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Abstract
Test automation brings the potential to reduce costs and human effort, but several aspects 
of software testing remain challenging to automate. One such example is automated perfor-
mance testing to find performance breaking points. Current approaches to tackle automated 
generation of performance test cases mainly involve using source code or system model 
analysis or use-case-based techniques. However, source code and system models might not 
always be available at testing time. On the other hand, if the optimal performance test-
ing policy for the intended objective in a testing process instead could be learned by the 
testing system, then test automation without advanced performance models could be pos-
sible. Furthermore, the learned policy could later be reused for similar software systems 
under test, thus leading to higher test efficiency. We propose SaFReL, a self-adaptive fuzzy 
reinforcement learning-based performance testing framework. SaFReL learns the optimal 
policy to generate performance test cases through an initial learning phase, then reuses 
it during a transfer learning phase, while keeping the learning running and updating the 
policy in the long term. Through multiple experiments in a simulated performance testing 
setup, we demonstrate that our approach generates the target performance test cases for 
different programs more efficiently than a typical testing process and performs adaptively 
without access to source code and performance models.
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1 Introduction

Quality assurance with respect to both functional and non-functional quality characteristics  
of software becomes crucial to the success of software products. For example, an extra  
one-second delay in the load time of a storefront page can cause 11% reduction in page views,  
and 16% less customer satisfaction (NS8 2018). Moreover, banking, retailing, and airline 
reservation systems as samples of mission-critical systems are all required to be resilient 
against varying conditions affecting their functional performance (Weyuker and Voko-
los 2000; Brunnert et al. 2015; Grinshpan 2012).

Performance, which has been also called ”efficiency” in the classification schemes 
of quality characteristics (ISO25000  2019; Glinz  2007; Chung et  al.  2012), is generally 
referred to as how well a software system (service) accomplishes the expected functionali-
ties. Performance requirements mainly describe time and resource bound constraints on the 
behavior of software, which are often expressed in terms of performance metrics such as 
response time, throughput, and resource utilization.

  Performance evaluation. Performance modeling and testing are common evaluation 
approaches to accomplish the associated objectives such as measurement of performance 
metrics, detection of functional problems emerging under certain performance conditions, 
and also violations of performance requirements (Jiang and Hassan  2015). Performance 
modeling mainly involves building a model of the software system’s behavior using mod-
eling notations such as queueing networks, Markov processes, Petri nets, and simulation 
models (Cortellessa et al. 2011; Harchol-Balter 2013; Kant and Srinivasan 1992). Although 
models provide helpful insights into the performance behavior of the system, there are also 
many details of implementation and execution platform that might be ignored in the mod-
eling (Denaro et al. 2004). Moreover, drawing a precise model expressing the performance 
behavior of the software under different conditions is often difficult. Performance testing 
as another family of techniques is intended to achieve the aforementioned objectives by 
executing the software under the actual conditions.

Verifying the robustness of the system in terms of finding performance breaking point is 
one of the primary purposes of performance testing. A performance breaking point refers 
to the status of software at which the system becomes unresponsive or certain performance 
requirements get violated.

 Research challenge. Performance testing to find performance breaking points remains 
a challenge for complex software and execution platforms. Testing approaches mainly 
raise issues of automated and efficient generation of test cases (test conditions) resulting in 
accomplishing the intended objective. Common approaches for generating the performance 
test cases such as using source code analysis (Zhang et al. 2012), linear programs and evo-
lutionary algorithms on performance models (Zhang and Cheung 2002; Gu and Ge 2009; 
Di Penta et al. 2007) and UML models (Garousi 2010; Garousi 2008; Garousi et al. 2008; 
Costa et al. 2012; da Silveira et al. 2011), using use case-based (Draheim et al. 2006; Lut-
teroth and Weber 2008), and behavior-driven techniques (Schulz et  al.  2019; Ferme and 
Pautasso 2018; Ferme and Pautasso 2017; Walter et al. 2016) mainly rely on source code 
or other artifacts, which might not always be available during the testing.

Regarding the aforementioned issues, we propose that machine learning techniques 
could tackle them. One category of machine learning algorithms is reinforcement learn-
ing (RL), which is mainly intended to train an agent (learner) on how to solve a problem 
in an environment through being rewarded or punished in a trial and error interaction 
with the environment. Model-free RL is a subset of RL enabling the learner to explore 
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the environment (the behavior of the software under test (SUT) in an execution environ-
ment in our case) and learn the optimal policy, to accomplish the objective (generating 
performance test cases resulting in an intended performance breaking point in our case) 
without access to source code and a model of the system. The learner can store the 
learned policy and is able to replay the learned policy in future situations, which can 
lead to efficiency improvements.

 Goal of the paper. Our research goal is represented by the following question:
How can we adaptively and efficiently generate the performance test cases resulting 

in the performance breaking points for different software programs without access to 
the underlying source code and performance models?

Finding performance breaking point is a key purpose in robustness analysis, which 
is of great importance for many types of software systems, particularly in mission- and 
safety-critical domains (Fowler  2009). Moreover, the question above is worth explor- 
ing also in applications specifically, such as resource management (scaling, provisioning, 
and scheduling) for cloud services (Jennings & Stadler 2015), performance prediction 
(Venkataraman et al. 2016; Kolesnikov et al. 2019), and performance analysis of soft-
ware services in other areas (Morabito 2017; Babovic et al. 2016).

 Contribution. In this paper, we present the design and experimental evaluation of a 
self-adaptive fuzzy reinforcement learning-based (SaFReL) performance testing frame-
work. It is intended to efficiently and adaptively generate the (platform-based) perfor-
mance test conditions leading to the performance breaking point for different software 
programs with different performance sensitivity to resources (e.g., CPU-, memory- and 
disk-intensive programs) without access to source code and performance models. An 
early-stage general formulation of the idea of using RL particularly in performance 
testing was introduced in our prior work (Moghadam et al. 2019). The initial formula-
tion introduces a single smart tester agent that uses RL (simple Q-learning) in a two-
phase learning together with an initial architecture in the abstract. This paper extends 
the initial abstract formulation of the RL-assisted performance testing (Moghadam 
et al. 2019). It uses an elaborate learning technique originally inspired by the conference 
paper by Ibidunmoye et al. (2017), which presents an adaptive performance (response 
time) control approach for cloud services using cooperative fuzzy multi-agent reinforce-
ment learning. However, regarding the distinguishing learning details, the proposed RL-
assisted performance testing framework is based on a single smart agent, involves two 
distinct phases of learning, and benefits a particular adaptive learning strategy which 
plays an important role in the functionality of the agent. The proposed smart perfor-
mance testing framework is intended to conduct performance testing to meet a testing 
objective that is finding an intended performance breaking point. The proposed frame-
work, SaFReL, is a two-phase RL-assisted performance testing agent that is able to 
learn the efficient generation of performance test cases to meet the testing objective and 
more importantly replay the learned policy in further similar testing situations.

SaFReL assumes two phases of learning: initial and transfer learning. In the initial learn-
ing phase, it learns the optimal policy to generate the target performance test cases initially 
upon observing the behavior of the first SUT. Afterward in the transfer learning, it reuses the 
learned policy for the SUTs with a performance sensitivity analogous to already observed 
ones while still keeping the learning running in the long term. The learning mechanism uses 
Q-learning augmented by fuzzy logic in one part of the learning to deal with the issue of 
uncertainty in defining discrete categories over continuous values as used by Ibidunmoye et al. 
(2017). The single light-weight RL tester agent has the capability of transfer learning and 
reusing knowledge in similar situations. It benefits an adaptive action selection strategy that 
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adapts the learning to various testing situations and subsequently makes the agent able to act 
efficiently on various SUTs.

