single
score for each nucleotide position in the sequence. In addi-
tion, it uses GCN and contains base pair information, as is
shown in the figure 2.D. The length of the input sequence can
be variable, which makes the method more flexible, as well
as the use of variable-sized windows in profile prediction.

Like traditional CNN, convolution operation in Euclidean
space extracts the features of pixels with a fixed size learnable
convolution kernel. In the Euclidean space represented by
images, the number of neighbors of node is fixed. However,
in the non-Euclidean space, the number of neighbors of node
is not fixed. Because the neighbor nodes in the graph are
not fixed, traditional convolution kernel can not be directly
used to extract the features of the nodes in the graph. The real
difficulty is that the number of neighbor nodes is not fixed.
Therefore, we need to transform the non-Euclidean space into
Euclidean space, and find a convolution kernel that can deal
with the variable length neighbor nodes to extract features
on the graph. The essence of graph convolution is to find
the learnable convolution kernel for graphs. There are two
kinds of graph convolution networks, one is based on spatial
domain, the other is based on frequency domain.

B. THE VARIANTS OF DEEP LEARNING MODELS

1) CNN-LSTM

The model of CNN-LSTM is the most popular for processing
RBP sequences data. In this model, CNN is utilized to obtain
sequence features for RBPs, and RNN is used to extract
high-level context representation of sequence features. CNN
processes each input global sequence, it is not sensitive to
the sequence of time steps, which is different from RNN.
Of course, many convolutional and pooling layers can be
stacked on top of each other in order to identify longer-
term patterns, so that the upper layer can observe longer
sequences in the original input. Because the RNA sequence
data is relatively simple, much deep network structure is
easy to cause overfitting. One way to combine the speed and
lightness of the convolutional neural network with the order
sensitivity of RNN is to use the convolutional neural network
as a pre-processing step in front of RNN, especially for very
long sequences that RNN cannot handle directly. Convolu-
tional neural networks can convert long input sequences into
shorter sequences composed of higher features by down-
sampling [50], [51], as is shown in the figure 3.A. These
sequences after down-sampling, are composed of extracted
features, then become inputs to RNN in model. This is the
most common model in many studies, such as DLPRB [34],
iDeepS [24].

2) EMBEDDING

Inspired by the success of word embedding in natural
language processing [52], it is also increasingly used in
bioinformatics [53]. Word embedding learns a distributed
representation for words, thereby reducing the dimension of
word space. Word embedding is context independent static
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FIGURE 3. (A) The sequences are fed into CNN to extract features. Then, long and short-term memory training is carried out through LSTM. (B). The
high-dimensional sequence is reduced by word embedding, and then input into neural network for prediction. (C). The GAN have two neural network
models, the discriminator and the generator, competing against each other during learning. The discriminator aims to distinguish the synthetic from the
real data, while the generator is trained to confuse the discriminator by generating high quality synthetic data. (D). Sequences are processed using jump
connection by residual network. (E). The attention network could be in encoder and decoder. These attention weights are used to construct the content
vector C1, C2, and C3, which is passed to the decoder as input. At each decoding position, the content vector is the weighted sum of all the hidden states

of the encoder and their corresponding attention weights.

vector, including statistical tools such as word2vec [54],
glove [55], etc. Asgari and Mofrad proposed BioVectors [56]
using word embedding technology based on n-gram for bio-
logical sequences, e.g., DNA, RNA, protein. BioVectors can
describe the basic patterns of biological sequences in the
sense of biochemistry and biophysics.

In this review, we consider each k-mer as a word and each
sequence as a sentence, and learn the distributed representa-
tion of k-mers using skip-gram. We map each subsequence
of k-mer into a high-dimensional vector and assemble all
high-dimensional vectors into subsequence space as men-
tioned section V. The subsequence space of k-mer is 4% by
one-hot encoding, and each encoding corresponds to one
subsequence. A window of length k slides over a global
sequence of length L. When the step size is s, the RNA
sequence of length L has (L-k 4-1)/s number of words. The
embedding layer compresses k-mers of the input sequences
into their distributed representations. Where the distributed
representation of k-mers are learned from genome-wide UTR
sequences using the word2vec or glove algorithm, which
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is an orthogonal matrix essentially. The high-dimensional
one-hot matrix is embedded into a much lower dimensional
vector continuous space, as shown in figure 3.B. Each word
is mapped to a vector in the real field, called a word vec-
tor. In natural language processing, word vector distance
proximity can indicate semantic similarity. However, words
in RNA sentences cannot express semantics after dimen-
sionality reduction, there is no evidence indicates that two
subsequences are similar. It is inappropriate to use a current
word embedding algorithm. More meaningfully, we can con-
struct an orthogonal matrix algorithm for RNA subsequences
specifically. Orthogonal matrix is generated by subsequence
alignment, which is more suitable for RNA word embedding.
It will be a meaningful study in the future.

