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Preface

CARS 2021 and Rethinking the Hospital and OR

of the Future

In addition to the traditional CARS topics and presentations, this

year’s CARS Congress is revisiting and widening its scope towards

both, the Digital Operating Room of the Future and the Hospital of

the Future. This is expressed in the CARS 2021 overall theme:

‘‘Rethinking the Hospital and OR’’.

In past CARS Congresses these themes have been addressed only

as focused events, the ‘‘Hospital of the Future’’ as early as in 1995 [1]

and the ‘‘OR 2020—The Operating Room of the Future’’ in CARS

2004 in close cooperation with Kevin Cleary and other colleagues in

the USA [2], see Fig. 1. This resulted for example, also in the

foundation of WG 24 DICOM in Surgery and the IHE Surgery

domain.

CARS being mainly concerned about the presence and future of

the clinical domains of radiology and surgery recognizes, however,

that fundamental developments in IT impact not only these two

specific disciplines, but also the hospital of the future and even the

healthcare system as a whole, in which radiology and surgery are

expected to play a major role.

Specifically, the goal of a newly established workshop for CARS

2021 ‘‘OR 2030 and Beyond’’ is to identify the clinical and technical

requirements for the next generation operating room. OR 2030 is a

sequel to OR 2020 [2] but also addressing themes of related devel-

opments. The next 10 years with the horizon of 2030 are selected as a

target timeframe, but with a possible glance also at what might be

expected beyond this period. Below are some of the proposed themes

the OR 2030 initiative will focus on in corresponding four working

groups:

• Group 1: Surgical robotics.

• Group 2: Intraoperative imaging.

• Group 3: Surgical informatics.

• Group 4: Machine intelligence.

Surgical robotics

Advanced robotic systems for surgery continue to develop and will no

doubt play a larger role in the future operating room. Robotic devices

may also be one part of the digital ‘‘surgical cockpit’’ of the future.

These devices may also be integrated with advanced imaging

modalities or even be controlled by imaging data. This group will

discuss these and related topics.

Fig. 1 Surgical workflow simulation in a virtual OR [2]
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Intraoperative imaging

Intraoperative imaging is becoming more and more widely used in the

operating room, from the ubiquitous C-arm to advanced systems such

as cone-beam CT and intraoperative MRI. This group will discuss

existing and new imaging modalities, including novel visualization

methods and tools, and their role in the operating room. Image fusion

and the use of multi-modality imaging will also be covered.

Surgical informatics

Surgical informatics is the collection, organization, and retrieval of

biomedical information relevant to the care of the patient. This topic

will not only include surgical data science but also surgical workflow,

since a starting point for analyzing surgical procedures could be the

workflow, and corresponding surgical simulation for education and

training. Standards and common interfaces, including communica-

tions architectures for the OR, should also be discussed here.

Machine intelligence and CARS

As computational power, the availability of data sets, computational

modeling methods and tools, and algorithmic advances continue to

increase, machine intelligence is playing a large role in medicine.

This working group will discuss how these advances will impact the

future surgical workflow, surgical simulation, and the operating room.

Synergistic interaction and collaboration between humans and intel-

ligent machines is expected to be the major focus of this group.

In addition to the above workshop activities, some members of the

CARS community have also been concerned about healthcare

strategies for the employment of modern technologies, which aim at

striking the right balance between quality, access for all and cost of

healthcare [1], i.e. ‘‘The Iron Triangle of Health Care’’. Developments

in technology relating to CARS greatly influence the result of these

endeavours, but other factors coming from economics, hospital

management and architecture, sociology, epidemiology, philosophy,

etc. must also be considered.

If these observations deserve high importance ratings, it may be

opportune to design and investigate possible future healthcare sce-

narios for different points in time. Specifically, to address those

questions with respect to CARS that provoke thoughts on the future of

healthcare for all stakeholders involved, i.e. the healthcare providers,

healthcare industry and patients. Below are some examples of major

themes and corresponding working groups which are planned to

become part of CARS 2021 and beyond:

• Group 1: Smart Hospital.

• Group 2: Cross-disciplinary Care.

Smart hospital

With the implementation of intelligent sensors, trackers, natural lan-

guage and gesture processing systems that are based on digital

infrastructure information, a smart and assistive hospital becomes a

realizable prospect. This group will not only discuss what type of data

would be of particular interest and by which means information and

knowledge (i.e. appropriate models) could be gathered, but also how

intelligent systems based on these categories of understanding could

improve patient care, or how they could impact the work profile of

healthcare workers.

Cross-disciplinary care

The integration of different disciplines to improve patient care pays

off not only in the operating room, e.g. during hybrid approaches, but

is also proven efficient for other indications, for example for trauma

management. Reuniting different medical fields and orchestrating

them for the realization of patient centered approaches could revo-

lutionize healthcare. This would require assistive methods and tools, a

modification of the hospital design as well as platforms for cross-

disciplinary collaboration, see Fig. 2. This group will discuss these

and related topics.

Finally, we should like to thank the enablers of the hybrid CARS

2021 Congress, in particular our Munich colleagues Nassir Navab,

Hubertus Feussner, Daniel Ostler, Alois Knoll and Tim Lüth and all

their assistants, but also the authors who submitted a video version of

their presentations. As we expect a stimulating discussion on the

aforementioned topics during the virtual part of CARS 2021 Con-

ference, we look forward continuing the discussion (in-presence) on

the ‘‘Hospital and OR of the Future’’ in subsequent workshops (ex-

ploratory) later in the year 2021 and beyond.

Heinz U. Lemke, PhD and Dirk Wilhelm, MD

Munich, May 2021
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Miguel Á. González Ballester, PhD
ICREA-Pompeu Fabra University, Barcelona (ES)

Makoto Hashizume, MD, PhD, FACS
Kitakyushu Koga Hospital, Fukuoka (JP)

Yoshihiko Hayakawa, PhD
Kitami Institute of Technology, Hokkaido (JP)

Javier Herrero Jover, MD, PhD
Centro Médico Teknon, Barcelona (ES)

David Hilderbrand
Lakeway, TX (US)

Pierre Jannin, PhD
University of Rennes (FR)

Leo Joskowicz, PhD
The Hebrew University of Jerusalem (IL)

Shoji Kido, MD, PhD
Osaka University Graduate School of Medicine (JP)

Heinz U. Lemke, PhD (Chair)
International Foundation for CARS, Kuessaberg (DE)

Kensaku Mori, PhD
Nagoya University (JP)

Yoshihiro Muragaki, MD, PhD
Tokyo Women’s Medical University (JP)

Nassir Navab, PhD
Technical University Munich, Garching (DE)

Terry M. Peters, PhD
Robarts Research Institute, London, ON (CA)

Osman M. Ratib, MD, PhD, FAHA
University Hospital of Geneva (CH)

Hans G. Ringertz, MD, PhD
Karolinska Hospital, Stockholm (SE)

Yoshinobu Sato, PhD
Nara Institute of Science and Technology (JP)

Ramin Shahidi, PhD
Stanford University Medical Center (US)

Akinobu Shimizu, PhD
Tokyo University of Agriculture and Technology (JP)

Gabriele von Voigt, PhD
Leibniz University Hannover (DE)

Dirk F. Wilhelm, MD
Klinikum rechts der Isar der TUM, Munich (DE)

Hiroyuki Yoshida, PhD
Harvard Medical School, Boston, MA (US)

Int J CARS (2021) 16 (Suppl 1):S1–S119 S5

123



Past Presidents

CAR ‘89 Heinz Oeser, MD
Berlin (DE)

CAR ‘91 Auguste Wackenheim, MD
Strasbourg (FR)

CAR ‘93 J. Oscar M.C. Craig, MD
London (GB)

CAR ‘95 Alexander R. Margulis, MD
San Francisco (US)

CAR ‘97 Takahiro Kozuka, MD
Osaka (JP)

CAR ‘98 Herbert Kaufmann, MD
Berlin (DE)

CARS ‘99 Raffaella de Dominicis, MD
Florence (IT)

CARS 2000 Pierre Rabischong, MD, PhD
Montpellier (FR)

CARS 2001 Toyomi Fujino, MD, PhD
Tokyo (JP)

CARS 2002 Kiyonari Inamura, PhD
Hyogo (JP)

CARS 2003 H.K. Huang, DSc, FRCR (Hon.)
Los Angeles, CA (US)

CARS 2004 Karl-Heinz Höhne, PhD
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Purpose

The development of techniques for dose reduction is a major research

topic in CT imaging, as it reduces the potential risk of cancer

induction from CT radiation. To reduce the CT dose it is necessary to

lower the overall photon count. However, this leads to a deterioration

of image quality, as the acquired projection data is noisy. Classical

iterative reconstruction algorithms are able to provide images of

increased quality compared to a conventional filtered back projection

(FBP). However, they do not perform robustly with heavily under-

sampled data and the computation is time-intensive due to repeated

forward and back projection operations.

We present a fast end-to-end deep learning reconstruction method

trained on the Low-Dose Parallel Beam (LoDoPaB)-CT challenge

dataset [1]. The network performs the entire image reconstruction

from the sinogram to the image. The network imitates all typical steps

of a conventional image reconstruction. The sinogram is refined and

filtered before being back projected into the image space, where the

images are further refined. We compare the reconstructions of our

network to the FBP and to a learned iterative method called Learned

Primal–Dual, which won the LoDoPaB-CT challenge.
Methods

The concept of our network is based on the iCT-Net by Li et al. [2],

which in turn is inspired by the common filtered back projection. The

reconstruction process is learned end-to-end, i.e. the network input is

the sinogram and the output is the reconstructed image. The full

network architecture is displayed in Fig. 1.

First, disturbances in the raw measurement data, such as excessive

noise or beam hardening, are suppressed as much as possible via

3 9 3 convolutions (refining layers). Using 10 9 1 convolutions, the

corrected sinogram is then filtered (filtering layers). The filtered

sinogram has the same size as the input sinogram. Afterwards, a back

projection step projects the refined and filtered sinogram data into the

image space. This is realized by a d 9 1 convolution with N2 output

channels without padding, where d is the number of detectors in the

sinogram and N is the output image size. This convolution corre-

sponds to a fully connected layer for each viewing angle, as it

connects every detector element with every pixel in the image space.

Thus, this network can be trained with sinograms acquired with dif-

ferent beam geometries, such as fan beam and parallel beam.

Afterwards, the results for each view are reshaped to NxN sized

images and rotated according to the acquisition angle. The rotated

images are linearly interpolated and cropped to maintain an image

size of NxN. The back projected image is then obtained by combining

all views with a 1 9 1 convolution. Finally, a U-Net is used for

further refinement of the image output.

As training data for our network we used the 35,820 sample pairs

of the publicly available LoDoPaB dataset. A sample pair consists of

a 362 9 362 pixel CT image and a low-dose sinogram with 513

projection beams in parallel-beam geometry and 1000 projection

angles. Simulated Poisson-distributed noise was added to the sino-

gram based on a photon count of 4096 per detector pixel before

attenuation. To considerably lower the GPU memory requirements,

we downsampled the sinograms to 500 projection angles. Training

was performed with a SSIM loss function. The reconstructions were

evaluated using the peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM) on 3678 challenge sample pairs.
Results

In Fig. 2 a reconstructed slices using the filtered back projection and

our network are compared to the ground truth. The FBP is very noisy

due to the noise in the sinogram data. In contrast, the reconstruction of

our network is virtually noise free, as can be seen by the homoge-

neous liver. Slight over-smoothing is observed, which might lead to

blurring of objects. To avoid this, we will consider to reduce the

impact of the U-Net in the future. The SSIM and PSNR evaluation

metrics for the FBP, our network and Learned Primal–Dual are shown

in Table 1. Much higher SSIM and PSNR demonstrate that our net-

work provides superior reconstructions compared to the FBP. While

our network is only slightly worse than Learned Primal–Dual in terms

of SSIM, the PSNR is substantially lower. The quality of our

reconstruction could be increased if we used the full 1000 views

instead of only 500. Furthermore, for training we only used the

simulated noisy sinograms of the LoDoPaB dataset. To enhance the

performance of our network, the (non-public) noiseless sinograms

could be used to pre-train the refining and filtering layers. Although

our approach slightly underperformed compared to a state-of-the-art

method for high noise scenarios, we expect our network to provide

competitive results even with very sparse projection data. We will

investigate this in a subsequent study.

Fig. 1 End-to-end CT reconstruction network architecture

Fig. 2 Reconstructions using the filtered back projection and our

network compared to the ground truth

Table 1 SSIM and PSNR evaluation metrics for different recon-

struction techniques

Method PSNR : SSIM :

FBP 30.2 ± 2.6 0.73 ± 0.13

Our network 33.7 ± 2.8 0.85 ± 0.12

Learned primal–dual 36.3 ± 3.7 0.87 ± 0.12
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Conclusion

We presented an end-to-end deep learning CT reconstruction algo-

rithm, which was superior to a common FBP for low-dose image

reconstruction. In the future the ability of the network to mitigate

metal artefacts will be investigated, by training it with sinograms

containing simulated metal signals.
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Purpose

This paper proposes an unsupervised super-resolution (SR) method,

which increases clinical CT resolution into the micro-focus X-ray CT

(lCT)-level. Due to the resolution limit of clinical CT, it is chal-

lenging to observe pathological information at the alveoli level. lCT

scanning allows the acquisition of lung with much higher resolution.

Thus, SR of clinical CT volumes to lCT-level is expected to help

diagnosis of lung disease.

Typical SR methods require pairs of low-resolution (LR) and high-

resolution (HR) dataset for training. Unfortunately, aligning paired

clinical CT (LR) and lCT (HR) volumes of human tissues is infea-

sible. Thus, we resuire an unsupervised SR method, which utilizes

unpaired dataset of LR an HR images. Previous unsupervised method

named SR-CycleGAN [1] is be hard to convergence in the training

phase, because SR-CycleGAN needs to perform SR and domain

translation in a single network. We tackle this problem by proposing a

two-stage approach. First stage is building corresponding lCT and

clinical CT pairs dataset by synthesizing clinical CT volumes from

lCT volumes. Second stage, we use simulated clinical CT—lCT

volume pairs from the dataset to train an FCN (fully convolutional

network) for SR of clinical CT volumes. Proposed method outper-

formed SR-CycleGAN both quantitatively and qualitatively.

The contributions of our proposed method are: (1) trans-modality

super-resolution from clinical CT to lCT-level utilizing synthesizing

training dataset and (2) an SR approach for clinical CT to lCT-level

that works without any paired clinical CT—lCT data.

Methods

Overview
Given a set of clinical CT volumes and lCT volumes, the method

would learn to perform SR of a clinical CT volume x into a lCT—

like SR volume xSR. The method consists of two stages. The first

stage is building synthesized clinical CT—lCT dataset D using a

synthesizing network. The second stage is a SR network trained on

the dataset D, which learns a mapping from clinical volumes x (LR

volumes) to lCT volumes y (HR volumes).

For inference, a clinical CT volume x is input into the SR network

and we will obtain volume xSR as the SR output.

Stage 1: Building synthesized clinical CT—lCT dataset

We design a synthesizing network which generates synthesize clinical

CT-like volumes from lCT volumes. The synthesizing network is

designed following CycleGAN [2] with additional loss terms based on

SSIM. We train the synthesizing network using clinical CT and

downsampled lCT volumes. We use trained synthesizing network for

synthesizing clinical CT-like volumes x’ from lCT volumes y. Large

amount of paired x’ and y forms synthesized clinical CT—lCT

dataset D.
Stage 2: Training SR network using synthesized clinical CT—

lCT dataset
By building synthesized clinical CT—lCT dataset D, we are able to

train a SR network f using clinical CT-like volumes x’ as input and

lCT volumes y as corresponding ground truth. We use an FCN as the

network for SR. We use pixel-wise l2 loss as loss function between

network output f(x’) and ground truth y to train the network.

To perform SR of a clinical CT volume, the clinical CT volume is

splitted into patches of n 9 n (pixels) as input into trained SR net-

work. Then we obtain SR output of 8n 9 8n (pixels). We combine

multiple SR outputs as the final SR result of the whole CT volume.
Results

In stage 1, we used eight clinical CT volumes and six lCT volumes.

In stage 2, we used nine lCT volumes. For training each network in

stage 1 and stage 2, 2000 2D patches were extracted from each

clinical CT and lCT volume. The clinical CT volumes were acquired

from lung cancer patients, with resolution 0.625 9

0.625 9 0.6 mm3/voxel. The lCT volumes were of lung specimens

resected from lung cancer patients, with resolutions in the range of

(42–52) 9 (42–52) 9 (42–52) lm3/voxel. We implemented our

proposed method with PyTorch.

The size of patches extracted from the clinical CT volumes were

set as 32 9 32 pixels, while patches extracted from the lCT volumes

were set as 256 9 256 pixels. SR was conducted eight-times

enlargement for each axis (32 9 32 to 256 9 256 pixels).

We utilized two clinical CT volumes for qualitative evaluation.

We compare the SR results with the previous method SR-CycleGAN

[1]. We used four lCT volumes for quantitative evaluation, as shown

in Table 1. The qualitative results are shown in Fig. 1. Compared

with the SR-CycleGAN, the edge of tube structures are clearly shown

in the SR results of the proposed method.

Table 1 Quantitative evaluation of previous method [1] and proposed

method

Previous method [1] Proposed method

PSNR 11.79 13.2

SSIM 0.36 0.68
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Conclusion

We proposed a SR method from clinical CT volumes to lCT level

with synthesis of the training dataset. To the best of our knowledge,

our proposed method is the first study that performs unsupervised SR

with synthesized dataset.

Future work includes introduction of a more precise quantitative

evaluation approach. Quantitative evaluation approach was conducted

by evaluating how well synthesized clinical CT can be reconstructed

to lCT. We plan to make clinical CT—lCT volume pairs by taking

clinical CT volumes of lung specimen.
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Purpose

With the development of a growing number of Artificial Intelligence

(AI) and autonomous image analysis tools, there is a growing need for

IT platforms that provide a structured approach to data management

and communication of curated imaging data that can serve for

development and testing of a new generation of Deep Learning AI

tools. Our goal was to develop an image archiving platform for

DICOM and non-DICOM data that can be well referenced and

retrieved using a classifier tool based on an ontology that can be

adapted and designed to explicitly define all the information that is

used for different analysis and research protocols.
Methods

A tailored implementation of such a model was developed for a

platform dedicated to sharing imaging data, along with the associated

dosimetric data pertaining to the radiation doses absorbed by specific

organs. This platform called Imaging and Radiation Dose Biobank

(IRDBB) was designed to support a multicentric European project

(MEDIRAD ref.) for the development and validation of simulation

models to measure the effects of low radiation dose in the context of

medical procedures, see Fig. 1. An interactive platform allows users

to assign specific ontology References to each dataset by which the

data can be retrieved in selected cohorts based on a well-defined

syntax.
Results

A first instance of such a model was implemented to host imaging

data and analysis results in a common sharable database.

This IRDBB platform consists of the following components:

• A web server (IRDBB_UI) which manages user features for

uploading of images and database requests;

• The open-source KHEOPS image archive platform that also

provides DICOMweb access to the images for third-party analysis

software and results reporting systems.

• A FHIR repository used to manage non-DICOM data;

• A semantic data manager, referred to as the Semantic Translator,

used to translate the metadata of the imported images into a

semantic graph whose elements (i.e. nodes and arcs) are classified

according to the OntoMEDIRAD ontology designed specifically

to standardize the semantics of information used by the

MEDIRAD project;

• A semantic database implemented using the Stardog3 RDF

triplestore;

• An Identity and Access Manager (IAM) implemented using

Redhat’’s Keycloak software.

Data generated by different groups of the project as well as results

derived from specific analysis and modeling tools are hosted on the

IRDBB server and can be retrieved through specific query templates

based on the defined ontology.

A special extension to the platform called the ‘‘Report Provider’’

allows selected sets of data to be used by a remote server that

Fig. 1 SR results of proposed method and previous method (SR-

CycleGAN). Upper half: generating synthesized clinical CT from

lCT and training the SR network. Lower half: SR results. Compared

with SR-CycleGAN, the edges of tube structures such as bronchus are

clearly shown in the results of the proposed method (red arrows)

Fig. 1 General architecture of IRDBB architecture
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performs specific analysis or processing functions that may return

results in different format (i.e. graphs, tables, derived images or

DICOM structured reports). This mechanism was specifically

designed to allow data to be sent and processed by remote AI or

image processing platforms.
Conclusion

The current implementation of our model of curated imaging data for

research and machine learning has shown its ability to serve for

multidisciplinary research and for the development of analysis tools

on a variety of imaging data. It demonstrates the need for classifi-

cation and curation of imaging data based on a standard ontology that

defines the semantics used to query and retrieve data for specific

research purposes. The web-based KHEOPS archive provides con-

venient access to the imaging data as well as web-services destined to

analysis and AI tools residing on remote platforms.