We demonstrate that SaFReL works adaptively and efficiently on different sets of SUTs, 
which are either homogeneous or heterogeneous in terms of their performance sensitivity. Our 
experiments are based on simulating the performance behavior of 50 instances of 12 well-
known programs as the SUTs. Those instances are characterized by various initial amounts 
of granted resources and different values of response time requirements. We use two evalu-
ation criteria, namely efficiency and adaptivity, to evaluate our approach. We investigate the 
efficiency of the approach in generating the test cases that result in reaching the intended per-
formance breaking point and also the behavioral sensitivity of the approach to the learning 
parameters. In particular, SaFReL reaches the intended objective more efficiently compared to 
a typical stress testing technique, which generates the performance test cases based on chang-
ing the conditions, e.g., decreasing the availability of resources, by certain steps in an explora-
tory way. SaFReL leads to reduced cost (in terms of computation time) for performance test 
case generation by reusing the learned policy upon the SUTs with similar performance sensi-
tivity. Moreover, it adapts its operational strategy to various SUTs with different performance 
sensitivity effectively while preserving efficiency. To summarize, our contributions in this 
paper are:

– A smart performance testing framework (agent) that learns the optimal policy (way) to 
generate the performance test cases meeting the testing objective without access to source 
code and models and reuses the learned policy in further testing cases. It uses fuzzy RL 
and an adaptive action selection strategy for the generation of test cases and implements 
two phases of learning:

– Initial learning during which the agent learns the optimal policy for the first time,
– Transfer learning during which the agent replays the learned policy in similar cases 

while keeping the learning running in the long term.

– A twofold experimental evaluation involving performance (efficiency and adaptivity) and 
sensitivity analysis of the approach. The evaluation is carried out based on simulating the 
performance behavior of various SUTs. We use a performance simulation module instead 
of actually executing SUTs. The main function of the performance simulation module is 
estimating the performance behavior of SUTs in terms of their response time.

Structure of the paper. The rest of the paper is organized as follows: Section 2 discusses the 
background concepts and motivations for the proposed self-adaptive learning-based approach. 
Section 3 presents an overview of the architecture of the proposed testing framework, while 
the technical details of the constituent parts are described in Sections 4 and 5. In Section 6, we 
explain the functions of the learning phases. Section 7 reports on the experimental evaluation 
involving the experiment’s setup, and the results of the experimentation. Section 8 discusses 
the results, the lessons learned during the experimentation, and also the threats to the validity 
of the results. Section 9 provides a review of the related work, and finally, Section 10 con-
cludes the paper and discusses some future directions.
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2  Motivation and background

Performance analysis, realized through modeling or testing, is important for performance-
critical software systems in various domains. Anomalies in the  performance behav- 
ior of a software system or violations of performance requirements are generally conse-
quences of the emergence of performance bottlenecks at the system or platform levels 
(Ibidunmoye et  al.  2015; Chandola et  al.  2009). A performance bottleneck is a system 
or resource component limiting the performance of the system and hinders the system 
from acting as required (Gregg 2013). The behavior of a bottleneck component is due 
to some limitations associated with the component such as saturation and contention. A  
system or resource component saturation happens upon full utilization of its capacity 
or when the utilization exceeds a usage threshold (Gregg 2013). Capacity expresses the 
maximum available processing power, service (giving) rate, or storage size. Contention 
occurs when multiple processes contend for accessing a limited number of shared com-
ponents such as resource components (e.g., CPU cycles, memory, and disk) or software 
(application) components.

There are various application-, platform- and workload-based causes for the emer- 
gence of performance bottlenecks (Ibidunmoye et  al.  2015). Application-based causes  
represent issues such as defects in the source code or system architecture faults. Plat- 
form-based causes characterize the issues related to hardware resources, operating sys- 
tem, and execution platform. High deviations from the expected workload intensity and  
similar issues such as workload burstiness are denoted by workload-based causes.

On the other hand, detecting violations of performance requirements and finding per-
formance breaking points are challenging, particularly for complex software systems. 
To address these challenges, we need to find how to provide critical execution condi-
tions that make the performance bottlenecks emerge. The focus of performance testing 
in our case is to assess the robustness of the system and find the performance breaking 
point.

The effects of the internal causes (application/architecture-based ones) could vary, 
e.g., due to continuous changes and updates of the software during continuous integra-
tion/continuous delivery (CI/CD), and even vary upon different execution platforms 
and under different workload conditions. Therefore, the complexity of SUT and a vari-
ety of affecting factors make it hard to build a precise performance model expressing 
the effects of all types of factors at play. This is a major barrier motivating the use of 
model-free learning-based approaches like model-free RL in which the optimal policy 
for accomplishing the objective could be learned indirectly through interaction with the 
environment (SUT and the execution platform). In this problem statement, the testing 
system learns the optimal policy to achieve the target that is finding an intended perfor-
mance breaking point, for different types of software without access to a model of the 
environment. The testing system explores the behavior of the SUT through varying the 
platform-based (and workload-based in future work) test conditions, stores the learned 
policy and is able to later reuse the learned policy in similar situations, i.e., other SUTs 
with similar performance sensitivity to resource restriction. This is the feature of the 
proposed learning approach that is supposed to lead to a considerable reduction in the 
testing system’s effort, and subsequently saving computation time.

Regarding the aforementioned challenges and strong points of the model-free learn-
ing-based approach, we hypothesize that in a CI/CD process based on agile software 
development, performance engineers and testers can save time and resources by using 



 Software Quality Journal

1 3

SaFReL for performance (stress) testing of various releases or variants. SaFReL pro-
vides an agile efficient performance test case generation technique (See Section 7 and 
Section 8 for efficiency evaluation) while eliminating the need for source code or system 
model analysis.

2.1  Reinforcement learning

Reinforcement learning (RL) (Sutton and Barto  2018) is a fundamental category of 
machine learning algorithms generally intended to find the optimal behavior (way) in 
decision-making problems. RL is an interactive learning paradigm that is different from 
the common supervised and unsupervised machine learning algorithms and has been fre-
quently applied to building many self-adaptive smart systems. It involves continuous inter-
action between the agent (learner) and the environment that is controlled. At each step of 
the interaction, the agent observes (senses) the state of the environment, takes a possible 
action, and receives a reinforcement signal as a scalar reward from the environment that 
shows the effectiveness of the applied action to guide the agent toward accomplishing 
the intended objective. There is no supervisor in RL, and the agent just receives a reward 
signal. RL basically involves a sequential decision-making process. The RL agent goes 
through the environment, decides how to behave at each step, and based on optimizing the 
long-term received reward, learns the optimal way of decision making.

The agent actually decides between actions based on the history of its observations. 
However, considering the whole history of observations is not efficient, therefore, state 
should be formulated as a concise summary of the history including all the required infor-
mation. Keeping in mind this issue, a related helpful concept to formulate the state as a 
summary function is the Markov state. The states of the environment are Markov by defini-
tion. Then, when the environment is fully observable to the agent, the states that the agent 
observes and uses for making decisions, are Markov too. The environment in our case is 
the SUT and the execution platform. The state is modeled in terms of response time and 
resource utilization improvement. The actions are some operations for modifying/adjust-
ing the available capacity of resources and the objective of the agent is finding an intended 
performance breaking point. Figure 1 shows the interaction between the agent and the envi-
ronment that is the composition of SUT and execution platform in our case.

There are three main elements in an RL agent: policy, value function, and model. The 
policy is the behavior function describing what actions the agent takes in a certain state. 
Value function indicates how good each state and/or action is, in terms of the amount of 
reward expected upon taking a particular action given a particular state. Finally, the model 
is the agent’s view of the environment and describes what the environment does next, e.g., 
shows the state transitions of the environment.

Model-free RL algorithms are special types of RL that are not intended to build or 
learn a model of the environment. Instead, they learn the optimal behavior to achieve 
the intended objective through multiple experiences of interaction with the environment. 
Temporal difference (TD) (Sutton and Barto 2018) is one of the main types of model-free 
RL, which is able to learn from the incomplete episodes of the interaction with the envi-
ronment. Q-learning, as a model-free TD, learns the optimal policy through learning the 
optimal value function, i.e., Q-values. It uses an action selection strategy based on a com-
bination of trying out the available actions, namely exploration, and relying on the previ-
ously achieved experience to select the highly-valued actions, namely exploitation. It is off-
policy, which means that the agent learns the optimal policy regardless of how the agent 
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explores the environment. After learning the optimal policy, in the transfer learning phase, 
the agent is able to replay the learned policy while keeping the learning running, which 
implies occasionally exploring the action space and trying out different actions.

