
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3071599, IEEE
Access

 

VOLUME XX, 2017 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

Brain-Controlled Wheelchair Review: From Wet 
Electrode to Dry Electrode, From Single Modal 
to Hybrid Modal, From Synchronous to 
Asynchronous 
HONGTAO WANG1, （Member, IEEE), FAN YAN1, TAO XU1, HAOJUN YIN1, PENG CHEN1, 
HONGWEI YUE1, CHUANGQUAN CHEN1,（Member, IEEE)，HONGFEI ZHANG 1， 
LINFENG XU1, YUEBANG HE1, ANASTASIOS BEZERIANOS2, （Senior Member, IEEE) 
1Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China 
2Department of Medical Physics, University of Patras, 26504 Patras, Greece 
 

Corresponding author: Hongtao Wang (nushongtaowang@qq.com)  

This work was supported in part by the Special Projects in Key Fields Supported by the Technology Development Project of Guangdong Province (No. 
2020ZDZX3018), in part by the Special Fund for Science and Technology of Guangdong Province (No. 2020182), in part by the Science Foundation for 
Young Teachers of Wuyi University under Grant (No.2018td01), in part by the Wuyi University and Hong Kong & Macao joint Research and Development 
Project under Grant (2019WGALH16), in part by the Jiangmen Brain-Like Computation and Hybrid Intelligence Research and Development Center under 
Grant (No.[2018]359, [2019]26) and in part by Startup Funds for Scientific Research of High-level Talents of Wuyi University (No. 2019AL020, 
2020AL006). 

ABSTRACT  Brain-computer interface (BCI) is a novel human-computer interaction model, which does 
not depend on the conventional output pathway (peripheral nerve and muscle tissue).  In the past three 
decades, it has attracted the interest of researchers and gradually become a research hotspot. As a typical 
BCI application, the brain-controlled wheelchair (BCW) could provide a new communicating channel with 
the external environment for physically disabled people. However, the main challenge of BCW is how to 
decode multi-degree of freedom control instruction from electroencephalogram (EEG) as soon as possible. 
The research progress of BCW has been developed rapidly over the past fifteen years. In this review, we 
investigate the BCW from multiple perspectives, include the type of signal acquisition, the pattern of 
commands for the control system and the working mechanism of the control system. Furthermore, we 
summarize the development trend of BCW based on the previous investigation, and it is mainly manifested 
in three aspects: from a wet electrode to dry electrode, from single-mode to multi-mode, and from 
synchronous control to asynchronous control. With the continuous development of BCW, we also find new 
functions have been introduced into BCW to increase its stability and robustness. It is believed that BCW 
will be able to enter the real-life from the laboratory and will be widely used in rehabilitation medicine in 
the future.  

INDEX TERMS Brain-computer interface, brain-controlled wheelchair, electroencephalogram, hybrid 
brain-computer interface.  

I.  INTRODUCTION 
In amyotrophic lateral sclerosis (ALS), the degenerated 
motor neurons contribute to a slow decrease in motor 
function of muscles [1]. Moreover, people with spinal cord 
injury (SCI) also have various motor, sensory and sphincter 
dysfunction [2]. As a result of these diseases, the number of 
motor neurons in the brain gradually decreases and the 
information exchange and control between muscles decreases. 

Thus the brain gradually loses all voluntary actions and 
control activities. The central nervous system (CNS) has 
structural and functional plasticity after injury, but this 
plasticity depends on the functional compensation of the 
CNS. Functional compensation will not be generated 
automatically, and it requires specific learning and training 
[3]. The brain-computer interface (BCI) can replace, repair,  
enhance, supply and improve the normal output of the CNS 
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by detecting the activity of the CNS and converting it into 
artificial output [4]. And thus, BCIs can realise the direct 
connection between the brain and the external world as well 
as helping the recovery of patients’ motor and cognitive 
 functions [5]. 

With the booming of signal processing techniques, the 
electric wheelchair (EW) control system can be realised by 
joystick, eye movement or voice [6-9]. However, the severity 
of patients’ disease varies from person to person, and these 
systems are not suitable for users who lack precise control of 
exercise-related muscle tissues. For some people with a 
serious physical disability who have lost the living ability, 
they require full-time assistance in most of their physical 
movement. The electrical cerebral activity has been already 
used in several applications that aim to improve the daily life 
of impaired people with strong motor disabilities. In this 
paper, we mainly discuss the application of BCI in the field 
of EW and the development process of BCW. The purpose of 
this article is to review the origin, development and future of 
BCW. More specifically, we summarise the development 
trend of BCW, and it is mainly manifested in three aspects: 
from a wet electrode to dry electrode, from single-mode to 
multi-mode, and from synchronous control to asynchronous 
control. So it can provide technical information for scientific 
personnel and popular science knowledge for the public. The 
abbreviations are listed in Table 3 at the end of the text. 
     Six topics will be covered in this review. First, we will 
briefly introduce the structure of BCW and list the typical 
BCW models in the recent fifteen years. Second, we will 
briefly introduce the research status of the BCW-based EEG 
signal acquisition system, hoping to have a cheaper EEG 
acquisition equipment to reduce the cost of BCW. Third, we 
will explain the BCW controlled by different EEG signals 
and improve the BCW control mode. Fourth, we will 
summarise the development trend of BCW from synchronous 
control to asynchronous control. Five, we will summarise the 
improvement measures to enrich the functions of BCW. 
Finally, we will discuss the future of BCW. 

II. THE BRAIN-CONTROLLED WHEELCHAIR MODEL 
As a pioneer who helped establish the real BCW model, 
Tanaka et al. first established an EW model controlled by 
BCI in 2005 [10]. Since then, many scholars have applied 
BCI technology to EW. We conducted literature searches in 
major electronic databases, including science Direct, 
Spinger Link, Google Scholar, and Wed of Science. We set 
the following search criteria: (1) written in English; (2) 
published from 2005 to 2019. We set the condition that the 
only keyword was “brain-controlled wheelchair” as the 
index. Taking Wed of Science as an example, there has been 
a significant increase in the number of published articles on 
BCW over the last 15 years (see Figure 1). The popularity 
of this topic can be attributed to the broad rehabilitation 
prospects of BCW for paralysed people locked in 
wheelchairs. Until now, BCW has made a technological 
breakthrough in navigating from a simple environment to a 

 

FIGURE 1.  Publication and citation report of BCW studies for the past 
fifteen years (2005–2019). Data were obtained in Web of Science using a 
“brain-controlled wheelchair“ as a topic (accessed on 2nd Dec. 2020). 
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FIGURE 2.  The typical real BCW models over the last fifteen years: (a) 
Designed by Tanaka et al., [10]; (b) Designed by Rebsamen et al., [11]; (c) 
Designed by Vanacker et al., [12, 13]; (d) Designed by Iturrate et al., [14]; 
(e) Designed by Palankar et al.,[15]; (f) Designed by Lopes et al., [16]; (g) 
Designed by Müller et al., [17]; (h) Designed by Carrino et al., [18]; (i) 
Designed by Wang et al., [19]; (j) Designed by Turnip et al., [20]; (k) 
Designed by Bi et al., [21]; (l) Designed by Huang et al., [22]; (m) 
Designed by Lamti et al., [23]. 

complex one. We have listed some typical real BCW 
models in Figure 2. 
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FIGURE 3.  The control schematic diagram of a brain-controlled 
wheelchair 

The real BCW mainly consists of three components: 
EEG acquisition system, control module, and EW. The EEG 
acquisition system captures EEG signals from the thinking 
of the patients’ willingness to do, and then transmit the 
collected signal to the control module. The control module 
will extract necessary information which will be used for 
driving the EW motor. Then, the motor based on the 
electrical level of the signal performs the predefined 
operation like rotating or moving the EW in a specific 
direction [24, 25]. Figure 3 shows a schematic description 
of a BCWs system, adapted from He et al.[26]. 