3) GENERATIVE ADVERSARIAL NET

Sequence generation plays a major role in natural language
processing, which is necessary to many applications such as
machine translation [57], image captioning [58], and dialogue
systems [59]. The main idea behinds GANs proposed by
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Goodfellow et al. [60] is to have two neural network models,
the discriminator and the generator, competing against each
other during learning, as shown in figure 3.C. The discrimina-
tor aims to distinguish the synthetic from the real data, while
the generator is trained to confuse the discriminator by gener-
ating high quality synthetic data. GANs achieve great perfor-
mance in computer vision tasks such as image synthesis [61].
Their successes are mainly attributed to training the discrim-
inator to estimate the statistical properties of the continuous
real-valued data, e.g., pixel values. However, the GANs have
difficulties in dealing with discrete data. In natural languages
processing, the text sequences [62] are evaluated as the dis-
crete tokens whose values are non-differentiable. Therefore,
the optimization of GANs is challenging. During learning,
the policy gradient technique [63] is adopted to overcome
the non-differentiable problem. At present, studies [64], [65]
have demonstrated that GAN can synthesize text sequences.
We can construct an adversarial prediction model, which
makes network stronger. In addition, prediction using deep
learning models generally requires large-scale training data.
The studies showed that the corresponding AUC was
lower for those with less RBPs. To solve this problem,
we may generate more RNA sequences with similar features
through GAN. Synthetic RNAs have similar features relative
to real sequences, and synthetic RNAs can better assist in pre-
diction. The training set consists of synthetic RNA and real
RNA, which are used to train a better model for prediction.

4) RESIDUAL NETWORK

The residual network [66] won the competition of image
classification and object recognition in 2015. The residual
network is constructed by residual blocks. The residual net-
work is easy to optimize in RBP prediction and can improve
the accuracy by increasing the depth. The internal residual
block uses jump connection as shown in the figure 3.D,
which alleviates the gradient disappearance problem caused
by increasing depth in the depth neural network. iDeepE was
constructed by residual network.

5) ATTENTION MODEL

In recent years, attention model has been widely used
in various fields of deep learning, including image pro-
cessing, speech recognition and natural language process-
ing [51]. Generally, the attention model includes encoder and
decoder. There have many studies, including Seq2Seq [67],
Transformer [68], Bert [69], etc.

Pan et al. proposed iDeepA [70], which used an attention-
based convolutional neural network model. Attention mod-
ule in the network learn the attention weight automatically,
which can capture encoder hidden state (i.e., candidate state)
and decoder hidden state (i.e., query state). These attention
weights are used to construct the content vector C1, C2,
and C3, as shown in figure 3.E, which is passed to the decoder
as input. At each decoding position, the content vector is the
weighted sum of all the hidden states of the encoder and their
corresponding attention weights. There are many variants of
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attention model. In hard attention, only one position weight
is set to 1 at a time, and the rest is set to 0. Here, only
one position is focused every time. However, the soft atten-
tion takes care of all positions each time, different position
weights are different. It is significantly important innovation
for both of them to combine, or transfer. In RBP prediction,
different positions contribute different weights to the predic-
tion results. In the section V, it is found that the probability of
motif is different in different position.

IV. APPLICATION OF DEEP LEARNING IN THE
PREDICTION OF RBP BINDING SITES

Owing to advances in high-throughput technologies, a deluge
of RBP data has been obtained in recent years. Some success-
ful applications of deep learning in RNA and protein binding
fields are reviewed in this section. In addition, we also sum-
marize the extraction and evaluation of motif.

A. APPLICATION OF TRADITIONAL MACHINE
LEARNING-BASED METHODS

Structure annotation profiles and RBP affinity were applied
to RNAcontext [17] together with a set of sequences for
the given RBP. Clearly, residue preferences were inferred
as a PWM. The relative structural preferences were inferred
according to different structural contexts. Finally, RNAcon-
text implemented AUC of 0.82 on the RBP-24, and AUC
of 0.43 on the RNAcompete dataset in vitro binding pre-
diction. Orenstein et al. introduced RCK [19], improving
RNAcontext by a k-mer sequence- and structure-based bind-
ing model with local structure preferences. In particular,
the input data and optimization procedure of RCK was the
same as RNAcontext to infer model parameters. RCK in a
k-mer based context could capture local preferences, and
implement 0.46 of AUC on the RNAcompete dataset in vitro
binding prediction.

In GraphProt [18], highly probable secondary structures
were derived using RNAshapes [71] in the context of
each potential target site. The RNA secondary structure of
each RBP-bound context jointing sequence information was
represented as a hyper-graph. In hyper-graph, secondary
structure of nucleotide on the type of substructures was
annotated, including stem, hairpin loop, internal loop, multi-
loop, bulge loop, and external region. Features of sequence
were extracted from the hypergraphs using efficient graph
kernels. It’s AUC was 0.89 on the RBP-24, and 0.82 on
the RBP-31 dataset. However, it cannot extract the structure
motif. GraphProt applied support vector machines (SVM)
to graphs. it sped more time about 7 days for each of the
255 proteins. Oli [72] was developed using SVM approach
and own AUC 0.77 on the RBP-31, based on tetranucleotides
as features. In addition, there were two extensions as com-
parison: OliMo, which added protein-specific binding motifs,
and OliMoSS, which also added secondary structure infor-
mation [73]. The performance of predictions with different
feature were compared with each other. The result of Oli
suggested original sequence information of feature can be
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TABLE 1. Machine learning-based methods for predicting RNA-protein binding sites.