3  Architecture

This section provides an overview of the architecture of the proposed smart performance 
testing framework, SaFReL (see Fig. 2). The entire interaction of the smart framework with 
each SUT, as a learning episode, consists of a number of learning trials. The steps of learn-
ing in each trial and the components involved in each step are described as follows: 

1. Fuzzy State Detection. The fuzzification, fuzzy inference, and rule base components in 
Fig. 2 are involved in the state detection. The agent uses the values of four quality met-
rics, 1) response time, and utilization improvements of 2) CPU, 3) memory, and 4) disk, 
to identify the state of the environment. In other words, the state expresses the status of 
the environment relative to the testing target. In our case, these quality metrics are used 
to model (represent) the state space of the environment. An ordinary approach for state 
modeling in RL problems is dividing the state space into multiple mutually exclusive 
discrete sets. Each set represents a discrete state. At each time, the environment must 
be at one distinct state. The relevant challenges of such crisp categorization or defin-
ing discrete states include knowing how much a value is suitable to be a threshold for 
categories of a metric, and how we can treat the boundary values between categories. 
Instead of crisp discrete states, using fuzzy logic and defining fuzzy states can help 

Fig. 1  Interaction between agent and SUT in RL
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address these challenges. We use fuzzy classification as a soft labeling technique for 
presenting the values of the metrics used for modeling the state of the environment. 
Then, using a fuzzy inference engine and fuzzy rule base, the agent detects the fuzzy 
state of the environment. More details about the fuzzy state detection of the agent are 
presented in Section 4.

2. Action Selection and Strategy Adaptation. After detecting the fuzzy state of the SUT, 
the agent takes an action. The actions are operations modifying the factors affecting the 
performance, i.e., the available resource capacity, in the current prototype. The agent 
selects the action according to an action selection strategy that it follows. The action 
selection strategy determines to what extent the agent should explore and try out the 
available actions, and to what extent it should rely on the learned policy and select a 
high-value action that has been tried and assessed before. The role of this strategy is 
guiding the action selection of the agent throughout the learning and is of importance 
for the efficiency of the learning. In order to obtain the desired efficiency, a proper trade-
off between the exploration of the state action space and exploitation of the previously 
learned policy is critical. In our proposed framework, the smart agent is augmented by a 
strategy adaptation characteristic, as a meta-learning feature responsible for dynamically 
adapting the degree of exploration and exploitation in various situations. This feature 
makes SaFReL able to detect where it should rely on the previously learned policy and 
where it should make a change in the strategy to update its policy and adapt to new situ-
ations. New situations mean acting on new SUTs that are different from the previously 
observed ones in terms of performance sensitivity to resources. Software programs have 
different levels of sensitivity to resources. SUTs with different performance sensitivity 
to resources, e.g., CPU-intensive, memory-intensive, or disk-intensive SUTs, will react 
to changes in resource availability differently. Therefore, when the agent observes a SUT 
that is different from the previously observed ones in terms of performance sensitiv-
ity, the strategy adaptation tries to guide the agent toward doing more exploration than 
exploitation. A performance sensitivity indicator showing the sensitivity of SUT to the 
resources (i.e., being CPU-intensive, memory-intensive, or disk-intensive) is an input 
to the strategy adaptation mechanism (see Fig. 2). The components corresponding to 

Fig. 2  SaFReL architecture
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the action selection, the stored experience (learned policy), and the strategy adaptation 
are shown as yellow components in Fig. 2. More details about the set of actions and the 
mechanism of strategy adaptation are described in Section 5.

3. Reward Computation. After taking the selected action, the agent receives a reward signal 
indicating the effectiveness of the applied action to approach the intended performance 
breaking point. The reward computation component (red block) in Fig. 2 calculates the 
received reward (see Section 5) for the taken actions.

4  Fuzzy state detection

The state space of the environment in our learning problem is modeled by the quality 
measurements, CPU, memory, and disk resource utilization improvement and response 
time of the SUT, which is shown in Fig. 3. The learning approach works based on detect-
ing (discrete) states of the system. These states could be typically defined based on clas-
sifying the continuous values of the quality measurements that were mentioned above. On 
the other hand, defining such crisp boundaries on a number of continuous domains is an 
issue that might involve many uncertainties. In order to address this issue and preserve 
the desired precision of the model, fuzzy classification and reasoning are used to specify 
the states of the system. Therefore, the states of the environment are defined in terms of 
some fuzzy states and the environment can be in one or more fuzzy states at the same 
time with different degrees of certainty. The agent detects the state of the system using 
a fuzzy inference engine and a rule base (Kuncheva 2008; MathWorks 2019) (Fig. 2). In 
summary, the step of state detection is done based on making fuzzy inference about the 
state of the system. The fuzzy state detection consists of three main parts: normalization of 
the input values (quality measurements), fuzzification of the measurements, and the fuzzy 
inference to identify the state of the environment. The details of these parts together with 
the fuzzy rules, fuzzy operators, and the implication method that are used, are described in 
Section 4.1.

Fig. 3  Fuzzy representation of quality measurements
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4.1  State modeling and fuzzy inference

Normalization. As described in the previous section, a set of quality measurements, CPU, 
memory, and disk utilization improvements and response time of the SUT, represent the 
state of the environment. The values of these measurements are not bounded, then for sim-
plifying the inference and also the exploration of the state space, we normalize the values 
of these parameters to the interval [0, 1] using the following functions:

where RT ′
n
 , CUI′

n
 , MUI′

n
 and DUI′

n
 are the measured values of the response time, CPU, 

memory and disk utilization improvements at time step n , respectively, and RTq is the 
response time requirement. CUI′

n
 as the CPU utilization improvement is the ratio between 

the CPU utilization at time step n and its initial value (at the start of learning), that is, 
CUI�

n
=

CUn

CUi
 . Likewise, those are, MUI�

n
=

MUn

MUi
 and DUI�

n
=

DUn

DUi
 . Using the normalization 

function in Eq. 1, when RT �
n
= RTq the normalized value of the response time, RTn is 0.5, 

and for RT ′
n
> RTq the normalized values will be toward 1 and for RT ′

n
< RTq the normal-

ized values will be toward 0. A tuple as (CUIn,MUIn,DUIn,RTn) consisting of the normal-
ized values of quality measurements is the input to the fuzzy state detection.

Fuzzification. Input fuzzification involves defining fuzzy sets and correspond-
ing membership functions over the values of the quality measurements. A mem-
bership function is characterized by a linguistic term. A fuzzy set L is defined as 
L = {(x,𝜇L(x))| 0 < x, x ∈ ℝ} where a membership function �L(x) defines membership 
degrees of the values as �L ∶ x → [0, 1] . Figure 3 shows the membership functions defined 
over the value domains of quality measurements. As shown in Fig. 3, trapezoidal member-
ship functions are used for High and Low fuzzy sets and a triangular counterpart for the 
Normal fuzzy set on the response time. In Fig.  3, where RTq is the requirement, a nor-
mal (medium) fuzzy set over the values of response time implies a small range around 
the requirement value as normal response time values. Moreover, in this case, the ranges 
of membership functions were selected empirically and could be updated based on the 
requirements.

Fuzzy Inference. After input fuzzification, inferring the possible states that the envi-
ronment assumes is directed by the fuzzy rules that have formed based on the domain 
knowledge.

Fuzzy Rules. A fuzzy rule, as shown in Eq. 3, consists of two parts: antecedent and con-
sequent. The former is a combination of linguistic terms of the input normalized quality 
measurements and the consequent is a fuzzy set with a membership function showing to 
what extent the environment is in the associated state.