III. FROM WET ELECTRODE TO DRY ELECTRODE 
Recording brain activity is the first step in BCW. Although 
invasive neural signals have a high spatial resolution, there 
are high safety risks, such as the immune response and 
callus after surgery. In contrast, non-invasive neural signals 
are safer than the former because they provide an interface 
without surgery [27]. The most common physiological 
signal used in BCW is EEG, primarily because it has 
excellent time resolution, non-invasiveness, easy to use, 
portability and relatively low-price [28]. The EEG 
recording system is composed of an electrode attached cap, 
signal amplifiers, an analog-to-digital (A/D) converter, and 
a recording device. The electrodes acquire the signal from 
the scalp. The amplifiers process the analogue signal to 
enlarge the amplitude of the EEG signals so that the A/D 
converter can digitize the signal more accurately. Finally, 
the recording device, like personal computer, stores and 
displays the data [29].  

The BCW used for rehabilitation training often requires 
an efficient EEG signal acquisition system to ensure that 
the collected EEG data is reliable and high-quality. The 
survey found that the types of EEG caps that have been 
used in the past 15 years are mainly the following types 
(see Figure 4). We also summarize those EEG caps that 
have been widely used BCW in recent years (see Table 1). 
From Figure 4 and Table 1, we can know that the EEG 
signal acquisition equipment used in BCW mainly can be 
classified into two categories: wet and dry. The acquisition 

 
FIGURE 4.  Example of EEG acquisition system used in BCW 
applications: (a) Biosemi acquisition system, (b) BrainNet BNT-36, (c) 
gTec EEG system, (d) Neuroscan, (e) Epoch Emotiv headset, (f) NeuroSky 
Mindwave Mobile headset 2, (g) BIOPAC™ EEG system, (h) gTec EEG 
system,(i) EEGO™ EEG system, and (j) gTec EEG system.  

methods mainly include wired and wireless. The current 
mainstream EEG acquisition systems are Biosemi 
Acquisition System, BrainNet BNT-36, gTec EEG System, 
Neuroscan, Epoch Emotiv headset, NeuroSky Mindwave 
Mobile headset 2, and BIOPAC™ EEG System. These 
electrode systems adopt the international 10-20 system to 
install the electrodes [30]. In addition, the application of 
wet electrodes in BCW was earlier than dry.  

In the first real BCW, Tanaka et al. adopt the wet 
electrode system to acquire and monitor subjects’ EEG 
signals in real-time, giving a reference model to other teams 
such as Millan et al. and Rebsamen et al.[10, 31, 32]. 
Especially, according to the international 10-20 standard, 
some teams created the simple wet electrodes acquisition 
source module [33, 34]. A wireless communication headset 
based on the hydration sensors and Bluetooth technology 
(Emotiv EPOC headset) was seminally used in BCW [35]. 
Carrino et al. first evaluated this EEG device. It is 
concluded that the low-cost EEG device can hardly be used 
for a self-paced BCW system in an error-sensitive context 
compared [18]. Another commercial EEG device, Neurosky 
Mindwavd, was also being used to develop BCW [36], 
which indicated that it is feasible to develop BCW by 
commercial EEG headsets. We can also see from table 1 
that the signal collected by dry electrode systems needs 
longer duration of the signal for each decoding instruction, 
and there is no significant difference in sampling rate and 
decoding instruction number compared with wet electrode 
system. In general, an efficient BCI system needs a reliable 
EEG acquisition system and high-quality EEG data [37]. 
Wet electrodes are usually used for laboratory or medical 
purposes because it enables researchers to acquire high-
quality EEG data. Besides, it can meet the condition that 
the skin-electrode contact impedance requires less than 50 
kΩ in the process of recording clinical EEG signals. 
Unfortunately, wet EEG signal acquisition equipment has 
various disadvantages. For example, high prices and time-
consuming preparation limit its application in developing 
BCW [38]. Moreover, wearing this kind of equipment is 
uncomfortable for some patients, whose electromyogram 
(EMG) signals may also be represented as an artifact in the 
EEG signal [39]. Therefore, we should pay attention to 
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TABLE 1   
SUMMARY OF EEG CAP USE IN BCW 

Reference Year 
Cap 
type 

Electrode 
type 

Number of 
electrodes 

Sampling 
frequency 

Output commands 
Duration of 
the signal 

Tanaka et al. [10] 2005 g wet 13 1024Hz 2; forward in diagonal line left/right 1s 
Rebsamen et al. [32] 2006 d wet 15 none 4; 4 locations, an “application button” and lock 100ms 
Philips et al. [13] 2007 a wet 64 512 Hz 3; forward and turn left/right none 
Vanacker et al. [12] 2007 a wet 64 none 3; forward and turn left/right none 
Rebsamen et al. [40] 2007 d wet 15 none 9; 7 locations, an “application button” and lock none 
Leeb et al. [41] 2007 j wet 1 250 Hz 4; forward, backward, turn right/left 1s 
Galán et al. [42] 2008 a wet 64 512 Hz 3; turn left/ right, and forward 1s 
Choi et al. [43] 2008 c wet 5 256 Hz 3; turn left/ right, and forward 1s 
Millán et al. [31] 2009 a wet 64 512 Hz 3; forward and turn left/right 500ms 

Iturrate et al. [14, 44, 45] 2009 c wet 17 none 18; 15 locations, turn left/right and validate 
selection 1s 

Müller et al. [46] 2010 b wet 12 600 Hz 4; forward,turn left/right and stop 10s 
Shin et al. [47] 2010 g wet 16 none 4; forward, backward and turn left/right none 
Müller et al.[17] 2011 b wet 12 600 Hz 4; forward,turn left/right and stop 10s 

Lopes et al. [16]  2011 c wet 12 256 Hz 11;forward, right, ror, stop, left, rol, back, 3 
locations and basic interaction communication  175ms 

Ahmed [35] 2011 e wet 2 none 4; forward, backward and turn left/right 5s 
Choi [48] 2012 c wet 5 256 Hz 3; turn left/right and forward none 
Carrino et al. [18] 2012 e wet 10 128 Hz 2; turn left/right none 
Jiang et al. [36] 2012 f dry 1 none 4; forward, backward and turn left/right 8s 

Puanhvuan et al. [49] 2012 g wet 6 200 Hz 13;8 locations, forward, backward, turn 
left/right, and stop 2s 

Leeb et al. [50] 2012 j wet 1 none 3, forward, and turn left/right none 
Diez et al. [51] 2013 b wet 6 none 4; forward, backward and turn left/right 2s 
Müller et al.[52] 2013 b wet 12 600 Hz 4; forward, turn left/right and stop 10s 

Lopes et al.[53] 2013 c wet 12 256 Hz 7; forward, backward, turn left/right 45º or 90º 
and stop 175ms 

Li et al. [54]  2013 c wet 15 256 Hz 4;turn left/right, speed up and speed down 2s 
Kaysa et al. [55] 2013 e wet 4 128 Hz 2; turn left/right 2s 
Wei et al. [56] 2013 e wet 10 none 4; forward, backward and turn left/right none 
Guin et al. [57] 2013 f dry 1 none 3; forward and turn left/right 10s 

Jayabhavani et al. [58] 2013 f dry 1 none 6; forward, backward, turn left/right, start and 
stop 10s 

Carlson et al. [59]  2013 h wet 16 512 Hz 2; turn left/right 2677ms 

Kim et al. [60] 2013 h wet 16 256 Hz 5;left, left-diagonal, right, right-diagonal, and 
forward none 

Cao et al. [61] 2014 c wet 15 256 Hz 
8; turn left/right, forward, acceleration, 
deceleration, driving at the uniform 
velocity,turn on/off 