Method Feature Model Motif Source

GraphProt Sequences, structures SVM Sequences, structures http://www.bioinf.uni-freiburg.
de/Software/GraphProt

RNAContext Sequences, structures Probabilistic models ~ Sequences, structures http://www.cs.toronto.edu/ ~hilal/rnacontext

iONMF Sequences, structures, region  Orthogonal matrix Sequences https://github.com/mstrazar/ iONMF

type, GO, clip-cobinding factorization

Oli Sequences SVM None None

RNAcommender Sequences Matrix factorization =~ None http://rmacommender.disi.unitn.it.

RCK Sequences, structures Probabilistic models ~ Sequences, structures http://rck.csail.mit.edu

deepboost Sequences Boosting Sequences http:/github.com/dongfanghong/deepboost

fully distinguished to predict specific RNA-protein interac-
tions. In iIONMF [32], k-mer sequence, secondary structure,
CLIP co-binding, GO information, and region type were
integrated to predict RBP binding sites, using orthogonality-
regularized nonnegative matrix factorization method and
achieving AUC of 0.85 on the RBP-31. It used multiple data
sources of RBPs to perform better. RNAcommender [33]
was introduced to discover genome-wide recommendation
of protein targets. It utilized variant of matrix factorization
based collaborative filtering skillfully, and removed the origi-
nal orthogonality constraints. RNAcommender obtained data
from high-throughput experiments as train data, unexplored
RBPs without known targets as test data. RNAcommender
used a recommender system [74] essentially, which used
the known interaction information to predict the unknown.
Li et al. [20] predicted protein-RNA binding residues using
deep boosting-based approach via a total of 168 sequence
features based on k-mer. Details of these methods are shown
in TABLE 1.

B. VARIOUS APPLICATION BASED DEEP LEARNING

1) APPLICATION OF CNN AND LSTM

DeepBind [23] was proposed by Alipanahi ef al., and was
the first method to implement predictions of RBP binding
sites using sequences by deep learning. In addition, motifs of
RNA feature can be extracted from CNN filters in DeepBind.
It pushed the prediction of RBP binding sites a big step
forward, which achieved AUC of 0.92 on the RBP-24, 0.85 on
the RBP-31, and 0.41 on the RNAcompete dataset in vitro
binding prediction.

Pan et al. developed iDeepS [24], which consisted of CNN's
and a bidirectional LSTM. It identified the sequence and
structure binding motifs simultaneously. Both of the sequence
and structure binding motifs could be fully automatically
captured by iDeepS. iDeepS not only implemented better
performance than peer sequence-based methods on average
(e.g., DeepBind), it also surpassed some approaches
integrating multiple sources of hand-designed features
(e.g., iIONMF). As compared to GraphProt, which requires
a complicated postprocessing step, iDeepS easily extracted
learned parameters of the convolved filters to PWMs and
accomplished identification of the sequence and structure
motifs. As the input of encoding was easier and simple,
iDeepS had a wider range of applications based on sequence.
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However, AUC with 0.86 on the RBP-31 was achieved lowly
in ideepS, which may due to improper selection of opti-
mization methods and training times. When processing RNA
data, the shallow network layer often had a higher prediction
accuracy. RNA data, as simple text data, has low dimension
and little content of data expression. Therefore, the number
of shallow network layers and fewer neurons is better. MSC-
GRU [75] was proposed infer the binding motifs of RBPs.
It integrated a multi-scale CNN layer and a bidirectional
GRU layer to capture the local combination pattern, achieving
AUC of 0.920 on the RBP-31. DLPRB [34] proposed by
Ben-Bassat et al., utilized two DNN architectures, CNN and
RNN, respectively, with input features including sequences
and structures. It inferred precise RNA-binding models from
high-throughput in vitro data, and implemented the test in
vivo. Feature coding of structure was a structure probabilities
matrix predicted by RNAplfold [76]. Here, CNNs reach high
performance owing to its ability of analyzing spatial informa-
tion. DLPRB achieved an excellent high pearson correlation
coefficient [77], and completed high average AUC on the
eCLIP experiments and AUC of 0.63 on the RNAcompete
dataset in vitro binding prediction.

Pan et al. introduced iDeepE [46]. It integrated global
and local convolutional neural networks (CNNs) to predict
RNA-protein binding sites. Complete RNA sequences were
fed to global CNN, which padded into the same length
according to the predefined longest sequence. Each RNA
sequence was split into multiple overlapping fixed-length
subsequences that looked like a channel just as RGB channel
in images for the local CNN. iDeepE was evaluated with
eight variants against three state-of-the-art methods, includ-
ing CNN, CNN-LSTM and ResNet. The results Indicated that
fusing the local and global ResNets led to better performance.
Generally speaking, it had been confirmed that ResNet and
CNN were powerful tools in prediction of RNA binding
protein. ideepE achieves excellent performance with AUC
of 0.93 on RBP-24 datasets.