Rule 1 is a sample of the fuzzy rules in the rule base. The rest of the rules are defined simi-
larly based on the fuzzy sets defined over the values of the quality measurements and the 
combinations of them. Based on the number of fuzzy sets, namely two fuzzy sets, High and 

(1)RTn =
2

�
tan−1

(
RT �

n

RTq

)

(2)CUIn =
1

CUI�
n

MUIn =
1

MUI�
n

DUIn =
1

DUI�
n

(3)
Rule 1: If CUI is High AND MUI is High AND DUI is Low AND

RT is Normal, then State is HHLN.
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Low, over the value range of each resource utilization improvement and three sets, High, 
Normal, and Low, over the value range of the response time, we define 24 rules in our rule 
base to define the fuzzy states of the environment.

Fuzzy Operators. When the antecedents of the rules are made of multiple linguistic  
terms, which are associated with fuzzy sets, e.g., ”High, High, Low and Normal”, then fuzzy  
operators are applied to the antecedent to obtain one number showing the support or acti-
vation degree of the rule. Two well-known methods for the fuzzy AND operator are 
minimum(min) and product(prod) . In our case, we use method min for the fuzzy AND oper-
ation. It shows that given a set of input parameters A , the degree of support for rule Ri is  
given as �Ri = min

j
�L(aj) where aj is an input parameter in A and L is its associated fuzzy  

set in the rule Ri.
Implication Method. After obtaining the membership degree for the antecedent, the 

membership function of the consequent is reshaped using an implication method. There are 
also two well-known methods for implication process, minimum(min) and product(prod) , 
which truncate and scale the membership function of the output fuzzy set, respectively. 
The membership degree of the antecedent is given as input to the implication method. We 
use method min as the implication method in our case.

Finally, the most effective rule, the one with the maximum support degree, is selected 
to determine the final fuzzy state of the environment (Sn,�n) . In summary, the fuzzy 
state with the highest likelihood is considered as the state of the system. Figure 4 shows 

Fig. 4  Fuzzy states of the environment
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a representation of the fuzzy states. Each of them represents one state based on the 
fuzzy values (linguistic terms) assigned to quality measurements (CPU, memory, and 
disk utilization improvement and response time). Regarding the presentation of fuzzy 
states, L, H and N stand for low, high, and normal terms, respectively.

5  Adaptive action selection and reward computation

Actions. In SaFReL, the actions are the operations changing the platform-based fac-
tors affecting the performance, i.e., the available resources such as computation (CPU), 
memory, and disk capacity. In the current prototype, the set of actions contains oper-
ations reducing the available resource capacity with finely tuned steps, which are as 
follows:

where ACn , CPUn , Memn and Diskn represent the set of actions, the current available com-
putation (CPU), memory, and disk capacity at time step n, respectively. The list of actions 
is as shown in Table 1.

Strategy Adaptation. The agent can use different strategies for selecting the actions. �
-greedy with different �-values and Softmax are well-known methods for action selection 
in RL algorithms. They are intended to provide a right trade-off between exploration of 
the state action space and exploitation of the learned policy. In SaFReL, we use �-greedy 
as the action selection strategy and the proposed strategy adaptation feature acts as a sim-
ple meta-learning algorithm intended to make changes to the � value dynamically to make 
the action selection strategy well-adapted to new situations (new SUTs). Upon observing 
a SUT instance with a performance sensitivity different from the already observed ones, it 
adjusts the value of the parameter � to direct the agent toward more exploration (setting � 
to higher values). On the other hand, upon interaction with SUT instances that are similar 
to the previous ones, the parameter � is adjusted to increase exploitation (setting � to lower 
values). SaFReL detects the similarity between SUT instances by calculating cosine simi-
larity between the performance sensitivity vectors of SUT instances, as shown in Eq. 7.

(4)
ACn ={no action} ∪ {(CPUn − y) | y ∈ CDF} ∪ {(Memn − k) | k ∈ MDFn}

∪ {(Diskn − k) | k ∈ MDFn}

(5)CDF ={
1

4
,
2

4
,
3

4
, 1}

(6)MDFn ={(x ×
Mem(Disk)n

4
) | x ∈ {

1

4
,
2

4
,
3

4
, 1}}

Table 1  Actions in SaFReL Actions

Operation Decrease

Reducing memory / disk capacity by a factor inMDF
n

Reducing computation (CPU) capacity by a factor in CDF
No action -
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where SVk represents the sensitivity vector of the kth SUT instance and SVk
i
 represents the 

ith element of vector SVk . The sensitivity vector contains the values of the sensitivity indi-
cators of the SUT instance, SenC , SenM , and SenD . The performance sensitivity indicators 
assume values in the range [0, 1] and represent the sensitivity degree of the SUT to CPU, 
memory, and disk, respectively. Their values could be set empirically or even intuitively, 
and SaFReL uses the approximate estimated similarity to tune the � value adaptively (See 
Section 7.2).

Reward Signal. The agent receives a reward signal indicating the effectiveness of the 
applied action in each learning step to guide the agent toward reaching the intended perfor-
mance breaking point. We derive a utility function as a weighted linear combination of two 
functions indicating the response time deviation and resource usage, which is as follows:

where Ur
n
 represents the deviation of response time from the response time requirement, UE

n
 

indicates the resource usage, and � , 0 ≤ � ≤ 1 is a parameter intended to prioritize different 
aspects of stress conditions, i.e., response time deviation or limited resource availability. Ur

n
 

is defined as follows:

where RT ′
n
 is the measured response time, RTq is the response time requirement and RTb is 

the threshold defining the performance breaking point. UE
n
 represents the resource utiliza-

tion in the reward signal and is a weighted combination of the resource utilization values. It 
is defined using the following equation:

where CUI′
n
 , MUI′

n
 , and DUI′

n
 represent CPU, memory and disk utilization improvements, 

respectively, and SenC , SenM , and SenD are the performance sensitivity indicators of the 
SUT and assume values in the range [0, 1].

6  Performance testing using self‑adaptive fuzzy reinforcement 
learning

In this section, we describe details of the procedure of SaFReL to generate the performance 
test cases resulting in reaching the performance breaking points for various types of SUTs. 
The tester agent learns how to generate the target test cases for different types of software 
without access to source code or system models. The procedure of SaFReL, which includes 
initial and transfer learning phases, is as follows:

(7)

similarity(k, k − 1) =
SVk SVk−1

‖SVk‖‖SVk−1‖

=

∑3

i=1
SVk

i
SVk−1

i�∑3

i=1
(SVk

i
)
2
�∑3

i=1

�
SVk−1

i

�2

(8)Rn = �Ur
n
+ (1 − �)UE

n

(9)Ur
n
=

{
0, RT �

n
≤ RTq

(RT �
n
−RTq)

(RTb−RTq)
, RT �

n
> RTq

(10)UE
n
= SenCCUI�

n
+ SenMMUI�

n
+ SenDDUI�

n



 Software Quality Journal

1 3

The agent measures the quality parameters and identifies the state-membership degree 
pair, (Sn,�n) , through the fuzzy state detection, where Sn is the fuzzy state of the environ-
ment and �n indicates the membership degree, which means to what extent the environ-
ment has assumed that state. Then, according to the action selection strategy, the agent 
selects one action, an ∈ An , based on the previously learned policy or through exploring the  
state action space. The agent takes the selected action and executes the SUT. In the next 
step, the agent detects the new state of the SUT, (Sn+1,�n+1) , and receives a reward sig- 
nal, rn+1 ∈ ℝ , indicating the effectiveness of the applied action. After detecting the new state 
and receiving the reward, it updates the stored experience (learned policy). The whole pro- 
cedure is repeated until meeting the stopping criterion that is reaching the performance 
breaking point, (RTb) . The experience of the agent is defined in terms of the policy that the 
agent learns. A policy is a mapping between each state and action and specifies the proba-
bility of taking action a in a given state s . The purpose of the agent in the learning is to find 
a policy that maximizes the expected long-term reward achieved over the further learning 
trials, which is formulated as follows: (Sutton and Barto 2018):

where � is a discount factor specifying to what extent the agent prioritize future rewards 
compared to the immediate one. We use Q-learning as a model-free RL algorithm in our 
framework. In Q-Learning, a utility value, Q�(s, a) , is assigned to each pair of state and 
action, which is defined as follows: (Sutton and Barto 2018):

The q-values, Q�(s, a) , form the experience base of the agent, on which the agent relies for 
the action selection. The q-values are updated incrementally during the learning. Accord-
ing to using fuzzy state modeling, we include the membership degree of the detected state 
of the environment, �s

n
 , in the typical updating equation of q-values to take into account the 

impact of the uncertainty associated with the fuzzy state, which is as follows:

where � , 0 ≤ � ≤ 1 is the learning rate, which adjusts to what extent the new utility values 
affect (overwrite) the previous q-values. Finally, the agent finds the optimal policy to reach 
the target, which suggests the action maximizing the utility value for a given state s : 

The agent selects the action based on Eq. 14 when it is supposed to exploit the learned 
policy. SaFReL implements two learning phases: initial and transfer learning.