2s 

Li et al. [62] 2014 c wet 15 256 Hz 4;turn left/right, speed up and speed down 2s 
Bahri et al. [63] 2014 e wet 14 128 Hz 4; forward, backward and turn left/right none 
Tello et al. [64]  2015 b wet 12 600 Hz 4; forward, stop and turn left/right 1s 
Tello et al. [65] 2015 b wet 14 600 Hz 4; forward, stop and turn left/right 1s 
Taher et al. [66] 2015 e wet 14 none Hz 5; forward, backward, turn left/right, and stop none 
Parmonangan et al. [67] 2015 e wet 14 none 4; forward, turn left/right, and stop none 
Swee et al. [68-70] 2016 e wet 14 128 Hz 4; forward, backward, and turn left/right none 
Sinha et al. [71] 2016 f dry 1 none 4; forward, turn left/right, and stop 5s 

Puanhvuan et al. [72] 2017 g wet 6 none 13;9 target destinations, forward, backward, 
and turn left/right, 800ms 

Dev et al. [73] 2018 f dry 1 512 Hz 4; forward, backward, and turn left/right none 
Lahane et al. [74] 2018 f dry 1 none 4; forward, stop, and turn left/right none 
Zambalde . [33] 2018 i wet 9 none 5; forward, backward, turn left/right, and stop 3s 

Cruz et al. [75] 2019 c wet 12 256 Hz 7;forward, back, left90, right90, stop , wc, and 
exit none 

Ratib et al. [76] 2019 f dry 1 none 5;forward, backward, turn right/left and stop none 

Permana et al. [77] 2019 f dry 1 none 
5; default/motionless, forward, backward and 
turn right/left. 1128ms 

(a) (b) (c)
 

FIGURE 5.  Example of dry electrode use in BCW applications: (a) 
SAHARA. Active dry electrode [37], (b) Cognionics. biological electrical 
sensors [78], and(c) OpenBCI. Dry EEG Comb Electrodes [79]  

eliminating the interaction effect between the EEG signal 
and the EMG signals during the acquisition of the EEG 
signal. Occasionally, the electrical equipment around the 
patient may distort the EEG signals due to power frequency 
interference. 

A typical EEG recording system for BCW should record 
EEG signals in a noninvasive manner. Moreover, it should 
be portable, low-cost and affordable to procure [33]. Further, 
such a system should be convenient to use. Under any 
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circumstances, there should be no compromise with the 
performance of the EEG recording, even for a longer time 
duration. According to table 1, more and more researchers 
preferred to use NeuroSky MindWave headset 2 and 
Emotiv EPOC headset in BCW in the last few years. These 
two devices are not only at a lower cost but also are simple 
in output signal processing. The Emotiv EPOC headset is 
equipped with 14 EEG channels and 2 Gyroscopic channels 
[80]. There are several features of NeuroSky MindWave 
headset 2: raw data and power spectrum (delta, theta, alpha, 
beta, and gamma) [81]. The Emotiv EPOC headset uses 
sintered silver chloride electrode systems, which are 
compatible with conducting gels when using [82]. 
Nowadays, the dry electrodes were popular because the dry 
electrodes have the advantage of maintaining structural 
integrity and electrical properties to prolong duration time 
[37].  

Recently, dry electrode systems, such as g. SAHARA, 
Cognionics, and OpenBCI have been garnered attention [37, 
78, 79] (see Figure 5). There are eight gold-plated pins in g. 
SAHARA. The main advantage is that there is no limit to 
mount these electrodes in a conventional EEG cap. 
Cognionics electric sensor electrodes use a combination of 
silver and carbon poured on a flexible base, and 
silver/silver chloride coatings. This design not only makes 
the equipment flexible and durable but also maintain a 
high-quality signal. Mahmood et al. applied the electrode to 
BCW and realised the five directions of motion [83]. The 
extended (5mm) prongs of dry EEG comb electrodes 
accommodate longer hair while enabling excellent signal 
quality. The blunt prongs can increase scalp contact, 
comfort, and wearability  [79]. 

Collectively, the dry electrode system facilitates 
experiment preparation and avoids electrode paste and the 
wireless electrode system avoids complicated wiring. This 
is why Emotiv EPOC headset and NeuroSky Mindwave 
Mobile headset 2 have become popular in recent years. In 
[83-85], the wheelchair control scheme was based on the 
EEG interface platform of Emotiv EPOC headset. However, 
the classification accuracy of this BCI system is low. Ratib 
et al. have developed a low-cost BCW using the NeuroSky 
MindWave headset 2 and the accuracy rates were over 90% 
[76]. Permana et al. designed a wheelchair control scheme 
based on the NeuroSky Mindwave Mobile headset 2. From 
the results, it was difficult to classify more than three 
classes [77]. This shows that low-cost EEG acquisition 
equipment is difficult to record higher accurate EEG signals. 
For BCW, the lack of reliability of the collected EEG 
signals will cause serious consequences. Unless the signal 
to noise ratio (SNR) can be improved, the wet-electrode 
EEG systems commonly used for clinical or research 
purposes should be selected to record EEG signals. In fact, 
a growing number of researchers tend to use cheap EEG 
devices to develop BCW for the development of BCW as 
low-cost EEG acquisition equipment reduces the research 
threshold of BCW. However, the quality of the EEG signals 
collected by these low-cost devices needs to be improved, 

so it is necessary to design a specific low-cost EEG device 
for key applications and research.  

IV. FROM SINGLE MODAL TO HYBRID MODAL  

A. SINGLE MODAL BASED BCW 
EEG signals can be divided into endogenous signals and 
exogenous signals. The endogenous signal is evoked by the 
subject, including slow cortical potential (SCP) and 
sensorimotor rhythms. Whereas the exogenous signal is 
evoked by an external stimulus presentation, including 
event-related potentials (ERP) and visual evoked potentials 
(VEP) [86]. We find that there is relatively little literature 
that uses SCP to BCW because the SCP needs a long 
training period and its low information transmission rate 
(ITR) [87]. There are three main kinds of EEG signals used 
in BCW: (1) event-related synchronization and 
desynchronization (ERD/ERS) of sensorimotor rhythms 
(SMR) µ (8-12Hz) and β (18-25Hz). The rhythms typically 
decrease (ERD) during motor imagery (MI) and increase 
(ERS) during motor relaxation [88, 89]; (2) P300 peak 
elicited by a visual oddball paradigm [90, 91]; (3) steady-
state visual evoked potentials (SSVEP) elicited by a 
constant flicker at a given frequency [92].  

1) MI-BASED BCW 
The most widely EEG signal for BCW is sensorimotor 
rhythm in the real environment. Subjects can freely 
modulate the SMR during MI [93, 94]. Thus,  MI-based 
BCW could allow subjects’ sensorial channels to be 
dedicated to the maintenance of attention to the 
environment rather than external visual, tactile, or auditory 
stimuli. This is an advantage over other BCWs based on the 
exogenous signal, such as the P300 or SSVEP. 