2) APPLICATION OF DBN

A novel hybrid CNN and DBN were applied to iDeep [26] to
predict the RBP binding sites and motifs on RNAs. It inte-
grated multiple sources of data, e.g., sequence, structure,
motif, CLIP co-binding, region type, through cross-domain
knowledge at an abstraction level to enhance the prediction
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ability. CNN and DBN are designed into framework of
iDeep, managing sequence with CNN and the remaining four
(i.e., structure, motif, CLIP co-binding, and region type) with
DBN. Then iDeep used deep network of multimodal compris-
ing DBNs and CNNs to integrate these extracted representa-
tions, achieving AUC of 0.90 on the RBP-31. The CNN was
able to capture regulatory motifs, that were recurring patterns
in RNA sequences with a biological function. The DBN
learned high-level features regarded as a joint distribution
determined by hidden variables for different inputs. Since
multimodal deep learning could learn shared representation,
integrated iDeep performed better than individual modality.

3) APPLICATION OF GCN

GraphProt2 [29] was presented by a computational RBP
binding sites prediction method based on GCN. Graph-
Prot2 encoded input sequences as graphs, allowing the addi-
tion of base pair information in the form of graph edges.
It also could encode base-pair information (i.e., annotated
connections between non-adjacent bases), which required a
more flexible method to deal with these limitations while
supporting other functions. In contrast to GraphProt, Graph-
Prot2 provided an improved profile prediction mode, i.e., the
calculation of position-wise prediction scores for the entire
RNA sequence. GraphProt2 certainly provided state-of-the-
art predictive performance, exceeding iDeepS.

4) APPLICATION OF ATTENTION LEARNING

To better characterize RBP binding sites, iDeepA [70] was
introduced by an attention-based convolutional neural net-
work model. It integrated CNNs and two levels of attentions,
to predict binding or not from filters of CNNs only by RNA
sequence. iDeepA extracted three levels of abstract features,
including the output feature maps from the CNN and the
outputs from two attention model. iDeepA and DeepBind
had similar average AUC, with AUC of 0.92 on the RBP-24.
However, iDeepA performed excellent with small training set
on that DeepBind did not achieve high AUC. The results indi-
cated attention mechanism can enhance the learning ability
on small dataset and quickly focused on important feature.
But identifying interpretable motifs still not be solved.

5) APPLICATION OF EMBEDDING

Since neural networks have difficulty handling high dimen-
sional data, sequences are often converted to k-mers. Word
emdedding about Word2vec was applied to iDeepV [78] to
represent k-mers in a lower dimensional space, attaching 1-D
CNN to predict the RBP binding sites. It performed faster
than other structure-profile based methods, such as Graph-
Prot, deepnet-rbp and iDeepS, in that iDeepV only required
sequences. iDeepV yielded average AUC with 0.85 on the
RBP-31. deepRKE [79] similar to iDeepV used an unsu-
pervised shallow two-layer neural network to automatically
learn the distributed representation of k-mer by considering
its neighbor context. Compared with the traditional k-mers
method, the distributed representation can effectively detect
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the potential relationship and similarity between k-mers. The
distributed representations of sequences and secondary struc-
tures were fed into CNN and bidirectional long short-term
memory networks (BLSTM) to achieve AUC of 0.934 on the
RBP-24 and 0.873 on the RBP-31. However, iDeepV and
deepRKE can not extract sequence and structure motif by
using word embedding.

6) APPLICATION OF SPLINE TRANSFORMATION

In general, innovation of prediction focuses on input fea-
tures or model variants, but CONCISE [80] was different.
It introduced the Spline transformation, which was integrated
into a neural network similar to ReLU of function. It applied
scalar features into neural networks efficiently, such as dis-
tances. Spline transformation was based on smooth penalized
splines, and can be applied to the context of each network
layer. CONCISE achieved superior performance with AUC
of 0.92 on RBP-31 datasets. One limitation of spline trans-
formation was that scale of the input features keeps indis-
pensable and had to be selected in advance, because spline
knots were set uniformly across the whole range of feature
values. Therefore, pre-processing studies must be conducted
to determine the appropriate scale that best fits the current
problem.

7) MULTI-LABEL PREDICTION

Atpresent, all methods trained specific models for every RBP.
In other words, each model could only predict RNA targets
for one RBP, which led to the relationship among different
RBPs being totally ignored. For instance, different RBPs can
be associated to predict RNA-protein interaction, in virtue
of share of similar binding domains. In different databases,
it was different for construction rules to negative samples of
each RBP. In order to reduce the impact of negative sam-
ple quality, RBPs were utilized as labels directly. Existing
studies demonstrated that RNAs can bind multiple proteins
and 74.7% of RNAs have at least two binding proteins.
iDeepM [39] was proposed. This task can be defined as a
multi-classification problem. The iDeepM model was the
classic CNN-LSTM, achieving AUC of 0.87 on RBP-67
datasets.

DeepRiPe [81] was proposed to characterize RBP binding
preferences, which also was a multi-category task and mul-
timodal DNN model similar to iDeepM. DeepRiPe used a
modular structure to learn information features from DNA
sequence and transcript region types, because many RBPs
tended to bind to specific regions of transcripts. As we know,
this allowed the model to use shared information between
tasks, which was critical for focusing the model on the unique
characteristics of the RBP binding site. By predicting how
many RBPs were reacted, we could obtain biological insights
in the case of the mechanism of protein RNA-binding. RBPs
as labels could indeed alleviate the instability of negative
samples, but it brought about an imbalance in the number of
labels. In the RBP-specific model, as a binary classification
task, negative samples were created to be comparable to
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TABLE 2. Deep learning-based methods for predicting RNA-protein binding sites.

