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ABSTRACT Although person re-identification has made great progress, unsupervised cross-domain
adaptive person re-identification is still a challenging problem. With no labeled data in target domain,
the performance may have a significant drop. In this paper, we propose an unsupervised cross-domain
adaptive person re-identification framework based on horizontal pyramid similarity learning (UHPS).
Firstly, horizontal pyramid features are extracted by dividing the deep feature maps into different number of
partial feature bins. These feature bins with diverse scales can incorporate not only the global information
but also local information in different spatial scales, making the framework more robust in complex
environment. Then, horizontal pyramid similarity learning is proposed with the mechanism of fusing
together the internal similarity of the target domain and the similarity between the source domain and target
domain. Finally, the unsupervised clustering algorithm DBSCAN embeded with the horizontal pyramid
similarity is employed to select training data in the target domain and estimate the pseudo labels in each
training iteration, for the purpose of adapting the framework to the target domain. The results on Market1501
and DukeMTMC-relID confirm that the proposed framework can adapt to the target domain effectively and
outperforms the state-of-the-art unsupervised cross domain person re-identification approaches.

INDEX TERMS Person re-identification, Unsupervised deep learning, Unsupervised cross domain
adaption, Horizontal pyramid similarity learning

l. INTRODUCTION

PERSON re-identification has been widely studied as a
specific person retrieval problem, which aims at match-
ing images of a query with images of the same identity

make person re-identification a very challenging problem.
Recently, many supervised deep learning person re-

identification methods have made impressive progress [1]-

[6]. In order to obtain robust features, some supervised part-

across different cameras. Due to the urgent demand of public
safety and large scale surveillance, it has drawn lots of
attention from academia and industry in recent years. In the
person re-identification process, the same person observed
in different camera views undergoes significant variations
of resolutions, lightings, poses and viewpoints. Because the
size of the objects captured by surveillance cameras are often
small, a lot of visual details such as facial components are
indistinguishable in images, and some of them look similar in
appearance. As the number of objects to be distinguished in-
creases, the ambiguities also may increase. These difficulties
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based person re-identification models which focus on learn-
ing partial features are poposed. These models are robust to
the unavoidable challenges such as occlusion and partial vari-
ations. Some approaches also consider integrating global and
partial features together to improve the robustness. However,
these methods need a large amount of labeled data, which is
costly and not suitable for practical application.

Many works focus on unsupervised cross domain person
re-identification [7]-[16]. These methods transfer and gener-
alize the learned model trained in source domain with labeled
data to the target domain with unlabeled data. Since the
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surveillance environments are different, domain gap exists
between the source domain and target domain. The key
problem is how to effectively adapt the model learned in the
source domain to the target domain. Some methods focus
on learning view-invariant information of person appearance
and adapting it to the target domain by attribute and identity
alignment [7], [10]. Other methods apply generative adver-
sarial to transfer the style in the image level [11], [13].
The camera-aware similarity inconsistency problem is also
considered in [16]. Although these approaches have achieved
promising progress, discriminative feature representation and
effective domain adaption strategy are still two open prob-
lems.

In this paper, we propose an unsupervised cross-domain
adaptive person re-identification framework based on hori-
zontal pyramid similarity learning. Although similar work
has been done in the supervised deep learning framework
[17], [18], it is the first time that exploring the information of
pyramid feature bins of different spatial scales in an unsuper-
vised deep learning framework for person re-identification.
The framework firstly extracts horizontal pyramid features
of the unlabeled images in the target domain, which contain
discriminative information in diverse spatial scales. Then,
horizontal pyramid similarity learning is proposed with the
mechanism of fusing the internal similarity of the target
domain and the similarity between the source domain and
target domain together. Finally, the unsupervised clustering
algorithm DBSCAN embeded with the horizontal pyramid
similarity is employed to select training data and estimate the
pseudo labels in each training iteration for domain adaption.

We summarize our contributions as follows:

(1)We propose a robust horizontal pyramid feature rep-
resentation in an unsupervised manner for person re-
identification. Horizontal pyramid feature is a collection of
feature bins with diverse scales, which can incorporate not
only the global information but also local information in
different spatial scales. These different feature bins make the
model significantly robust in a complex environment.

(2)Horizontal pyramid similarity learning is proposed with
the mechanism of fusing together the internal similarity of
the target domain and the similarity between the source
domain and target domain. Based on the horizontal pyramid
similarity learning, training data are selected and the pseudo
labels are estimated in each training iteration, for the purpose
of adapting the framework to the target domain.

(3)Extensive experiments are conducted on several popular
benchmarks including Market-1501 [19] and DukeMTMC-
RelD [20], [21] to demonstrate the effectiveness of the pro-
posed method.

The remainder of this paper is organized as follows. We re-
view the related works in Section II. In Section III, we present
our proposed method in detail. In Section IV, our proposed
algorithm is evaluated by two public large datasets containing
images in different surveillance environment. Experimental
results and comprehensive analysis are also included in this
section. Finally, we conclude this paper.