This work serves as a proof of concept of a new architecture of

large imaging databases (Big Data) that are becoming essential for

future developments of AI and machine learning systems.
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Purpose

Three-dimensional (3D) representations of objects help us intuitively

understand their shapes. The 3D representation of medical images

obtained using several modalities, including computed tomography

(CT) and magnetic resonance imaging, is indispensable for morpho-

logical and anatomical diagnoses and surgical treatments. However,

organs with complicated structures, such as vasculatures, remain

difficult to observe even if they are three-dimensionally displayed on

an ordinal two-dimensional (2D) monitor. This is because their depth

of the 3D representations is hardly recognized on the 2D monitor. A

head-mounted display (HMD) is often used for medical purposes,

such as image guidance and augmented reality in surgery. One of the

advantages of using the HMD is to represent objects stereoscopically

such that their depth can be easily recognized. In our previous study,

we proposed a vascular virtual handling system [1] using which

physicians can observe the vasculature stereoscopically using the

HMD as the blood vessels appear more realistically, and handle blood

vessels using a 3D pointing device for endovascular intervention

assistance. An experiment to find a pseudo lesion embedded into the

cerebral artery showed that the visibility of this system for vascular

observation was superior to that of the system using an ordinal 2D

monitor instead of the HMD [2]. This result indicates that the

stereoscopic representation effectively represents objects with com-

plicated structures such as vasculatures. This paper investigates the

visibility of the HMD for vascular observation in more detail through

an experiment similar to that in our previous study. Particularly, the

relevance of the lesion size to the visibility of the HMD was inves-

tigated using pseudo lesions of three different sizes.
Methods

The HMD used in this study has a sensor to track head movement so

that the user’s viewpoint can change according to the head position

and its attitude. Changing the viewpoint provides a sense of reality as

if the blood vessels appear to be realistic such that the blood vessel is

intuitively observed. In this study, the visibility of the HMD for

vascular observation was investigated through an experiment to find a

pseudo lesion embedded into the cerebral artery as shown in Fig. 1.

The pseudo lesion was a cube with an edge length that was 0.9 times

larger than the blood vessel’s diameter at the position. Pseudo lesions

of three different sizes were used in this study to investigate the

relevance of the lesion size to the visibility of the HMD. The edge

length of the small, medium, and large pseudo lesions were approx-

imately 2, 4, and 6 mm, respectively. An examinee sought the pseudo

lesion by translating, rotating, and scaling the vasculature. The time

taken by the examinee to find the pseudo lesion was used as a measure

of visibility. The examinees included 12 males and females in their

twenties who were students in the department of science and engi-

neering, not medicine. The same experiment was carried out using the

2D monitor instead of the HMD to compare the visibility of the HMD.

Six examinees used the HMD before using the 2D monitor, while the

other six examinees used the 2D monitor before using the HMD,

considering the habituation effect. The display resolutions of the

HMD and the 2D monitor were 1080 9 1200 pixels per eye and

1920 9 1080 pixels, respectively.
Results

Table 1 shows the average times taken for the 12 examinees to find

the pseudo lesions of the three different sizes using the HMD and the

2D monitor. The time taken for the examinee to find the small-sized

pseudo lesions using the HMD was significantly shorter than that

using the 2D monitor (p\ 0.05). The times taken for the examinee to

find the pseudo lesions of the other two sizes using the HMD were not

significantly different from those using the 2D monitor, suggesting

that smaller objects are more visible when using the HMD than the

2D monitor. This might be because the stereoscopic representation of

objects by the HMD enables depth recognition of objects.
Conclusion

This study investigated the visibility of the HMD for vascular

observation through an experiment to find pseudo lesions of three

different sizes embedded into the cerebral artery using the HMD. The

time taken to find the small pseudo lesion using the HMD was

Fig. 1 Cerebral artery and embedded pseudo lesion (inside red

circle)

Table 1 Average times (mean [s] ± standard deviation) taken by the

12 examinees to find the pseudo lesions of three different sizes using

HMD and 2D monitor

Size of lesion Small sizea Medium size Large size

HMD 90.4 ± 69.9 67.5 ± 87.0 40.6 ± 67.3

2D monitor 218.7 ± 192.0 50.6 ± 52.9 54.0 ± 51.6

a p\ 0.05
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significantly shorter than that using the 2D monitor, suggesting that

the stereoscopic representation is effective for observing small deli-

cate objects such as the vasculature. This finding indicates that the

HMD is also useful for the diagnosis of medical images. We aim to

investigate the availability and superiority of the HMD to the 2D

monitor in observing medical images for diagnosis and surgery under

a more realistic clinical situation in the future.
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Purpose

This works aims to provide pathologists with real-time use of ana-

lytical chemistry in histopathologic studies, with specific application

to breast cancer. Breast cancer is one of the most common forms of

cancer among women in North America. Although lumpectomies are

a generally successful procedure, the current absence of intraoperative

margin analysis has resulted in a high re-excision rate for the surgery.

Desorption electrospray ionization [1] is a method for Mass Spec-

trometry Imaging (MSI) that enables rapid analysis of tissue under

ambient pressure and without causing damage to the tissue. A large

challenge with the processing of MSI results is the sheer volume of

data produced; an MSI scan of a 5 mm 9 5 mm tissue sample may

have 500 9 500 9 1000 entries. This challenges typical pre-pro-

cessing techniques as well as the application of artificial intelligence

techniques in a precise and efficient manner. As a result, the majority

of MSI analysis for visualization has been univariate, investigating

individual molecules as potential biomarkers for breast cancer. Recent

work suggests application of multivariate techniques may assist in

tissue identification in the large dimensionality space. Our goal was to

implement dimensionality reduction techniques for MSI data to

achieve reduced computation times while maintaining the quality of

multivariate cancer versus benign tissue analysis. This could enable

real-time clinical applications of multivariate techniques for breast

cancer analysis and detection.
Methods

The data used for this study included 9 slices of thin excised breast

tumor from 8 patients for which we had both complete histology and

MSI data. The samples contained a mixture of cancerous and benign

tissue. The sizes of the images ranged from 170 9 122 pixels to

190 9 318 pixels. Each pixel of each MSI image initially contained

1000 mass–charge abundances. Alignment of mass spectra across the

images produced a single mass spectrum with mass–charge values

consistent across all samples; this increased the dimension of each

mass spectra to 3240 mass–charge abundances.

Seven reduction methods were extensively tested; the method we

present had the best performance in terms of amount of reduction and

computation time. The reduction began with decimation of the data

by removing the 90% least abundant mass–charge values across each

MSI acquisition. A graph clustering method in a proximal gradient

descent framework was performed on the decimated data to segment

the foreground, with background pixels removed. Non-negative

matrix factorization (NMF) with Nonnegative Double Singular Value

Decomposition (NNDSVD) initialization was performed on the

foreground pixels. The 15 most relatively abundant mass–charge

values from the top four components of the factorization were

selected as important features for tissue subspace identification. The

union of the important features of each sample formed the final fea-

ture space. The methods used in [2] were used to produce distance

maps for the reduced data to show the presence of benign and

malignant tissue in each image via multivariate analysis of the

reduced data.

The same pipeline, without reduction, was also performed on the

original, aligned data set referred to as the full data. Distance maps

were produced from the foreground pixels by using the same multi-

variate techniques that were used on the reduced data. The distance

maps were used as a control to compare the distance maps produced

by the reduced data. Comparison of the distance maps were made

quantitatively by calculating the mutual information (MI) similarity

value between the cancer components of the distance maps.
Results

Our method produced a 94% dimensionality reduction, reducing the

number of mass–charge abundances from 3240 to 197 abundances.

The reduction is visualized in Fig. 1. Mass–charge values greater than

640 Da were removed in the reduction while ions ranging from 77 Da

to 638 Da were selected as important features for tissue identification.

On a laptop computer, this produced a 75% reduction in total com-

putation time (Table 1) while maintaining quality of the distance

maps (Fig. 2). Statistical comparison via MI of the distance methods

are presented in Table 2. The MI value was on average 0.98 and did

not decrease below 0.93, suggesting nearly identical distance maps

between full data and reduced data.
Conclusion

This work demonstrated a dimensionality reduction pipeline for MSI

data that had very limited effects on multivariate analysis for tissue

identification. The reduction-selected 197 mass–charge values were

effective at distinguishing malignant from presumably benign tissue.

This unsupervised reduction method identified ions in the range of

77 Da to 638 Da as being important features for detection. The range

of selected mass–charge values suggests that fatty acids may play a

part in distinguishing benign and malignant regions in excised breast

tissue.

Table 1 Computation times, in s, for creating the distance maps with

the reduced data and with full data on a laptop computer

Computation time (s)

Reduced 531

Full 2244

Fig. 1 The mass–charge values in the full dataset and the reduced

dataset
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This work was conducted to investigate how dimensionality

reduction might enable decreased run time and clinical application of

MSI analysis. Future work could include using a larger sample size

and investigation of how a mix of cancer types performs with

dimensionally reduced data. This pipeline could be applied to other

tissue types to further investigate its applicability in a clinical setting.

The selected mass–charge values require further investigation,

preferably with analytical chemistry techniques, to investigate their

biological significance and potential for biomarker discovery. This

method could be used to implement fast run times without loss of

valuable information for tissue identification in breast cancer surg-

eries and to enable diagnosis in a clinical setting, which is yet to be

seen in breast cancer surgery.
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Purpose

To provide an Open-Source web-based platform for storage, com-

munication, wide distribution, processing and analysis of large

collections of medical images.
Methods

We developed an Open-Source framework to support open-access and

research repositories of medical images geared specifically toward

multi-centric collaborative initiatives featuring [1]:

• Fully DICOM-compliant image archive

• Open databank of medical images and multimodality imaging

biomarkers

• Facilitate sharing of curated and consented data between research

groups

• User-friendly cockpit for the management and sharing of images

by users

• Imbedded HTML5 viewer (OHIF) as well as links to popular

open-source viewers (OsiriX/Horos, Weasis)

• Open web-based APIs for developers of image analysis and data

mining tools.

Its highly secured and flexible cockpit allows user to manage and

exchange data through a simple paradigm of ‘‘shared albums’’ that

consists of subset of data from multiple sources. The use of unique

and revocable tokens allows users to manage and monitor the use of

their shared data. A companion data anonymization gateway (KAR-

NAK) was developed to allow template-based deidentification of

imaging data before exporting them from clinical settings to a

KHEOPS platform.
Results

This platform provides a flexible means for data sharing that gives

access to Big Data repositories for machine learning and Radiomics.

Its flexible cockpit allows user to easily handle and manage imaging

collections and to exchange them through a simple concept of ‘‘shared

albums’’. The use revocable tokens assigned by the owners of the data

allows to easily share and monitor the use of their shared data. Special

attention was given to facilitating the integration with existing insti-

tutional PACS as well as existing imaging databanks through a

customizable anonymization gateway called KARNAK. Each insti-

tution can thereby define its own templates of data anonymization

according to institutional rules and regulations defined by local ethic

committees for each research study.

This platform was already downloaded and installed in several

research centers and academic institutions worldwide. The platform

was implemented in academic hospitals together with KARNAK

anonymization gateway allowing researchers to gather cohorts of

imaging data extracted from clinical PACS networks.

Using a web-based, zero-footprint open source viewer (OHIF

viewer) the users can preview and analyze images from any imaging

modality (including pathology images) on any platform including

tablets and smartphones.

The platform architecture was specifically designed to allow

image analysis and AI tools to be easily implemented by facilitating

access to the image data through a simple interface allowing users to

send an encrypted token of a given image set to a remote analysis

process that can be hosted on a remote server to perform a specific

Table 2 A summary of the mutual information (MI) similarity val-

ues, calculated for each tissue sample

Mutual information

Min 0.9306

Max 0.9934

Mean 0.9742

Median 0.9832

Fig. 2 For three tissue samples: the top row contains the histology,

the middle row contains the distance maps produced from the full

data, the bottom row contains the distance maps produced from the

reduced data
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image processing return numerical or image-based results. Several AI

analysis tools developed by third party partners were tested through

this interface allowing the AI analysis process to remain on a dedi-

cated server with adequate processing and numerical capacity while

images remained on the local KHEOPS server.
Conclusion

The web-based KHEOPS platform accessible on any device provides

a cost-effective solution for securely hosting and sharing imaging data

for research. Its user-friendly cockpit interface allows researchers to

manage their own datasets and share them among selected community

of participants. This platform is already being adopted by different

national and international projects. It provides a cost-effective solu-

tion for securely hosting and sharing imaging data for research.
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Purpose

In endovascular aortic repair (EVAR) procedures, two-dimensional

(2D) fluoroscopy and conventional digital subtraction angiography

together with the administration of contrast agent is the gold standard

guidance for medical instruments inside the patient’s body. These

image modalities require X-ray exposure and the depth information is

missing. Moreover, contrast agent is potentially kidney damaging for

the patient. To overcome these drawbacks, a three-dimensional (3D)

guidance based on tracking systems and preoperative data is intro-

duced and evaluated using a realistic vessel phantom.
Methods

A model for obtaining the 3D shape position based on fiber optical

shape sensing (FOSS), one electromagnetic (EM) sensor and a pre-

operative computed tomography (CT) scan was developed. This

guidance method includes several steps. First the reconstructed shape

is located in the preoperative CT scan with the EM sensor. As a result,

the shape has the correct position and direction, but has the wrong

rotation along the direction. Then, the shape is prealigned to the

centerline path of the vessel to get an estimation of the correct

rotation. Finally, the shape is registered to the vessel volume to obtain

the accurate located shape. For evaluation, a stentgraft system (En-

durant II AAA, Medtronic, Dublin, Ireland) was used. After

dissembling it, a multicore fiber (FBGS Technologies GmbH) cov-

ered with a metallic capillary tube and one Aurora Micro 6 degree-of-

freedom EM sensor (length: 9 mm, diameter: 0.8 mm; Northern

Digital Inc.) was integrated in the front part. Moreover, a custom-

made phantom with a 3D printed vascular system was created. An

introducer sheath (Medtronic SentrantTM Introducer Sheath, Med-

tronic, Dublin, Ireland) was inserted into the right common femoral

artery of the phantom to facilitate the insertion of the stentgraft sys-

tem. In the experiment, the stentgraft system was inserted into the

aorta and pushed back approximately 2 cm steps between the mea-

surements. At those five insertion depths data measurements of the

tracking systems were done as well as image acquisitions for

obtaining the ground truth.
Results

In the five different measurements we obtained average errors from

1.81 to 3.13 mm, maximum errors from 3.21 to 5.46 mm and tip

errors from 2.67 to 4.58 mm for the located shapes obtained with the

guidance method. These errors are influenced both by the shape

reconstruction (average errors from 0.51 to 1.26 mm, maximum

errors from 1.00 to 4.05 mm) and the EM sensor accuracy

(1.13–1.50 mm). Due to twist introduced by the introducer sheath the

shape reconstruction errors are higher as in previous studies whereas

the EM sensor errors are comparable. Despite the twisted shape, the

errors of the located shape did not increase much for most mea-

surements in comparison to the errors of the reconstructed shape and

accurately located shapes were obtained with the introduced

approach.
Conclusion

In this work, a 3D guidance method for a stentgraft system based on

FOSS, the pose of one EM sensor and a preoperative CT scan was

introduced and evaluated in an realistic experiment. The evaluation of

the novel introduced guidance approach resulted in low errors and

these results are promising for using this approach as guidance in

EVAR procedures. Thus, future work will focus on further evalua-

tions of the developed guidance in EVAR procedures. For this

purpose, such an intervention will be conducted by navigating the

stentgraft itself. This would facilitate the stentgraft placement in

EVAR procedures.
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Purpose

Image registration is the process of determining a geometrical

transformation that aligns coordinates in two or more images so that

the attributes associated with different coordinates can be viewed and

analyzed jointly. It plays an increasingly important role in medical

image analysis due to its wide range of applications, including

tracking relative positions of instruments and anatomy during surgery,

integrating multimodal information like CT/MRI or atlas segmenta-

tion. Intensity based and handcrafted feature based methods are

commonly used traditional registration methods, but these processes
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are inconvenient and time-consuming. Recently, unsupervised deep

learning based methods show good performance and generalization

ability in many registration tasks, while they still face a big challenge

in dealing with multi-structure task [1, 2]. On the other hand, global

and local registration effects are hard to balance. Therefore we pro-

pose an end-to-end deep learning based unsupervised framework for

simultaneously affine and deformable image registration and evaluate

it on a 3D multi-structure registration task.
Methods

The proposed framework consists of two components: an affine net-

work used to learn global transformation for coarse registration and a

deformable network used to learn local deformation. The affine net-

work is a deep convolutional network, which could learn 12 affine

transformation parameters representing rotation, translation, scaling

and shearing between the original fixed image and moving image. In

order to enlarge receptive fields and get as much global information as

possible, more convolutional layers and down-sampling operations

are used in this network. Coarsely warped image is obtained by

warping the moving image with the learned affine transformation.

Next, a U-Net like deformable network is built to learn voxel-wise

registration deformable field and then get the finally warped image. In

the encoder stage, the network can learn and stack local features with

different resolutions. And in the decoder stage, successive deconvo-

lutional layers, convolutional layers and skip connections help the

network use different resolution features to predict the displacement

of each voxel. These two stages are then concatenated into an end-to-

end network. The detailed process is depicted in Fig. 1. The similarity

metric function can be mean square error (MSE) or normalized cross-

correlation (NCC). And the smooth regularization function works on

the gradients of deformable field. The overall loss function is

designed as the weighed sum of the similarity between coarsely

warped image and fixed image, smooth regularization and the simi-

larity between finally warped image and the same fixed image, since

every single part of the framework should be effective and the

deformable field should be smooth enough to prevent distortions.

Experiments are designed to evaluate the performance of our

framework. We include 30 hip CTs and evaluate on left femur, right

femur and pelvis respectively. In details, for each structure, we have

20 train data, 9 test data and 1 fixed data. Before training, random

affine transformation is done on train dataset for data augmentation,

which could greatly improve the effectiveness of affine registration.

Then in the training stage, all of input data pairs are centered first to

ensure that they have overlaps, which is beneficial for the optimiza-

tion process. Evaluation metrics used in our experiments includes

Dice similarity coefficient, average surface distance (ASD) and

residual mean square distance (RMS).

Results

Table 1 provides an overview of quantitative results for this multi-

structure task in which for each evaluation metric, Before, Affine and

Overall represent the corresponding values before registration, after

only affine transformation and the overall performance by our pro-

posed framework respectively. A mean overall Dice of 0.97 ± 0.01,

0.96 ± 0.01 and 0.92 ± 0.01 was found for left femur, right femur

and pelvis respectively. Notably, an obvious improvement is achieved

after the Affine transformation stage and the deformable part has a

further approximate 10% increase of Dice over Affine. Meanwhile

our method has an average 0.82 ± 0.12 mm, 1.05 ± 0.20 mm and

1.46 ± 0.21 mm ASD. Furthermore, an average RMS of

1.35 ± 0.17 mm, 1.57 ± 0.25 mm, 2.53 ± 0.31 mm was found for

the three different structures.
Conclusion

Image registration is always an important subject in medical image

analysis, but current registration methods still face challenges, such as

multi-structure tasks and simultaneously global and local registration.

We propose an unsupervised end-to-end affine and deformable reg-

istration framework to deal with different structure registration task.

Experiments have demonstrated the effectiveness and generalization

performance of our framework, which is mainly attributed to the

framework can learn global and local deformation at the same time.

And it has great potential to solve multi-structure registration prob-

lems. Even though we evaluated the framework on a 3D registration

task, it can actually solve n-D registration task. Above all, our pro-

posed framework has been proved to be effective to work as an

efficient tool for multi-structure medical image registration.
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Fig. 1 Schematic representation of the proposed end-to-end frame-

work for multi-structure registration. Three weighted losses are

computed to optimize the parameters, specifically including the

smooth loss of the deformable field, the other two similarity losses

between the fixed Image and the warped Image of StageIand Stage II.