Tanaka et al. firstly tried the left and right thoughts to 
control the direction of the EW, procuring notable success 
[10]. Lew et al. also adopted this mental task to control a 
simulated wheelchair [95]. Vanacker et al. used a mild form 
of online learning to continuously track the subjects’ brain 
signals. The steering signals were outputted by the classifier, 
which was composed of a probability distribution of these 
three possible discrete mental turn commands: forward, left, 
and right. Due to the limited amount of different mental 
commands that can be reliably discerned by classifier, a 
command-to-movement scheme was adopted to ensure that 
the smooth motion will result from these discrete mental 
commands [12, 13, 42, 96]. Based on this, Millán et al. 
altered three psychological tasks. Subjects 1 and 2 utilised 
the three mental commands: the imagination of a left-hand 
movement, word associations and relaxation. Subject 3 
utilised different mental commands: word associations, 
arithmetic operations, and relaxation. These subjects have 
achieved a well level of mental control [31]. In [97], each 
of mental tasks was associated with a steering command, 
either right or left. An improvement was that if no mental 
command was delivered, the wheelchair would move 
forward, thus implicitly executing the third driving 
command. Carlson et al. successfully tested the first patient 
trial of a MI-based BCW, which represented that the BCW 
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technology can be pushed from the laboratory to the living 
environment [98, 99]. The control commands of BCW also 
have been increased. In [100], in addition to the left, right 
and forward control commands (letter composing, 
arithmetic and Rubik’s cube rolling forward), the additional 
eyes closed action was used for the on/off command. A 
more natural and accustomed mapping (left and right MIs 
to turn left and turn right respectively, feet MI to go forward) 
was used to control the EW, reducing mental load without 
remembering the mapping relationship [101]. Extensive 
investigations have always been done on improving the 
performance of the wheelchair and ensuring the reliability 
of the control system. Some investigators mentioned above 
have modified the psychological tasks, and some of them 
have increased the classification accuracy of mental tasks 
by improving the algorithm. Hema et al. used only two 
electrodes to record the EEG changes during different types 
of MI (left hand, right hand and foot) and tried to classify 
the MI by using recurrent neural classifiers [102, 103] and 
Elman neural classifiers [104-106] as accurate as possible. 
Velasco-Álvarez et al. tested an asynchronous BCI in a 
virtual environment. Subjects successfully navigated the 
wheelchair to avoid obstacles by discrete advances and turn 
with MI commands [107, 108]. The personal digital 
assistant (PDA) based on MI or electromyography (EMG) 
provided BCW with a series of humanized functions [109-
111]. Benevides et al. applied PDA to the wheelchair and 
proposed a reclassification model to stabilize the accuracy 
of the classifier [112]. In [18], the commercial EEG headset 
was used to build a MI-based BCW. Carra et al. also 
developed a MI-based BCW with portable and low-cost 
equipment [113, 114]. The MI-based BCW with a low-cost 
device has achieved good results in the direction control of 
the wheelchair with fewer tasks.  

Usually, the subjects need multiple psychological tasks to 
drive the wheelchair to complete a smooth trajectory. Thus, 
more mental commands were decoded  [55, 60, 115-122]. 
In [115, 119], each direction (left, forward, right, backward 
and stop) of the wheelchair corresponded to a mental task 
(movement imagery, trivial multiplication, geometrical 
figure rotation, non-trivial multiplication and relaxation). In 
the prototype developed by Huang et al., the subjects could 
rapidly control the wheelchair within a short calibration 
period, realizing operate the wheelchair to turn left or right, 
to go straight or stop [118]. Kaysa et al. did with raising the 
right hand and raising the left-hand movement as the input 
for generating wheelchair movement and used the idle 
activity as a stopping condition for any wheelchair 
movement [55]. Yu et al. proposed an asynchronous control 
paradigm based on sequential motor imagery (sMI). Four 
sMI tasks by sequential imaging left- and right-hand 
movements in an asynchronous mode were encoded to 
control six steering functions of a wheelchair, including 
moving forward, turning left, turning right, accelerating, 
decelerating and stopping [121].  

2) P300-BASED BCW 
P300 evoked potentials, mainly located in the central 

cortical region, are positive peaks in the EEG due to 
infrequent auditory, visual, or somatosensory stimuli, 
occurring approximately 300 ms after the event [90, 123]. 
The lower the probability of relevant events, the more 
obvious the amplitude of the P300 response [124]. The 
advantage of BCI-based P300 is that P300 is an internal 
response, and users can generate P300 without training 
[125]. Rebsamen et al. presented the first working 
prototype of a BCW based on a slow but safe P300 
interface. Specifically, the context-dependent menus of 
commands simplified the motion control. Through a simple 
and effective path editor, users can enter the guiding path 
into the system to help the system adapt to changing 
environmental conditions. Then, the user’s task only 
included selecting the destination and handling the 
unexpected situation through a dialogue scheme so that 
users can control the wheelchair with less attention. 
According to a predefined path, the wheelchair will move 
along at last [11, 32, 40, 126]. Although the motion control 
strategy solved the problem of navigation inside an atypical 
office or hospital environment without complex sensors or 
sensor processing, the accuracy of P300 classification was 
the premise to guarantee the effective implementation of 
this strategy. Pires et al. proposed a full system based on a 
visual P300 oddball paradigm for wheelchair steering. 
Temporal features and EEG channels were selected through 
a Fisher criterion, and the P300 was effectively detected by 
the common spatial patterns method combined to a 
Bayesian classifier. Offline classification results have 
shown the effectiveness of the method [127].  

On the BCI2000 software platform, Gentiletti et al. 
replaced the character elements on the classical stimulus 
matrix of the P300 speller with icons in order to get a 
graphical user interface (GUI) and then simulated 
wheelchair in a virtual environment. In their work, two 
healthy subjects each drove the wheelchair along similar 
paths and distances [34]. Venkatasubramanian et al. 
developed an interface also based on BCI2000, using P300 
signals to control the movement of a wheelchair in a 
predefined path [128]. Since P300 is an evoked potential, 
subjects rely on the control system to operate the 
wheelchair. Scientists often improve the performance of 
P300-based BCW by navigation strategy. Iturrate et al. 
created a BCW that relied on a P300 neurophysiological 
protocol and automated navigation. When in operation, the 
user faced a screen displaying a real-time virtual 
reconstruction of the scenario and concentrated on the 
location of the space to reach. The EEG signal processing 
detected the target location, thereby navigating the subject 
to the destination while avoiding collisions with obstacles 
in the environment [14, 44, 45]. Shin et al. achieved the 
wheelchair navigation in four directions (left, right, front 
and back) with the simple P300-BCI. They used only two 
electrodes and a reference signal. The experimental results 
demonstrated the feasibility that simple signal processing 
interpreted the measured signals to decide a movement 
direction of the wheelchair [47]. The study laid a 
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foundation for P300-based BCW with asynchronous control 
mode. He et al. proposed a new no-threshold asynchronous 
brain switch based on P300, which makes decisions 
according to the results of two classifications rather than a 
thresholding method to distinguish between the control and 
idle states. The switch was used for the “start/stop“ control 
of a real wheelchair and it was successfully tested in 
healthy subjects and patients [129]. 

3) SSVEP-BASED BCW 
When the human eye is stimulated by flashing signals with 
a specific frequency, the brain produces electrical activity at 
that frequency. EEG changes caused by visual stimulation 
in a specific frequency range can be adjusted through 
stimulation [130]. This phenomenon is called SSVEP. 
SSVEP-BCI is widely used because it does not require 
long-term training, and it has a high transmission rate and 
accuracy [131]. Mandel et al. believed that the robust 
classification of SSVEPs in brain activity allowed for the 
seamless projection of qualitative directional navigation 
commands onto a frequently updated route graph 
representation of the environment. They initially realised 
the combination of SSVEP and autonomous navigation 
systems [132]. Müller et al. believed that each frequency 
value could be associated with a user command or a users’ 
feeling, so two systems were designed. In the first system, 
the user can choose a specific place to move. Upon such a 
choice, the control system onboard the wheelchair 
generated reference paths with a low risk of collision, 
connecting the current position to the chosen one. In the 
second system, the BCI based on the SSVEP can 
discriminate four classes once per second and it can achieve 
the control of moving the wheelchair forward, to the left, to 
the right, or to stop. The stimuli flickering was performed at 
high-frequency (37, 38, 39 and 40 Hz) and participants 
expressed neither discomfort nor fatigue due to flickering 
stimulation [17, 46, 51, 64]. Xu et al. further proposed an 
effective and low delayed asynchronous SSVEPs-based 
BCI system for practical wheelchair control. The transition 
state and negative edge detection method reduced 
effectively potential safety risks and enhanced users’ 
experience by minimizing undesired movements [133]. In 
[134], the SSVEPs elicited by four different flickering 
frequencies in a low-frequency region (7 Hz, 9 Hz, 11 Hz 
and 13 Hz). The wheelchair can move forward, backward, 
left, right and stop positions, which showed that the 
SSVEP-based BCI with OAA-SVM classifier and violet 
color stimuli in the low-frequency region can give a 
promising way. Turnip et al. proposed an extraction method 
for a BCW by applying a nonlinear adaptive filter on EEG-
SSVEP. In addition, the application of an adaptive network 
fuzzy interference system classifier was proposed. A four-
choice signal paradigm with different frequencies (i.e., from 
6 to 9 Hz for left, right, bottom, and top, respectively) was 
used to stimulate the four subjects in the experiment, which 
showed that the extraction method achieved a very 
significant statistical improvement in extracting peak 
amplitude features [20, 135-137]. Lin et al. proposed a 

BCW system based on SSVEP made users be able to drive 
the wheelchair with forward, stop, and left/right-turn 
commands according to their intentions. Additionally, a 
reactive navigation scheme based on an artificial potential 
field (APF) approach was implemented to improve the 
security of the proposed system. The scheme  was expected 
to provide a convenient, safe, and comfortable mobile 
assistance to users who are suffering SCIs [138]. 