2

Il. RELATED WORKS

The method proposed in this paper is related to unsuper-
vised person re-identification, partial feature representation
and unsupervised cross domain adaption for person re-
identification. So we briefly discuss recent research of the
three aspects in this section.

A. UNSUPERVISED PERSON RE-IDENTIFICATION
Unsupervised person re-identification aims at exploring dis-
criminative information from unlabeled person images with-
out expensive data annotation, which is more suitable for
real applications. Benefit from the success of deep learn-
ing, deeply unsupervised person re-identification methods
are popular in recent years [22]. some works focus on
purely unsupervised person re-identification without any
external dataset or identity annoation. Softened similartity
learning is proposed in [23] for unsupervised person re-
identification. The framework mines the similarity between
unlabeled images as a soft constraint and is trained with
the softened label distribution. The work in [24] formulates
person re-identification as a multi-label classification task.
With the proposed memory-based multi-label classifiction
loss (MMCL), the framework predicts multi-class labels to
effectively identify images of the same identity. The authors
also propose the memory-based positive label prediction
(MPLP) to improve the accuracy of of label prediction.

Some works use iterative clustering and classification of
unlabeled data for person re-identification. Lin et al. [25]
propose a bottom-up clustering method to balance the model
between the diversity and similarity. To further improve the
performance, hierarchical clustering combined with hard-
batch triplet loss (HCT) is proposed in [26]. Hierarchical
clustering can help explore similarity among samples and
hard-batch triplet loss can reduce the influence of hard sam-
ples. The attention-driven two-stage clustering (ADTC) [27]
uses a voxel attention mechnasim to highlight the feature of
images and obtain spatial information. A two stage cluster-
ing strategy is also proposed to generate pseudo labels of
unlabeled data, which not only can improve the clustering
quality but also stabilize the progressive training. Augmented
discriminative clustering (AD-cluster) [28] is proposed to
estimate and augment person clusters. By alternating density-
based clustering and sample generation, AD-cluster aggre-
gates the discrimination ability of the person re-identification
model. In order to depress label noise caused by unsupervised
clustering, co-teaching technique is employed in asymmetric
co-teaching framework (ACT) [29] and noise resistible mu-
tual training (NRMT) [30]. In ACT, the unlabeled samples
are divided into inliers and outliers, and the hard samples are
selected at the early stage of domain adaption. The NRMT
maintains two networks to perform collaborative clustering
and mutual instance selection. The collaborative clustering
can ease the fitting to noisy samples. The mutual instance
selection can help select reliable and informative samples to
train the model. By combining the two parts, the performance
of the model is improved greatly.
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In this paper, we fuse the pyramid feature similarity learn-
ing into an unsupervised deep learning framework for person
re-identification. Although similar work has been done in the
supervised deep learning framework [17], [18], it is the first
time that exploring the information of pyramid feature bins
of different spatial scales in an unsupervised deep learning
framework for person re-identification. So we mainly discuss
the performance improvement caused by fusing the pyramid
similarity learning into an unsupervised deep learning frame-
work and other strategies are not discussed in this paper.
Note strategies such as co-teaching in [29] and [30] can also
be combined to our method and better performance will be
obtained.

B. PARTIAL FEATURE REPRESENTATION FOR PERSON
RE-IDENTIFICATION

Most existing person re-identification methods either explore
partial features or consider global features. Global features
represent the whole body of the human [31] and are discrimi-
native when the human body can be accurately located. When
the person images suffer from heavy occlusions, partial vari-
ations or large background clutter, partial features usually
achieve better performance by mining discriminative features
of body regions [32]. Due to its advantage in handling these
unavoidable challenges, lots of works focus on learning par-
tial discriminative feature representations. Some published
works employ pose estimation and landmark detection as
tools to parse the body and learn the partial features [33],
[34]. Some approaches embed the attention mechanism in the
deep network to let the model itself decide where to focus
[5], [35]. Recently, the pre-defined patches are proposed in
some methods [17], [36], which are simple but effective.
Sun et al. [36] proposed a part-based convolutional baseline
(PCB) with an uniform partition strategy. A refined part
pooling (RPP) method is also used to enhance the within-
part consistency. Fu et al. [17] divide the deep feature maps
horizontally into multiple spatial bins using various pyramid
scales. Then, both global feature and partial feature are
employed in a supervised deep network to perform person
re-identification independently. Zheng et.al [18] propose a
corarse-to-fine pyramid model not only can incorporate local
and global information,but also can integrate the gradual cues
between them. While having achieved promising results, the
above supervised methods are costly and time-consuming,
because of needing to label sufficient data.

Currently, some unsupervised person re-identfication
methods try to learn partial features in the unsupervised
deep learning framework [37], [38]. A patch-based unsuper-
vised learning framework [37] is developed for person re-
identification. PatchNet is designed to select patches from
feature map and learn discriminative features with an unsu-
pervised patch-based discrimminative feature learning loss.
An image-level feature learning loss is also proposed to
serve as an image level guidance. A self-similarity grouping
appoach (SSG) [38] is proposed to exploit the potential
similarity from the global body and two local parts in an

VOLUME 4, 2016

unsupervised manner. It iteratively conducts grouping and
model training in a self-learning manner. Based on SSG,
the authors also introduce a semi-supervised person re-
identification method named SSG™. Although intergrating
the local and global features improves the performance,
partial feature bins are divided with a fix scale in SSSG, which
may miss the gradual infromation between them and limits
the capacities of further improving the performance.