Evaluation metrics including Dice, ASD, RMS

Table 1 Results of our experiments

Methods Left femur Right femur Pelvis

Dice Before 0.29 ± 0.16 0.34 ± 0.20 0.31 ± 0.12

Affine 0.90 ± 0.01 0.89 ± 0.01 0.76 ± 0.04

Overall 0.97 ± 0.01 0.96 ± 0.01 0.92 ± 0.01

ASD Before 14.22 ± 5.10 13.15 ± 5.79 11.11 ± 3.85

Affine 1.73 ± 0.29 1.82 ± 0.22 3.27 ± 0.41

Overall 0.82 ± 0.12 1.05 ± 0.20 1.46 ± 0.21

RMS Before 16.91 ± 5.84 15.87 ± 6.63 14.02 ± 4.41

Affine 2.29 ± 0.33 2.40 ± 0.25 4.34 ± 0.49

Overall 1.35 ± 0.17 1.57 ± 0.25 2.53 ± 0.31

For each metric with each structure, the table shows three evaluation

methods
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Purpose

This paper proposes an automated lung infection and normal regions

segmentation method from lung CT volumes of COVID-19 cases.

Novel coronavirus disease 2019 (COVID-19) spreads over the world

causing the large number of infected patients and deaths. The total

number of COVID-19 cases are more than 89 million in the world by

January 10, 2021. To provide appropriate treatments to patients, rapid

and accurate inspection method is required. Reverse transcriptase

polymerase chain reaction testing (RT-PCR) is commonly used to

diagnose COVID-19 cases. However, its sensitivity ranges from 42%

to 71%. In contrast, the sensitivity of chest CT image-based COVID-

19 diagnosis is reported as 97%. Therefore, CT image-based diag-

nosis is promising to provide accurate diagnosis results. To provide

more accurate and rapid diagnosis results to patients, computer aided

diagnosis (CAD) system for viral pneumonia including COVID-19 is

necessary. Such CAD system employs a segmentation method of

infection (ground-glass opacity and consolidation) and normal regions

in the lung. Segmentation results of them enables quantitative analysis

of lung condition.

We propose an automated segmentation method of infection and

normal regions from lung CT volumes of COVID-19 cases. Our

original contribution is proposal of a 3D fully convolutional network

(FCN) utilizing a local and global spatial feature encoder for accurate

segmentation of infection regions that have various sizes and shapes.

U-Net accurately segments lung normal regions because the shapes of

the regions are similar among patients. However, infection regions

have variations of sizes and shapes. Such variations are difficult to

learn by U-Net or common segmentation FCNs. We utilize 3D ver-

sions of dilated convolutions [1] and dense pooling connections [2] in

our 3D FCN to effectively encode spatial information to feature

values. By using our FCN, lung infection and normal regions are

accurately segmented.
Methods

3D FCN model for segmentation
Encoder-decoder style FCNs such as U-Net are commonly used in

segmentation. The encoder extracts feature values from images.

Commonly, convolution kernels of small sizes and max pooling are

used in encoders. However, use of small convolution kernels cause

loss of global spatial information. Furthermore, max pooling also

loses spatial information.

To reduce loss of such spatial information in the encoder, we

introduce dilated convolutions [1] and dense pooling connections [2].

We use 3D dilated convolutions of different dilation rates that are

connected parallelly (called as 3D dilated convolution block) to uti-

lize local and global spatial information. Our 3D FCN has 3D U-Net

like structure. We replace a 3D convolution layer in the encoder with

the 3D dilated convolution block. We also replace 3D max poolings

in the encoder with the 3D version of dense pooling connections to

reduce loss of spatial information.

3D FCN training
We employ a 3D patch-based process to reduce GPU memory use. CT

volumes for training are resized and clipped with 32 9 32 9 32

voxel strides to make 64 9 64 9 64 voxel patches. Data augmenta-

tions including translation, rotation, and elastic deformation are

applied to the patches. Pairs of patches of CT volumes and the cor-

responding annotation volumes are used to train the 3D FCN. The

annotation volume contains infection and normal regions in the lung,

and outside body regions.

Segmentation
A CT volume for testing is resized and clipped to 64 9 64 9 64

voxel patches. The patches are fed to the trained 3D FCN to obtain

segmentation result patches. The patches are reconstructed to obtain a

segmentation result in the same size as original CT volume.
Results

We applied the proposed segmentation method to 20 CT volumes of

COVID-19 patients. Specifications of the CT volumes are: image size

is 512 9 512 pixels, slice number is 56 to 722, pixel spacing is 0.63

to 0.78 mm, and slice thickness is 1.00 to 5.00 mm. Annotation

volumes were checked by a radiologist. In the training of the 3D FCN,

the minibatch size and training epoch number were set as 2 and 50.

The generalized dice loss was used as a loss function.

Fig. 1 CT image, ground truth regions, and segmentation results by

the proposed 3D FCN. Red and green regions are infection and

normal regions. Top and bottom columns show axial and coronal

slices

Int J CARS (2021) 16 (Suppl 1):S1–S119 S19

123



We evaluated segmentation performance in a fivefold cross vali-

dation. Dice coefficients of the proposed 3D FCN were 0.744 and

0.864 for infection and normal regions, respectively. As a compar-

ison, we used 3D U-Net as the segmentation model and obtained

0.732 and 0.840 for infection and normal regions. Segmentation

results by the proposed 3D FCN are shown in Fig. 1.

The proposed 3D FCN achieved higher segmentation accuracies

compared to the 3D U-Net. Image features of infection regions that

have large variations in their sizes and shapes are difficult to extract

by the encoder in the 3D U-Net. The use of dilated convolutions and

dense pooling connections improved feature extraction performance

of the encoder by utilizing local and global spatial features. Therefore,

we obtained higher segmentation accuracies by the proposed 3D

FCN.
Conclusion

We proposed an automated lung infection and normal regions seg-

mentation method from CT volumes of COVID-19 cases. We

developed a 3D FCN for segmentation that has an improved encoder

for feature extraction from regions that have various sizes and shapes.

3D patch-based process was employed in our segmentation to reduce

GPU memory use. In our experiments using 20 CT volumes of

COVID-19 patients, the proposed 3D FCN achieved higher seg-

mentation accuracies compared to the 3D U-Net. Future work

includes use of multiple patch sizes as the input of the 3D FCN and

improvement of the decoder in the 3D FCN.
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Purpose

Neovascular age-related macular degeneration (nAMD) is a retinal

disease that causes vision loss due to abnormal blood vessel growth

originating from the choroid. Injections of vascular endothelial

growth factor inhibitors can slow down this process and even lead to

amelioration of disease status. The monitoring of nAMD is performed

using opical coherence tomography (OCT). An algorithm that regis-

ters OCT images of different time points could help to detect changes

of pathologies and assist nAMD monitoring.

Due to the dynamic behaviour of the disease one patient’s status

may change drastically from one visit to another which leads to non-

corresponding regions in the OCT images. Intra- and subretinal fluids

(IRF and SRF), for example, are important biomarkers for nAMD

progression that appear as dark spots on OCT images. Direct regis-

tration of pathological images can lead to severe registration errors

since intensity differences are erroneously accounted for by image

deformations. We therefore present a convolutional neural network

(CNN) for joint registration and non-correspondence detection in

OCT images of nAMD patients. Our CNN registers intra-patient OCT

images from different time points and simultaneously segments

regions of missing correspondences. The network is trained using an

image distance measure, a regularizer and the Mumford-Shah func-

tional described in [1] as loss function and can handle a wide variation

of deformations. The resulting segmentations of non-corresponding

regions are shown to reflect pathological fluids inside the retina.
Methods

The proposed network for joint registration and non-correspondence

detection is a y-shaped U-Net. Both decoders are connected with the

encoder part of the network via skip connections. The first decoder

outputs a vector field that is interpreted as a stationary velocity field.

The matrix exponential of the vector field is calculated resulting in a

diffeomorphic transformation that warps the baseline image to match

the follow-up image. The second decoder outputs the segmentation of

non-corresponding regions which are excluded from the distance

computation during the registration. Input to the network are rigidly

pre-registered, corresponding B-scans of baseline and follow-up OCT

images.

Training is performed by minimizing a loss function composed of

the mean squared error image distance evaluated on corresponding

image regions (masking with the segmentation output), curvature

regularization to smooth the deformation field and another regularizer

favouring small segmentations with smooth boundaries according to

the Mumford-Shah functional [1].

Weak supervision during the training of the registration task is

introduced by an additional loss term that determines the Dice loss

between retina segmentations of follow-up and baseline [2]. The

segmentations were created by a medical expert who delineated the

inner limiting membrane and the Bruch’s membrane manually. No

manual segmentations are required for application of the trained

network.

The network is trained on 193 image pairs (9650 B-scans) from 42

nAMD patients for which the acquisition times of baseline and fol-

low-up image are no longer apart than five months. The images were

taken with a Heidelberg Spectralis OCT device with a B-scan reso-

lution of 496 9 512 pixels and cropped to the central 384 A-scans.

The data is split on patient level into training, validation and test

datasets. Five-fold crossvalidation is performed and for each fold the

network is trained for 300 epochs with a batch size of 10, Adam

optimization and a learning rate of 1e-4.
Results

The mean Dice score between the manual retina segmentations

improved from 0.903 before to 0.961 after the baseline was trans-

formed with the deformation output of the CNN. Our CNN is thus

able to improve the spatial alignment between OCT-images of the

same patient. The mean absolute error between the images improved

from 7.75e-2 to 5.54e-2. To evaluate the segmentation output of the

network, the mean absolute error between the registered images was

calculated inside and outside the segmented regions. The error was

5.28e-2 in the corresponding regions and 3.61e-1 in the non-corre-

sponding regions.

Figure 1 shows exemplar results of our registration and segmen-

tation network. The figure shows that, depending on disease activity,

the segmented regions either reflect growth or shrinkage of patholo-

gies like retinal fluids. For patients with pathologies that are only

visible in one of the images the segmentations directly align with

these pathologies. This shows great potential of our network to be

used for unsupervised pathology detection in retinal OCT images with

the advantage of generating sharply delineated segmentations.
Conclusion

We presented the first results of a CNN designed to simultaneously

register intra-patient OCT B-scans from different time points and
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segment regions where there is no correspondence between baseline

and follow-up image. We show that CNN-based registration of OCT

images profits from a Mumford-Shah segmentation of non-corre-

sponding regions, as previously described in [1] for a variational

registration approach. Our approach allows the end-to-end training of

the registration-segmentation task. The trained network allows fast

registration of OCT image slices and the resulting segmentations

align with pathology changes. Our approach shows great potential for

the monitoring of nAMD progression.
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Purpose

Optic disc (OD) assessment is essential for diagnosing glaucomatous

damage and progression. Automated OD segmentation systems can

handle a huge number of images and reduce human errors in

screening. The focus of this work is to develop a reliable, accurate,

and full automated system for segmenting OD in eye fundus images

collected from Hospital Sant Joan de Reus (SJR) based on deep

learning and ensemble techniques. The developed system has been

also validated on two public datasets to demonstrate its reliability.
Methods

To develop a reliable and efficient OD segmentation system, we

employ accurate individual deep learning-based segmentation models

and an aggregation function to determine the largest consistency

among the conflicting segmentation masks. As shown in Fig. 1, the

input image is fed into three individual OD segmentation models, and

then the resulting segmentation masks are aggregated to produce the

final segmentation mask (final prediction).

In this study, we developed three accurate OD segmentation

models based on state-of-the-art deep convolutional neural networks

(CNNs) for image segmentation. Specifically, three networks, namely

DoubleU-Net [1], DeepLabv3 ? , and gated skip connections (GSCs)

[2], are used here to build the individual OD segmentation models.

We briefly introduce each model below:

DoubleU-Net includes two U-Net stacked architectures in

sequence, two encoders, and two decoders. The first encoder and

decoder are used in the lightweight model VGG-19 and the second is

used in the U-Net network. DeepLabv3 ? is an extension of

DeepLabv3, which has a faster and stronger encoder-decoder network

that can refine the semantic segmentation results, especially along

with object boundaries. It can also extract feature vectors with Atrous

convolution at various resolutions. GSCs is based on a U-shaped CNN

which contains a contracting path and an expanding path, five encoder

and five decoder blocks with a gated skip connection mechanism on

the features received from the encoder layers.

In the aggregation step, we explored and tested various aggrega-

tion functions to construct the ensemble, finding that the median

operator yields the best results. The SJR dataset contains 105 images:

Fig. 1 Joint registration and non-correspondence detection results.

Each row shows results for one patient. The first three columns show

baseline B-scan, follow-up B-scan and registered baseline B-scan.

The fourth column shows the follow-up image with the deformation

field’s magnitude overlaid (masked with manual retina segmenta-

tions). The fifth column shows the segmentation result of non-

corresponding regions. Retinal fluids are exemplarily indicated with

white arrows

Fig. 1 Proposed system
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70 for training and 35 for testing. We trained the models on the SJR

training set (100 epochs) and used the binary-cross entropy objective

function with Adam optimizer (a learning rate of 0.001, and a batch

size of (2). The training set was augmented 20 times to improve the

generalization of the OD segmentation models by applying horizontal

and vertical flip, Hue, and rotation processes on the images.
Results

Table 1 presents the results of our system in terms of the intersection-

over-union (IoU), Dice Score, Recall, and area under the curve

(AUC). We achieved IoU and Dice scores of 0.955 and 0.954,

respectively. Our system outperforms all compared models in all the

evaluation metrics. Our system has been also evaluated on two pub-

licly available datasets: IDRID (https://idrid.grand-challenge.

org/Data/) and Drishti-GS (https://cvit.iiit.ac.in/projects/

mip/drishti-gs). With IDRID, it obtained IoU and Dice scores of

0.959 and 0.958, respectively. It is remarkable that it achieved a 2.5

improvement on the IoU score on IDRID Leaderboard. With Drishti-

GS dataset, our method achieved an IoU and Dice scores of 0.967,

which are better than the ones of the related work and standard

medical image segmentation models, such as U-Net and DoubleU-

Net.
Conclusion

The proposed system produces accurate segmentation of the OD,

which may reduce human errors for ophthalmologists in the detection

of eye pathologies. We have demonstrated that the use of an ensemble

of models improves the quality of the segmentation, reaching values

above 0.95 in the usual indicators. In fact, the proposed model

achieves accurate yet reliable segmentation results with the in-house

dataset and two other public datasets (IoU[ 0.95 and Dice[ 0.96).
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Purpose

Deep neural networks (DNNs) leverage high-quality segmentation,

registration as well as 2D-3D mapping for image-guided trauma

surgery. However, the limited amount of readily available C-arm X-ray

images (CXR) hampers the training of deep networks. Fortunately, the

presence of numerous CT scans motivates the utilization of synthetic

images for training. Thanks to their 3D representations CT scans

enable to generate 2D digitally reconstructed radiographs (DRR) sim-

ulating various sensor and imaging pose settings. Yet these models

learnt using DRRs are observed to perform worse compared to those

being trained on real X-ray images due to their distinct imag-

ing characteristics. Thus, an DRR-to-CXR translation is

proposed allowing high-quality inference for subsequent tasks based

on more realistic training data. This paper presents first results

obtained with generative adversarial networks (GAN) incorporating

the lack of corresponding CXRs and CT scans.
Methods

Image translation enables to transform images from a domain A into

another domain B. Generative adversarial networks have

been demonstrated to achieve outstanding results for this

task. As the input DRR a of domain A and CXR b of domain B are

not paired, our approach makes use of CycleGAN. A generator

GAB translates a to the CXR domain B and GBA vice versa

with |GBA (GAB (a) - a)| and |GAB (GBA (b) - b)| being forward

and backward cycle losses respectively. For a more detailed deriva-

tion of CycleGAN, the reader is referred to the original paper [1].

We make use of a U-Net-based generator architecture consisting of

9 downsampling blocks. The discriminator is fixed to a patch-

based architecture classifying overlapping regions of 70 9 70 pixels.

The input DRR images are preprocessed before being passed to

the GAN. In particular, we apply an image complement to the raw

intensities as well as a fixed circular cutout as it is common for

CXRs (see Fig. 1). Omitting these steps results in a less stable train-

ing and a degraded synthesises quality. Due to the lack of

corresponding DRRs and CXRs for evaluation we generate a paired

dataset as follows. Real X-ray images are downsampled (factor 0.5)

and upscaled (to original size) while applying a Gaussian filter

(r = 5). This allows to simulate reduced textures and lower resolu-

tions, particularly for bone structures.
Results

For training our GAN we incorporate 100 samples with a size

of 512 9 512 pixels for each domain which are expanded to NA =

968 DRRs and NB = 968 CXRs respectively by means of image

augmentation (random rotations and translations).

The experiment paired utilizes a set of 100 paired samples being

generated as detailed previously. Thanks to the paired images we are

able to compare synthesized to References images. Within the sec-

ond experiment unpaired our GAN is applied to an additional set of

100 samples. The output is evaluated by comparing input to recon-

structed images obtained based on a full-cycle run. Quantitative

examinations for the proposed methods are carried out using com-

mon metrics for GAN evaluations. In particular, we use MAE, SSIM

and PSNR. Results are achieved using a modified PyTorch imple-

mentation of CycleGAN [1] (see Table 1). The goal of

the first experiment is to examine the image differences

Table 1 Performance comparison in SJR dataset

Method Evaluation metrics

IOU Dice Recall AUC

U-Net 0.924 0.919 0.875 0.937

DeepLabV3? 0.941 0.938 0.901 0.95

DoubleU-Net 0.944 0.942 0.95 0.975

GSCs 0.951 0.949 0.929 0.965

Proposed system 0.955 0.954 0.952 0.976
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of paired raw images (a, b) compared to the synthesized CXR GA-

B (a) and real CXR b. The second experiment additionally utilizes

real DRRs, however, as the images a and b are unpaired, the evalu-

ation is limited to measuring the reconstruction error given a and

GBA (GAB (a)) and vice versa for b.

Based on our experimental evaluation, we can state that synthe-

sized CXRs GAB (a) are closer to real CXRs b than

DRRs a (paired: a, b vs. GAB (a), b). The more detailed bone tex-

tures missing on DRRs become clearly visible on synthetic

CXRs (see Fig. 1). Our GAN is able to generalize from various

anatomical regions and acquisition poses. In addition to transfer-

ring contrast and intensity distributions it enables to

reconstruct fine details of CXR images.
Conclusion

The presented approach allows to synthesize intraoperative

CXRs from rendered DRRs given a limited amount of real unpaired

data. This enables us to generate a large number

of realistic paired samples for training networks addressing chal-

lenging tasks such as CXR segmentation as well as 2D-

3D registration and mapping of bone structures which will be evalu-

ated in our future work. Only a subset of the DRRs used for

training contain fractures. For robustness, we will further expand this

data ensuring that all putative bone fractures and anatomical

variations are incorporated.
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Purpose

The use of 2D ultrasound is well established for thyroid nodule

assessment, however it offers a limited field of view that may lead to

inaccurate thyroid nodule classification and reduced radiofrequency

(RF) ablation effectiveness and an increase in complications. Real

time 3D ultrasound offers an increased field of view by using three

planes. This can potentially improve the clinical workflow, owing to

assumed better volume estimation and improved nodule edge RF

ablation. Here we assess the performance of a new 3D ‘‘matrix’’

transducer for thyroid nodule volume estimation and US-guided RF

ablation, in comparison with a currently used 2D ultrasound approach.
Methods

Twenty thyroid nodule phantoms underwent volume estimation and

ablation guided by either one of two US-transducer types: a linear

transducer (2D) and a real time 3D matrix (3D matrix) transducer. For

volume estimation, the respective software-based calliper measure-

ments of both transducer approaches were used, to calculate an

ellipsoid volume approximating the volume of the nodule. Addi-

tionally, the 3D matrix transducer used its volume estimation tool.

Thereafter, with one of two transducers, 10 phantoms were ablated.

We used the transisthmic approach, evading the imaginary danger

triangle that houses the recurrent laryngeal nerve and that has to

remain clear of ablation, as well as the multiple overlapping shots

technique in order to mimic the clinical ablation protocol closely.

After ablation all 20 phantoms were cut into slices perpendicular to

the RF ablation needle direction. The slices were photographed and

analysed using Matlab running an in-house created pixel-based

analysis algorithm. The algorithm calculates the volume of each

nodule as well as the percentage of the nodule ablated and the ablated

volume outside the nodule. The calculated total volume of each

nodule was then used as the ground truth to which the US volume

estimations were compared. Kruskal–Wallis tests were performed

with a significance threshold of 0.05.