B. HYBRID MODAL BASED BCW 
According to the previous description, we found that more 
research teams were keen to use MI as the control signal of 
the BCW relative to P300 and SSVEP, because MI did not 
need to be induced by external stimulus. The design of the 
single-mode BCW system has made significant progress in 
paradigm, brain signal processing algorithm and control 
system, but there are still shortcomings. For example, BCW 
based MI needs more practice, which makes the patient 
fatigue easily, thereby affecting the quality of brain signals. 
BCW based P300 requires repeated scintillation many times. 
Repeating scintillation for a long time also affects the brain 
signal of patients. SSVEP based on BCI control command 
quantity is influenced by the exciting frequency and other 
factors. Especially when the number of instructions on the 
BCI increases, the classification accuracy will decrease. In 
general, the BCW system also faces some challenges in 
terms of low ITR, diversified functions/control, human-
machine adaptability, robustness, and stability. A potential 
solution is to use a new type of BCI system, namely the 
hybrid brain-computer interface (hBCI). Pfurtscheller et al. 
believe that in addition to a simple BCI combination, hBCI 
types also need to meet the following four criteria [139]: (1) 
The activity is obtained directly from the brain; (2) At least 
one of a variety of brain signal collection methods should 
be used to obtain this activity, which may be in the form of 
electrical potential, magnetic field or hemodynamic 
changes; (3) Signals must be processed in real-time/online 
to establish communication between the brain and the 
computer to generate control commands; (4) Brain activity 
results must be provided for communication and feedback 
control. In recent years, the hBCI standard focused on 
improving the accuracy of activity detection for healthy 
subjects and patients and increasing the number of control 
instructions for better communication and control. We 
classify the hBCI types into three categories in this paper 
[62]: (1) hBCI is based on multiple brain patterns; (2) hBCI 
is based on multiple Biological signals; (3) hBCI is based 
on multiple sensory stimulations. 

(1) HBCI BASED ON MULTIPLE BRAIN PATTERNS 
P300 & MI: Rebsamen et al. utilised a P300-based or MI-
based brain switch to produce a start/stop command for 
controlling a wheelchair [126]. Yu et al. presented a hBCI, 
in which the user controlled the wheelchair by alternatively 
performing an MI task or paying attention to P300 flashing 
[140]. Long et al. designed a paradigm that combined MI 
with P300. The paradigm allows the user to control the 
direction (left/right turn) of the simulated or real wheelchair 
by using left/right-hand imagery. Furthermore, the hybrid 
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manner can be used to control speed. If the user wants to 
decelerate, the user imagines foot movement while ignoring 
the flashing buttons on the GUI. If the user wishes to 
accelerate, then he/she will focus on a specific flashing 
button [141, 142]. This paradigm addressed the challenge 
that is difficult for current BCW to provide multiple 
independent control signals [143]. 

MI & SSVEP: Bastos et al. created a robotic wheelchair 
commanded by a BCI through SSVEP, MI and word 
generation. When using SSVEP, a statistical test was used 
to extract the evoked response and a decision tree was used 
to discriminate the stimulus frequency. When using MI 
(left/right hand) and word generation, three mental tasks 
generated instructions to guide the wheelchair through an 
indoor environment [144]. Cao et al. proposed a hybrid BCI 
system based on MI & SSVEP, which realised the 
synchronous control of wheelchair speed and direction as 
well as an on/off control system for wheelchair control [61]. 

P300 & SSVEP: In [145], a hybrid asynchronous BCI 
combining P300 and SSVEP was presented. P300 and 
SSVEP both can be elicited simultaneously. The control 
state and target button were determined by both P300 and 
SSVEP detections and the performance for detecting the 
control/idle state can be improved by using such a hybrid 
BCI. 

(2) HBCI BASED ON MULTIPLE BIOLOGICAL SIGNALS 
EEG & EMG: Li et al. presented a real-time composite 
brain/muscle interface to control a wheelchair directly by 
using MI-EEG and EMG signals of gritting the left/right 
teeth [146]. Jiang et al. developed a low-cost prototype that 
was using MI-EEG and EMG signals. The system can 
detect and determine the user’s intention of at least four 
directions of motion [84]. Chai et al. developed a hBCI 
home environmental control system for paralytics’ active 
and assisted living by integrating single-channel EMG of 
occlusal movement and SSVEP. This indicated that 
combining EEG and EMG can effectively enhance the 
security and interactivity of the environmental control 
system [116]. 

EEG & EOG: Wang et al. proposed hybrid EEG-EOG 
BCI, which combines MI, P300, and eye blinking to 
implement forward, backward, and stop control of a 
wheelchair. Users (e.g., those with ALS and locked-in 
syndrome) can navigate the wheelchair with seven steering 
behaviors [19]. The paper [147] has developed a novel 
EOG-based switch, which issues on/off commands 
depending on whether the user’s single blinks are 
performed in synchrony with the flashes of a switch button. 
This switch was applied to a BCW which combined a BCI 
system based on MI + P300 and an autonomous navigation 
system in [148]. As only one EOG channel was used, the 
switch was practically feasible in many situations. 

(3) HBCI BASED ON MULTIPLE STIMULATION SENSORY 
Another approach to improve the performance of BCIs is to 
combine different signal modalities or control signals to 
form a hybrid BCI. To increase the control accuracy of 
BCI-controlled robotic wheelchair, the new non-traditional 

control method called “extended BCI“ came into being, 
which involved the operation of multiple control channels 
in parallel [148]. 

Multiple modes of operation combined with EEG signals: 
Bonarini et al. developed an autonomous wheelchair that 
was capable of avoiding obstacles, self-localize and safely 
explore indoor environments. In the model, the user has the 
opportunity to choose among several autonomy levels 
(from simple obstacle avoidance to complete autonomous 
navigation) and different interfaces: a classical joystick, a 
touch-screen, an electro biographic interface, and a BCI 
[149]. The paper [16] presented a new shared-control 
approach based on P300, which allowed the selection of 
brain-actuated commands to steer a robotic wheelchair. In 
such a BCW, at least one specific motor skill, such as the 
control of arms, legs, head or voice, was required to operate 
a conventional HMI. 

Gestures combined with EEG signals: Real Wheels 
system incorporated a BCI based on SSVEP along with 
modifications to existing joystick controllers to operate a 
controller for wheelchair movement. A series of higher-
level navigation commands, called “wheelchair gestures“, 
assist a wheelchair user in accomplishing activities of daily 
life [150].  

Speech recognition combined with EEG signals: Wang et 
al. established a multimodal interface for EW, which had 
three types of available inputs: speech, keyboard and 
traditional joystick [151]. On this basis, a BCW controlled 
by a coordinated mechanism based on a BCI and speech 
recognition was presented. The coordinated control 
mechanism had a satisfactory path and time optimality 
ratios [152]. The speech recognition was a fast and accurate 
supplement for BCWs. Devi et al. added voice recognition 
sensors to BCW to help the physically challenged people 
given an effective result with less effort [153].  