A robust horizontal pyramid feature representation in an
unsupervised manner is proposed in our work. In fact, hor-
izontal pyramid feature is a collection of feature bins with
diverse scales, which can incorporate not only the global
information but also local information in different spatial
scales. Although the methods proposed in [17] and [18]
also use multiple feature bins with different scales, they
embed it in a supervised deep learning framework. The deep
learning framework, mechanism and the training mode of our
approach are quite different from them.

C. UNSUPERVISED CROSS-DOMAIN ADAPTIVE
PERSON RE-IDENTIFICATION

Since it is costly to label the dataset of interest, unsupervised
cross-domain adaptive person re-identification becomes one
popular solution for person re-identification. It utilizes a fully
labeled source domain dataset to extract useful information
and transfers the information to the target domain dataset
of interest. Since the identity labels are not collected in
the target domain during training, it is typically viewed
as an unsupervised learning task. The unsupervised cross-
domain adaptive person re-identification is closely related to
unsupervised domain adaption(UDA), which usually learns
a common mapping between source and target distributions
for the domain invariant representations [39], [40]. However,
UDA approaches assume that the two domains have same
class labels, while the person identities of source and tar-
get datasets in person re-identification are entirely different.
Hence, unsupervised domain adaptation approaches cannot
be directly utilized for person re-identification.

Many person re-identification works based on domain
adaption are proposed [7]-[16], [41]-[45] in recent years.
Reducing data distribution discrepancy between two domains
and generating discriminative information for target domain
are the two topics these works addressing. Recently, it is a
popular approach that using GAN generation to transform
source domain images into the style of target domain images.
With the generated images, the supervised model trained in
the souce domain can learn in the unlabeled target domain.
The approach in [8] tries to seek camera invariance and
domain connectedness by considering the camera-style vari-
ations in the generative adversarial network. Wei et al. [11]
design a person transfer GAN with constraints to bridge the
domain gap. Deng et al. [13] propose a similarity preserving
generative adversarial network to preserve the self-similarity
of an image and domain dissimilarity of the translated source
image and target image. Wang et al. [45] focus on the
robustness of the current best person re-ID models and design
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a multi-stage network architecture to extract general and
transferable features for adversarial perturbations. Although
inspiring performance have been achieved, the scalability and
stability of the image generation for large scale changing
environment are still challenging.

There are also methods that directly mine discriminative
information on the unlabeled target dataset with a trained
model from source dataset. Wang et al. [7] take advantage
of the attribute labels in the source data to transfer knowl-
edge and propose an unsupervised approach that learns the
attribute-semantic and identity discriminative features in the
target domain. Fan et al. [42] propose a progressive unsu-
pervised learning method to transfer the pretrained model
to unseen dataset. It iterates between pedestrian clustering
and fine-tuning of CNN, and adds a selection operation
between them to improve the original model. LV et al. [43]
transfer the spatio-temporal patterns of the source domain
to the target domain based on an unsupervised incremental
learning algorithm. The camera view information is also
utilized in [46]. The authors develop camera-aware domain
adaption to reduce the discrepancy across the camera-level
sub-domains and creat discriminative information by exploit-
ing temporal continuity in each camera of target domain.
The domain-invariant mapping network (DIMN) [47] with
an effective meta-learning based trainning strategy and a
memory bank module is proposed to match an arbitrqary
number of identities in the target domain. Query-Adaptive
Convolution (QAConV) [48] treats image matching as find-
ing local correspondences in deep feature maps to make
the matching process interpretable and generalizable. A self-
paced contrastive learning framework with hybrid memory
is propposed in [49], which can dynamically generate su-
pervisory signals in multi-level for feature representation
learning. Multiple expert brainstorming network (MEB-Net)
[50] accomplishes domain adaption by brainstorming-based
mutual learning among different expert models with differ-
ent architectures. Although these unsupervised cross-domain
adaptive person re-identification approaches have achieved
promising progress, the performance still needs to be im-
proved. Discriminative feature representation and effective
domain adaption strategy are still two open problems in
practical application.

Based on the analysis above, we focus on two aspects
to improve the performance of unsupervised cross-domain
adaptive person re-identification in this paper. Firstly, a ro-
bust horizontal pyramid feature representation in an unsuper-
vised manner is proposed. Global feature and partial feature
bins with different scales are joined together to incorporate
global information and a variaty of local information. Sec-
ondly, horizontal pyramid similarity is explored by fusing the
internal similarity of the target domain and the similarity be-
tween the source domain and target domain together. Based
on the pyramid similarity learning, training data are selected
and the pseudo labels are estimated in each training iteration
to adapt the framework to the target domain.