Table 1 Experimental results for paired and unpaired experiments

respectively

MAE ± std

[0, 255]

SSIM ± std

[0, 1]

PSNR ± std

[db]

Paired

a, b 2.245 ± 0.710 0.833 ± 0.054 27.858 ± 3.660

GAB (a), b 0.801 ± 0.157 0.982 ± 0.008 40.948 ± 2.124

Unpaired

a, GAB (a) 0.722 ± 0.591 0.953 ± 0.043 38.723 ± 4.847

a, GBA (GAB (a)) 0.697 ± 0.156 0.987 ± 0.005 40.537 ± 1.742

b, GBA (b) 0.942 ± 0.429 0.954 ± 0.029 36.964 ± 2.936

b, GAB (GBA (b)) 0.781 ± 0.221 0.976 ± 0.020 38.984 ± 1.449

Values are means with ± 1r std. GAB (a) refers to the CXR syn-

thesized based on DRR a. GAB (GBA (b)) is the reconstructed image

of b after a full cycle. Large values for SSIM/PSNR and low values

for MAE are better

Fig. 1 Examples of synthetic CXR generation. a–c Refer to the

paired experiment, d–f to the unpaired experiment. a Is a simulated

DRR, d a real DRR, b, e synthetic CXRs generated using our GAN,

c is the real CXR for reference and f an example im-

age of the CXR target domain. Note that there is no correspond-

ing real CXR as reference for the unpaired dataset

Int J CARS (2021) 16 (Suppl 1):S1–S119 S23

123

http://arxiv.org/abs/1703.10593


Results

We found that the matrix transducer volumes had a lower median

difference with the ground truth compared to the standard 2D B-mode

imaging (median differences 0.4 mL vs. 2.2 mL). The 3D matrix

guided ablation resulted in a similar ablation percentage when com-

pared to the 2D approach (76.7% vs. 80.8%). A 3D matrix guided

ablation result of a nodule phantom can be seen in Figure 1. Although

the 3D matrix and 2D guided ablations achieved higher ablation

percentages, they also lead to ablated volumes outside the nodule

(5.1 mL and 4.2 mL, respectively). Of the locations outside the

nodules some of the danger triangles showed minor ablations (2/10

and 4/10, respectively). It is important to note that the 2D approach

results were from a second batch of 10 phantoms wherein the median

ablation percentages were found to be 13.4% higher than the first 10

phantoms, thus indicating a learning curve in the phantom ablation

procedure.
Conclusion

This study has shown that 3D matrix transducer volume estimation is

more accurate than the 2D transducer. Furthermore, 3D matrix

transducer guidance during RF ablation is non-inferior to the current

2D transducer approach in ablating the nodule while staying clear of

the nearby critical structures.

With the increased accuracy in volume estimation for the matrix

transducer, diagnosis and follow-up results may aid in improved

nodule classification. The longest-axis cut-off points in the TI-RADS

protocols can be replaced with volume cut-off points that can be

followed with more accuracy, potentially reducing the number of

unnecessary biopsies.

The 3D matrix technology allows for simultaneous visualization of

the perpendicular as well as the tangential plane relative to the needle

giving the clinician a direct view of the needle position with respect to

the nodule edge. This will potentially aid in ablating closer to the

periphery of the nodule and thereby reducing vital peripheral nodular

tissue ablation. However, this technology has to be developed further,

due to the need for manual scrolling in the 3D matrix view and its

potential learning curve.
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Purpose

We present a novel interactive tool for COVID-19 lesion segmenta-

tion, implemented within the software Mialab (http://mialab.org). The

proposed workflow allows to segment both the lungs and the COVID-

19 lesions from input CT scans, by alternating automatic and manual

steps within an intuitive user interface. This semi-automatic pipeline

can thus speed up and aid the creation of ground-truth lesion masks,

which may also be later employed for training automatic AI-based

segmentation methods in a supervised fashion.
Methods

The present pipeline combines automatic segmentation methods with

interactive manual editing and refinement, and it can be divided into

four steps. First, a lung segmentation is produced by applying a shape

model-based level set segmentation algorithm [1]. Secondly, the

automatically segmented lung masks can be manually edited using a

set of five interactive tools: a magnet tool, a brush tool, a spline-

interpolation tool, a thin plate spline polyline tool and a smart click-

and-drag tool. Additional information about the tools and their usage

can be found at http://mialab.org/portfolio-item/covid-19/. A thresh-

old-based level set segmentation algorithm is then applied to obtain a

preliminary automatic segmentation of the COVID-19 lesions.

Finally, the output lesion segmentations can undergo a final interac-

tive editing step using the previously-mentioned tools.

The proposed software was tested on ten COVID-19 cases from

the open access COVID-19 CT Lung and Infection Segmentation
Dataset [2]. Six annotators were recruited and split into two groups

according to their level of expertise: three radiologists (Expert Group)

and three annotators with a technical background (Novice Group).

We computed the intra-class correlation coefficient (ICC model A,

1)—which evaluates the agreement in the lesion volumetric measures

for the six annotators together, as well as for the Expert Group only

and the Novice Group only. Moreover, for each of the ten segmented

cases, we generated a Novice Group’s and an Expert Group’s con-

sensus segmentation by performing voxel-wise majority voting within

each group. We then computed the Dice coefficient, 95th percentile

Hausdorff Distance and Jaccard coefficient between the consensus

segmentations.

A further analysis of the spatial overlap between the lesions was

then performed by calculating the generalized conformity index

(GCI) both globally and within each annotator group.

The results from the enrolled annotators were then compared with

the reference segmentation already provided as part of the dataset [2].

A Bland–Altman plot was used to investigate the volumetric agree-

ment between the reference and the present annotators’

segmentations. Moreover, their voxel-wise agreement was analyzed

Fig. 1 Ablation results using 3D matrix guidance. The dashed line

indicates the ablation needle orientation. The green circle indicates an

area ablated closely to the edge, with a small rim of unablated tissue

and minimal ablation outside the nodule. The blue triangle indicates

the danger triangle with zero ablation outside the nodule. The yellow

circle indicates an edge of the nodule fully ablated as well as the area

outside of the nodule showing ablation
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by computing the Dice coefficient, using the segmentation results

from both all annotators together and for each separate expertise

group.
Results

The agreement within and between annotator groups is presented in

Table 1. The highest volumetric agreement was obtained within the

Expert Group, and the lowest within the Novice Group.

The two consensus segmentations obtained through majority-

voting showed a Dice coefficient of 0.845 ± 0.113 (mean ± standard

deviation), a 95th percentile Hausdorff distance of

44.714 ± 21.5 mm, and a Jaccard coefficient of 0.746 ± 0.164.

Furthermore, a GCI of 0.588 ± 0.155 was obtained for the global

analysis, i.e. considering all six annotators together. On the other

hand, the Expert group and Novice Group alone showed a GCI of

0.650 ± 0.195 and 0.545 ± 0.149, respectively.

Figure 1 shows the comparison of the consensus segmentations in

some example slices from cases 2 and 10 of the dataset, which

resulted, respectively, in a high and a low disagreement between the

two groups.

The results obtained from the present annotators were also com-

pared with the reference segmentation mask, obtaining a rather high

agreement (see Figure 2). The biggest volume differences were

observed between the reference with the Expert Group, rather than the

Novice Group.

Furthermore, a slightly higher voxel-wise agreement was found

between the reference segmentation and the Novice Group with a

Dice coefficient of 0.719 ± 0.129, against 0.689 ± 0.141 obtained

between the reference and the Expert Group.

The overall required annotation time resulted to be equal to

23 ± 12 min (mean ± standard deviation across all raters and all 10

cases). The Expert and Novice Groups reported an annotation time of,

respectively, 23 ± 10 min and 22 ± 14 min.
Conclusion

The proposed semi-automatic tool led to promising results when

tested by both expert radiologists and users with a technical back-

ground, suggesting the possibility of applying it in a vast range of

applications within the scientific community. The pipeline was also

shown to significantly speed up the segmentation process compared to

a fully manual approach, thus helping to overcome the time efficiency

issue of ground truth lesion mask creation.

Table 1 Summarized volume measurements across all annotators

(‘‘Global’’ column), across the annotators with a medical background

(‘‘Expert Group’’), across the annotators with a technical background

(‘‘Novice Group’’), as well as between the Expert and Novice groups

(‘‘Inter-group’’)

Metric Global Expert

group

Novice

group

Inter-

group

Mean Volume ±

standard deviation

[mL]

278.0 ± 292.2 295.6 ± 318.8 260.4 ± 267.4 –

Mean Absolute

Volume Difference

[mL]

54.7 38.4 48.9 73.0

Mean Relative

Volume Difference

23.0% 18.4% 17.7% 24.5%

ICC (A, 1)

(95% confidence

interval)

0.899

(0.785

* 0.969)

0.955

(0.878

* 0.987)

0.886

(0.707

* 0.967)

0.926

(0.746

* 0.981)

The intra-class correlation coefficient (ICC) and its confidence

interval were calculated using the ICC (A, 1) model

Fig. 1 Segmentation results in some example slices from all three

image views, i.e. axial (left column), coronal (center) and sagittal

(right). The results are shown for cases 2 (top) and 10 (bottom), which

resulted, respectively, in a high and a low agreement between Expert

and Novice Groups. For each case, both the original CT image slice

and its overlaid segmentation masks are reported. Green areas

correspond to regions labeled as lesions only in the Expert consensus

segmentation, red areas are labeled as lesions only by the Novice

Group consensus, while yellow regions correspond to an intersection

between the two groups

Fig. 2 Bland–Altman plot describing the agreement between the

available reference segmentation and both the Expert Group (in

black) and Novice Group (in red) segmentations
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Purpose

To explore the possibility of using and developing free and open

source software in which the whole sequence of preparation of the

working layout, implant planning, guide design and calculation of

accuracy without postoperative computed tomography could be per-

formed. Such a sequence could be acronymized as PIGA sequence

derived from the initials of Preparation, Implant, Guide and Accu-

racy. The literature related to open-source solutions in dentistry

appears limited [1]. In this context, the 3D Slicer software (

http://www.slicer.org) that is a free and open source software plat-

form for medical image informatics, image processing, and three-

dimensional visualization was selected for evaluation.
Methods

27 partially edentulous patients seeking implant therapy, 9 men (mean

age 50.5, range 40–68 years) and 18 women (mean age 49, range

21–62 years), underwent CBCT followed by a conventional impres-

sion and scan of the preoperative plaster cast with an intra-oral

scanner (Medit i500). DICOM images and a 3D model were imported

to 3D Slicer 4.11.0. Data was processed by using modules of the

software package. Except for modules of import and addition, 18

more modules were used—each one in more than one of the 4 steps

followed (Figure 1). Surgical simulation was harmonized with the

sizes and lengths of components of the related guided system.

A total of 22 tooth supported and 10 tooth-mucosa supported

surgical guides were 3D printed (PLA, da Vinci 1.0 Pro) and tested

preoperatively as regards to seating on the teeth and tissues and

availability of intermaxillary space. Master tubes were sterilized in an

autoclave and surgical guides had a high-level disinfection by using

ortho-phthalaldehyde 0.55% (exposure time 12–30 min at C 20 �C)

according to the guidelines of CDC. 51 dental implants were placed

(Xive, Dentsply) following the half-guided surgical protocol. After

guided sleeve-on-drilling, the implants were placed freehand under

direct bone visualization after incision.

The calculation of the placement accuracy in the RAS anatomical

coordinate system was performed in 8 of the 27 patients after 12

implants were placed. These 8 cases met the following criteria: a)

delayed dental implant placement into healed sockets and b) absence

of changes in dentition during the time interval until restoration. At

the time of restoration, an extra-oral scan (Medit i500) of the

impression with implants identical to those placed and fixed to the

transfer coping pickups was taken and imported into 3D Slicer for the

calculation of accuracy. The registration process performed during the

fourth step as well as the first step was monitored with numerical

accuracy (Figure 2). MS excel software package was used for

statistics.
Results

A digital workflow of implant planning, guide design and accuracy

calculation without postoperative computed tomography was

possible.

The mean linear deviation measured at the sagittal, coronal and

axial plane found at the entry point was 1.03 mm (95% CI: 0.662 to

1.4 mm), 0.47 mm (95% CI: 0.3 to 0.64 mm) and 0.58 mm (95% CI:

0.461 to 0.699 mm), respectively and at the apex 1.1 mm (95% CI:

0.744 to 1.46 mm), 1.05 mm (95% CI: 0.722 to 1.38 mm) and

Fig. 1 Schematic workflow of 3D Slicer-based Preparation of the

working layout, dental Implant planning, surgical Guide design and

Accuracy calculation (PIGA sequence). Dashed lines emphasize the

potential multiple use of modules during digital workflow

Fig. 2 The output model of a 3-point fiducial registration of the

scanned imported model (green) to the CT anatomy model (white). At

the bottom of the figure the deviations (mm) of registered points at the

sagittal, coronal and axial plane (RAS anatomical coordinate system)

as seen in the Markups module
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0.79 mm (95% CI: 0.518 to 1.06 mm), respectively (Table 1). The

most frequent deviation was the ‘‘Distal’’ (9/12 implants) at the entry

point and the ‘‘Coronal’’ (7/12 implants) at the apex.

The mean summed linear distance deviation at the entry point and

the apex found was 1.39 mm (95% CI: 1.13 to 1.65 mm) and

1.88 mm (95% CI: 1.66 to 2.1 mm), respectively. The mean angular

deviation found was 5.7 degrees (95% CI: 4.54 to 6.86 degrees)

(Table 2).
Conclusion

The results regarding the accuracy of half-guided dental implant

placement were consistent with literature [2]. 3D Slicer could be used

in static computer-aided implant surgery as an alternative to com-

mercial dental software. Although the presented workflow seems

complex and time consuming there is, however, a great potential for

improvements following a proper collaboration of software engineers

and clinicians so that a Slicer-based IGA workflow can be gener-

ated in order for it to be clinically usable.
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Purpose

For an improved image-based documentation of a screen-

ing colonoscopy it is desirable to determine which parts of the colon

walls were seen during the examination and which sites potentially

still need to be viewed. So-called panoramic images, being large-

scale, wallpaper-like images of the colon wall, are one possibility

for such an enhanced documentation. Procedures already exist for the

real-time creation of panoramic images of the urinary bladder floor or

the oesophagus. Nevertheless, these approaches implicitly assume

a simple and fixed geometry, such as a hemisphere or a tube. How-

ever, as the colon—in contrast to the bladder or the oesophagus—is

an organ with a much more complex (partially tubular, partially flat,

partially hemisphere) and dynamic geometry, these methods cannot

be applied. In order to obtain adequate panoramas of the colon wall, a

partial or fully 3D reconstruction of the colon geometry is necessary.
Methods

Recently, deep-neural-network (DNN) based methods have

been suggested and evaluated for various tasks in the field of image

analysis in gastroscopy, such as automated adenoma and polyp

detection, or differentiation of Barrett’’s oesophagus. For the 3D

reconstruction of the colon, or sections thereof, DNN-based methods

can be applied that approximate depth maps in the form of point

clouds from temporally sequential image pairs from colono-

scopic grids. These depth maps and 3D- segments can then

be assembled, registered and fused in successive steps [1].

For the first step of approximating depth maps, three deep neural

networks with different architectures, namely ‘‘V-Net’’, ’’U-

Net’’, and ‘‘modified U-Net’’ (with a ResNet encoder) were con-

structed and evaluated. For training and validation, a set

of 3600 successively acquired monoscopic image pairs (captured

at t and t ? Dt) from a synthetically created (digital) colon mod-

el (see details below) with known camera geometry were used. Using

this data, each of the three networks was trained using 200 training

epochs, and the achieved results were quantitatively evaluated

against the known ground truth from the colon model. Additionally,

the depth maps predicted for real endoscopy images were qualita-

tively evaluated, s. Fig. 1. Based on the intermediate results, the

network that visually achieves the best results (U-Net with

ResNet Encoder) was trained for 2.000 epochs on the 3.600 training

image pairs and evaluated on 100 validation image pairs. For all

Table 1 Linear deviations at the sagittal, coronal and axial planes of

the RAS anatomical coordinate system in relation to intra-oral

orientation

Table 2 Summed linear deviation at the entry point and the apex and

angular deviation

Fig. 1 3D modelling of the depth of a colon section (left) and as-

sociated known ground truth from the digital data model (right)
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experiments an Adam optimizer with learning rate r = 1e - 5,

a mean squared loss function and batch size b = 16 was applied.

For the generation of sufficient synthetic colon data

for the training of a deep neural network [2], a custom texture was

designed using Blender. Voronoi textures were used to simulate

vessel structures and fractal Perlin noise (‘‘Musgrave texture’’) to

obtain a slightly bumpy surface that allows a more natural impression.

This also leads to more light scattering. The Musgrave texture orig-

inates from an algorithm initially designed to model landscapes.

The mucus layer of the synthetic colon was modelled by using a

BSDF glass shader with a refraction index that matches the one of

water.
Results

For evaluation of the networks, the mean square error (MSE, L2-

Norm) and the mean absolute errors (MAE, L1-Norm) were em-

ployed to compare the resulting depth maps predicted by the

DNN against the a priori-known ground-truth depth maps of the 100

test image pairs. The modified U-Net architec-

ture with the ResNet Encoder reaches quantitative results

of MSE = 0.000017 and MAE = 0.001634 over all 100 test data sets.
Conclusion

The obtained results (see Fig. 1) suggest that an approximation of

depth maps of the colon from monocular image pairs using

a ’’modified U-Net’’ is possible in real time and leads to highly

acceptable results, which can be used for a consecutive 3D colon

reconstruction.
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Purpose

Transcatheter Pulmonary Valve Replacement (TPVR) using self-ex-

panding devices has evolved into a promising alternative to open

surgical valve replacement in patients status post repair of Tetralogy

of Fallot (TOF). However, determining patient candidacy and

matching the optimal device to an individual patient remains chal-

lenging due to the complex, dynamic, and heterogeneous nature of the

surgically repaired right ventricular outflow tract (RVOT). Current

decision making is based on manually derived metrics, and laborious

3D printing based strategies, both of which erroneously assume that

the vessel is rigid in the setting of device implant. Image based

computational modeling holds promise for informing this process. We

describe the ongoing development of an interactive image-based

modeling tool, which now incorporates realistic finite element (FEM)-

based mechanics, to support the future identification of patients

suitable for TPVR as well as selection of the best fit device for an

individual patient.
Methods

We used custom open-source software to interactively place virtual

models of transcatheter pulmonary valve (TCPV) into image based

RVOT models. Existing CT scans of five sheep prior to and after the

TCPV implantation in both end-systole and end-diastole were utilized

for modeling [1]. Pre-implant images were imported into 3D Slicer

[2] and the right ventricular (RV) and pulmonary artery (PA) blood

pool are segmented using 3D threshold paint or grow cut algorithms

as in our prior work [1]. The blood pool is then dilated to create a

shell representation of the RV and PA (Fig. 1a). The segmented

models are then imported into TetWild, to generate high-quality

tetrahedral meshes. Finally, a finite element analysis of the device

deployment process is conducted using FEBio, similar to prior

modeling of self expanding devices performed using commercial

packages. A frictionless contact model in FEBio, Sliding node-on-

facet contact, is used to model the interaction between the vessels and

the device. Two nonlinear hyperelastic models, Mooney-Rivlin and

neo-Hookean, are adopted as the materials for the vessel tissues and

the device, respectively. Prior to the deployment, the device is first

compressed into a cylindrical catheter positioned coaxially. The

compression is driven by the prescribed displacement on the outer

surface of the catheter, and a frictional contact between the catheter

and the device. To deploy the device into the vessel, a frictionless

contact is defined between the device and the vessel, and two ends of

the catheter are sequentially expanded as demonstrated in Fig. 1b, c.

This approach can effectively avoid the sudden release of the high

potential energy in the compressed device that could otherwise cause

convergence issues in contact problems. However, when using this

quasi-static analysis, the device needs to be fixed at certain mesh

nodes to eliminate the rigid-body degree of freedom.

In order to assess device fit from resulting models, we developed

quantitative metrics to evaluate whether a device is adequately sealed

and properly anchored in both systole and diastole, while avoiding

overcompression which could lead to device failure or erosion of the

device into the vessel. Quantification is calculated both automatically

and graphically. Deformation and stress measures of the device and

vessel in the post-deployment state is shown in Figure 1b, c.
Results

We conducted FE analysis of a self-expanding TCPV replacement in

five RVOT models. With the deployment strategy described above,

FEBio was able to converge the challenging nonlinear contact

Fig. 1 Modeling Workflow. A) RVOT shell creation (orange) in 3D

Slicer; B) FEM modeling of release of distal device; C) Release of

both proximal and distal device. Color scale represents principle

stress
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problems in all five cases, and generate visually realistic results.

Fig. 1 shows the configurations of one systolic case with 41,000 and

73,000 tetrahedral elements in the vessel and the device, respectively.