Method Feature Model Motif Source
DeepBind Sequences CNN Sequences http://tools.genes.toronto.edu/ deepbind
iDeepS Sequences, structures CNN-LSTM Sequences, structures https://github.com/xypan1232/ iDeepS
iDeepE Sequences ResNet Sequences https://github.com/xypan1232/ iDeepE
MSCGRU Sequences Embedding-CNN-RNN None None
DLPRB Sequences, structures CNN/RNN Sequences, structures https://github.com/ilanbb/dIprb
iDeep Sequences, structures, region type CNN-DBN Sequences https:/github.com/xypan1232/ iDeep
Motif, clip-cobinding
GraphProt2  Sequences, structures GCN None None
iDeepA Sequences CNN-attention None https://github.com/xypan1232/ iDeepA
iDeepV Sequences Embedding-CNN None https://github.com/xypan1232/ iDeepV
deepRKE Sequences, structures Embedding-CNN-RNN None None
CONCISE Sequences, structures, region type Spline transformation None https://github.com/gagneurlab/ concise
motif, clip-cobinding, relative
distance to landmarks
iDeepM Sequences CNN-LSTM None https:/github.com/xypan1232/ iDeepM
DeepRiPe Sequences, 3’UTR, 5°UTR, CDS, CNN sequences https://github.com/ohlerlab/DeepRiPe

or intron region

deepnet-rbp  Sequences, structures DBN

Sequences, structures https://github.com/thucombio/ deepnet-rbp

the number of positive samples. However, for multi-category
task, the samples of each RBP were taken as positive samples,
and the corresponding numbers were far apart. For example,
in RBP-24, there were 1197 number of positive samples in
ALKBHS, while ELAVL1 PAR-CLIP (C) had 125202 num-
ber of positive samples. The number of RBPs was extremely
unbalanced, which may affect the predictions.

8) PREDICTION BY RNA SEQUENCE, SECONDARY AND
TERTIARY STRUCTURE JOINTLY

Deepnet-rbp [28] was developed to integrate the RNA
sequence, secondary and tertiary structural profiles, and con-
structed a unified representation to extract the hidden struc-
tural features of RBP targets. It introduced RNA tertiary
structural profiles for the first time and a new method to con-
struct the RNA tertiary structural profiles. Multimodal DBN
was applied to deepnet-rbp, a generative model in nature,
which could generate sequence and structure motifs directly,
achieving AUC of 0.90 on the RBP-24. TABLE 2 shows
the features, models, sources and different kinds of motifs
that can be obtained. The detail of those methods is shown
in TABLE 2. In these studies, CNN is the most common
method according to TABLE 2. It may because CNN is good
at processing sequential data.

C. PERFORMANCE COMPARISON

To gauge the performance of every method, we summarize
the performance of studies on the comprehensive dataset of
RNAcompete dataset, RBP-24 dataset, and RBP-31 dataset
from every study. In RNAcompete dataset, each experiment
contained the binding intensities between a single protein
and more than 240000 RNA sequences. Here, models were
trained on sequences from set A and predicted the intensities
on set B. There are two reasons that may affect the accuracy
of the in vitro model for predicting in vivo binding. First of
all, it is known that there is noise in vivo and deviation
in experiment. In addition, the accuracy of RNA structure
prediction in vivo is lower than that in vitro, so the learned
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structure preference may not improve the binding prediction.
The performance of four methods are collected as follows,
including RNAcontext, RCK, DeepBind, and DLPRB. The
result of AUC is shown as figure 4.A. In addition, the result
on the RBP-24 and RBP-31 is shown as figure 4.B and
figure 4.C. RBP-24 and RBP-31 have training set and inde-
pendent testing set.

D. EXTRACTING AND VISUALIZING BINDING MOTIFS

1) EXTRACTING BINDING MOTIFS

Motif is based on mathematical statistical models in biol-
ogy [82]. It is a locally conserved region in a sequence, or a
short sequence pattern common to a set of sequences. Motif
is the probability that bases (or secondary structures) appear
in every positions of the short sequence, with 7 bp [13]. Motif
is visualized by sequence logo [83]. In this model mentioned
in this review, motifs can be extracted by using convolutional
neural network mostly. After several iterations, the weight of
each residue is recorded in the position of convolution kernel.
Since some operations in the network may lead to the deletion
of some residue information, the extraction length of motif in
network is set to 1.5 times length of the original motif, which
is determined to be 10 bp [26]. We suppose an RNA sequence
with a fixed 519 nucleotides. Sequence data is convoluted
by the filter parameters from the previous trained model and
activated by ReLU. The filter slide over the input data as
shown in the figure 5, and then compute the inner product of
the filter and the input data at any position in RNA sequence.
At each position, an inner product is generated, also known
as an intermediate value A;. There are the threshold set for
the filter, which is 0.5 times of the maximum A;. When A;
exceeds the threshold, the short sequence or structure can be
considered valid motif. When short sequence length is 10 bp,
each RNA sequence with 519 nucleotides can be divided into
short sequences with number of 498.