4

lll. PROPOSED METHOD

The whole framework of the proposed unsupervised cross-
domain adaptive person re-identification is showed in Figure
1. The CNN is initially pre-trained by labeled source dataset.
Then the learned model extracts horizontal pyramid features
of the unlabeled images in the target domain and explores
discriminative information in different spatial scales by the
unsupervised horizontal pyramid similarity learning. Finally,
the unsupervised clustering algorithm DBSCAN embeded
with the learned similarity is employed to select training data
and estimate the pseudo labels in each training iteration for
domain adaption.

A. SOURCE DOMAIN PRE-TRAINED CNN NETWORK

Suppose the source dataset {X, Y} in source domain S
has N, labeled person images. Each image x% in X, has an
assosicated identity label y¢ € Yi,i = 1,2,---, N,. The
identity number of the source dataset is P;. We modify the
structure of ResNet-50 [51] pre-trained on ImageNet [52]
as backbone of the deep framework. Figure 2 shows the
structure. The last FC layer is replaced by two additional
FC layers. The first one (FC1) has 2048 outputs and the
last one (FC2) has P; outputs. When training in the source
domain, labeled samples are fed into the baseline network,
which use cross entropy loss and triplet loss [53] as the
training criterion. The cross entropy loss is employed with
FC2 by treating the training as a classification problem, and
triplet loss is employed with FC1 by treating the training
as a verification problem. The advantage of the pre-trained
CNN network is that training process can make full use of
the information from classification and verification [38].

B. HORIZONTAL PYRAMID FEATURE EXTRACTION
Horizontal pyramid feature is a collection of feature bins
with diverse spatial scales. Each feature bin is obtained by
dividing the deep feature map with a specific scale. Specifi-
cally, given a specific scale o, the feature map is horizontally
partitioned into 27 uniform pieces. Then feature bins can be
obtained after executing average pooling on these sub-maps.
By repeatly dividing the feature map with different scales in
the scale set {o|o < o0¢}, feature bins with different spatial
scales can be obtained. The total number of feature bins N,
for a feature map can be calculated in formula (1).

Figure 3 shows an example of horizontal pyramid feature
extraction with the scale set {o|c < 3}. In this case,
o € {0,1, 2,3} and the feature map will be horizontally par-
titioned into 29, 2!, 22 and 23 uniform pieces independedly.
The total number of feature bins is 15. When ¢ = 0, the
feature map is not divided and the global feature is obtained.
With different scales, feature bins with different sptial scales
can be obtained in the same image. So the collection of all the
feature bins can incorporate not only the global information
but also local information in different spatial scales, making
the framework more robust in complex environment.

We assume an unlabeled dataset X in target domain
T has Np images. Horizontal pyramid features are ex-
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FIGURE 1. The framework of the proposed method: The pre-trained CNN model extracts horizontal pyramid features of the unlabeled images in the target domain.
The internal similarity of the target domain and the similarity between the source domain and target domain are fused together for horizontal pyramid similarity
learning. The unsupervised clustering algorithm selects training samples and estimates pseudo labels. The whole framework will be iteratively trained.
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FIGURE 2. The structure of the pre-trained CNN network: The framework is a variant of ResNet-50,the last FC layer of which is replaced with two additional FC
layers. Cross entropy loss and triplet loss are used as training criterion.

tracted repeatedly of all the unlabeled images xJT €
Xr,j = 1,2,---,Np and different features f7,,,k =
1,2,---,29,7 = 1,2,--- , Ny can be obtained with differ-
ent scales for each image. All the following feature vectors
set in formula (2) are fed into the similarity learning module.

(o)
Nop =27 (1)
o=0

_ 1 2 Nt
fro0 = {£h, 2, ENT}

fT,Ql = {{f%,h f’ll",Q}a {f’12“,17 f%,Q}a ] {fgf7f7]¥§}}

fr,200 = {{fjl“,l? fil‘,Q’ T ’fil“,200 I {fiz‘,lﬁ f72’,27 T f72‘,2°'0 H
’{fgfvfg§7"' ’fZJXZQFUO}}
2
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C. HORIZONTAL PYRAMID SIMILARITY LEARNING

In this section, we propose the horizontal pyrammid simi-
larity learning to explore discriminative information in dif-
ferent spatial scales. Horizontal pyramid feature bins with
a same spatial scale are put together to learn the similarity
of a specific scale. After learning similatity of all the scales
independently, we can obtain global information and local
information in different spatial scales amnong the samples.
So horizontal pyramid similatity can be seen as a collection
of similarity learned from horizontal pyramid feature bins
with different spatial scales.

Besides, in order to obtain effective domain adaptation,
training data in the target domain need to be selected.
Because the model is initially trained by the source data,
samples similar to the source data can help the model explore
correct information of the target domain, especially in the
early iteration stages when the framework knows little about
the target domain. Besides, learning the similarity among
different person images in target domain can also help the
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FIGURE 3. An example of the horizontal pyramid feature extraction for oy = 3: o € {0, 1, 2, 3} and the feature map will be horizontally partitioned into 1,2,4 and 8

uniform pieces. The total number of feature bins is 15.

model discover the correct identification. Hence, the similar-
ity is designed to fuse the the internal similarity of the target
doamin and similarity between the source domain and target
domain together.