V. FROM SYNCHRONOUS TO ASYNCHRONOUS 
A BCI system can work synchronously or asynchronously. 
Up to now, synchronous and asynchronous protocols have 
been applied to BCW. Typically, the synchronous protocol 
for BCW was proposed by Rebsamen et al. [32, 126]. In 
general, the P300 [32, 59, 126] and SSVEP [46, 51] was 
used for selecting the predefined location of the destination. 
Moreover, an intelligent navigation system was utilised to 
avoid obstacles by laser sensors and to drive the wheelchair 
along the specific path [44]. During navigation, the user can 
only control the wheelchair discretely and cannot modify 
the specified track arbitrarily. Although the synchronous 
protocol showed high accuracy and safety [126], the 
response efficiency of wheelchair control was low, and the 
selected path was constrained by the operating environment. 
On the contrary, the asynchronous protocol requires 
minimum concentration-time and minimum error-detection. 
The user’s intentions are continuously and accurately 
interpreted into control commands by the BCI, so that the 
user controls the BCW at their discretion [41, 103, 154]. 
Rebsamen et al. pioneered the asynchronous P300 system  
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TABLE 2 
SUMMARY OF RELEVANT RESEARCH WORKS IN THE FIELD OF BCWS AND MAIN CHARACTERISTICS IN CHRONOLOGICAL ORDER. 

(adapted from Fernández-Rodríguez et al. [155]） 

BCW Year Signal Navigation system Asynch. control Decoding type Subjects 
[10] 2005 MI Low-level Yes Discrete 6 
[11] 2007 P300 High-level Yes Discrete 5 
[31] 2009 MI Shared Yes Continuous 3 
[14] 2009 P300 Shared No Discrete 5 
[132] 2009 SSVEP Shared Yes Discrete 9 
[126] 2010 hybridg High-level Yes Discrete 5 
[156] 2010 P300 High-level No Discrete 1a 
[47] 2010 P300 Low-level No Discrete 1 
[103] 2011 MI Shared Yes Mixedb 4 
[154] 2011 MI Shared Yes Discrete 2 
[118] 2012 MI Low-level Yes Discrete 5f 
[48] 2012 hybridh High-level Yes Continuous 3 
[18] 2012 MI Low-level Yes Not specified 1 
[157] 2012 hybridg Low-level Yes Mixedb 7 
[141] 2012 hybridg Low-level Yes Continuous 2 

[49] 2012 hybridh 
The user can choose 

low or high-level 
No Discrete 4 

[133] 2012 SSVEP Low-level Yes Continuous 2 
[114] 2013 MI Low-level Yes Discrete 1 
[101] 2013 MI Low-level Yes Continuous 3 
[146] 2013 hybridh Low-level Yes Continuous 1 
[59] 2013 MI Shared Yes Continuous 4 
[53] 2013 P300 Shared No Discrete 11c 

[52] 2013 SSVEP Low-level 
asynchronous or 

synchronous (optional) 
Discrete 1 

[145] 2013 hybridh Low-level Yes Continuous 5 
[51] 2013 SSVEP Low-level Yes Continuous 13d 
[158] 2014 Alpha band Low-level Yes Discrete 8 
[19] 2014 hybridh Low-level Yes Continuous 4 
[61] 2014 hybridg Low-level Yes Mixedb 3 
[62] 2014 hybridg Low-level Yes Continuous 3 
[159] 2014 SSVEP Shared Yes Continuous 4 
[160] 2014 EOG (embedded in EEG) Low-level Yes Continuous 5 
[161] 2015 MI Low-level Yes Discrete 3 
[162] 2014 SSVEP High-level Yes Discrete 37 
[148]a 2016 MI High-level Yes Discrete 3 
[148]b 2016 P300 High-level Yes Discrete 6 
[140] 2017 hybridg Low-level Yes Continuous 8 
[163] 2017 EPR High-level Mixede Discrete 8 
[121] 2018 MI Low-level Yes Continuous 7 

[164] 2018 MI Low-level Yes 
Continuou or 

Switch 
15 

[165] 2019 hybridh High-level Yes Mixedf 22 
[166] 2019 hybridg Low-level Yes Continuous 5 

aAffected by Guillain-Barre Syndrome  
bdiscrete turns and continuous advance and recoil  
c1 participant with cerebral palsy and motor impairment  
d1 paraplegic participant 
eAn asynchronous mode is used to switch the environmental control system on or off, a synchronous mode is used to improve the accuracy and speed of 

BCI detection. 
fUsers can continuously steer the wheelchair left/right by imagining left/right-hand movements. Users generate discrete wheelchair commands, such as 

moving forward and backward and stopping, by implementing eye blinks and eyebrow movements 
ghybrid Signals based on multiple brain patterns 
hhybrid Signals based on multiple Biological signals 

 
user [11]. A representative MI-basedcontrol system was 
developed by Galán et al. [42, 96]. In such a system, the 
asynchronous protocol was applied to realise the real-time 
continuous directional control. A self-paced BCW enabled 
the user to have the option to control the device when 
required (user has more control) and can avoid obstacles 
autonomously to provide safer control [167]. Xu et al. 
applied the asynchronous protocol to the SSVEP-based 
BCW. The Bayesian Classifier and a low-delayed 
asynchronous detection mechanism were devised and 

integrated to enable the user to control the wheelchair 
flexibly [133]. BCWs have been researched by several 
research groups over the past 15 years, and we summarise 
in Table 2. Table 2 shows asynchronous BCW has attracted 
more and more scholars’ attention. Asynchronous control 
protocol means that the user can use low-Level navigation 
to achieve continuous control of any direction of the 
wheelchair. In an asynchronous BCW system, brain signals 
are continuously detected and analyzed by the system. This 
puts forward higher requirements for EEG signal 
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acquisition, pre-processing algorithm research, software, 
and hardware processing, etc. At present, the research on 
asynchronous BCW is still in the laboratory stage, and the 
methods adopted are mostly based on MI and SSVEP. It is 
easy to implement the asynchronous BCW based on MI, but 
there are some disadvantages in MI, such as the small 
number of categories and training requirements. There are 
many categories of SSVEP, which do not require training 
but exogenous stimulation. The asynchronous control of 
BCW often requires multiple control commands. 
Researchers are committed to the study of decoding EEG 
signals and classifying EEG signals with high accuracy. 
Only by carrying out experiments and analysis, accelerating 
the speed of signal acquisition and processing, and 
improving the classification accuracy and the system’s 
usability can asynchronous BCW reach the degree of 
practicality. 

VI. CHALLENGE AND SOLUTION OF BCW 
Although researchers have made great improvements in the 
control scheme of BCW, the functions of BCW are still 
lacking, which means that there are still many challenges in 
achieving the goal of BCW from laboratory to daily life. 
Over the past 15 years, scientists have been working on 
solutions to enrich wheelchair functions. 

A. THE NAVIGATION IN BCW  
The BCI technology can read EEG signals and convert 
them into real-world motions. However, the collected EEG 
signals are usually accompanied by noisy signals and hard 
to analyse. Although some scholars have improved the 
classification accuracy in algorithms, they still cannot 
guarantee the user can safely, effectively, and accurately 
navigate the wheelchair. The P300 BCI-based motion path 
guidance strategy enabled the wheelchair to safely and 
effectively navigate in an indoor environment without 
complex sensors or sensor processing, circumventing the 
problem caused by the low information rate of the EEG 
signal [11, 40, 126]. A “scenario“ stimulation screen 
optimised the motion guidance strategy [168]. However, in 
the path guidance strategy, the user’s control right will be 
deprived after selecting the target. The control weight of a 
user in a shared control system was irrelevant to the user s 
capability or the driving conditions. Philips et al. adopted 
this method to the BCW, building a semiautonomous 
system that worked in cooperation with humans. Three 
levels of assistance (collision avoidance, obstacle avoidance, 
orientation recovery) were activated only when the user 
needs them [13]. Vanacker et al. improved the shared 
control system. They used knowledge about the current 
context to filter out erroneous steering commands and 
improved the overall driving behavior especially when the 
subject was not already trained for the task [12]. The shared 
control system can reduce subjects’ cognitive workload [97]. 
The shared controller coupled the intelligence and desires 
of the user with the precision of the machine allowed users 
to dynamically produce intuitive and smooth trajectories, 
rather than relying on predefined routes. The number of 

decoded symbols per minute (SPM) in a BCI was still very 
low, which means that users can only provide a few discrete 
commands per minute (less than 10 SPM). Thus, the control 
of the wheelchair should rely on the navigation system. The 
system received sparse commands from the user and then 
performed safe and smooth maneuvers according to 
steering information [59].  