threshold = 0.5 % max A; 7)
i€[0,497]
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FIGURE 4. (A) shows AUC on RNAcompete dataset, (B) shows AUC on RBP-24 dataset, (C) shows AUC on RBP-31 dataset. The Y-axis of (A), (B), and
(C) represents the value of AUC. The model used in the research with higher AUC is also recognized as an advanced model in the field of image

processing, such as CNN, residual network.
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FIGURE 5. The filter of trained convolutional neural network slide over
the input data, and then compute the inner product of the filter and the
input data also called A; at any position in RNA sequence. There are the
threshold set for the filter, which is 0.5 times of the maximum A;. When
A; exceeds the threshold, the short sequence or structure can be
considered valid motif. Otherwise, it is considered invalid motif.

where i represents the first nucleotide position of the short
sequence in RNA sequence. Previously, some sequences are
filled with ‘N’, so short sequences containing ‘N’ are elimi-
nated. We preserve short sequence containing only residues
of A, U, G, and C. since the motif length is 7 bp [13] generally,
only the first 7 bp of valid motif are intercepted. Usually,
there will be a group of filters, operates as described above,
so we can get a group of motifs. A group of motifs is used for
separate analysis. We can also splice motifs together to get a
set of short sequences, which can be used to extract common
features [84].

2) VISUALIZING BINDING MOTIFS

We can perform sequence alignment on a set of short
sequence using tools, such as WebLogo 3 [83], [85],
MEME [14], and motifStack [86]. Simultaneously, sequence
identity is counted at each position in the sequence.
The sequence logo plots the statistical results of residues
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appearing at each position in a graphical way. The accu-
mulation of residues at each position can reflect the consis-
tency of residues at that position. The currently identified
motifs related to RBPs can be obtained from the CISBP-RNA
database [13]. The size of each base pattern is proportional to
the frequency of bases appearing at this position. For each
position, the height of the vertical axis of each base pattern is
calculated as follows.

Height = fi % R ®)

where i is residue of A, C, G, and U. f; represents the fre-
quency of occurrence of base, and R is calculated as follows.

R = log,(m) — (entropy + ey) )
entropy = — Zfi * log, (fi) (10)
ep = (mi 1)/2%1In2 % n) (11)

where entropy denotes the total entropy of the position, and
m denotes the number of base species. For the protein, m is
equal to 20. For the RNA studied in this paper, m is equal to
4. ey, is small sample test modification, where n represents the
number of sequences.

E. VERFICATION AND EVALUATION METHOD OF MOTIFS

Facts proved that filter of CNN is applied to automatically
capture known sequence motifs and structure motifs. In order
to verify the detected motifs, they are compared with the
known motifs from CISBP-RNA database [13] and literature.
How to evaluate the quality of extracted motif? Here are
some evaluation indicators, such as E values and P values,
etc. Tomtom [85] introduced a statistical standard E values
of similarity between motifs. The accuracy of Tomtom’s E
values was demonstrated to be effectiveness in finding similar
motifs. The P value is used to estimate the enrichment score
using AME [87] in the MEME suite [14] by scanning the
predicted motif for the input sequence and the corresponding
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shuffle sequence. The P value is calculated by the cumula-
tive density function estimated from the target database. The
minimum P value of these offset P values is used to calculate
the match of the overall P value between the query motif and
the target motif. If the P value is independent, it is called the
motif P value.

V. RBP PREDICTION PROCESS AND ATTENTION
PROBLEMS IN TRAINING

A. ENCODING RNA SEQUENCES AND STRUCTURES

The linear arrangement of four bases in RNA constitutes the
primary structure of RNA. Due to the existence of base pair-
ing (A-U, G-C), RNA secondary structure is formed by single
strand refolding. Based on the spatial constraints of geometry
and steric effect, the tertiary structure of RNA is formed,
i.e., the position of RNA atoms in three-dimensional space,
involving covalent bond, hydrogen bond, electrostatic force,
van der Waals force, etc. The quaternary structure of RNA
is the interaction between RNA and other small molecules.
In this paper, the research theme is quaternary structure.
At present, it is difficult to obtain the tertiary structure and
its prediction method is not mature. On the contrary, the pre-
diction results of the secondary structure level have been
generally accepted. Therefore, in this section, we introduce
the encoding of sequence and secondary structure.

1) SEQUENCES ENCODING

One-hot encoding is the basic method for converting
RNA sequence into vectors. Therefore, we must vectorize the
RNA sequence into binary matrix. During data preprocessing,
all RNA sequences need to be cut to a fixed length. If the
sequence exceeds the fixed length, it will be trimmed. If the
sequence length is insufficient, use ‘N’ padding to the fixed
length. As is shown in the figure 6.A, each site could be
represented by a four states vector corresponding to bases
of A, C, G, and U. Here, an RNA sequence named § =
(s1,82,...,5i,...,S,) with n nucleotides and sequence motif
length with m, the binary matrix S for RNA sequence is
represented by a 4xn dimensional column vector as follows.