Initial learning. Initial learning occurs during the interaction with the first SUT 
instance. The initial convergence of the policy takes place upon the initial learning. The 
agent stores the learned policy (in terms of a table containing q-values, Q-table). It repeats 
the learning episode multiple times on the first SUT instance to achieve the initial conver-
gence of the policy.

Transfer learning. SaFReL goes through the transfer learning phase, after the initial 
convergence. During this phase, the agent uses the learned policy upon observing SUT 
instances with similar performance sensitivity to the previously observed ones, while 

(11)Rn = rn+1 + �rn+2 + ... + �krn+k+1 =

∞∑

k=0

�krn+k+1

(12)Q�(s, a) = E�[Rn|sn = s, an = a]

(13)Q(sn, an) = �s
n

[
(1 − �)Q(sn, an) + �

(
rn+1 + � max

a�
Q(sn+1, a

�)

)]

(14)a(s) = argmax
a�

Q(s, a�)
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keeping the learning running, i.e., updating the policy upon detecting new SUT instances 
with different performance sensitivity. Strategy adaptation is used in the transfer learning 
phase and makes the agent adapt to various SUT instances. Algorithms 1 and 2 present the 
procedure of SaFReL in both initial learning and transfer learning phases.

7  Evaluation

In this section, we present the experimental evaluation of the proposed self-adaptive 
fuzzy RL-based performance testing framework, SaFReL. We assess the performance of 
SaFReL, in terms of efficiency in generating the performance test cases and adaptivity to 
various types of SUT programs, i.e., how well it can adapt its functionality to new cases 
while preserving its efficiency. Therefore, we examine the efficiency of SaFReL (in the 
transfer learning phase) compared to a typical testing process for this target, which involves 
generating the performance test cases through changing the availability of the resources 
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based on the defined actions in an exploratory (random) way, which is called typical stress 
testing hereafter. We also evaluate the sensitivity of SaFReL to the learning parameters. 
The goal of the experimental evaluation is to answer the following research questions:

– RQ1. How efficiently can SaFReL generate the test cases leading to the performance 
breaking points for different software programs compared to a typical testing proce-
dure?

– RQ2. How adaptively can SaFReL act on various software programs with different per-
formance sensitivity?

– RQ3. How is the efficiency of SaFReL affected by changing the learning parameters?

The following sub-sections describe the proposed setup for conducting the experiments, the eval-
uation metrics, and the analysis scenarios designed for answering the above research questions.

7.1  Experiments setup

In this study, we implement the proposed smart testing framework (agent) along with a 
performance simulation module simulating the performance behavior of SUT programs 
under different execution conditions. The simulation module receives the resource sensitiv-
ity values and based on the amounts of resources demanded initially and the amounts of 
them granted after taking each action, estimates the program throughput using the follow-
ing equation proposed by Taheri et al. (2016):

where CPUi
j
 , Memi

j
 , and Diski

j
  indicate the amounts of CPU, memory, and disk resources 

demanded by program j at the initial state and CPUg

j
 , Mem

g

j
 , and Diskg

j
 are the amounts of 

resources granted to program j after taking an action, which modifies the resource availabil-
ity. SenC

j
 , SenM

j
 , and SenD

j
 represent the CPU, memory and disk sensitivity values of pro-

gram j, and ThrN
j

 represents the nominal throughput of program j in an isolated, contention-
free environment. The response time of the program is calculated as RTj =

1

Thrj
 in the 

simulation module. Figure 5 presents the implementation structure including SaFReL along 
with the implemented performance simulation module. In our implementation, the perfor-
mance simulation module simulates the performance behavior of the SUT program and the 
testing agent interacts with the simulation module to capture the quality measures used for 
state detection.

Table  2 shows the list of programs and the corresponding resource sensitivity val-
ues used in the experimentation, the table data obtained from (Taheri, Zomaya & 
Kassler 2016). The collection listed in Table 2 includes various CPU-intensive, memory-
intensive, and disk-intensive types of programs and also the programs with combined types  
of resource sensitivity. The SUTs are instances of the programs listed in Table 2 and are 
characterized by various initial amounts of resources and also different values of response 
time requirements. Two analysis scenarios are designed to answer the evaluation research 
questions. The first one focuses on the efficiency and adaptivity evaluation of the framework  
on various SUTs. In the second analysis scenario, the sensitivity of the approach to changes  

(15)Thrj =
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of the learning parameters is studied. The efficiency and adaptivity are measured (evalu-
ated) according to the following specification:

– Efficiency is measured in terms of the number of learning trials required by the tester agent  
to achieve the testing target, which is reaching the intended performance breaking point. 
Number of learning trials is an indicator of the required computation time to generate 
the proper test case leading to the performance breaking point.

Fig. 5  Implementation structure

Table 2  Programs and the 
corresponding sensitivity values 
used for experimental evaluation 
(Taheri et al. 2016)

Programs Resource Sensitivity 
Values ( SenC , SenM , and 
Sen

D)

Build-apache (0.96, 0.04, 0.00)
n-queens (0.97, 0.00, 0.00)
John-the-ripper (0.96, 0.00, 0.00)
Apache (0.97, 0.03, 0.00)
Dcraw (0.48, 0.04, 0.00)
X264 (0.41, 0.02, 0.00)
Unpack-linux (0.18, 0.09, 0.35)
Build-php (0.97, 0.07, 0.00)
Blogbench (0.11, 0.81, 0.18)
Bork (0.00, 0.53, 0.20)
Compress-gzip (0.00, 0.00, 0.47)
Aio-stress (0.00, 0.30, 0.80)
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– Adaptivity is evaluated in terms of the number of additional learning trials (computation time)  
required to re-adapt the learned policy to new observations for achieving the target.

7.2  Experiments and results

7.2.1  Efficiency and adaptivity analysis

To answer RQ1 and RQ2, the performance of SaFReL is evaluated based on its efficiency in 
generating the performance test cases leading to the performance breaking points of different 
SUTs and its adaptation capability to new SUTs with performance sensitivity different from 
previously observed ones. We select two sets of SUT instances: i) one including SUTs similar 
in the aspect of performance sensitivity to resources, i.e., similar with regard to the primarily 
demanded resource (homogenous SUTs); and ii) the other set contains SUT instances different 
in performance sensitivity (heterogeneous SUTs). The SUT instances assume different initial 
amounts of CPU, memory, and disk resources and response time requirements. The amounts of 
resources, CPU, memory, and disk capacity, were initialized with different values in the range 
[1, 10] cores, [1, 50] GB, [100, 1000] GB, respectively. The response time requirements range 
from 500 to 3000 ms. The intended performance breaking point for the SUT instances is defined 
as the point in which the response time exceeds 1.5 times the response time requirement.

In the efficiency analysis, we set the learning parameters, learning rate and discount 
factor, to 0.1 and 0.5, respectively. We study the impacts of different variants of �-greedy 
algorithm as the action selection strategy on the efficiency and adaptivity of the approach 
during the analysis. We investigate three variants of �-greedy with � = 0.2 , � = 0.5 , and 
decaying � , and also the proposed adaptive � selection method.