Penetration of device into the vessel wall in the converged state is

about 25% of the wire diameter.
Conclusion

We have preliminarily demonstrated the feasibility of incorporating

FEM into an evolving open-source based workflow for assessment of

patient candidacy for TCPV replacement using self-expanding devi-

ces into native outflow tracts in TOF. This is significant considering

the complex vessel geometries and the significant difference of mesh

sizes and stiffness between the vessels and the device. We are now

working to validate pre-implant modeling in comparison to actual

device implants in the same surgical model. Evolution of this mod-

eling may inform patient selection and optimal device for TCPV in

congenital heart disease. In addition, the general framework is

applicable to all self-expanding devices, such as many in clinical use

for transcatheter aortic valve replacement.
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Purpose

The knowledge about the patient-specific knee joint kinematics is

crucial for the decision on therapeutic measures in order to restore

stability und functionality after a cruciate ligament rupture. To

achieve best possible approximation to the patient’s native pre-trau-

matic knee joint condition, a dynamic three-dimensional knee joint

model based on the finite element method (FEM) is presented for the

assessment of the individual biomechanics. In this approach the knee

joint model is automatically derived from segmented MR images of

the patient and from knee motion (flexion and rotation) captured by a

motion tracking system (Vicon). The vision is to establish computer-

assisted ligament reconstruction planning in clinical routines.
Methods

For the development of the patient-specific knee model, MR images

using either GRE or SPACE sequences with fat saturation are

considered for the main knee structures: bones and the respective

articular cartilages (i.e., femur, tibia, patella), menisci (i.e., medial

and lateral meniscus), ligaments (i.e., anterior cruciate, posterior

cruciate, medial collateral, lateral collateral and patellar ligament) and

quadriceps tendon. All structures are manually segmented by clinical

experts.

These developments have been inspired by the research investi-

gated by [1]. In the present approach an automatic model generation

has been conducted to fit into the clinical workflow. For a proper finite

element (FE) model, thorough preprocessing of the structure seg-

mentations is required to be able to neatly define contact conditions.

The automatic procedure ensures reasonable geometries and that the

structures do not overlap each other. Accordingly, a FE-model fea-

turing tetrahedral meshes is automatically generated to fit into the

open-source FEBio software [2] for non-linear implicit finite element

simulations. In order to align the motion of flexion and rotation from

the motion tracking system (Vicon) to the MR data of the patient’s

knee, a point-based registration has been performed. Thus, the cap-

tured patient-individual motion can be prescribed as boundary

conditions to the femur while fixing the tibia.

For contact conditions of ligaments/tendon attached to bone at

their proximal and distal ends, all ligament/tendon nodes in their

intersection to the corresponding bone are detected automatically and

defined to match the motion of the attached bone. Frictionless non-

linear contact conditions allow structures to slide across each other

without penetration.

Furthermore, in the FE-model bones are considered to be rigid, so

only their surface meshes are required. Articular cartilages are

assumed to be linear, elastic and isotropic; and the menisci are

modelled as linearly elastic and transversely isotropic material. The

meniscal horn attachments on the tibial plateau are represented by

linear springs. The behavior of the ligaments/tendon are described by

transversely isotropic Mooney-Rivlin material using a fully-coupled

formulation featuring initial strains defined from data available in

literature.
Results

Figure 1 top row shows the result of the FE simulation of a knee

flexion up to 20� and subsequent external rotation up to 28� of a

healthy adult volunteer. The bottom row shows the stresses in the

Fig. 1 FEM-simulation of a knee joint up to 20� flexion with

subsequent external rotation up to 28� (top row) and the correspond-

ing stresses [MPa] in ACL and medial meniscus at 20� knee flexion

and 28� external rotation (bottom row)
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anterior cruciate ligament (ACL) and medial meniscus at the final

position of 20� flexion and 28� external rotation.

The evaluation of the biomechanical dynamics, such as pressure

distribution on the cartilage, stress curve in ligaments or the motion of

the menisci can be used to quantify the extent of knee (in)stability and

thus, derive patient-specific therapeutic measures in close cooperation

with clinical experts.

Analyses and validation of simulation results against MR mea-

surements at various flexion and rotation angles for 30 subjects

(healthy and patients with isolated ACL rupture) as well as against

cadaver data for 10 subjects, which will be analyzed dynamically in

the lab, are in progress. Furthermore, kinematic quantification of

different ACL-transplantation positions will be investigated with

respect to clinical measures in operative care.
Conclusion

The finite element analyses based on automatic model generation

from patient-specific MR image data and motion tracking of the knee

joint are presented. This approach allows the quantification of the

patient-individual dynamics, whose derived biomechanical parame-

ters can be included in decisions on therapeutic treatment.

Furthermore, this approach enables virtual planning on surgical

interventions in advance for restoring best possible knee joint stability

and functionality for each individual patient.
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Purpose

Different factors can increase the probability of patellar luxation,

including the bone shape the status of the ligaments and muscle

activation. Diagnosing the individual risk factors for patella luxation

in each patient might improve the treatment process. In clinical

routines, 2D parameters are extracted manually for measuring the

severity of these risk factors. In this work, we implemented an

algorithm to automatically extract relevant patellofemoral joint

parameters from 3D scans to facilitate diagnosis of recurrent patellar

luxation.
Methods

The subjects’ knees were scanned at the following flexion angles:

extension (flexion angle = 0�), 15� flexion, and 30� flexion. At each

flexion angle, loads of 0 kg and 5 kg were applied on the knee, so in

total, each knee was scanned 6 times using a Siemens SPACE

sequence in sagittal direction [1]. Currently, the dataset consists of

scans of 14 patients and five healthy volunteers. For each subject, the

image at extension without load (base image) was segmented

manually.

Parameters extraction consists of the following steps:

1. Anatomical landmarks are automatically extracted on the femoral

and patellar bones in the base image.

2. Each bone in other flexion/load cases is separately registered to

the corresponding one in the base image, resulting in two

transformation matrices per image, one for femur and one for

patella.

3. The extracted femoral and patellar landmarks from step 1 are

transferred to the bones on other loading situations, by applying

respective transformations.

4. Kinematic parameters are computed for each flexion and load

situation.

More details on each step follow.

Step 1. The landmarks and axes are extracted automatically on

each segmented base image. These landmarks are explained in the

following. The anatomical femoral axis (aFA) is computed using

RANSAC as the best fit to the centerline of the femoral shaft.

Transepicondylar axis (TEA) is the line connecting two epi-

condyles, which are the two mediolateral extremes of femoral bone

when the image is aligned to have aFA parallel to Z-axis. The most

distal landmarks on each condyle in the direction of aFA are

extracted. The plane perpendicular to aFA with equal distance from

these two landmarks defines the distal plane of femur. The

transcondylar axis (TCA) is defined based on the center of two

spheres that are fitted, using Hought transform, to two condylar

surface joints. Posterior condylar landmarks are extracted as the

extreme posterior points of each condyle in the anterio-posterior

direction of femur. These two points define the posterior condylar

axis of femur (PCA). Patellar reference point (PRP) is the patella

geometry center of mass. The most distal point on patella in the

direction of aFA is found. The most proximal landmark of patella is

defined as the point on patellar surface with maximum distance

from the most distal point. The axis connecting these points defines

the proximal–distal axis of patella (PP-D). The plane perpendicular

to PP-D containing PRP is intersected with patella. A contour is

extracted from this intersection. The two points with maximum

distance from each other on this contour define patellar mediolat-

eral axis (PM-L). Patellar anterioposterior axis is the cross product

of PP-D and PM-L.

Step 2. The femur (patella) bone segmentation in base image is

dilated for 3 mm. Then it is used as a mask to rigidly align the

respective bone surface in each image to the base image based on

normalized gradient fields. This registration gives us the transfor-

mation matrices for aligning each bone in the base position to the

loaded/flexed situations.

Step 3. This transformation matrix is used to transfer the femoral

(patellar) landmarks to the loaded image position.

Step 4. For quantifying the movement of patella w.r.t. femur under

a specific flexion/load, a reference orthogonal coordinate system

should be defined. We selected TCA as the mediolateral axis (M-L)

and its center as the coordinate system origin (O). Anterior–

posterior axis of coordinate system (A-P) is the cross product of

aFA and M-L axis, and the proximal–distal (P-D) axis is the cross

product of A-P and M-L axes. Then the rotation and translation

parameters of patella under load/flexion are computed in the

reference coordinate system. In addition to these 6 parameters, we

also defined lateralization as the translation of PRP projection on

M-L axis normalized by the TCA length, patella inclination as the

angle between PM-L and PCA, and patellar altitude as the distance

of PRP from the distal plane of femur.
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Results

We analyzed seven shape parameters and nine kinematic parameters

(times five for each flexed/loaded case). For almost all parameters, the

variance of variables among patients were larger than the healthy

cases. As an example, the patella translation along I-S axis of the

reference coordinate system is shown in figure 1, for different flexion

angles when 5 kg load was applied.
Conclusion

We developed a pipeline to automatically extract clinically relevant

landmarks and derived relevant parameters that represent shape and

kinematics of the patellofemoral joint. Our results showed that the

variance of parameters was larger among patients compared to

healthy cases. This was expected for patients with patellar instability.

Our work confirmed and, moreover, quantified these variations.

Our dataset consists of knee scans of patients with one or more

risk factors, such as trochlea dysplasia and patella alta, as such the

parameter distributions is not monomodal. Grouping patients based

on the risk factors would facilitate better understanding of the patellar

luxation and risk factors.

As part of our future work, we will increase the number of cases

for reporting an in depth statistical analysis of kinematic parameters.
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Purpose

The aim of this work is to assess upcoming technologies in respect to

a future vision of the healthcare system and to predict potential

developments for the upcoming period of time.
Methods

The results and thoughts which we present herein do originate from

expert discussions and studies of the available literature. Also, aspects

which were elaborated during the finalization of the ‘‘White paper on

the Digitalization in Surgery’’ of the German society of surgeons are

included. Still, the presented theses are speculative and not based on a

fully scientific background.
Results

Preventive medicine
While in former times health was taken for granted and medical

support was only requested in case of already present health related

problems prevention of health is gaining attraction. Prevention affects

both medical care, as well as private life in the form of healthy eating,

weight control or daily sportive activities. Health trackers, wearables

and smart devices already measure our heart rate, daily activity and

stress level. The data together with detailed stratification of individual

genomic and phenotypic profile, when analyzed by AI algorithms, can

identify very early on health alterations which require preventive

treatment.

Data collection and storage
It is assumed that the healthcare of the future will completely rely on

a global data network and no longer be that personal and bilateral as it

is today. Although we assume the contact of patients to their health

providers will still represent the central pillar of healthcare it will not

only be enabled by data and AI methods based on this, data will foster

all healthcare related processes to the next level. A continuous per-

sonalized data flow thus forms the basis of care and will be fed with

uncertified and certified information. This data flow is not restricted to

the health-related environment, to medical departments or hospitals

for example, but will be ubiquitous, will say, accompanies the patient

everywhere and for his entire life. The capacity of collecting and

curating large amount of data of each individual person can signifi-

cantly empower the patients in their participation and awareness of

their health status and assist them in adopting proper prevention and

treatment strategies. The availability of comprehensive personal data

of each individual person will allow for the generation of avatars or

digital twins, that then can be used for modelling and evaluation of

specific treatments regimes or even for preventive measures.

Artificial intelligence
AI represents the new panacea for the healthcare system and will

expand from image dominated fields, e.g. in radiology and derma-

tology, to all other medical fields, as soon as data of adequate size and

structure are available. AI will most likely be used to support our

medical decision making and improve medical care by augmented

approaches based on global knowledge and integration of large vol-

ume of data that single individual care-providers cannot achieve. AI

already serves for physicians to re-become omniscient, as for example

for defining the optimal cancer therapy and also for intraoperative

decision making. In the near future, we can reasonably predict that AI

will reduce the need for extreme specialization in healthcare and will

allow for a more general and coordinated health approach. With

constant feed-back from clinical results and patient reported outcomes

the accuracy of AI-based decisions could further be improved and

then provide a solid basis for augmented care approaches.

Robotics
Robots will become integral part of the healthcare system of the

future. Whilst today they are predominantly used as master–slave

systems in surgery, autonomous service and care robots (carebots) are

supposed to play a much more relevant role in the coming decades.

Autonomous nursing robots and automated devices are ideally suited

to perform less demanding and repetitive tasks, saving time for the

Fig. 1 Left: the violin plot of patella translation in the direction of

I-S axis of the reference coordinate system, for healthy subjects

(blue), and patients (green). Right: I-S translation is the magnitude of

the red arrow. Here the knee of a patient when it is extended (gray

bones) is shown. Patella movement is depicted for a 30� flexion angle

under a 5 kg load (blue patella)
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staff which then can be used for personal interaction with patients.

But robotic technology will also contribute to the autonomy and

flexibility of healthcare and we argue that self-navigating systems,

capable of autonomously changing their position and adapt to specific

frameworks and logistics, could bring a great advantage in optimizing

treatment and monitoring procedures. The effective integration of

robotics into surgical therapy will require a comprehensive stan-

dardization of surgical procedures and the support of a cognitive and

highly ‘‘intelligent’’ environment. Accordingly, the cross linking of

the different technologies inside the healthcare system will become a

driving force and will foster the optimal usage and efficiency of

implemented systems.

The buildings of the healthcare system of the future
We assume the healthcare system of the future will evolve from

highly separated and specialized centers to a patient centered and

health oriented omnipresent environment. This will span globally and

include all areas, as for example home, working space or even mobile,

while traveling. Only with smart capabilities that allow for a com-

prehensive monitoring of the patient�s health status everywhere and at

any time health problems can be detected the earliest possible. In this

respect, the home and living environment of each individual will

become a main area for less intrusive healthcare and wellbeing sup-

port systems mainly because this is where patients spend most of their

time here and due to its privacy supporting sensitive examinations of

vital signs. We also believe that there will be a seamless transition

between home and hospital/medical departments, as care and diag-

nosis will already start in private areas.
Conclusion

The healthcare system of the future will be driven by technology,

robots and artificial intelligence. Nevertheless, it will be more patient

centred than it is today and patient satisfaction and maintaining ‘‘the

human touch’’ will become core aspects. The maintenance of health

and prevention of disease will serve as its main added value and will

be enabled by a broad serration of all medical fields and the inte-

gration of non-medical environments.
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Purpose

A core problem of today’s university based research—also in our

dedicated area of Image Guided Therapies and Minimal-Invasive-

Procedures—is that we are mainly focusing on creating research

papers and that our research output is often judged by the amount of

papers and citations. This value system encourages research activities

on incremental innovations that come with a relatively low risk of

failure and that can lead to a publishable result in a relatively short

time. Disruptions can be defined as technologies or processes that lead

to a significant ([ 10x) quality improvement or reduction in cost.

Many published results today show improvements of some percent

points in a very narrowly defined area. We do not want to stop these

improvements and we do believe that these developments come with

a value. They are however not typically leading to completely novel

approaches and are not typically solving the huge challenges that we

are facing in health delivery (chronic diseases, inequalities, urban–

rural delivery differences, increasing cost, healthcare instead of

sickcare, and many more). Exponential technologies (AI, Big Data,

Deep Learning, advanced sensors/wearables, robotics) will cause a

paradigm shift in healthcare delivery and eventually not only lead to

different development value propositions, but will also see different

roles for different stakeholders (e.g. an empowered patient).

Healthcare is in need of INNOVATION and technologies for the

digital transformation will cause unpredictable, but most likely very

significant workflow changes in healthcare delivery and associated

business models and will also need to follow different development

criteria and value propositions [1, 2].
Methods

Our lab follows a novel approach for innovation generation with a

clear focus on identifying and validating disruptive approaches based

on UNMET CLINICAL NEEDS. We have also created a 5 ECTS

interdisciplinary (students from Engineering, Natural Sciences,

Medicine) lecture that provides attendees with much needed 21st

century skills to address future health challenges and innovation

needs. For this novel Innovation approach we combined several

innovation methodologies including the BIODESIGN and the PUR-

POSE LAUNCHPAD teachings. The job of the researchers (and

students) is to invest a lot of their initial work in identifying the

UNMET CLINICAL NEEDS, analyze and properly understand the

underlying problems, ideate possible solutions, and validate the

problem/solution with the stakeholders. A focus on future develop-

ments needs to be based on patient empathy around an UNMET

CLINICAL NEED. The role of university based research cannot stop

with the publication of a paper. It needs to primarily focus on pro-

viding a value to the patient and society. For that we need to teach our

researchers the basics of translation, which includes economic issues,

future forecasting, and actual implementation of a validated

idea/concept (see Figs. 1, 2).

To develop patient/society related products and concepts we will

need to understand the underlying clinical problem including the

Fig. 1 Development approach that starts with an UNMET CLIN-

ICAL NEED (the need to improve) and includes research as well as

translation to actually create a benefit for the patient and society

Fig. 2 Interdisciplinary Teams—goal to IDENTIFY, IDEATE

around an Unmet Clinical Need—and be DISRUPTIVE

S32 Int J CARS (2021) 16 (Suppl 1):S1–S119

123



current ways of diagnosing and treating it in combination with

technological forecasting capabilities and an economic understanding.

We have designed a new approach based on an adapted Stanford

BIODESIGN approach of IDENTIFYING UNMET CLINICAL

NEEDS, IDEATE solutions for these needs, iterate with the stake-

holders and subsequently work on IMPLEMENTATION as start-up

companies. This is combined with other VALIDATION models and

experiments (PURPOSE LAUNCHPAD methodology, Alexander

Osterwalder’s Value and Business Model Canvas, Exponential Can-

vas and Massive Transformative Purpose approaches) to properly

understand the problem, the future opportunities and to create and

validate ideas through Minimal Viable Prototypes.

Research in general is future oriented and in the particular field of

HEALTHTEC INNOVATION should consider the effects and pos-

sibilities of new technologies and their effect and needs to work on

TRANSLATING the results of research into clinical practice. As

INNOVATION is a combination of technical solutions with identi-

fying the clinical need it is also necessary to understand regulatory

issues and health-economics. The Future of healthcare will be data

driven and will combine personal health records with a more com-

prehensive data and management structure requiring integrated

devices, forensic information, advanced learning tools, and many

more to eventually provide a digital twin that will then be able to

manage, predict, and recommend personalized health related proce-

dures and actions.

We believe that we need to combine technological depth with

more broader skills and a novel approach of exploring and validating

clinical problems. The paper will present the details of the innovation

approach that includes:

• several future oriented innovation tools;

• the need to work in interdisciplinary innovation teams in an

exploration and validation phase;

• the need to think disruptive with a goal significantly improve the

quality, user and clinical experience, and dramatically reduce the

potential cost of device or process;

• uses the PURPOSE LAUNCHPAD meta-methodology for Explo-

ration (Biodesign: Identify), Evaluation (Biodesign: Ideate and

partly Implement), and subsequent Impact Generation (Biodesign:

Implement), Ethics and Exponential Canvas, Massive Transfor-

mative Purpose, Blue Ocean, Innovation Segment Concept,

Exponential Technology Canvas, Value Proposition and Business

Model Canvas, and associated entrepreneurial tools;

• get introduced to basics in economy, team and project manage-

ment, ethics and empathy and other 21st century soft skills;

Results

This approach was used in our lab in the recent past to start many

clinical research projects and produced many papers, patents, and

start-ups. We also have started a database of unmet clinical needs that

we will make public domain in the coming months.
Conclusion

Incremental Innovation will continue to be very important for

research activities in our field, but we believe that researchers and

students should be introduced to disruptive innovation approaches.

They should also know basics of management, economics,

entrepreneurship, and clinical translation activities to identify and

work on ideas that have a significant impact. The methodology that

we are using could be a base for more disruption.
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Purpose

In 2015 the United Nations (UN) issued 17 Sustainable Development

Goals (SDGs) for 2030, Goal # 3 being ‘‘Ensure healthy lives and

promote well-being for all at all ages’’. Improved global surgery is

essential to achieve SDG #3:

1. One-third of all deaths worldwide result from lack of surgery—

10 times the deaths due to malaria, tuberculosis, or HIV/AIDS.

By 2030, the cost of lack of surgery in low- and middle-income

countries (LMICs)—in terms of GDP lost—will approach US

$1.5 trillion annually. For every dollar invested in global surgery,

the long-term savings are greater than 20-fold.

2. Natural disasters annually cost over US $500 billion and force

over 26 million people into poverty. Annual deaths from

earthquakes alone exceed the number killed in traffic accidents

in North America and the European Union combined.