1) Similarity learning between source and target domain

To ensure the effect of domain adaption, we should concern
the overlap between the source and target domain. Similar
samples of the source data can help the model to explore
correct information of the target domain. As mentioned in
[54], minimizing the function in formula (3) can help to
enhance the similarity.

Ex ~rlinfxs~sllfr —fs|]] 3)

where, f7 and fs are the features of target and source samples
respectively. However, it is hard to get optimal solution due
to the infimum. So we approximate the formula by selecting
samples with smaller infx s||fr — fs||. Specifically, we
adopt the similarity measurement in formula (4) to search the
samples in target domain.

do(£i) = 1 — e~ —N (D) @)

where, N, (f%) means the nearest neighbor of the f% in the
source domain. £, reprsents the feature of 7th images in Xr.

A smaller dg(f}.) means a higher confidence that the target
sample is similar to the source domain.

2) Internal similarity learning within target domain

In order to accurately measure the similarity of samples
in the target domain, the contexture of each sample is
considered when calculating the distance. We adopt the k-
reciprocal nearest neighbors [55] to represent the contexture
of the sample in this paper. Each sample is encoded as a k-
reciprocal vector, and a variation of Jaccard distance between
the vectors is used as the distance metric for similarity

6

measurement. Specifically, for a sample feature pair in target
domain (£}, £5.),4,7 = 1,2,..., Np,i # j, we can calculate
the distance of the two samples by formula (5).

_ Z]]CV:Tl min(v; &, vj k)

SoaTy max(vi g, sk

dy (£, 1) = 1 (5)

i k2 . . .
where, v; = e Ifr=fzll" if ££ is a k-reciprocal nearest
neighbor of £}, else v; , = 0. v; 1, has the same definition.

3) Similarity fusion

For a specific scale o, the two kinds of similarity are fused
together using formula (6). The similarity of all scales can be
calculted independently by formula (6) and the collection of
them constructs the pyramid similarity.

A(E7 487 1) = (1=B)dy (Epy B, )+5(ds (£x) +ds (£7.,)

, (6)
where, fr},k and f7., are the kth pyramid feature bins of
image 24 and 2%, , k € 1,2,--- ,27, B € [0, 1] is a balancing
parameter.

D. CLUSTERING-GUIDED TRAINING SAMPLE
SELECTION AND PSEUDO LABEL ESTIMATION

After learning the pyramid similarity of all data pairs in the
target domain by formula (6) of a specific pyramid scales o,
a distance matrix M, can be obtained. Then, unsupervised
clustering algorithm DBSCAN [56] is applied on the distance
matrix M, to estimate the pseudo labels of the feature bins.
Since only data within the scanning radius can be clustered
in DBSCAN, training samples can be selected naturally by
setting the scanning radius during the execution of the clus-
tering algorithm. Specifically, all the pair distances calculated
by formula (6) are firstly sorted from small to large, then
the scan radius ¢, of DBSCAN is set as the mean value
of top pN distance of data pairs in scale o. Where p is the
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O Selected sample

® Unselected sample

FIGURE 4. The demonstration of sample selection: Distance of each data pair
in target domain is calculated by (6). Sample pairs whose distance is within the
scan radius e, will be selected as training samples.

percentage and [V is the number of possible data pairs in the
target domain. Figure 4 demonstrates the sample selection
strategy. Only sample pairs whose distance is within the scan
radius ¢, will be selected as the training samples. Since
the clustering algorithm is applied in all scales of horizontal
pyramid feature sets, each person image will obtain pseudo
labels in different scales. All the sample features in different
scales are used to train the model. The distance matrix M,
will be re-calculated for sample pairs re-selection in each
training iteration. The selected samples help the model learn
more of the target domain, and the learned model can select
better traing sample pairs in next training iteration.

E. LOSS FUNCTION

For unsupervised training in target domain, we join the batch-
hard triplet loss of different scales and the cross entropy loss
of different scales together as framework loss. For a specific
scale o, the triplet loss is formulated as follows:

90
L(tripletﬁ) Z Z Z m + maX || kT tp, k”2

k=1i=1a=1
p— 1 /L
rr211n o

Ji=

k= £ kll2]+

)

1
1,2, KL#J

where, fa &> f;’ > fi, .. are the kth feature bins extracted from
the anchor, positive and negative samples respectively, m is
the margin hyper-parameter. Each mini-batch is constructed
by randomly sampling P identities and K instances of fea-
ture bins in the same scale.

The cross entropy loss of the specific scale o is also

employed and can be formulated as follows:

90
(ce,o) — Zzzlce ya kvya k) 3

k=11=1a=1

where, ¢! , and g} , are the pseudo identity and the predic-
tion of the samples respectively, [, is the cross entropy loss.

The final loss function is the sum of all items of all the
scales:

Ltarget = Z L(triplet,o) + L(ce,a) )
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F. THE ALGORITHM OF WHOLE FRAMEWORK

Now the whole framework can be concluded in Algorithm 1.
At the beginning, the baseline model is trained in the source
domain and is called as f°. Then horizontal pyramid sim-
ilarity learning and DBSCAN clustering are fused together
for training data selection and pseudo label estimation. The
model will be updated iteratively.