Learning setup. First, we need to set up the initial learning. For choosing a proper 
configuration for the action selection strategy in the initial learning, we evaluate the per-
formance of different variants of �-greedy algorithm, in terms of the number of required 
learning trials for initial convergence (Fig. 6). For the initial convergence, we run the ini-
tial learning on the first SUT 100 times, namely 100 learning episodes. Table 3 presents a 
quick summarized view of the average learning trials during the last 10 episodes that are 
considered as the achieved values upon the convergence of the initial learning. As shown 
in Fig.  6 and Table  3, using �-greedy with � = 0.2 results in the fastest initial conver-
gence, which has also led to the lowest number of trials compared to the other variants of �
-greedy. The number of learning trials after about 10 episodes starts converging and during 
the last 10 episodes it converges to approximately 7 trials.

Once the initial convergence occurs, SaFReL is ready to act on various SUTs and is 
expected to be able to reuse the learned policy to meet the intended performance break-
ing points on further SUT instances, while still keeping the learning running. The opti-
mal policy learned in the initial learning is not influenced by the used action selection 
strategy, since Q-learning is an off-policy learning algorithm (Sutton and Barto 2018). It 
implies that the learner finds the optimal policy independently of how the actions have 
been selected (action selection strategy). For the sake of efficiency, we choose the one that 
resulted in the fastest convergence.

In the following sections, first, we investigate the efficiency of SaFReL compared to a 
typical stress testing procedure, when acting on homogeneous and heterogeneous sets of 
SUTs, then its capability to adapt to new SUTs with different performance sensitivity.
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I. Homogeneous set of SUTs. We select CPU-intensive programs and make a homogene-
ous set of SUT instances during our analysis in this step. We simulate the performance behav-
ior of 50 instances of the CPU-intensive programs, Build-apache, n-queens, John-the-ripper, 
Apache, Dcraw, Build-php, X264, and vary both the initial amounts of resources granted and 
the response time requirements. Figure 7 shows the efficiency of SaFReL on a homogeneous set 
of CPU-intensive SUTs compared to a typical stress testing procedure regarding using �-greedy 
with different values of � . Table 4 presents the average number of trials/steps for generating 
the target performance test case in the proposed approach and the typical testing procedure. As 
shown in Fig. 7, it keeps the number of required trials for ≈ 94% of the SUTs below the average 
number of required steps in the typical stress testing. Table 5 shows the resulting improvement 
in the average number of required trials/steps for meeting the target, which implies a reduction in  
the required computation time, compared to the typical stress testing process.

In the transfer learning, the agent reuses the learned policy based on the allowed degree of 
policy reusing according to its action selection strategy in the transfer learning. As shown in 
Table 4, it implies that in the transfer learning the agent does fewer trials (based on the degree 
of allowed policy reusing) to meet the target on new cases, which leads to  higher efficiency. 
According to Table 5, on a homogeneous set of SUTs, more policy reusing leads to higher effi-
ciency (more computation time improvement).

II. Heterogeneous set of SUTs. In this part of the analysis, to complete the answer to RQ1 and 
also answer RQ2, we examine the efficiency and adaptivity of SaFReL during the transfer learn-
ing on a heterogeneous set of SUTs including various CPU-intensive, memory-intensive, and 

Fig. 6  Initial convergence of SaFReL in 100 learning episodes during the initial learning

Table 3  Initial convergence of 
SaFReL in the initial learning 
regarding using different variants 
of action selection strategy

SaFReL - Initial Learning

Action Selec-
tion Strategy: �
-greedy

� = 0.85 � = 0.5 � = 0.2 decaying �

Number of learn-
ing trials (after 
convergence)

22 21 7 9
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disk-intensive ones. We simulate the performance behavior of 50 SUT instances from the list of 
the programs in Table 2. We evaluate the efficiency of SaFReL on the heterogeneous set of SUTs 
compared to the typical stress testing procedure regarding using �-greedy with � = 0.2 , 0.5, and 
decaying � (Fig. 8). As shown in Fig. 8 the transfer learning algorithm with a typical configura-
tion of the action selection strategy, such as � = 0.2 , 0.5, and decaying � , which imposes a certain 
degree of policy reusing based on the value of � does not work well. It does not outperform the 
typical stress testing, but also slightly degrades in some cases of � . When the smart agent acts on  
a heterogeneous set of SUTs, blind replaying of the learned policy (i.e., just based on the value  
of � ) is not effective, and the tester agent needs to know where it should do policy reusing and 
where it requires more exploration to update the policy.

As described in Section 5, to solve this issue and improve the performance of SaFReL 
when it acts on a heterogeneous set of SUTs, it is augmented with a simple meta-learning 
feature enabling it to detect the heterogeneity of the SUT instances and adjust the value of 
parameter � , adaptively. In general, it implies that when the smart tester agent observes a SUT  
instance different from the previously observed ones wrt the performance sensitivity, it 
changes the  focus of the action selection strategy into doing more exploration and upon 
detecting a SUT instance with the same performance sensitivity as the previous ones, it 
makes the action selection strategy strive for more exploitation. As illustrated in Section 5, 
the strategy adaptation module, which fulfills this function, measures the similarity between 
SUTs at two levels of observations, then based on the measured values, adjusts the value of 
parameter � . The threshold values of similarity measures and the adjustments for parameter � 
in the experimental analysis are described in Algorithm 3.

Fig. 7  Efficiency of SaFReL on a homogeneous set of SUTs in the transfer learning

Table 4  Average number of 
trials/steps for generating the 
target performance test case on 
the homogeneous set of SUTs

SaFReL with ε-greedy

Approach � = 0.5   decaying � � = 0.2 Typical stress testing
Average num-

ber of trials/
steps

10 10 7 12
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Figure 9 shows the efficiency of SaFReL regarding the use of similarity detection and 
the adaptive �-greedy action selection strategy on a heterogeneous set of SUTs. Regard-
ing the use of adaptive � selection, SaFReL makes a considerable improvement and 
is able to keep the number of required trials for reaching the target on approximately 
≈ 82% of SUTs below the corresponding average value in the typical stress testing. 
Meanwhile, the average number of learning trials is totally lower than the typical stress 
testing procedure. Table 6 presents the average number of trials/steps for generating the 
target performance test case in SaFReL and the typical stress testing when they act on a 

Table 5  Computation 
time improvement on the 
homogeneous set of SUTs

SaFReL

Action Selection 
Strategy: �-greedy

� = 0.5 decaying � � = 0.2

Improvement in the 
number of trials

16% 16% 42%

Fig. 8  Efficiency of SaFReL on a heterogeneous set of SUTs regarding the use of typical configurations of �
-greedy
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heterogeneous set of SUTs. Table 7 shows the corresponding resulting improvement in 
the computation time, respectively.

To answer RQ2, we investigate the adaptivity of SaFReL on the heterogeneous set of SUTs 
regarding the use of different variants of action selection strategy including adaptive � selec-
tion (Fig. 10). As shown in Fig. 10, the number of required learning trials versus detected 
similarity is used to depict how adaptive SaFReL can act on a heterogeneous set of SUTs 
regarding the use of different configurations of � . It shows that SaFReL with adaptive � is 
able to adapt to changing situations, e.g., a mixed heterogeneous set of SUTs. In other words, 
in around ≈ 75% of SUTs that are completely different from the previous ones (i.e., with 
similarityk,k−1 < 0.8 ) it still keeps the number of required trials to meet the target below the 
average value of the typical stress testing. It implies that it can act adaptively, which means it 
reuses the policy wherever it is useful and does more exploration wherever required.

7.2.2  Sensitivity analysis

To answer RQ3, we study the impacts of the learning parameters including learning rate 
( � ) and discount factor ( � ), on the efficiency of SaFReL on both homogeneous and het-
erogeneous sets of SUTs. For conducting sensitivity analysis, we implement two sets of 
experiments that involve changing one learning parameter while keeping the other one 
constant. For the experiments running on a homogeneous set of SUTs, we use �-greedy 
with � = 0.2 as the well-suited variant of action selection strategy with respect to the 
results of efficiency analysis (See Fig. 7) and on the heterogeneous set of SUTs, we use 
adaptive � selection (See Fig. 9). During the sensitivity analysis experiments, to study 
the impact of the learning rate changes, we set the discount factor to 0.5. While exam-
ining the impact of the discount factor changes, we keep the learning rate fixed to 0.1. 
Figure 11 shows the sensitivity of SaFReL to changing learning rate and discount fac-
tor parameters when it acts on a homogeneous set of SUTs (CPU-intensive). Figure 12 
depicts the results of the sensitivity analysis of SaFReL on a heterogeneous set of SUTs.