The two-layer shared control approach obtain the safe 
and effective navigation of BCW. The first layer is a 
virtual-constraint responsible for enabling or disabling the 
user commands, based on certain context restrictions. The 
second layer is a user-intent matching responsible for 
determining the suitable steering command, which was 
better to fit the user command and taking the user 
competence on steering the wheelchair into account [16, 53, 
159]. In [14, 44], not only the multiple stages of shared 
control were implemented for a BCW, but also the 
automatic navigation system was integrated into the BCW 
to solve the problem of low ITR. Puanhvuan et al. proposed 
a hybrid P300 and eyes-blink with the BCW system which 
can be operated in both automatic navigation and controlled 
mode [49]. Rui et al. also proposed a BCW system 
combined with autonomous navigation system [169]. The 
concept of autonomous navigation gives the user the 
flexibility to use the BCW in unknown and evolving 
scenarios. The more difficulties the subjects encounter in 
driving a wheelchair, the more assistance they should 
receive. The collaborative control mechanism was put 
forward to assist users when they need help [170]. The 
system used some hypothetical methods to predict the 
drivers’ intentions, if necessary, to adjust the control signals 
to achieve the desired objectives. The human-machine 
shared control strategy employs both brain-machine control 
mode and autonomous control mode. In the brain-machine 
control mode, a novel BCI using SSVEP was utilised two 
brain signals to produce a polar polynomial trajectory. In 
the autonomous control mode, the synthesis of angle-based 
potential field and vision-based simultaneous localization 
and mapping technique guided the BCW navigating among 
the obstacles [171].  

B. FUSION OF BRAIN-CONTROLLED WHEELCHAIR 
AND ROBOTIC ARM 
The wheelchair-mounted robotic arm (WMRA) system can 
reduce the dependence of disabled people using EWs on 
human aides. As early as 2005, Alqasemi et al. developed a 
9-DoF WMRA system controlled by a joystick, keyboard, 
BC12000, and so on to finish the predefine daily task, such 
as reaching, carrying and placing [172]. The WMRA 
system met the needs of mobility-impaired people with 
limitations of upper extremities and exceed the capabilities 
of BCW [15, 156, 173]. Valbuena et al. described a BCI 
based on SSVEPs used as an input device for the semi-
autonomous robot FRIEND IT. The robot is composed of a 
wheelchair and its mounted 7 DoF manipulator, which can 
help people to do a series of office, work and spare time 
[174].  
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A P300-based interface was used for choosing an action 
to be performed on the object by the WMRA [175]. Due to 
some limitations of the single-mode BCW, the hBCI has 
also been introduced for WMRA control. Achic et al. 
proposed a system consisting of an EW with an embedded 
robotic arm. It combined a hBCI and shared control system 
for navigation and manipulation, which can assist users to 
achieve essential tasks [176]. Chen et al. developed a 
WMRA system using a coordinated control strategy. The 
strategy was composed of an operating intention expression 
and identification with EEG, which located objective based 
on EOG and head gesture and a human-robot interface. In 
this bionic manipulator system, the system converted the 
user's control intention into corresponding control 
instructions. Then, instructions were sent to the actuator of 
the arm joint motor to realise the motion control of the 
bionic manipulator [177-179]. Huang et al. proposed to 
help the user turns the wheelchair left/right by performing 
left/right-hand MI, and generates other commands for the 
wheelchair and the robotic arm by performing eye blinks 
and eyebrow-raising movements [165]. Tang et al. have 
proposed an improved mobile platform structure equipped 
with an omnidirectional wheelchair, a lightweight robotic 
arm, a target recognition module, and an auto-control 
module. Based on the you only look once (YOLO) 
algorithm, this system can, in real-time, recognised and 
located the targets in the environment when the users 
confirmed one target through a P300-based BCI. An expert 
system planed a proper solution for a specific target. For 
example, the planned solution for a door is opening the 
door and then passing through it. The auto-control system 
then jointly controlled the wheelchair and robotic arm to 
complete the operation [180].  

C. BRAIN-CONTROLLED WHEELCHAIRS COMBINED 
SMART HOME SYSTEM 
The lives of most disabled locked in wheelchairs are often 
boring. The combination of BCW and the smart home 
system brought fun to disabled people. Qidwai et al. 
modified the BCW. The wheelchair used voice, EEG port, 
joystick controller as input customised depending on the 
nature of the disability of the user. It can be used for 
mobility as well as for controlling the air conditioners (AC) 
and television (TV) systems [181]. A hBCI home 
environmental control system for paralytics’ active and 
assisted living came out. The system was designed as a 
three-level interface. Besides the idle state interface, there 
are one main interface and five sub-interfaces for the work 
state. The main interface included five visual stimuli 
corresponding to different devices such as nursing bed, 
wheelchair, telephone, television, and lamps. The sub-
interfaces presented the control function of those devices. 
Gazing at stimuli at different frequencies corresponding to a 
certain function can select a device or device action. 
Several particular occlusal patterns respectively were used 
to confirm the selected function, return from sub-interface 
to the main interface and switch on/off the system [116, 
182]. The design concept of the BCW control system 

indicates that the development trend of the BCW will be 
combined with the Internet of Things and closer to the lives 
of patients. 

D. REAL-TIME PSYCHOLOGICAL MONITORING  
When assistive robots operate in complex environments and 
the presence of human beings, it will be influenced by 
several factors that may lead to undesired outcomes: wrong 
sensor readings, unexpected environmental conditions or 
algorithmic errors represent, etc.  

To guarantee the safety of the user, a possible solution is 
to rely on a human-supervised approach, another approach 
is to make wheelchairs semi-autonomous. Diez et al. 
proposed three methods to detect the attention-level of the 
user based on the alpha rhythm and theta/beta rate. Then 
use the transitory response of the EEG signal to develop the 
attention-SSVEP hBCI. This method can determine whether 
the user is focusing on the stimulus being detected, thereby 
reducing the risk of wheelchair collision [183]. Cruz et al. 
first analyzed the galvanic skin response (GSR) recorded 
from healthy and motor disabled people while steering a 
robotic wheelchair. Then, a method called feature-based 
peak detection (FBPD) for automatic detection of skin 
conductance response (SCR) was proposed to infer whether 
GSR can help in the recognition of stressful situations [75]. 
Ciabattoni et al. proposed the error correlation potential 
(ErrP) signal detection method for the safe navigation of a 
smart wheelchair. During wheelchair navigation, possible 
problems (e.g., obstacles) along the trajectory cause the 
generation of error-related potentials signals when noticed 
by the user. These signals are captured by the interface and 
are used to provide feedback to the navigation task to 
preserve safety and to avoid possible navigation issues 
[184]. Lamti et al. present a new hybrid system based on 
the fusion of gaze data and SSVEP. The system not only 
commanded a powered wheelchair but also accounted for 
users’ distraction levels (concentrated or distracted), which 
can assess the mental state and mental workload impact on 
EEG signals to ensure the safety of users [23]. 