3. Man-made or ‘‘un-natural’’ disasters (infrastructure failures,

transportation accidents, terrorist/warfare events) kill several

hundred thousand people each year worldwide. Deaths and

injuries from terrorist events in particular have increased in the

past decade.

For daily care, lack of both surgical resources and resilient

infrastructure (e.g. power outages) are frequent contributors to

avoidable morbidity/mortality. In India alone, deaths due to lack of

surgery for acute abdomen number 50,000 yearly; avoidable deaths

from trauma, stroke, difficult childbirth, etc., number in the hundreds

of thousands annually.

An estimated 20,000 people died each day immediately following

the 2010 Haiti earthquake due to lack of basic surgery. Mass casualty

disaster (MCD) response in LMICs presently depends on international

organizations (e.g. UN, World Health Organization (WHO), Red

Cross) and other groups (e.g. military, faith-based). These groups—

separate from the ongoing local healthcare system—require bureau-

cratic authorizations before mobilization: it is typically a week before

medical personnel reach an MCD site. This is far beyond the 12- to

24-hours essential to reduce morbidity/mortality from trauma [1, 2].

Figure 1 illustrates parallels in disaster management and global

surgery.

Healthcare delivery resembles smartphones—sophisticated hard-

ware and optimized software as well as a global network are essential

for effective operation. Computer-assisted technology can address the

need for surgery worldwide.
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Methods

Trauma and stroke centers (TSCs) evolved in high-income countries

(HICs) with evidence that immediate 24/7/365 treatment dramatically

improved morbidity/mortality. TSCs are part of the ongoing health-

care system—not a separate entity. The universal humanitarian

response to MCDs suspends political, cultural, and socioeconomic

barriers that hinder a coordinated response to other global crises:

groups frequently at odds with each other unite during an MCD.

MCD response—like TSCs—can be integrated into ongoing

healthcare systems with Mass Casualty Centers (MCCs). Each MCC,

like a TSC, is staffed by specialists from all aspects of emergency

response—available 24/7/365. Integrating the civilian and military

medical resources improves efficiency and minimizes duplication.

MCCs in LMICs can be staffed (at least initially) by local physicians

and nurses working side-by-side with HIC physicians and nurses (on a

rotating basis), following the ‘‘twinning’’ model for partnering med-

ical centers in LMICs and HICs.

Computer-assisted technology has enhanced both daily healthcare

and MCD response to both natural and un-natural (man-made) MCDs.

A common electronic health record and data collection platform

across MCCs enhances standardization of guidelines, training, and

quality assurance. Telemedicine can reduce morbidity/mortality and

expense in both daily care and MCDs—and also provide immediate

24/7/365 telesurgical guidance. Battery-powered CT scanners provide

resilient infrastructure during both power outages (common in

LMICs) and MCDs. Mobile operating rooms—portable by heli-

copter—enable surgery anywhere worldwide within hours. Drones

and robots improve both daily healthcare (e.g. transport blood prod-

ucts, lab specimens, vaccines) and MCD response (e.g. identify the

living buried in rubble, triage medical resources to maximize benefit).

Resilient, full-service, 24/7/365 MCCs augment the healthcare

resources of the region served during non-MCD times (like TSCs in

HICs): they provide radiology, blood bank, laboratory, critical care,

etc. Groups with resources to optimize cost-effective, immediate care

include:

1. The International Virtual eHospital (IVeH) has developed

telemedicine programs for Albania, Cabo Verde, the Philippines,

and the North Atlantic Treaty Organization (NATO).

2. The Apollo Telemedicine Network Foundation (ATNF), based in

India, provides daily telemedicine consultation services to over

30 countries (mostly in sub-Saharan Africa).

3. The Center for Robot-Assisted Search and Rescue (CRASAR) at

Texas A&M University provides immediate free robots and

drones for MCD response.

Results

The initial MCC sites are Iquique (northern Chile) and Peshawar

(northwest Pakistan). In Iquique, a joint meeting was held in 2018

with the local health authorities, the military (Chilean Iquique Air

Force Base), and the Chilean Ministry for Emergency Response

(ONEMI). In 2019, meetings were held with the Ministry of Health

and the Chilean Naval Hospital Director.

In Peshawar, neurosurgeon Tariq Khan over the past decade has

opened two hospitals, a medical school (100 students/year), a nursing

school (50 students/year), and a ground ambulance service. Com-

munity-based trauma prevention and rehabilitation programs have

been implemented; the Peshawar Chapter of the ThinkFirst Trauma

Injury Prevention Program (begun in the USA in 1986) received the

2019 International Achievement Award. The Military Commander for

the Pakistan’’s Northern Region supports the MCC project—meetings

were held before the COVID-19 pandemic. Meetings with the Sur-

geon General of Pakistan are planned for 2021, and the MCC Project

is coordinating with the Pakistani National Vision for Surgical Care

2025 and NSOAP (National Surgical, Obstetric, and Anesthesia Plan

of the WHO) projects.
Conclusion

Technical advances in resilient and mobile imaging and surgery,

electronic data collection and analysis, telemedicine/telesurgery,

robots/drones make improvement in both daily healthcare and MCD

response not only feasible but economically essential.

MCCs implement universal standards for medical/surgical train-

ing, and provide an unmatched global platform for research. They

foster camaraderie between physicians and staff from various LMICs

and HICs, and development of cost-effective medical/surgical tech-

niques. MCCs advance healthcare and economic progress in LMICs

and can be key to realizing many healthcare-related SDGs for 2030.

There are substantial political and socioeconomic benefits—be-

yond the healthcare benefits—of integrated MCCs as a means to

leverage technology for improved global surgery.
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Purpose

Mobile robotic systems are a promising technology for addressing

many challenges that today’s inpatient facilities are facing. This

relates to supporting understaffed clinical teams, taking on non-er-

gonomic or monotonous tasks, and improving overall efficiency of the

system. We refer to such mobile robots for the hospital as au-
tonomously self-navigating clinical assistance systems (ASCAS) and

are working toward laying the groundwork for integrating these

systems into the clinics of tomorrow. Since, for ethical and

Fig. 1 Timeline of key events in disaster management and global

surgery policy since 1960. NSOAP: National Surgical, Obstetric, and

Anesthesia Plan; UN: United Nations; WHA: World Health Assem-

bly. BMJ Global Health 2019;4:e001493. https://doi.org/10.1136/

bmjgh-2019-001493
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technological reasons, we do not believe in the vision of a fully

automated hospital, we see ASCAS systems as a means to support

clinicians, not replace them. We center our concepts around what is

best for patients and clinicians, while economic factors are only

considered secondarily. As a result, and contrary to holistic automa-

tion, humans and robots will need to collaborate as teams within the

hospital, which introduces the problem of workload balancing

between both sides. Though similar problems have been described in

the context of other domains, we argue that the application to the

hospital deserves special consideration due to unique characteristics

regarding highly dynamic workflows and responsibility towards the

patient. In this extended abstract, we present a first approach

regarding workload balancing by means of task allocation in mixed

human–robot teams collaborating within the operating room wing

(OR wing).
Methods

Within the framework of the research project AURORA, we are

currently developing a robotic assistant for the OR that is meant to

support the circulating nurses and the surgical team as a whole, by

executing tasks within the non-sterile area of the operating theater,

such as fetching sterilely packaged materials and adjusting medical

devices. According to our vision, the human circulators and the

AURORA robots are forming a team, from here on referred to as

human–robot circulator team (HRCT), that may receive task

assignments from several sources, including the sterilely dressed

surgical team, non-sterile OR staff, technical assistants or even other

robotic systems.

As a foundation for further investigations on how to allocate tasks

intelligently within such an HRCT, we analyzed the tasks and

workflows that are currently being executed by (human) circulators in

the OR. For that, we recorded circulator activity during 15 chole-

cystectomies and 5 sigma resections conducted at the surgical

department of a university hospital.
Results

We identified several tasks that are reasonable candidates for both

robotic or human execution (beyond those provided by our AURORA

robot), including cleaning, moving of objects, disposal of waste and

phone management. We also found that the priority and frequency of

these tasks may vary significantly depending on the patient condition,

OR phase and current overall workload. We concluded that, since

there is overlap in human and robot capabilities, a context-aware

workload balancing mechanism is required to make best use of the

available resources in any given situation and also avoid confusion

regarding current responsibilities of individual HRCT members.

Additionally, we consider avoidance of some of these tasks by

implementation of alternative technologies (automated phone man-

agement) as a valid option.

Our task allocation concept considers the following scenario: an

HRCT, consisting of multiple human team members of different

adeptness and multiple ASCAS systems with different capabilities, is

responsible for assisting multiple ORs in parallel and therefore needs

to distribute its resources in an intelligent way. Especially in situa-

tions of high demand or staff shortage, the choice of task allocation

may impact patient wellbeing and staff workload significantly. Con-

sequently, we propose that task allocation should consider these

aspects during matchmaking (i.e. task assignment to individual HRCT

members), instead of assigning tasks randomly or on a first-in-first-out

basis.

Let’s assume that a given task can, per se, be executed either by a

human or a robot. How can intelligently be decided who the task

should be assigned to? We argue that patient wellbeing should be the

most important influence on this decision. For example, in situations

where materials are required urgently to manage an adverse event

during surgery, it should be considered whether the task of fetching

these materials can be executed faster by a human or robot. However,

as long as there is no disadvantage for the patient, we also want to

ease the workload of human HRCT members to improve staff satis-

faction. Therefore, the execution of, e.g. monotonous or heavy-lifting

tasks should be assigned to robotic team members, if currently

available. Finally, in cases where patient well-being or staff ergo-

nomics are not significantly affected, we want to optimize efficiency

of the overall workflow to benefit economic interests of the hospital.

We envision the HRCT task allocation process as follows: A task

manager module receives incoming task assignments and is respon-

sible for creating a schedule, i.e. the execution plan that dictates

which task shall be executed at what time by an available resource

(Clearly, this entails much more than the decision whether to allocate

the tasks to a human or a robot, however, we will exclude these

aspects in the context of this abstract). According to the schedule, the

tasks are then dispatched to HRCT members. While robotic team

members receive task assignments via standard communication

interfaces and protocols (e.g. WIFI and JSON), we propose to use

wearable devices for human team members. An incoming task

assignment will be displayed on the wearable and the circulator can

confirm execution begin via touch or voice interaction. Thus, the task

manager is now aware of the circulator currently being occupied and

considers this information when updating the schedule. However, in

case of an unexpected event with high priority, the circulator may

receive the request to pause the current task and execute the new,

more urgent task first. The circulator can choose to accept or decline

this request, depending on whether an interruption of the initial task is

possible or not. As soon as the circulator finishes a task, the successful

execution must be reported back to the task manager. Again, this can

be achieved using the wearable device.
Conclusion

In this extended abstract, we introduced the problem of HRCT task

allocation and discussed in which order patient well-being, staff

ergonomics and the hospital’’s economic interests should be an

influence on this. Furthermore, we proposed an early concept how we

believe wearable devices can be used for allocating tasks to human

HRCT members. In the future, we aim at integrating these results into

our ANTS-OR scheduling framework to offer support for mixed

human–robot teams.
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Purpose

Current healthcare systems around the world are characterized by the

organizational principles of segmentation and separation of medical

specialties. They are structured into departments and facilities which

are not tightly linked to the rest of the healthcare ecosystem. With our

new hospital concept, called Patient Hub, we envision a one-stop

truly patient-centric, department-less facility, where all critical

functions occur on one floor and which could serve not only as a

model for the hospital, but also for the general healthcare system of

the future.
Methods

The effectiveness and added value of our proposed hospital archi-

tecture was benchmarked against a traditional design using a 3D

simulation software and by assessing workflow efficiency and patient

satisfaction for an exemplary scenario around a patient being diag-

nosed and treated for rectal cancer.
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Workflow simulation

Using the 3D simulation software FlexSim HealthcareTM (FlexSim

Software Products, Inc., Orem, Utah, USA) we developed dynamic

models for comparing various quality measures between our two

different settings. We focused on measuring:

• The time spent on each step of patient clinical pathways

• Estimated bottlenecks and waiting times

• Distance and number of patient transfers

• Required staff size

• Number of waiting rooms and other spaces

Results

The Patient Hub Concept
Today’s hospital buildings are often versions of the 1960s bed-tower-

on-diagnostic-and-treatment podium model similar to a Kaiser

Permenente hospital, which are separated in several departments and

in which the patient is incrementally moved around from place to

place to receive care instead of bringing the care to the patient.

Our Patient Hub concept is a radical departure from this design

and envisions a transformative ‘‘one of a kind’’, truly patient-centric,

department-less facility. We propose a highly centralized clinical

layout, where all relevant medical fields of expertise are available

within the same space surrounding the patient (see Figure 1). They

form clusters which contain functionalities of equal classes, for

example inpatient or outpatient care. The centralized clinical layout

brings together staff from all specialties to encourage clinical col-

laboration and care coordination. The Patient Hub co-locates

outpatient, inpatient, rehabilitation, wellness and prevention, ancillary

support spaces, and R&D all under one roof. It is no longer a site for

the treatment of the sick rather than a health-oriented all-encom-

passing facility.

By avoiding copies of functionalities in every department (e.g.

waiting rooms) the Patient-hub concept allows for the saving of

space, for complexity reduction of patient pathways, and for easy

implementation of new treatment concepts. While keeping this

functional patient-hub design with all required functionalities being

logically distributed on one floor, different levels of the building can

be adapted to different patient needs and treatment forms (Figure 2).

Comparison to traditional hospital layout
Numeric results of the actual workflow simulations are given in

Table 1, whereas a more detailed description of the simulation and

results will be presented during the congress.

Discussion
Our (preliminary) results on a simple patient scenario are promising,

since a considerable improvement for every selected parameter can be

observed. In more complicated situations and workflows we believe

the benefits of the new patient-centric layout will become even more

obvious—due to the reduction of bottlenecks and resulting

improvements of target parameters relevant for patient experience.

As of now, the proposed concepts mainly focus on architectural
design and a translation to the real world will certainly require many

more building blocks, such as AI, big data and robotics. In particular,

we envision the entire infrastructure, including technical devices,

spaces and functional units to become adaptive, mobile and intelli-

gent. While we plan to incorporate such considerations into future

work, we advocate a very deliberate use of technology, goverened by

the paradigm of bringing care to the patient and to increase patient

satisfaction. Lastly, our simulation results show significant increases

in efficiency throughout the facility, with less required staff members

and less time required per patient.
Conclusion

With the Patient Hub concept we envisioned breaking the traditional

departmental organization and topological distribution in isolated

clusters of today’s hospitals and improving patient experience and

satisfaction while optimizing the efficiency of therapeutic and diag-

nostic procedures. We further introduced a more structured approach

to design and experiment with the disruptive and innovative archi-

tecture of future healthcare facilities.

Fig. 1 Re-imagined healthcare paradigm: changing from incremental

‘‘patient to care’’ towards a re-imagined ‘‘care to patient’’ approach

Fig. 1 Patient Hub functional stacking and 3D massing

Table 1 Results of workflow simulation comparison

Parameter Result

Number of ‘‘stops’’ or patient ‘‘hand-offs’’

between staff and departments—(traveling

from different specialty areas to and from

Medical/Surgical Ward/ICU)

55% reduction

Average elevator travel waiting time 85% reduction

Elevator Trips 80% reduction

Reception personnel and waiting rooms needed 50% reduction

Trips to administration for interview, receive

data and instructions

75% reduction

Patient transfer travel distance horizontal 45% reduction

Staff support/commons spaces typically found

and repeated in different departments

(lounges, conference rooms, offices, etcetera)

40% space savings

Universal, one stop patient room (Multi-acuity) 35% increase in

room size
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Purpose

Orthopedic oncology treats tumors affecting bones and soft tissues. In

many cases, it involves their complete surgical resection, ensuring a

safety margin of healthy tissue. However, these surgeries are a real

challenge to clinicians, since local recurrence rate is 27% and the five-

year survival rate, 50% [1].

During the last decade, surgical navigation improved tumor

resection accuracy, decreasing local occurrence, and enhancing sur-

gical outcomes. Nevertheless, traditional navigation systems do not

always adapt to this kind of interventions. They display real-time

navigation information on external screens, requiring the surgeon to

move his attention away from the patient.

Three-dimensional printing (3DP) and augmented reality (AR)

have recently increased their adoption in many medical areas with

exciting benefits. 3DP allows creating patient-specific anatomical

biomodels for surgical planning and patient communication. AR

enables the simultaneous interaction with real and virtually projected

3D elements during medical training or surgery. These two tech-

nologies could overcome the limitations identified for surgical

navigation by displaying relevant patient information on-site during

surgical procedures.

In this study, we propose a system that combines both technolo-

gies to improve orthopedic oncological surgeries. This solution was

developed as an AR-based application for Microsoft HoloLens 2. It

displays the internal anatomical structures overlaid on the patient

using two 3D-printed tools: a reference marker and a surgical guide.

They are designed to fit in a unique position of the bone that sur-

rounds the tumor, thus enabling automatic registration. We assessed

this solution on a patient with an undifferentiated pleomorphic sar-

coma on the right deltoid, measuring the precision with a 3D-printed

phantom obtained from the patient data and evaluating the perfor-

mance during the actual surgical intervention.
Methods

An AR-based HoloLens application was developed on Unity plat-

form. The app uses the camera and Vuforia� development kit to

identify a two-dimensional 3D-printed reference marker that contains

a known black and white pattern. Once the marker is identified, vir-

tual models are projected over the patient to guide the surgeon during

the tumor identification facilitating the resection. Three virtual

models (tumor, surrounding bone, and surgical guide) can be dis-

played with user-selected transparency.

The bone and the tumor were segmented from the CT of the

patient using 3D Slicer platform. The surgical guide was created using

MeshMixer software as a negative of the bone’s surface, with a

support to fix the AR marker. The surgical guide was printed in

BioMed Clear V1 resin material (class II biocompatible material) on a

Form 2 stereolithography 3D printer. Both the guide and the AR

marker were sterilized before surgery with ethylene oxide (EtO) at

558C and 378C, respectively. The relative coordinates of the

biomodels and the marker were computed and stored using a

previously developed 3D Slicer module. Once the marker is detected,

the virtual models are automatically displayed in the correct position

with respect to the patient.

Prior to the surgery, the precision of the system was evaluated at

the laboratory using patient-specific phantom, 3D-printed in PLA

with an Ultimaker 3 Extended 3D printer, containing the tumor and

the surrounding bone. We also 3D printed a version of the surgical

guide in resin. Both phantom and guide included eight and four

conical holes respectively (Ø 4 mm 9 3 mm depth) as reference

landmarks for the experiment. We used a Polaris Spectra optical

tracking system and a pointer to record the reference fiducials’

positions, allowing to calculate the registration (phantom’landmarks)

and two precision values: surgical guide placement error

(guide’landmarks) and the AR tracking error. We virtually augmented

14 randomly distributed spheres (Ø 3 mm) on the phantom’s surface

to measure the AR error. Two users selected with the pointer the

position of each conical hole or sphere (guided by the AR app). The

error corresponded to the distance between the pointer position and

the known sphere coordinates. Each user repeated the process five

times.
Results

The errors obtained on the phantom are summarized in Table 1. The

mean surgical guide placement error was 1.34 ± 0.39 mm, and the

overall AR error 2.38 ± 0.90 mm. Both values are slightly better than

recent literature in AR surgical guidance with Hololens 1 [2].