Algorithm 1 Unsupervised horizontal pyramid similarity for
cross-domain adaptive person re-identification

Input: source domain dataset S, unlabeled target domain
dataset T with Np samples, the pyramid scale parameter
0o, the minimum size of a cluster Ny, the iteration
number Ny
Output: the model f for target domain
1: Train the model f° on the source domain dataset S;
2: For o in {o|o < g¢}do
3: Obtain pyramid features in S and T:
SY =£0(S,0), T = (T, 0);
4: Compute the distance matrix M? on S? and T2 by
formula (6);
5: Compute the scan radius €, of DBSCAN clustering ;
6: Estimate labels for {x%., i € {1,2, -+  Nr}}:
(yé’,lﬂ y%,27 T 7y§’,20) = DBSCAN(MngUv Ni);
7: EndFor
8: Construct the training data:
D° ={a% : (Yr 1Yo+ Yra0),0 € {0 < 00}}
9: Train the model by D and obtain f*
10: For j = 1to Ny
11: Repeat step 2 to step 9 ;
12: Obtain f/ by training with dataset D7;
13: EndFor

IV. EXPERIMENT

In this section, we evaluate the proposed method on two large
person re-identification benchmark datasets Market1501 [19]
and DukeMTMC-reID [21]. Ablation study is applied to
evaluate the key components and parameters in the proposed
method. We also compare our method with the state-of-the-
art unsupervised person re-identification methods.

A. DATASETS AND EXPERIMENT SETTINGS

Market1501 consists of 32,668 images of 1,501 identities
captured by six cameras in an open environment. The train-
ing set has 751 identities with 12,936 images and the test
set contains 19,732 images of 750 identities. DukeMTMC-
relD is also a challenging person re-identification dataset.
It has 16,522 training images, 2,228 query images, and
17,661 gallery images, totally containing 1,812 identities
in 8 camera views. The two datasets are challenging for
person re-identification and undergo significant variations of
resolutions, lightings, poses, occlusion and viewpoints. In
our experiment, we follow the standard train/test split of
the two datasets. The Cumulative Matching Characteristic
(CMC) and mean Average Precision (mAP) are applied as

7
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the performance evaluation metrics following single query
setting. The evaluation packages provided by [19]and [21]
are used respectively.

B. IMPLEMENTATION DETAILS

The input images are resized to 256 x 128 x 3 and augmented
with random cropping, flipping and random erasing. The
batch size is 128 (PK sampling with P = 16, K = 8)
and Adam with decay 0.0005 is chosen as optimizer. When
training the baseline model on the source dataset, the epoch
is set to 120 and the learning rate is changed from 3 x 10~%
to 3 x 107> after 100 epochs. When training the model in
the unsupervised mode on target dataset, the initial learning
rate is set to 3 x 10~% , the training epoch is 70, N1 = 4
and N2 = 20. Our algorithm is implemented on Pytorch
platform and trained with two NVIDIA TITAN X GPUs. All
the experiments discussed follow the same settings.

C. ABLATION STUDY

In order to verify the effectiveness of each component and
parameter settings of UHPS, several ablation experiments
are designed on Market1501 and DukeMTMC-relD datasets,
including different number of pyramid scales, different dis-
tance metrics. The different parameters setting such as differ-
ent values of p and 3 are also tested in this section. !

1) Effectiveness of pyramid structure

We compare the performance of UHPS with different pyra-
mid scales. Table 1 and Table 2 show the results with different
pyramid scales on the Market1501 and DukeMTMC-relD.
The value of pyramid scale oy determines the number of
feature bins. Four cases of pyramid scale o0y = 0,1, 2, 3 are
tested and the results show that oy = 2 achieves the best.
When oy = 0, only global feature are extracted. From Table
1, we can observe that when the pyramid scale increases from
0 to 2 on Market1501 dataset, the Rank-1 improves from
75.6% to 81.2%, and mAP improves from 53.6% to 59.1%.
However, the Rank-1 and mAP drop to 79.6% and 58% when
the pyramid scale is set to 3. A similar trend can be obtained
on DukeMTMC-reID in Table 2. These results infer that the
pyramid structure can improve the performance of the person
re-identification framemork by combining the global and
local discriminative information. However, too many feature
bins may produce redundant information and yield worse
results. So we finally adopt 09 = 2 and ¢ = 0, 1,2 in this
work.

2) Effectiveness of distance metrics

In this work, we select training samples considering both the
similarity between the source domain and target domain and
the similarity of the samples in the target domain. To verify
the performance of the similarity measure module, different
distance metrics are compared in Table 3 and Table 4, where

"When one parameter is tested in the experiment,other parameters and
settings of the framework are set to the optimal values.