E. THE NOVEL BCI PARADIGM FOR BRAIN-
CONTROLLED WHEELCHAIRS 
BCI systems have shown to have a huge impact on the life 
quality of the disable [4]. According to the foregoing, based 
on different types of EEG signals (e.g., ERP, SSVEP, MI), 
different BCWs have been developed. Although those 
BCWs do not require direct muscle control, they depend to 
some extent on normal brain function. Damage to the 
cortex (e.g., ALS or stroke), basal ganglia or other 
subcortical areas that interact with the cortex (e.g., cerebral 
palsy), or loss of sensory input (e.g., stroke or SCI) may 
affect the user’s ability to control the cortical potential, or 
rhythm, or cortical neurons. Therefore, the ability to use a 
BCW and the best choice between different BCI may vary 
from user to user. It is need to evaluate specific BCI for 
specific user for a long-term. BCW should be customized 
according to the user’s situation. Innovation has been 
achieved in the experimental paradigm of control signals in 
recent years. For the blind, the vision-based MI BCI 
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paradigm is not applicable. A virtual environment-based 
training system was devised for a blind wheelchair user 
using three-dimensional audio supported by electroence-
phalography [185]. In the paradigm of visually evoked MI, 
the graphic interface could distract the subject’s attention. 
The Audio-cued MI-based BCI, as an unconventional 
paradigm, reduced the probability of misclassification [161, 
186-191]. A c-VEP paradigm was applied to control the 
steering of a BCW [192]. Kobayashi et al. developed a 
novel BCI circuit that manipulates an electric wheelchair 
based on emotion data obtained in real-time by the emotion 
fractal analysis method (EFAM). Using this BCI circuit 
allows user to adjust the speed of EW in proportion to the 
intensity of the emotion [193].  

The MI-based system has BCI illiteracy problem and 
vision-based system (P300 and SSVEP) means that the user 
needs voluntary gaze control. By the way, ALS patients lose 
their volitional eye control in the late stages [194]. Kim et 
al. devised a steady-state somatosensory evoked potential 
(SSSEP) paradigm, which elicited brain responses to tactile 
stimulation of specific frequencies for the user’s intention 
to control a wheelchair. In the system, a user had three 
possible commands by concentrating on one of three 
vibration stimuli that were attached to the left/right-hand 
and foot, to selectively control the wheelchair (turn- 
left/right and forward) [195-198]. Tøttrup et al. investigated 
the feasibility of decoding covert speech from single-trial 
EEG and combined it with MI in their study. The 
experimental results provided new ideas for controlling 
wheelchairs with the covert speech experimental paradigm 
[199]. The discoveries of a novel BCI paradigm expand the 
user group of BCW. 

VII. DISCUSSION 
Independent mobility is what researchers are devoted to 
studying. BCW provides a promising solution for those 
people with physical challenges has restricted mobility. The 
most significant advantage of BCW is that the paralysed 
patient can control the wheelchair directly from the brain 
signals without the need for speech or physical movement. 
In early BCW systems, the approach was to use the BCI to 
select high-level commands (for example, go to the kitchen, 
bedroom, etc.) and to give the BCW sufficient knowledge 
and autonomy to execute these commands autonomously. 
This advanced command can be selected by synchronous 
BCI [32, 46, 51, 59, 126]. This approach is flexible and 
adaptive to meet the needs of individual users, which also 
can be achieved through layered BCI [16, 53, 159].  An 
alternative approach proposed by Millan et al. relied on the 
concept of shared control. In this method, the user 
constantly sends commands to the BCW, which perform 
preset behaviors on a probabilistic basis. This asynchronous 
control approach gives users autonomy. With the 
development of computer and sensor technology, hBCIs 
enriche the control strategy of BCWs and dry electrode 
technology is also applied to the development of BCWs 

technology. Using dry electrode system as EEG signal 
acquisition equipment reduces the cost of BCWs [76]. 

The structure and function of BCWs have been improved 
continuously over the past 15 years. Although these results 
seem promising, the lack of reliable, easy-to-use and 
portable acquisition systems, as well as  semi-autonomous 
robotic wheelchairs that are robust and safe to operate in 
living environment, makes it difficult to achieve a BCW for 
everyday use. Great strides have been made in the field of 
BCW, but obstacles remain. EEG-based BCW still have the 
following problems: (1) The placement of traditional wet 
electrode is cumbersome and the setup time is usually long 
(up to half an hour, depending on the number of electrodes); 
(2) The results of training and learning may not be 
sustained due to the offset of the electrode position, contact 
noise with the scalp and other factors; (3) In order to solve 
the problem of low SNR and online adaptation of subjects, 
it needs to use powerful amplifiers, efficient machine 
learning and signal processing algorithms; (4) The 
attenuation and superposition of brain signals as they travel 
to the scalp, as well as sparse sampling of brain activity, 
limit the range of useful control signals that can be 
extracted.  

We think the future of BCW will focus on solving the 
following problems: (1) To reduce paralysed user effort in 
controlling the wheelchair; (2) To ensure the safety during 
movement; (3) BCWs using inexpensive hardware and 
open-source software; (4) To monitor the activity of the 
person in real time; (5) The designed system should be 
portable for the user; (6) The wheelchair has the ability to 
charge the battery independently. 

VIII.  CONCLUSION 
This review have introduced an emerging technology of 
BCW and shown its great prospect in the field of 
rehabilitation medicine. The emergence of BCW provides a 
new and feasible human-computer interface for those who 
suffer from severe dyskinesia, such as ALS and SCI. It can 
help these patients to interact with the outside world and 
improve their quality of life. We briefly introduce the BCW 
related model, structure, and principles of implementation. 
From the perspective of biomedical engineering research, 
we investigated many works of literature on BCW, we tried 
our best to cover those most representative BCW studies, 
we provided insights into the fundamental basis of BCW 
technology. We summarize the development trend of BCW 
based on the previous investigation and it is mainly 
manifested in three aspects: from a wet electrode to dry 
electrode, from single-mode to multi-mode, and from 
synchronous control to asynchronous control. We also 
summarize the solutions proposed by scholars in the 
process of improving the function of BCWs. These are the 
points that other reviews of BCWs have not covered. We 
hope this paper will help those interested in using or 
developing BCW technology. Although there are still 
obstacles in the development of BCW devices to help 
patients locked in wheelchairs gaining the ability to live 
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autonomously, the desire for personal rehabilitation is 
strong. With the development of signal acquisition, pattern 
recognition, artificial intelligence, sensors, and other 
technologies. We believe that, not long after, it is feasible to 
design a practical and customized BCW to help patients 
with severe paralysis for communicating and operating. 
This technological breakthrough will benefit to more and 
more paralysed people and greatly help the patients re-
obtain the hope of life in the future. 
 

TABLE 3  
ABBREVIATIONS 

The original words Abbreviations  

brain-computer interface BCI 
brain-controlled wheelchair BCW 
amyotrophic lateral sclerosis ALS 
spinal cord injury SCI 

central nervous system CNS 
electric wheelchair EW 
analog-to-digital A/D 
slow cortical potential SCP 
event-related potentials ERP 
visual evoked potentials VEP 
information transmission rate ITR 
event-related synchronization   ERD 
event-related desynchronization  ERS 
sensorimotor rhythms  SMR 
motor imagery  MI 
signal to noise ratio  SNR 
steady-state visual evoked potentials  SSVEP 
personal digital assistant  PDA 
electromyography  EMG 
sequential motor imagery sMI 
graphical user interface  GUI 
artificial potential field  APF 
hybrid brain-computer interface  hBCI 
wheelchair-mounted robotic arm  WMRA 
you only look once  YOLO 
air conditioners  AC 
television  TV 
galvanic skin response  GSR 
feature-based peak detection  FBPD 
emotion fractal analysis method  EFAM 
steady-state somatosensory evoked potential  SSSEP 
skin conductance response  SCR 
error correlation potential  ErrP 
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