In the surgical room, the surgical guides fitted as planned in the

target area on the patient’s bone, and the AR marker could be cor-

rectly detected by Hololens 2. Hence, we could calculate a successful

registration between the AR system and the patient’s anatomy, pro-

jecting the virtual biomodels overlayed on the patient in their

expected location (see Figure 1). Surgeons’ feedback on the intu-

itiveness and comfortability of the system was very positive. They

believe that this AR solution could increase the accuracy of the

procedure and boost their confidence to verify that the tumor has been

correctly resected.
Conclusion

The results obtained in both scenarios demonstrate the benefits that

the combination of AR and 3DP can bring to orthopedic oncological

surgeries. The laboratory results show precision values in concor-

dance with current literature, and surgeons’ feedback endorses the

applicability of our proposal from the clinical perspective, promoting

further research on this area. More cases with different tumor con-

ditions will be studied to warranty the usability of the system. This

work establishes a baseline for developing more AR and 3DP systems

for surgical guidance in orthopedic oncology in the future.
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Table 1 Mean surgical guide placement error and augmented reality

tracking error per user

User 1 User 2 Overall

Surgical guide placement error (mm)

Mean 1.34 1.33 1.34

SD 0.31 0.46 0.39

Augmented reality tracking error (mm)

Mean 2.43 2.31 2.38

SD 0.86 0.95 0.90
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Purpose

Superselective intra-arterial chemotherapy is an effective treatment for

oral cancer in that surgeons can provide a high concentration of anti-

cancer drugs into the tumor-feeding arteries through a catheter [1]. In

general, X-ray fluoroscopy is used to track the position and orientation

of the catheter’’s tip for inserting it into the targeted artery. However, it

requires X-ray exposure and administration of contrast agents. Elec-

tromagnetic tracking is often used to track medical instruments inside a

human body [2]. Although electromagnetic wave is less invasive than

X-ray, the size of conventional coil sensors is too large ([ 5.5 mm) to

fit inside the catheter (\ 1.3 mm) for superselective intra-arterial

chemotherapy. For this purpose, tunneling magneto-resistance (TMR)

sensor (* 0.3 mm) that measures magnetic fields based on the tun-

neling magnetoresistance effect is a promising candidate to use as a

magnetic sensor in the electromagnetic system. However, its nonlinear

field-voltage characteristics needs to be considered to implement TMR

sensors in an electromagnetic tracking system. Here, we proposed a

TMR sensor based electromagnetic tracking system considering its

nonlinear field-voltage characteristics and evaluated the position esti-

mation accuracy of the system.
Methods

The TMR sensor based electromagnetic tracking system consists of a

field generator and a TMR sensor device. For the field generator, six

inductors were driven simultaneously with different frequencies. The

magnetic field strength of the six inductors was limited to ± 398

A/m, so as not to exceed the range in which the field-voltage char-

acteristics of the TMR sensor were bijective. For the TMR sensor

device, we used a custom-made three axis TMR sensor (ABA03,

Daido Steel, JP). The output voltages were converted to magnetic

field values by a quadratic function fitted nonlinear fields-voltage

characteristics. The converted magnetic field values were decom-

posed into each frequency using phase detection. Calibration was

performed to compensate fields distortion before position calculation.

Magnetic fields distortions are caused by eddy currents in surrounding

conductive materials and mutual induction between inductors. The

magnetic fields’’ values were compensated by a predetermined cali-

bration matrix. The calibration matrix was determined by measuring

the magnetic fields at 45 known positions and minimizing the dif-

ference between the measured values and theoretical values with the

least-squares method.

The position estimation accuracy of the system was evaluated by

the experimental setup shown in Fig. 1. The inductors used in the

experiment were 100 mm in diameter with 6060 turns. The inductor

frequencies were set to 355, 435, 602, 748, 881, 1061 Hz. The sensor

device was located at 45 points using positioning pins within

100 mm 9 200 mm 9 100 mm. The position of the sensor device

was calculated by using the Levenberg–Marquardt method which

searches for a point where the compensated measurement value

matches the theoretical value. The estimated position was iteratively

updated until the position difference became less than 0.1 mm. The

errors between the estimated sensor position and the positioning pins

were evaluated (N = 4).

Fig. 1 HoloLens view during the surgery after the tumor resec-

tion. The virtual bone and tumor are projected overlaid on the patient

in the correct position. A virtual panel allows controlling the

transparency of the virtual biomodels

Fig. 1 Position estimation of a TMR sensor with developed tracking

system
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Results

The results are shown in Table 1 and Fig. 1. The mean error of 45

points was 1.24 mm. The smallest error was 0.18 mm at (242.5, 75.0,

0.0), while the largest error was 4.62 mm at (242.5, - 100, 100). The

errors tended to increase as the distance from the inductors increased.

The mean error of 22 points on the Z = 0.0 mm plane was 0.85 mm,

while the mean error of 23 points on the Z = 100.0 mm plane was

1.53 mm. For each axis, the mean error was 0.74 mm for the x-axis,

0.55 mm for the y-axis, 0.55 mm for the z-axis.

The mean standard deviation of 45 points was 0.49 mm. The

smallest standard deviation was 0.10 mm at (142.5, 75.0, 0.0), while

the largest standard deviation was 2.11 mm at (242.5, - 50.0, 100.0).

The standard deviations also tended to increase as the distance from

the inductors increased. The mean standard deviation of 22 points on

the Z = 0.0 mm plane was 0.33 mm, while the mean standard devi-

ation of 23 points on the Z = 100.0 mm plane was 0.70 mm. For each

axis, the mean standard deviation was 0.38 mm for the x-axis,

0.27 mm for the y-axis, 0.29 mm for the z-axis.
Conclusion

We have constructed and evaluated the position estimation accuracy

of an electromagnetic tracking system using a TMR sensor. The mean

error of sensor position estimation was 1.24 mm. Although the

accuracy of sensor orientation has not been evaluated, TMR sensor is

a promising candidate to use as a magnetic sensor for an electro-

magnetic tracking system in superselective intra-arterial

chemotherapy. (Funding availability: Grant-in-Aid for Scientific

Research (B) (JSPS KAKENHI Grant Number JP 20H04553), JSPS,

Japan)
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Purpose

The goal of this project is to develop and evaluate a minimally

invasive MRI compatible concentric tube robot for intracerebral

hemorrhage (ICH) evacuation under interventional MRI (iMRI).

While the current standard for ICH evacuation uses CT imaging, we

aim to explore whether ICH evacuation under iMRI is feasible and

could provide a new treatment paradigm for these procedures. The

advantages of MRI versus CT for the brain include the delineation of

white matter tracts in optimizing a surgical corridor to the hemor-

rhage; greatly enhanced visualization of underlying pathology, critical

structures, and hemorrhage heterogeneity impacting the degree of

evacuation; and lack of radiation which means multiple scans can be

acquired during the procedure.

About 1 in 50 people suffer from ICH in their lifetime and is the

leading cause of long-term disability in the United States. ICH occurs

when blood leaked from a ruptured vessel accumulates and forms a

blood clot (hematoma) in the brain parenchyma, which can compress

local structures. The 30-day mortality for ICH is about 40% with half

of all deaths occurring in the acute phase, especially in the first 48 h.

Blood spilled outside of the intracranial vessels is toxic to the sur-

rounding brain, causing inflammation and secondary brain injury.

This manifests as edema seen immediately after the hemorrhage and

increases rapidly over the first 24 h. The aim of surgical intervention

is decompression to relieve the mass effect exerted by the hematoma

on the brain. Traditional surgical techniques do not always offer

clinical benefit and often disrupt more normal brain in the operative

approach than the volume of brain that could be saved by evacuating

the clot. These deleterious effects motivate improved treatments to

save at-risk brain tissue. Therefore, a minimally invasive approach

under MRI guidance may offer increased accuracy and the ability to

decompress the brain with less disruption to normal brain in

approaching the hematoma.
Methods

Our system concept is shown in the figure 1 which includes (1) an

MRI-compatible concentric tube robotic system positioned on a

6-DoF supporting arm; (2) a navigation workstation to visualize the

cannula and brain/hematoma MRI images; and (3) a user input device

for the clinician to control the concentric tube robot to evacuate the

clot.

The robot will be fabricated using 3D printing techniques and

incorporate novel MRI-safe actuators capable of accurate movement

in the bore of the magnet. Actively tracked microcoils mounted on the

aspiration cannula will enable sub-millimeter position feedback for

accurate cannula localization. Real-time image feedback from MRI

will enable intraoperative monitoring for deploying the aspiration

Table 1 Errors and standard deviations (STD) of 45 points

Mean Median Min. Max.

Error

(mm)

Euclidean

norm

All (45points) 1.24 0.88 0.18 4.62

Z = 0 (22

points)

0.85 0.53 0.18 3.54

Z = 100 (23

points)

1.53 1.19 0.29 4.62

X-axis All (45points) 0.74 0.45 0.08 3.71

Y-axis All (45points) 0.55 0.33 0.06 3.06

Z-axis All (45points) 0.55 0.26 0.04 3.60

SD

(mm)

Euclidean

norm

All (45points) 0.49 0.41 0.10 2.21

Z = 0 (22

points)

0.33 0.29 0.10 0.72

Z = 100 (23

points)

0.70 0.54 0.16 2.21

X-axis All (45points) 0.38 0.24 0.05 2.62

Y-axis All (45points) 0.27 0.21 0.05 0.96

Z-axis All (45points) 0.29 0.26 0.02 0.80
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cannula deployment within the hematoma. MRI will also help mon-

itor the treatment outcome to avoid incomplete or overly aggressive

hemorrhage evacuation.
Results

We have created a prototype MRI-compatible concentric tube robot

for ICH aspiration. It consists of an MR-safe actuation unit that

applies the translational and rotational motions to the concentric

tubes. The robot is mounted on top of a 6-DOF stereotactic supporting

arm to enable the correct orientation towards the hematoma. We have

tested the concentric tube robot workspace in ICH models, segmented

from brain images from 20 patients provided by Vanderbilt University

Medical School under an approved IRB protocol, and found the

aspiration cannula could reach and cover all the hematomas. A

benchtop targeting accuracy characterization study was performed

using an electromagnetic tracker (Aurora, Northern Digital, Inc.). The

experimental results indicated the prototype has a targeting accuracy

of 1.26 ± 1.22 mm [1]. The MRI-guided phantom study showed that

the robot successfully reached the desired target with real-time MRI

guidance and evacuated approximately 11.3 ml of phantom hema-

toma in 9 min. The complete setup was tested in a 3T MR scanner

and no image distortions or safety hazards were observed based on

ASTM standards tests.
Conclusion

We will build on the prototype system described above to expand its

capabilities including real-time MRI guided concentric tube robot

control and efficient hemorrhage evacuation with intraoperative

monitoring. Future work will also include cadaver tests and swine

animal studies.
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Purpose

Mastoidectomy (temporal bone drilling) is difficult to master and

requires significant training. Cadaveric practice material is expensive

and difficult to obtain, resulting in the closure of many temporal bone

courses in North America. Additionally, an expert surgeon must be

present to evaluate the drilled cadaveric sample. These requirements

hinder the accessibility of surgical training in otology. An adjunct to

cadaveric practice is a virtual reality simulator designed for temporal

bone drilling. Western University, University of Calgary, and Stan-

ford University have developed a virtual surgical environment called

CardinalSim that allows the user to view and drill patient-specific

digital models of anatomical structures as well as receive intuitive

haptic (touch) feedback from simulated tools. Whilst CardinalSim

removes the need for cadaveric material and provides summative

feedback automatically, it does not yet provide formative feedback

and an expert is required to monitor the training session. Hence, the

purpose of this work is to implement real-time metrics to provide

formative feedback.
Methods

Software technologies including voxel representation, ray-casting,

and asynchronous scheduling were employed to create an automated

real-time metric system. Algorithms have been developed to

dynamically monitor and evaluate CardinalSim’’s virtual surgical

environment, haptic tool, and digital anatomical structures in real-

time. User drilling interaction is sequenced into a series of drilling

strokes that contain information regarding the applied pressure, bone

mass removed, and time required for removal. These data points are

recorded to volatile memory and analyzed for indication of poor

surgical practice. After the user completes a drill stroke (signified by

de-actuating the haptic tool), the stroke is further analyzed to calcu-

late metrics and statistics pertaining to the overall surgical procedure

progress.

This version of CardinalSim allows the user to initiate an evalu-

ated procedure by importing and signifying critical structures and the

evaluation metrics to process. Calculated metric data are presented to

the user as raw values, visual queues, and textual feedback in the form

of numerical fields, colour indicators, and a progress-feed. These

user-interface elements can be displayed as a side-panel next to the

surgical view or as a secondary view on an additional display. In order

to maintain user-interface reliability and performance, an asyn-

chronous system was developed that ensures every data point is

recorded and the most recently analyzed data are displayed to the

user. Finally, when concluding the virtual procedure, a post-operative

report is displayed.
Results

Real-time automated metrics have been developed to identify poor

practices such as sporadic or hesitant drilling, drilling whilst the drill

burr is not visible, drilling forcibly with the bottom-side of the burr,

and using a burr that is either too large or too coarse (see Figure 1).

Overall procedure progress has also been quantified to provide the

total amount of volume removed, length of time spent drilling, length

of time taken to drill out critical landmark structures, average force

applied, and average distance between removed bone material.

Metrics that indicate poor practice have been evaluated with

various acceptance tests wherein a user with adept surgical knowl-

edge processes the corresponding poor and proper actions to verify

that the system can detect and record them effectively. This was

furthered by thorough alpha and ad-hoc testing in virtual user envi-

ronments and workflows during the agile development phase.

Numerical-based metrics such as those involving volume were veri-

fied by processing pre-programmed surgical scenes generated outside

of CardinalSim to ensure known values were obtained. Numerical-

based metrics involving time and force were tested by comparing the

results to external monitoring applications such as those included with

the haptic arm.

Fig. 1 (Left) Schematic diagram of the 3D-printed robot inside the

MRI scanner. The top inset shows the AtamA patient transfer and

head stabilization system. The left bottom inset shows the robot

module mounted on a passive supporting arm. (Right) The surgeon

sits inside the MRI control room and uses a joystick (right hand) to

manipulate the aspiration cannula and a proportional vacuum

regulator (left hand) to control the aspiration under MRI guidance
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The asynchronous design resulted in no noticeable performance

impact on the simulator when compared to the same system with

metrics disabled. During testing, frames per second was reduced by

an average of 3% while metric calculation was occurring. Thus, user

metric feedback was able to formulate and display as the user inter-

acts with the system in real-time.

Clinical residents are currently being recruited to participate in a

validation study to determine efficacy of the metrics in discriminating

surgical performance.
Conclusion

Real-time automated metrics have been developed to identify poor

practice (sporadic or hesitant drilling, drilling whilst the drill burr is

not visible, drilling forcibly with the bottom-side of the burr, and

using a burr that is either too large or too coarse) and highlight overall

procedure progress (total amount of volume removed, the length of

time spent drilling, the length of time taken to drill out critical

landmark structures, average force applied, and average distance

between removed bone material). The user receives formative feed-

back as raw values, visual queues, and text in the form of numerical

fields, colour indicators, and a progress-feed. Real-time performance

was maintained with the use of an asynchronous sequencing and

analysis design that dynamically monitors user interaction. The

addition of a real-time automated metric feedback system will allow

users to learn mastoidectomy when an expert surgeon is not present,

thus saving valuable human resources.
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Purpose

Cryoablation is a popular treatment for atrial fibrillation. The mainly

X-ray fluoroscopy (XR)-guided procedure is performed by placing the

cryo-balloon (CB) in the pulmonary vein ostia and filling the CB with

refrigerant to electrically isolate the veins from the atrium by annular

scarring. High variability of pulmonary veins (PV) and acute angu-

lation of PV challenges proper CB positioning [1]. However, to

achieve sufficient PV isolation, the CB must be in optimal position in

relation to the PV. Insufficient isolation may require re-intervention.

To facilitate correct CB positioning, visualization of the CB location

in relation to the target structure might be helpful. In this work, we

propose to reconstruct the 3D CB orientation from automatically

detected radio-opaque marker and catheter shaft in biplane XR fluo-

roscopy to visualize the CB position relative to the patient specific left

atrium. Based on the position of the radio-opaque marker and the

course of the catheter shaft, detected in the biplane XR fluoroscopy

using two neural networks, the CB orientation was reconstructed in

3D and fused with the patient specific 3D model of the left atrium and

its centerlines. The CB orientation in relation to the target structures

could achieve improved navigation during the procedure or may

enable accurate pre-procedural planning for re-intervention.
Methods

The radio-opaque XR marker and the cryo-balloon catheter shaft were

automatically segmented in corresponding biplane fluoroscopic ima-

ges using neural networks of U-net architecture [2]. The segmented

marker and catheter shaft masks were post-processed to obtain: (1) a

single seed point as the center of the detected marker contour and (2)

the spline fitted catheter centerline from analytical graph of the

skeletonized networks output. Based on the automatically detected

structures in biplane images the 3D orientation of the CB was

reconstructed. The marker position was reconstructed based on

epipolar geometry from (1). From (2), a direction vector was fitted

using minimal averaged Euclidean distance measurement (Fig. 1a).

According to the projection geometries, the direction vectors were

translated in order to obtain initialization by the previously recon-

structed marker position. Using the cross product, the normal to the

plane spanned by the projection vector and direction vector was

calculated for both of the C-arm configurations. The cross product of

the normals provided the 3D catheter direction (Fig. 1b). CB model

including an ellipsoid, marker, and catheter were constructed in

consideration of the specifications of Arctic Front Advance ProTM

(Medtronic, Minneapolis, USA). Since the CB model is rotationally

Fig. 1 CardinalSim surgical view with metrics

Fig. 1 a Biplane XR marked with automatically detected marker

(orange), catheter shaft (blue), and fitted line (red). b From the

projection vector (solid line) and the catheter orientation (dotted line),

initialized by 3d marker position (orange blob), the normal (dashed

line) was determined for frontal (red) and lateral (yellow) view,

yielding the 3d catheter orientation (orange solid line)
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symmetric, there are only 2 landmarks required for proper 3D-3D

registration of the CB model to the XR fluoroscopies. A paired-point

registration between CB model and XR fluoroscopy was done using

the marker center and CB center. Further, 3D CT-based surface

models of the left atrium (LA) including the PV ostia were generated.

Besides the surface model of the LA, its PV centerlines were gen-

erated. Co-registration of the LA model and XR angiography of the

LSPV was performed manually.
Results

The automatic localization of the CB marker and catheter shaft using

U-net could be achieved with high accuracy. The only limitation

results from tricky catheter orientation and overlay of interfering

structures, especially contrast agent injection. Figure 2 shows an

example of the reconstructed catheter orientation and the aligned CB

model as 2D overlays in a) and as 3D model b). As can be seen in

Figure 2a, the model aligned to the reconstructed structures match the

marker and catheter shaft in both biplane XR-projections. Further, the

anatomic overlay enables the recognition of the relevant anatomy. By

alignment of the CB model to the reconstructed orientation in com-

bination with the registered 3D model of the LA and its centerlines,

the position and orientation of the interventional tool within the

patients’’ specific anatomy can be visualized (Fig. 2b).
Conclusion

The presented approach yields a visualization of the CB in relation to

the patient specific target structure. Limitation of the detection

method requires further work to ensure the robustness of the recon-

struction algorithm, e.g. in single-frame detection failure or if

opposite catheter orientation direction is detected. However, the

automatic detection of CB structures is the basis on the way to real-

time visualization. In an intraprocedural environment the CB position

potentially might be verified or adjusted by alignment of the

reconstructed catheter with the PV centerline. Therefore, the correct

manual registration is essential. Further application may consist in

documenting the intervention and subsequently pre-procedural plan-

ning in case of re-intervention. Further evaluation needs to be done

regarding the deviation in case of highly angulated catheters. Nev-

ertheless, the presented approach provides a basis for a simple

procedure to likely facilitate correct CB positioning during PV

ablation, which is expected to be further refined.
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Purpose

Cognitive surgery is the goal of extensive scientific efforts. This term

includes, among other things, the possibility of predicting the course

of certain steps during a surgical procedure. This implies two central

aspects. First, it must be defined which steps a surgery consists of at

all, and second, it must be defined which parameters are crucial to

predict the course of a certain phase of the surgery. The assumption is

therefore that there are parameters such as laboratory values and

biometric measurements that influence the individual course. So the

main problem is to find a way to define these appropriate parameters

using statistical methods and to determine which combination is

optimal here.
Methods

We selected the laparoscopic cholecystectomy as a representative,

and daily performed procedure with a high degree of standardization,

in order to find a procedure that is suitable to define crucial param-

eters. For this purpose, an existing database of 201 laparoscopic

cholecystectomies was used. From each surgical phase, the duration

of the dissection phase was determined and tested for the suitability of

19 parameters (age, height, sodium, potassium, weight, AP, bilirubin,

GGT, GPT, GOT, albumin, CRP, Quick, PTT, leukocytes, gender,

gallbladder stone size, platelets, and thickness of abdominal fat).

A ‘‘long’’ dissection was arbitrarily defined as one that lasts longer

than 05’’33’’‘‘ (median of the entire collective). The collective was

initially divided into two groups K1 and K2. K1 was used to find

Fig. 2 CB model (yellow) aligned to the reconstructed marker and

catheter shaft (orange) with respect to the LA model (blue) and its

centerlines overlaid on the biplane XR (a) and as registered 3d model

(b)
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suitable marker combinations, which were then to be validated with

K2.