Table 6  Average number of trials/steps for generating the target performance test case on the heterogeneous 
set of SUTs

SaFReL with �-greedy

Approach � = 0.5 decaying � � = 0.2 adaptive � Typical stress testing
Average number of 

trials/steps
18 17 18 11 16

Table 7  Computation 
time improvement on the 
heterogeneous set of SUTs

SaFReL

Action Selec-
tion Strat-
egy: �-greedy

� = 0.5 decaying � � = 0.2 adaptive �

Improvement in 
the number of 
trials

No No No 31%
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8  Discussion

8.1  Efficiency, adaptivity, and sensitivity analysis

RQ1: Using multiple experiments, we studied the efficiency of SaFReL compared to a 
typical stress testing procedure, on both a set of homogeneous and heterogeneous SUTs 
regarding the use of different action selection strategies. The results of the experiments 
running on a set of 50 CPU-intensive SUT instances as a homogeneous set of SUTs, Fig. 7 
and Tables 4 and 5, show that using �-greedy, � = 0.2 as action selection strategy in the 
transfer learning leads to desired efficiency and an improvement in the computation time 
(around 42% ) compared to the typical stress testing. It causes SaFReL to rely more on 
reusing the learned policy and results in computation time saving. The existing similarity 

Fig. 9  Efficiency of SaFReL on a heterogeneous set of SUTs regarding the use of adaptive �-greedy action 
selection strategy

Fig. 10  Adaptivity of SaFReL on a heterogeneous set of SUTs regarding the use of different variants of 
action selection strategy
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between the performance sensitivity of SUTs in a homogeneous set of SUTs makes the 
strategy of policy reusing successful in this type of testing situations.

Furthermore, we studied the efficiency of SaFReL on a heterogeneous set of 50 SUTs  
containing different CPU-intensive, memory-intensive and disk-intensive ones. The results  
of the analysis illustrate that choosing an action selection strategy without considering the  
heterogeneity among the SUTs (e.g., using the typical variants of �-greedy) does not lead to  
desirable efficiency compared to the typical stress testing (See Fig. 8 and Tables 6 and 7). Then,  
we augmented our fuzzy RL-based approach with an adaptive action selection strategy that is  
a heterogeneity-aware strategy for adjusting the value of � . It measures the similarity between  

Fig. 11  Sensitivity of SaFReL to learning rate and discount factor on the homogeneous set of SUTs

Fig. 12  Sensitivity of SaFReL to learning rate and discount factor on the heterogeneous set of SUTs
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the performance sensitivity of the SUTs and adjusts the � parameter. As shown in Fig. 9,  
using the adaptive �-greedy addressed the issue and led to an efficient generation of the target  
performance test case and a computation time improvement (around 31% ). It makes the agent  
able to reuse the learned policy according to the conditions, which means it uses the learned  
policy wherever it is useful and does more exploration wherever it is required.

RQ2: In the last part of the efficiency and adaptivity analysis, we extended our analysis 
by measuring the adaptivity of SaFReL when it performs on a heterogeneous set of SUTs. 
As shown in Fig.  10, with the use of the adaptive �-greedy, SaFReL is able to adapt to 
changing testing situations while preserving the efficiency.

RQ3: The results of the sensitivity analysis experiments on the homogeneous set of SUTs 
show that adjusting the learning rate to lower values such as 0.1 leads to better efficiency. Fur-
thermore, regarding the sensitivity analysis of SaFReL to the discount factor on a homogeneous 
set of SUTs, the experimental results depict that lower values of the discount factor are suitable 
choices for the desired operation that we expect. However, the results of the sensitivity analysis 
on the heterogeneous set of SUTs do not show a considerable effect on the average efficiency 
of SaFReL when it acts on a heterogeneous set of SUTs regarding the use of adaptive �-greedy.

8.2  Lessons learned

The experimental evaluation of SaFReL shows how machine learning can guide perfor-
mance testing toward being automated and taking one step further toward being autono-
mous. Common approaches for generating performance test cases mostly rely on source 
code or system models, but such development artifacts might not always be available. 
Moreover, drawing a precise model of a complex system predicting the state of the system 
upon given performance-related conditions requires a solid endeavor. This makes room for 
machine learning, particularly model-free learning techniques. Model-free RL is a machine 
learning technique enabling the learner to explore the environment (the behavior of the 
SUT on the execution platform in this case) and learn the optimal policy to accomplish 
the objective (finding the intended performance breaking point in this case) without hav-
ing a model of the system. The learner stores the learned policy and is able to replay the 
learned policy in further suitable situations. This important characteristic of RL leads to a 
reduction in the effort of the learner to accomplish the objective in further cases and conse-
quently leads to improved efficiency. Therefore, the main features that lead SaFRel to out-
perform an exploratory (search-based) technique are the capability of storing knowledge 
during the exploration and reusing the knowledge in suitable situations, and the possibility 
of selective and adaptive control on exploration and exploitation.

In general, automation, reduction in computation time and cost, and less dependency on 
source code and models are profound strengths of the proposed RL-assisted performance 
testing. Regarding applicability, according to the aforementioned strengths and the results 
of the experimental evaluation, the proposed approach could be beneficial to performance 
testing of software variants in software product lines, evolving software in continuous inte-
gration/delivery process, and performance regression testing.

Changes in Future Trends. With the emergence of serverless architecture, which incor-
porates third-party backend services (BaaS) and/or runs the server-side logic in state-less 
containers that are fully-managed by providers (FaaS), a slight shift in the objectives of 
performance evaluation, particularly performance testing on cloud-native applications is 
expected. Within the serverless architecture, the backend code is run without the need to 
manage and provision the resources on servers. For example in FaaS, scaling, including the 
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resource provisioning and allocation, is automatically done by the provider whenever it is 
needed, to preserve the response time requirement of the application. In general, regarding 
the capabilities of new execution platforms and deployment architectures, the objectives of 
performance testing might be slightly influenced. Nevertheless, it is still crucial for a wide 
range of software systems.

8.3  Threats to validity

Some of the main sources of threat to the validity of our experimental evaluation results 
are as follows:

Construct. One of the main sources of threat is the formulation of the RL technique to 
address the problem, which is very important for successful learning. Modeling the state 
space, actions, and also the reward function are major players to guide the agent through-
out the learning and make it learn the optimal policy. For example, boundaries defined in 
discrete states modeling are a threat to internal validity. To mitigate this threat, we used a 
fuzzy labeling technique to deal with the issue of uncertainty in defining sharp values for 
boundaries. Regarding the actions, the formulation of actions affects the granularity of the 
exploration steps, thus we tried to define actions in a way to provide reasonable granularity 
for the exploration steps.

Internal. There are a number of threats to the internal validity of the results. RL techniques 
like many other machine learning algorithms are influenced by their hyperparameters such as 
learning rate and discount factor. During our efficiency and adaptivity analysis experiments, 
we did not change the learning parameters, we also conducted a set of controlled experiments 
to study the influence of learning parameters on the efficiency of our approach.

The insufficient number of learning episodes/iterations could also act as a source of threat 
in the initial learning. To alleviate this threat, we iterated the initial learning sufficiently to 
ensure  convergence. Moreover, using a performance simulation module instead of execut- 
ing SUTs actually is considered as a source of threat to the validity of results.

Finally, model-free RL is mainly intended to solve a decision-making problem (to find 
an optimal policy to behave) without access to a model of the environment. Therefore, 
not considering the structure of the environment might be a source of threat in case of 
improper formulation of the RL technique.