0.25, if Si—me1 = N ori<mori> (n—m)
Si=11,  if sicmr1is (A, U, C,G) (12)
0, otherwise

where i is the index of the nucleotide, j is the index of the
column corresponding to A, C, G, U.

RNA sequences are usually represented by k-mer encod-
ing. In RNA sequences, k-mer is often nonrandom, and
exists certain rules. The k-mer contains k nucleotides, which
is a subsequence of sequence. The frequency information
of k-mer is often used in k-mer coding. The subsequence
space contains all possible motif of length k. Each possible
motif is arranged by selecting k elements repeatedly from
A, C, G, and U. We map each subsequence of k-mer into
a high-dimensional vector, as is shown in the figure 6.B,
assuming k is 3. Therefore, the subsequence space size is 4%.
The frequency of each subsequence in the sequence
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FIGURE 6. (A) RNA sequences are converted into vectors by one-hot
encoding. Because there are four bases, the matrix is 4-dimensional.
(B). k-mer frequency encoding is 64-dimensional, where k is set to 3.
(C). k-mer word encoding is constructed by slide window over on the
sequence, where k is set to 3.

is calculated. The dimension is determined by k. Here, we call
it k-mer frequency encoding.

In addition, k-mer can be regarded as a word and RNA
sequence as a sentence. Split the sentence into words and
convert each word into a vector. The properties of k-mer can
reflect the relationship between the functions and different
sequence regions. Put all the k-mers in order without cal-
culating the frequency, as is shown in the figure 6.C. The
dimension of this method is mainly determined by the length
of RNA sequence, so we call it k-mer word encoding.

2) STRUCTURES ENCODING

In general, annotation of RNA secondary structure could be
reflected by the pairing state or pairing probability at each
site. At present, prediction methods for RNA secondary struc-
ture include SFOLD [88], RNAshapes [71], RNAplfold [76],
SCFG [89], etc. The structural information was introduced
according to the following annotation, such as stems (S),
multiloops (M), hairpins (H), internal loops (I), dangling end
(T) and dangling start (F). In the same way as the sequence
information, the structural sequence containing ‘SMHITF’
is encoded one-hot or k-mer. Given an RNA sequence S =

(S1,52,---,Si,...,8,) with n nucleotides and motif length
with m, we can obtain secondary structure matrix 7 =
(t1,t2, ..., ti, ..., t,) from prediction methods, details as fol-
lows.
0.16, ifi<mori> (n—m)
T;j=11, if tirmy1is(S,M,H,I,T,F) (13)

0, otherwise

VOLUME 8, 2020



J. Yan, M. Zhu: Review About RNA-Protein-Binding Sites Prediction Based on Deep Learning

IEEE Access

where i is the index of the nucleotide, j is the index of the
column corresponding to S, M, H, [, T, and F.

B. VALIDATION METRICS

For balanced classification (each category has the same prob-
ability), the main evaluation criteria are Accuracy, Precision,
Recall and f-score, which can be easily calculated by the
confusion matrix. In addition, there is another commonly
used indicator, ROC Curve, which quantifies the performance
of a classifier by calculating the value of the AUC. Most
of the models mentioned in this paper belong to two bal-
anced classification. For the imbalance problem, Accuracy
and Recall can be used. For sorting problems or multi-label
classifications, the mean average precision could be used.
They are calculated by the following formulas.

. TP
Precision = ——— (14)
TP + FP
TP
Recall = ——— (15)
TP + FN

where P is the number of positives, and N is the number
of negatives. TP is the number of true positives. TN is the
number of true negatives. FP is the number of false positives.
FN is the number of false negatives. Precision and Recall
two evaluation criteria are not functionally related. Neither of
them can reflect the effect of the classifier alone. Therefore,
the harmonic average F-score of the two is used as follows.

2

F —score = ———— (16)

Precision Recall
In addition, Accuracy is utilized to measure the overall
ability of the model sometimes to distinguish between pos-
itive and negative samples. The formula is as follows.
TP + TN

Accuracy = (17)
TP+ FP+ TN + FN

The statistics of confusion matrix needs to set a threshold to
convert probability into binary, which is usually set manually.
In this paper, we generally choose 0.5 as the threshold, that
is, the probability of classification results is more than 0.5,
which is considered as a positive sample, otherwise it is
a negative sample. Setting different threshold can produce
different confusion matrix and get different evaluation scores.
Therefore, in order to avoid the interference caused by arti-
ficial threshold setting, ROC curve and AUC are used as
evaluation indexes. ROC curve is generated based on the real
category and prediction probability of samples. Specifically,
ROC curve is a curve of true positive rate (TPR) to false
positive rate (FPR). Here, X axis is TPR, Y axis is FPR. TPR
and FPR are calculated as follows.

TP
TPR = Recall = ———— (18)
TP + FN
FP
FPR= —— (19)
FP + TN

where AUC is the area under the ROC curve. The higher AUC
value is, the better performance is.
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C. OVERFITTING, MODEL REGULARIZATION AND
ADJUSTING SUPER PARAMETERS

Focusing on evaluation of model is to divide the data into
three parts, including training set, verification set and test
set. We can train the model on the training data and eval-
uate the model on the verification data. It is necessary to
determine how to measure current progress in training. Cur-
rently, there are three common evaluation methods, leave-out
cross validation, K-fold cross validation, and repeated K-fold
verification.