8

TABLE 1. Performance of UHPS with different pyramid scales on Market1501

Methods o o Feature bins | Rank-1 | Rank-5 | Rank-10 | mAP
UHPSO | 0 0 1 75.6 89.7 93.8 53.6
UHPS1 | 1 0,1 142 80.2 90.8 924 58.4
UHPS2 | 2 0,12 [1+2+4 |81.2 91.3 93.2 59.1
UHPS3 | 3 0,1,2,3| 14+2+4+8|79.6 90.1 92 58

TABLE 2. Performance of UHPS with different pyramid scales on
DukeMTMC-RelD dataset

Methods o o Feature bins | Rank-1 | Rank-5 | Rank-10 | mAP
UHPSO0 | 0 0 1 68.3 80.3 83.8 49.2
UHPS1 | 1 0,1 142 72.9 80.8 829 53

UHPS2 | 2 0,12 [1+2+4 |738 814 84.1 54.4
UHPS3 | 3 0,1,23| 1+2+4+8|72.1 80.1 82 524

dg represents Euclidean distance, d,, is the Jaccard distance,
d is the distance between source domain and target domain,
and d,, + ds means our distance metric introduced in section
IMI-C. Taking the results on the Market1501 dataset in Table
3 as example, it achieves 79.3% and 58.1% on the Rank-
1 accuracy and mAP when only considering d,,, which are
higher than the results of dg. This infers the effectiveness
of d,. However, our distance metric achieves the highest
accuracy on the two datasets showing the advantage of the
combinations of d, and d,. The similar results can also be
seen in Table 4 on DukeMTMC-relD dataset.

3) Parameters analysis

As the analysis in section III-D, parameters 3 and p are the
two important parameters, which directly influence training
sample selection and label estimation. In this experiment, we
test our method with a series of different 5 and p respectively
on Market-1501. The final Rank-1, Rank-5, Rank-10 and
mAP results are shown in Table 5-6. In addition, Figure 5-
8 demonstrate the Rank-1 and mAp variation curves in 20
iterations with different 5 and p. As can be seen from Table

TABLE 3. Comparison of different distance metrics on Market1501

Distance Rank-1 | Rank-5 | Rank-10 | mAP
dg 78.6 89.7 91.5 57.4
dy 79.3 90.2 922 58.1
dy+ds | 81.2 91.3 93.2 59.1

TABLE 4. Comparison of different distance metrics on DukeMTMC-RelD

Distance Rank-1 | Rank-5 | Rank-10 | mAP
dg 71.6 79.4 83.1 52.6
dy 72.3 80.2 83.8 532
dy+ds | 73.8 81.4 84.1 54.4
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TABLE 5. Performance comparison of different value of 8 on Market1501

TABLE 6. Performance comparison of different value of p on Market1501

B Rank-1 | Rank-5 | Rank-10 | mAP

55 -
0.05 79.7 90.2 92.5 58.6
0.1 81.2 91.3 93.2 59.1 50 [
0.3 79.3 90 91.2 57.8 a5l
0.5 79 89.7 90.6 57.2 a d

<aof _*_Efg; 1

0.7 77.9 88.3 90.1 55.9 1S o Pos

35+ B=0.7 i

,

p Rank-1 | Rank-5 | Rank-10 | mAP 251 1
1.1 x 1073 | 78.7 87.6 89.6 55 20 | | | | | | L | | |
1.3x1073(79.6 [89.8 |92 56.2 2 4 68 0 1214 16 1820
Iteration
1.5 x 1073 | 81 90.9 92.7 58.6
_ FIGURE 6. mAP curves with different 3: the mAP performance curves with
3
L.7x 10 81.2 91.3 932 59.1 different value of 3 during 20 iterations are showed. 8 = 0.05,0.1,0.3,0.5
2.0 x 1072 [80.4 90.4 92.1 58 ,0.7 are test respectively.
2.2x 1073|788 88.1 91.8 55.6
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FIGURE 5. Rank-1 curves with different 3 : it shows the Rank-1 performance
curves with different value of 8 during 20 iterations. 8 = 0.05,0.1,0.3,0.5
, 0.7 are tested respectively.

5, Figure 5 and 6, performance changes with different pa-
rameter 5 and best performance can be gotten when 8 = 0.1.
Table 6, Figure 7 and 8 show the performance of different
value of p. We change p from 1.1 x 1073 to 2.2 x 1073,
Because the dataset is very large, small change of p will have
a large impact on the accuracy. In our test, it achieves the best
performance when p = 1.7 x 1073 .

D. COMPARISON WITH STATE-OF-THE-ART
UNSUPERVISED MODELS

We compare our UHPS with the state-of-the-art unsuper-
vised models for person re-identification on Market1501 and
DukeMTMC-reID in Table 7 and Table 8 respectively. The
models include SPGAN [13], TJ-AIDL [7], MMFA [58],
HHL [8], ARN [12], PDA-Net [15], MAR [57], ENC [14],

VOLUME 4, 2016

FIGURE 7. Rank-1 curves with different p: the Rank-1 performance with
different value of p. p = 1.1 x e™3, 1.3 x 7%, 1.5 x e7%, 1.7 x 72,
2.0 x e73,2.2 x e~ are tested repectively.