External. Model-free RL learns the optimal policy to achieve the target through interac-
tion with the environment. Our approach was formulated based on the SUTs with three 
types of performance sensitivity that are CPU-intensive, memory-intensive, and disk-
intensive, and our results are derived from the experimental evaluation of our approach 
on these types of SUTs. If the experiment contains SUTs with other types of performance 
sensitivity such as network-intensive programs, then the approach needs to be reformulated 
slightly to support new types of performance sensitivities.

Moreover, the dependency of the performance simulation module on the performance 
sensitivity values could raise a threat to validity in the case of deploying the smart tester agent  
with the performance simulation module. The performance simulation module requires the  
performance sensitivity values for the SUTs as we described in our experiments. How- 
ever, given a real deployment of the approach, e.g., in a cloud-based testing setup without 
the performance simulation module, the dependency on the performance sensitivity values  
is lighter and their exact values are not necessary. Nonetheless, it is still considered  a  
source of threat.
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9  Related work

Measurement of performance metrics under typical or stress test execution conditions, 
which involve both workload and platform configuration aspects (Menasc’e  2002; Hill, 
Schmidt, Edmondson & Gokhale  2009; Apte et  al.  2017; Michael et  al.  2017; Jindal 
et al. 2019), detection of performance-related issues such as functional problems or viola-
tions of performance requirements emerging under certain workload or resource configu-
ration conditions (Briand et al. 2005; Zhang et al. 2011; Ayala-Rivera et al. 2018; Schulz 
et al. 2019) are common objectives of different types of performance testing.

Different approaches have been proposed to design the target performance test cases 
for accomplishing performance-related objectives such as finding intended performance 
breaking points. Performance test conditions involve both workload and resource configu-
ration status. A general high-level categorization of main techniques for generating the per-
formance test cases is as follows:

Source code analysis. Deriving workload-based performance test conditions using data-
flow analysis and symbolic execution are examples of techniques for designing fault-induc-
ing performance test cases based on source code analysis to detect performance-related 
issues such as functional problems (like memory leaks) and performance requirements vio-
lations (Yang and Pollock 1996; Zhang et al. 2011).

System model analysis. Modeling the system behavior in terms of performance models 
like Petri nets and using constraint solving techniques (Zhang and Cheung 2002), using the 
control flow graph of the system and applying search-based techniques (Gu and Ge 2009; 
Di Penta et al. 2007), and using other types of system models like UML models and using 
genetic algorithms (Garousi 2010; Garousi 2008; Garousi et al. 2008; Costa et al. 2012; 
da Silveira et  al. 2011) to generate the performance test cases are examples of the tech-
niques based on system model analysis for generating performance test cases.

Behavior-driven declarative techniques. Using a Domain Specific Language (DSL) to 
provide declarative goal-oriented specifications of performance tests and model-driven exe-
cution frameworks for automated execution of the tests (Ferme and Pautasso 2018; Ferme 
and Pautasso 2017; Walter et al. 2016), and using a high-level behavior-driven language 
inspired from Behavior-Driven Development (BDD) techniques to define test conditions 
(Schulz et al. 2019) in combination with a declarative performance testing framework like 
BenchFlow (Ferme and Pautasso  2017) are examples of behavior-driven techniques for 
performance testing.

Modeling  realistic conditions. Modeling the real user behavior through stochastic  
form-oriented models (Draheim et al. 2006; Lutteroth and Weber 2008), extracting work-
load characteristics from the recorded requests and modeling the user behavior using, e.g., 
extended finite state machines (EFSMs) (Shams et  al.  2006) or Markov chains (Vogele 
et al. 2018), sandboxing services and deriving a regression model of the deployment envi-
ronment based on the data resulting from sandboxing to estimate the service capacity (Jin-
dal et al. 2019), end-user clustering based on the business-level attributes extracted from 
usage data (Maddodi et al. 2018), and using automated GUI testing tools with capture and 
replay techniques to generate realistic interactive usage sequences (Adamoli et  al.  2011) 
are examples of techniques based on modeling the realistic conditions to generate the per-
formance test cases.

Machine learning-enabled techniques. Machine learning techniques such as supervised 
and unsupervised algorithms mainly work based on building models and extracting patterns  
(knowledge) from the data, while some other techniques such as RL algorithms are intended 
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to train the learner agent to solve the problems (tasks). The agent learns an optimal way to 
achieve an objective through interacting with the system. Machine learning has been widely 
used for the analysis of data resulting from  performance testing and also for performance 
preservation. For example, anomaly detection through analysis of performance data, e.g., 
resource usage, using clustering techniques (Syer et al. 2011), predicting reliability from the 
testing data using Bayesian Networks (Avritzer et al. 2008), performance signature identi-
fication based on performance data analysis using supervised and unsupervised learning 
techniques (Malik et al. 2013; Malik et al. 2010), and also adaptive RL-driven performance 
in particular response time control for cloud services (Ibidunmoye et  al.  2017; Veni and 
Bhanu 2016; Jamshidi et al. 2016) and also software on other execution platforms, e.g., PLC-
based real-time systems (Moghadam et al. 2018). Machine learning has been also applied 
to the generation of performance test cases in some studies. For example, using symbolic 
execution in combination with an RL algorithm to find the worst-case execution path within 
a SUT (Koo et al. 2019), using RL to find a sequence of input workload leading to perfor- 
mance degradation (Ahmad  et  al.  2019), and  feedback-driven learning to identify  
the performance bottlenecks through extracting rules from execution traces (Grechanik, Fu 
and Xie 2012). There are also some adaptive techniques slightly analogous to the concept 
of RL for generating performance test cases. For example, an adaptive workload generation 
that adapts the workload dynamically based on some pre-defined adjustment policies (Ayala-
Rivera et al. 2018), and a feedback-driven approach that uses search algorithms to benchmark 
an NFS server based on varying workload parameters to find the workload peak rate reaching 
the target response time confidence level.

10  Conclusion

Performance testing is a family of techniques commonly used as part of performance anal-
ysis, e.g., estimating performance metrics or detecting performance violations. One impor-
tant goal of performance testing, particularly in mission-critical domains, is to verify the 
robustness of the SUT in terms of finding performance breaking point. Model-driven tech-
niques might be used for this purpose in some cases, but drawing a precise model of the 
performance behavior of a complex software system under different application-, platform- 
and workload-based affecting factors is difficult. Furthermore, such modeling might disre-
gard important implementation and deployment details. In software testing, source code 
analysis, system model analysis, use-case based design, and behavior-driven techniques are 
some common approaches for generating performance test cases. However, source code or 
other artifacts might not be available during the testing.

In this paper, we proposed a fuzzy reinforcement learning-based performance testing 
framework (SaFReL) that adaptively and efficiently generates the target performance test 
cases resulting in the intended performance breaking points for different software pro-
grams, without access to source code and system models. We used Q-learning augmented 
by fuzzy state modeling and an action selection strategy adaptation that resulted in a self-
adaptive autonomous tester agent. The agent can learn the optimal policy to achieve the 
target (reaching the intended performance breaking point), reuse its learned policy when 
deployed to test similar software, and adapt its strategy when targeting software with differ-
ent characteristics.

We evaluated the efficiency and adaptivity of SaFReL through a set of experiments 
based on simulating the performance behavior of various SUT programs. During the 
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experimental evaluation, we tried to answer how efficiently and adaptively SaFReL can 
perform testing of different SUT programs compared to a typical stress testing approach. 
We also performed a sensitivity analysis to explore how the efficiency of SaFReL is 
affected by changing the learning parameters.

We believe that the main strengths of using the intelligent automation offered by 
SaFReL are 1) efficient generation of test cases and reduction in computation time, and 
2) less dependency on source code and models. Regarding applicability, we believe that 
SaFReL could be beneficial to the testing of software variants, evolving software during 
the (CI/CD) process, and regression performance testing. Applying some heuristics and 
techniques to speed up the exploration of the state space like using multiple cooperating 
agents, and also extending the proposed approach to support workload-based performance 
test cases are further steps to continue this research.
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