In addition, it is also important to take into consideration
the overfitting of model and adjustment of super parameters.
The ideal model is just on the boundary between underfitting
and overfitting. At the beginning of training, optimization and
generalization are related: the smaller the loss on the training
set, the smaller the loss on the test dataset, and the model
is underfitting. It can still be improved here. The network
has not yet modeled all the relevant patterns in the training
data. However, after certain iterations, the generalization of
training data is no longer improved. During this process,
the evaluation index is unchanged first, and then it begins to
get worse, that is, the model begins to overfit. At this time,
the model begins to learn the pattern only related to training
data. However, this pattern is wrong or irrelevant for the new
data.

The more training data, the better the generalization ability.
But more data is not available usually, another solution is to
adjust or restrict the amount of information that the model
allows to store. The easiest way to prevent overfitting is to
reduce the model size, such as the number of layers and the
number of units per layer. Intuitively, a model with more
parameters has a larger memory capacity. Find a compromise
between large capacity and insufficient capacity. A simple
model can avoid overfitting, and refers to a model with a
smaller entropy of parameter value distribution or a model
with smaller parameters.

Another common method to reduce over fitting is to limit
the model weight to a smaller value, so as to reduce the
complexity of the model. At this time, the distribution of
weights is more regular, called weight regularization. The
implementation method is to add the cost associated with a
larger weight value to the loss function. This cost has two
forms: L1 regularization and L2 regularization. L1 regulariza-
tion means that the added cost is proportional to the absolute
value of the weight coefficient. L2 regularization means that
the added cost is proportional to the square of the weight
coefficient, and also called weight decay. Dropout [90] is also
one of the most effective and commonly used regularization
methods. To use dropout for a layer is to randomly discard
some output features of the layer (i.e., set to 0) during the
training. The dropout ratio is the proportion of features set
to 0, usually in the range of 0.2 to 0.5. In addition, you
can try different hyperparameters, such as the learning rate
or batch size, to find the best configuration. Adjustment of
hyperparameters is time-consuming. We constantly adjust
model training, evaluate on validation data, and adjust the
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model again. Finally, it is optional to do feature engineering
repeatedly to add new features or delete features without
information.

VI. DISCUSSION

In this paper, we review the development of deep learn-
ing techniques and some of the-state-of-art applications in
this field. Firstly, we introduce the related datasets. Next,
we describe development of deep learning and recent studies
that have exploited deep learning models. Finally, we con-
clude this article by summarizing research trends and sug-
gesting directions for further improvements. Although deep
learning algorithm has improved the performance of clas-
sification and become a promising approach, there are still
significant challenges for its applications in biology and
medicine data analysis.

A. APPROPRIATE EVALUATION CRITERIA FOR
UNBALANCED DATA

RBPs data are usually unbalanced because the process of
data acquisition is usually complex and expensive. In fact,
the number of negative samples in RBP is much larger than
that of positive samples. The standard performance criteria
used in the data training process are often biased toward the
majority class. Therefore, we have to balance the positive and
negative samples in training. This will lose a lot of negative
sample information because the number of negative samples
is much larger than positive samples, leading to only a part
of the negative data being sampled. We can also train all
RBPs to only one model, and the number of each RBP is
not equal and balanced. When assessing the model building
on the imbalance data, more metrics have to be taken into
consideration. It may bury over accuracy or recall if consider
only ROC curve.

B. PENDING DATA QUALITY

According to RBP specific model, the model fails in
some RBPs where other existing tools also have low AUC
values. Although high-throughput experiments have been
developed in advance, the collected data still suffer from
the false-positive and false-negative problems due to the
experimental noises and current limitations. High false pos-
itive rates and false negative rates may lead to poor predic-
tion. Deep learning model needs to be trained and optimized
through a large number of datasets with high quality. Thus,
more studies are required to further improve the data quality.

C. COMBINING MORE DEEP LEARNING MODELS INTO
PREDICTION OF RBPS

With the development of deep learning, more and more deep
learning models are proposed. Residual networks are also
used for RBP prediction due to their great performance. For
example, object detection [91] is divided into three steps,
including classification, object detection and semantic seg-
mentation. Studies have shown that 75% RNAs react with at
least two or more RBPS. We take the type of RBP as the label,
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so the prediction problem is a multi-label problem. When
predicting RBP, the corresponding learned motif is used as a
feature for RBP classification in the stage of object detection.
The image perceiving features is like the RNA sequence
perceiving motif. Ideally, motif can be detected directly in
RNA sequence in the stage of semantic segmentation. It will
be an interesting study. At present, there are many trained
migration models for us to use. Ideal configuration of hyper-
parameters depends on the data and application through grid
search. At this point, we can migrate the trained model,
which can effectively explore different layers or values, while
keeping all other layers or super parameters in the model
unchanged. Deep learning likes a ““black box’’. In the future
work, we tend to investigate interpretability of models, which
is a hot research topic in deep learning and also future direc-
tion for RBP prediction.
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