UDA [54] and SSG [38]. Because we mainly discuss the
performance improvement caused by fusing the pyramid
similarity learning into an unsupervised deep learning frame-
work and no other strategies are used, the models that having
other strategies to improve the performance are not chosen
to compare with our proposed method. The most related and
newest work is SSG. Note strategies such as co-teaching can
also be combined to our method and better performance will
be obtained.

It can be observed that the performance drops largely when
directly transferring the model trained on the source dataset
to target set. Specifically, the supervised baseline trained on
DukeMTMC-reID achieves 93.2% in rank-1 accuracy and
80.7% in mAP when tested on DukeMTMC-reID, but it
drops to 50.7% and 23.9% when directly transferring to Mar-
ket1501. A similar drop can be observed when directly trans-

9
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FIGURE 8. mAP curves with different p: the mAP performance curves with
different value of p during 20 iterations are showed. In the experiment,
p=11xe 3 13xe 3 15xe 2 1.7xe 3,20xe 3 22xe 3are
tested repectively.

ferring the model trained by Market1501 to DukeMTMC-
relD. Although all the unsupervised domain adaptation meth-
ods shown in Table 7 and Table 8 are proposed to reduce
this performance drops, our UHPS outperforms all of them
in Rank-1, Rank-5, Rank-10, and mAP.

Comparisons between UHPS and state-of-the-art ap-
proaches on Market1501 are shown in Table 7. The results
show that our UHPS is the best method and achieves the
Rank-1 accuracy of 81.2% and the mAP of 59.1%. The
second best method is SSG, which is also based on partial
similarity learning. However, it splits the feature maps into
the pre-defined two parts. In contrast, our UHPS splits the
feature maps according to the pyramid scales, which is more
robust. As can be seen in Table 7, our result is 1.2%and 0.8%
higher in terms of Rank-1 accuracy and mAP when compared
to SSG.

Person re-identification results on DukeMTMC-RelD are
shown in Table 8. The dataset has eight different cameras
and the size of person bounding box varies largely across
different camera views. Our UHPS still has the best perfor-
mance on this challenging dataset and achieves the Rank-1
accuracy of 73.8% and the mAP of 54.4%. Compared with
the second best unsupervised method, our result is 0.8% and
1.0% higher on Rank-1 accuracy and mAP respectively.

From the experiments on the two challenging datasets,
the effectiveness of the proposed UHPS can be successfully
verified. In additon, we also test the stability of our proposed
algorithm by runing the algorithm for 5 times on Market1501
dataset, the fluctuation range of rank-1 accuracy and mAP are
80.8 £ 0.9 and 58.8 £ 1 respectivly .

V. CONCLUSION

In this work, we fuse the horizontal pyramid similarity learn-
ing into the unsupervised cross-domain adaptive person re-
identification framework. The horizontal pyramid segmen-
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TABLE 7. Performance comparisons on Market1501 with the state-of-the-art
unsupervised cross-domain adaptive person re-ID methods(Source:
DukeMTMC-relD)

Method Rank-1 |[Rank-5 |Rank-10 | mAP
Supervised baseline | 93.2 97.9 98.6 80.7
Direct transfer 0.7 7.7 4 39

SPGAN [13] 57.7 75.8 82.4 26.7
TJ-AIDL [7] 58.2 74.8 81.1 26.5
MMEFA [58] 56.7 75 81.8 274
HHL [8] 62.2 78.8 84 314
ARN [12] 70.3 80.4 86.3 394
MAR [57] 67.7 81.9 - 40

ENC [14] 75.1 87.6 91.6 43

PDA-Net [15] 74.2 86.3 90.2 47.6
UDA [54] 75.8 89.5 93.2 53.7
SSG [38] 80 90 92.4 583
UHPS 81.2 91.3 93.2 59.1

TABLE 8. Performance comparisons on DukeMTMC-relD with the
state-of-the-art unsupervised cross-domain adaptive person re-ID
methods(Source: Market1501)

Method Rank-1 |Rank-5 |Rank-10 | mAP
Supervised baseline | 83.2 92.7 94.5 71.2
Direct transfer 0.7 53 3 1.9
SPGAN [13] 46.4 62.3 68 26.2
TJ-AIDL [7] 443 59.6 65 23
MMEFA [58] 453 59.8 66.3 24.7
HHL [8] 46.9 61.0 66.7 272
ARN [12] 60.2 73.9 79.5 334
MAR [57] 67.1 79.8 - 48
ENC [14] 63.3 75.8 80.4 40.4
PDA-Net [15] 63.2 77 82.5 45.1
UDA [54] 68.4 80.1 83.5 49.0
SSG [38] 73 80.6 83.2 53.4
UHPS 73.8 81.4 84.1 54.4

tation of the feature map can help obtain the discriminative
information from coarse to fine and finally form a more ro-
bust feature representation. The horizontal pyramid similarity
learning that considers both the similarity between the source
domain and target domain and the internal similarity of target
domain also improves the performance. Extensive ablation
studies and comparisons demonstrate the effectiveness of
the proposed method. Due to the limitation of hardware
resources, the proposed method are not tested on more back-
bone architectures, which will be done in the future.
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