The definition was done in two steps. First, receiver operating

characteristic (ROC) analysis was used to determine appropriate

cutoff values for each marker, which were determined by optimizing

the product of sensitivity and specificity. In a second step, the found

cutoff values were combined by an R-script to evaluate which com-

binations of parameters could perform an even better prediction for a

patient with a preparation time of more than 050330’ or. This was

again done by optimizing the product of sensitivity and specificity,

involving testing for combinations of one, two, or up to eight

parameters. Tests were considered positive if half or more of the

parameters suggested a longer dissection time. The constellations

with the best product of sensitivity and specificity were then tested

with the second collective K2.
Results

ROC analysis of the 19 parameters studied revealed intermediate

sensitivities and specificities for several parameters, but none was

higher than 74 and 72%, respectively. Thus, no single parameter was

suitable to predict with certainty whether the respective patient would

have a longer preparation time.

When the parameters were combined with the cuttoff values

found, the combination of the six values ‘height\ 177 cm’,

‘sodium[ 142 mmol/l’, ‘potassium\ 4.5 mmol/l’, ‘body weight[
80 kg’, ‘AP[ 66 U/l’, ‘Quick[ 105%’, and ‘abdominal fat thick-

ness\ 4 cm’ was the optimal combination to separate patients with a

long preparation time from those with a short one. (Sensitivity 88%,

Specificity 74.5%).

The tests found in the optimization phase were then applied to the

remaining K2 collective. Here, the optimal combination of the six

parameters described above yielded a sensitivity of only 68 and a

specificity of 55%.
Conclusion

It is still difficult to define which parameters are crucial for an

appropriate patient model in cognitive surgery. Here we describe an

approach to this problem using the well-established method of ROC

analysis. Since the separation of a patient collective with respect to

gallbladder dissection time during laparoscopic cholecystectomy is

improved when several parameters are combined, this method seems

promising. However, it still requires some validation and optimization

as well as testing in the context of other surgical procedures. There is

an urgent need for valid patient models to advance cognitive surgery.

Retrospective analysis of procedures already performed is an

important means to design such models, and appropriate approaches

are crucial.
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Purpose

Sentinel lymph node biopsy (SLNB) is a minimally invasive proce-

dure developed to detect and remove sentinel lymph nodes (SLNs) to

select treatment regimes in a variety of tumor types. An SLN is one of

the first lymph nodes draining from a primary tumor and it therefore

has the highest probability of containing metastases. The detected

SLNs are surgically removed and pathologically investigated to

identify potential metastases. Consequently, when identified during

surgery and free of tumor cells, removing all regional lymph nodes

becomes obsolete decreasing the burden to the patient. Magnetic

SLNB is enabled by injection of superparamagnetic iron oxide

nanoparticles (SPIONs) combined with a handheld probe detecting

the SPIONs. Additionally, a pre-operative MRI scan can be used for

intraoperative guidance and a post-operative MRI scan can be used to

confirm that all SLNs were removed. For abdominal tumors, such as

prostate cancer, (robot-assisted) laparoscopic surgery is standard care.

The main challenge when developing a detector for a laparoscopic

procedure is the combination of diameter of the detector (limited by

the use of trocars) and sufficient detection depth. A laparoscopic

differential magnetometer (LapDiffMag) was developed to enable

magnetic laparoscopic SLNB, and assessed on its clinical perfor-

mance regarding (depth) sensitivity.
Methods

To detect magnetic nanoparticles, differential magnetometry (Diff-

Mag) was used [1]. This patented nonlinear detection method is

SPION-specific and is influenced minimally by surrounding tissue

and surgical instruments made of steel. LapDiffMag utilizes excita-

tion coils to activate magnetic nanoparticles and detection coils to

acquire the consequent magnetization of the particles. To maintain

sufficient depth sensitivity after decreasing the diameter of the

detector, the excitation and detection part of the system were sepa-

rated [2]. Excitation coils were designed large and placed underneath

the patient, while the detection coils in the probe are kept small

enough to fit through a standard 12 mm trocar (Figure 1: setup).

However, with this new setup, the detection coils move through the

excitation field, leading to disturbances in SPION detection. This was

solved by active compensation, a way to actively cancel-out the

excitation field perceived by the detection coils, facilitated by an

additional set of compensation coils [2]. To assess performance of the

LapDiffMag, we used Magtrace� magnetic nanoparticles (a CE-cer-

tified and FDA-approved tracer for SLNB) in the following

experiments:

• Identification of minimum iron content detectable by LapDiff-

Mag: various amounts of Magtrace� (2.8, 5.6, 7, 9.8, 14, 28, 42,

56, 84, 112, 252, and 504 lg iron) were positioned directly in

front of the probe.

Fig. 1 LapDiffMag situated in an operating room. The excitation coil

is shown in green, the detection probe in blue, and the control unit in

yellow. The number (42) displayed, and the pitch of the sound

represent either the amount of particles close to the probe or the

distance between probe and sample
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• Assessment of depth sensitivity of LapDiffMag: a sample

containing 504 lg iron was measured at various distances to the

detection probe in air.

Results

An advantage of LapDiffMag is that it potentially can be used in a

regular operating room during laparoscopic surgery, in contrast to

other magnetic methods such as an MRI scan or EMG measurement.

Strength of the signal detected by the LapDiffMag system is pre-

sented on a screen and as a sound with a pitch corresponding to the

strength of the signal detected. The minimum detectable amount of

iron by LapDiffMag was found to be 9.8 lg, representing the sensi-

tivity of the system. Detection depth of LapDiffMag for a sample

containing 504 lg iron was found to be 10 mm.
Conclusion

LapDiffMag demonstrated promising first results in terms of iron

sensitivity and detection depth. It is a new route for laparoscopic

magnetic SLNB that has the potential to facilitate abdominal cancer

treatment strategies.
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Purpose

Recently, robotic surgical system has been developed as a powerful

tool for assisting minimally invasive surgery. Depth estimation is

useful to generate surgical navigation information in robot-assisted

laparoscopic surgery system. Due to the development of deep learning

and its wide application in depth estimation, the accuracy of depth

maps predicted by self-supervised deep learning have been greatly

improved by introducing a left–right depth consistency loss compared

to traditional methods. However, continuous convolution operations

in the feature encoder module lead to the loss of spatial information of

input images and blur depth estimation at object boundaries estimated

in depth images after feature decoder module. In order to maintain

high-resolution representations, this paper proposes an attention-

based contextual module for self-supervised learning in depth esti-

mation task.

Methods

The basic self-supervised strategy is followed by the previous method

[1]. At the training phase, we input the rectified stereo image pairs,

corresponding to the left and right laparoscopic color images, into the

network. Then the left one is used to predict the stereo disparity maps.

Based on the left color image and right disparity map, we reconstruct

the fake right color image. While in a similar way, the left recon-

structed image will also be predicted by the right color image and left

disparity map. The depth maps are obtained from the stereo disparity

maps using the extrinsic parameters of the stereo cameras. However,

spatial information of original image is lost in the previous network

[1] that is based on the standard architecture with chained convolution

layers.

The proposed attention-based contextual module consists of three

major blocks: the attention-based block, the dense atrous convolution

(DAC) block and the spatial pyramid pooling (SPP) block. Generally,

depth estimation is realized at pixel level by finding an accurate

correspondence between image pairs under this self-supervised

strategy. Therefore, a cross-dimension interaction attention-based

block is adopted to learn contextual representations of features with

similar semantic similarity at the first of this module. This attention-

based block is made up of three parallel branches. The first two

branches build a channel attention mechanism together. The final

branch is used to construct spatial attention mechanism by the channel

pooling layer. Then, we introduce DAC block and SPP block into the

proposed module.

These two blocks are both to reduce the loss of spatial information

after chained convolution operations. DAC block contains four cas-

cade branches with different number of atrous convolution that

employs different receptive fields, and encodes the high-level feature

maps. SPP is also adopted to compress features into four scales where

the low-dimensional feature maps are up sampled to the same size as

input feature map in final. We design the two parallel branches for

these two blocks instead of a chained architecture in the previous

method to reduce the loss of spatial information. We integrate these

methods into a module to predict depth for medical images. More-

over, this module can be plugged into classic backbone network easily

and the experiments show it can improve the performance of previous

method [1].
Results

The proposed method was implemented in Pytorch. We used the

stereoscopic image pairs dataset from the Hamlyn Centre Laparo-

scopic/Endoscopic Video Datasets [2]. This training dataset includes

18,624 rectified image pairs, and testing dataset includes 5231 recti-

fied image pairs. They are both collected in partial nephrectomy using

da Vinci robotic assisted system with stereo-laparoscope. We per-

formed an ablation study by changing components of our module. The

experimental result showed that combination of all components leads

to improve performance. Moreover, we replaced the backbone in the

previous method with the U-Net and repeat the experiments to

evaluate the performance of the proposed module on different back-

bones. And the proposed module leaded to an improvement on

different backbones.

The mean SSIM and PSNR of testing stereo image pairs were

shown in Table 1. Our experimental results showed that the proposed

module improved about 5.25% in PSNR and about 2.72% in SSIM,

comparing with the previous method [1]. Meanwhile, the spatial

information of the input image was retained with chained convolution

layers, as shown green boxes in Fig. 1.
Conclusion

In this work, we proposed a novel attention-based contextual module

for self-supervised depth estimation method from stereo laparoscopic

images. This module tried to tackle the limitation of previous method

that consecutive convolution operations that lead to a low-represen-

tation and loss of spatial information of images. The module is made
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up of three blocks. The attention-based block is chosen according to

the consideration of high accuracy requirement for depth estimation at

the pixel level. DAC and SPP are designed into two parallel branches

instead of traditional chain structure. Experimental results showed

that the proposed module improved the accuracy of the disparity map

and retained the spatial information of the input image compared with

the previous method.

References

[1] Clément G, Aodha O, Brostow G (2017) Unsupervised

monocular depth estimation with left–right consistency. Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition: 270–279

[2] Ye M, Johns E, Handa A, Zhang L, Pratt P, Yang GZ (2017)

Self-supervised siamese learning on stereo image pairs for depth

estimation in robotic surgery. Hamlyn Symposium on Medical

Robotics

Real-time deformation simulation of hollow organs

based on XPBD with small time steps and air mesh

for surgical simulation

S. Li1, Y. Hayashi1, M. Oda2, K. Misawa3, K. Mori1

1Nagoya University, Graduate School of Informatics, Nagoya, Japan
2Nagoya University, Information Strategy Office, Information

and Communications, Nagoya, Japan 3Aichi Cancer Center,

Department of Gastroenterological Surgery, Nagoya, Japan

Keywords Real-time, Deformation simulation, Hollow organs, Sur-

gical simulation

Purpose

With the development of computer technologies, surgical simulator is

gradually utilized for the surgical skill training. Since most organs of

the human body are deformable, the deformation simulation of them

is fundamental to a surgical simulator. For providing high-quality user

experience, the simulation also needs to be real-time. Although some

research has been carried out on this topic, there are few studies that

are focused on hollow organs. Target organs in organ deformation

simulation studies are commonly solid, such as the liver and kidneys,

or hollow but treated as solid, such as the gallbladder. Obviously, the

deformation of hollow organs may not be simulated in the same way.

Therefore, in this paper, a fast, simple, and robust method is proposed

to simulate the deformation of hollow organs in real-time. We pro-

posed a novel double-layer model to simulate hollow organs

deformation and adopted extended position-based dynamics (XPBD)

with small time steps [1] to simulate deformation and air mesh [2] to

prevent self-collision. We tested our method on a stomach model.
Methods

Double-layer model

A general organ model usually consists of only a single-layer

surface mesh without thickness. To obtain the volume mesh, which is

necessary for the simulation, all the inner space is tessellated and

assumed solid regardless of whether the organ is solid or not in

reality. For more appropriate simulation of hollow organs, a hollow

model would be better instead of a solid one. Therefore, we proposed

a novel double-layer hollow model. By increasing the thickness of the

surface in a single-layer model, we obtained a double-layer model

that consists of an outer surface and an inner surface. The space inside

the inner surface represents the hollow structure and the space

between the outer and inner surfaces represents the wall of hollow

organs. We tetrahedralized the ‘‘wall’’ part to get the volume mesh for

deformation simulation. The ‘‘hollow’’ part was also tetrahedralized,

which is called air mesh and will be explained in later paragraphs.

Basic deformation simulation

XPBD with small time steps [1] is popular in physical simulation

recently. It can provide robust and visually plausible deformation in

real time, which is crucial in surgical simulation. Furthermore, it is

also extensible by adopting different types of constraints to achieve

various effects. Therefore, we adopted XPBD with small time steps as

our deformation simulation framework. We built distance constraints

along each edge in the volume mesh of the ‘‘wall’’ part in our model,

which can conserve the distance between two vertices of one edge. To

conserve the volume of organ, we also gave each tetrahedron in the

‘‘wall’’ part a signed volume constraint. Compared with general

volume constraint, signed volume constraint prevents tetrahedrons

from inversion naturally, which is common when the model is

severely distorted. XPBD with distance constraint and signed volume

constraint enables to perform the basic deformation simulation of

hollow organs.

Self-collision prevention

Along with the double-layer model, self-collision prevention

method is also introduced. The self-collision refers to the collision

between different parts of the model itself. In solid organ models,

self-collision is rare due to the solid shape. However, since there are

no constraints inside the hollow interior space in a double-layer

model, self-collision will occur. Therefore, we introduced air mesh

[2] to solve this problem. The ‘‘hollow’’ part was tetrahedralized and

called air mesh. We add unilateral volume constraints to tetrahedrons

in the air mesh and integrated it into the XPBD framework. During

the simulation, when the volume of a tetrahedron in the air mesh is

negative which means it is inverted, unilateral volume constraint

makes its volume back to zero. The self-collision problem is solved

robustly and naturally in this way without increasing too much

computational burden.

Table 1 Comparison of proposed module on different backbone

networks by SSIM and PSNR

Methods Mean SSIM

(Left)

Mean SSIM

(Right)

Mean PSNR

(Left)

Mean PSNR

(Right)

Baseline [1] 0.85 0.84 18.3 18.08

Baseline

(DAC ? SPP)

0.86 0.85 19.16 18.8

Baseline

(full module)

0.87 0.86 19.34 18.94

U-Net 0.84 0.83 17.66 17.58

U-Net

(DAC ? SPP)

0.85 0.84 18.13 18.26

U-Net

(full module)

0.86 0.86 18.67 18.9

Fig. 1 Example and comparison of previous method [1] and

proposed method. a original left image of stereo image pairs,

b disparity maps estimated by the previous method, c disparity maps

estimated by the previous with the proposed module, d disparity maps

with color maps, and e reconstructed left image. Green boxes indicate

the results of the previous method with and without the proposed

module in the same area
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Results

We tested our method on a PC with Intel Core i7-8700 K CPU,

NVIDIA GeForce RTX 3080 GPU, and 64.0 GB RAM. We generated

a stomach model from stomach region segmented from a CT volume.

The processed double-layer stomach model has 10,316 vertices,

35,424 tetrahedrons in volume mesh, and 33,315 tetrahedrons in air

mesh. Unity was chosen as our engine because it facilitates rapid

development. We let the model free fall onto a frictionless tray and

simulated the deformation. The deformation simulation and self-

collision prevention procedures were computed parallelly on GPU.

The average processing time per frame was 5.65 ms. We also com-

pared the results of single-layer solid model, double-layer hollow

model with air mesh, and double-layer hollow model without air

mesh. The comparison is shown in Fig. 1. Compared with the sim-

ulation of a single-layer solid model, the simulation of a double-layer

hollow model is more plausible and closer to the real deformation of a

hollow organ. Compared with the simulation without air mesh, the

simulation with air mesh solves the self-collision problem well.
Conclusion

This paper aims to simulate the deformation of hollow organs in real

time for the further application in surgical simulation. We proposed a

fast, simple, and robust method based on a novel double-layer model,

XPBD with small time steps, and air mesh. We tested our method

with a stomach model and achieved a favorable result. A limitation of

this work is that constraints of the deformation simulation are too

simple to show the complex physical properties, like anisotropy and

heterogeneity. We will work on it in future.
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Purpose

Minimally Invasive Surgery (MIS) robot systems have a remote

center of motion (RCM) in which a surgical instrument conducts a

fulcrum motion around a point of incision. It is generally considered

that there is no lateral motion to RCM point, however, in real surgery,

there are many cases in MIS the RCM point moves. For example, the

RCM point may be moving because of heavy breathing, strong

heartbeat, and movement of the patient [1]. Moreover, the RCM point

is changed to get additional sight of the lesion in arthroscopic surgery

and vitreoretinal surgery.

Many active positioning arms (APAs) for RCM have been

developed over many years and can be classified into two categories,

depending on whether the RCM point is defined and mechanically

locked based on the kinematics of the mechanism (e.g. link) or not

[2]. APAs that the RCM point is mechanically locked are strong

against external forces that are related to safety. However, it is dif-

ficult to set these arms to move RCM point while preventing

interference among robot arms or between robot arms and surgeons.

This is because the more change of inertia makes the larger work-

space for moving RCM point. On the other hand, APAs that control

virtual RCM point without any kinematic constraints have an

advantage to freely move RCM point, but they are vulnerable to

external forces.

It is necessary for APA to have a strong structure against external

forces but move RCM point with the less change of inertia of APA. In

this paper, we propose a simple but novel APA using parallel sliding

mechanism for MIS. This mechanism makes 2-degree of freedom

(pitch rotation and translation) by the relative motion of sliders so that

the proposed APA has a strong structure but is able to move RCM

point with the less change of inertia.

This work was supported in part by the National Research Foun-

dation of Korea through the Framework of International Cooperation

Program under Grant 2019K2A9A2A06025429 and Grant FY2019, in

part by the Korea Medical Device Development Fund grant funded by

the Korea Government (the Ministry of Science and ICT, the Ministry

of Trade, Industry and Energy, the Ministry of Health & Welfare,

Republic of Korea, the Ministry of Food and Drug Safety) under

Project 202012D18.
Methods

The proposed APA has one motor for roll, two motors for parallel

sliding mechanism, and one motor for translation of instrument. The

upper slider and lower slider move independently in parallel along

with the upper and lower ball screws respectively. Both sliders are

connected with the link as shown in Fig. 1.

The kinematics for RCM roll rotation is not dealt with in method

section because the proposed APA has the same kinematics as other

mechanisms.

1. Kinematics and control method of parallel sliding mechanism

The control variables for parallel sliding mechanism in this APA

are X1 and X2 which are the distance the lower and upper slider

move respectively as shown in Fig. 1. We can easily show the

Fig. 1 The simulation results. The upper two images are the result of

single-layer solid model. The middle two images are the result of

double-layer hollow model with air mesh. The lower two images are

the result of double-layer hollow model without air mesh. The red

circles denote the self-collision parts
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kinematics of parallel sliding mechanism for RCM pitch rotation

as follows:

X1 ¼ H1 tan hpitch

� �
; hpitch 6¼ 0
� �

ð1Þ
X2 ¼ X1 þ L1 sin hpitch

� �
þ L2 sin a0ð Þ � sin að Þð Þ ð2Þ

where a = cos-1 ((L1cos(hpitch)-H2)/L2) and hpitch is the angle

change of tool in RCM pitch rotation. a0, H1, H2, L1, L2 are all

constant and these constants are determined considering the envi-

ronment of operation and workspace.

There are two control methods in parallel sliding mechanism, one is

RCM pitch rotation and the other is RCM translation. For RCM pitch

rotation, we control X1 and X2 following the above equation (1) and

(2). Relative motion between 2 sliders (hpitch = 0, X1 = X2) makes

RCM pitch rotation. For RCM translation, we give the same input to

the X1 and X2 (X1 = X2, X1 = 0). Then, there is no change of

hpitch and it makes only translation of RCM point.

2. RCM Changeability

To evaluate quantitively how efficiently APA changes RCM

point, we suggest a new criterion, RCM Changeability.

RCM Changeability = Displacement of RCM point/Displacement
of COM of active positioning arm

RCM changeability means that how much APA moves to move

RCM point. The inertia change of APA determines the energy to

move APA, interference among APAs. The change of inertia is

related to the displacement of the center of mass (COM) so that the

equation of RCM changeability consists of the displacement of RCM

point and the displacement of COM of APA.
Results

In this section, we compare the double parallelogram mechanism

which most of APAs use and the proposed parallel sliding mechanism

with RCM changeability. We only consider the one-dimensional

movement of RCM point and COM assuming the kinematics of RCM

roll rotation, the total mass of APA and workspace of APA is the

same.

Let the movement of RCM point is Dx. For the double parallel-

ogram mechanism, the movement of COM and RCM point is the

same because the entire APA has to be moved. Consequently, the

RCM changeability is 1. In contrast to the double parallelogram, only

part of the proposed APA moves to change RCM point. The ratio of

the mass of moving part to total mass is 0.236 so that movement of

COM is 0.236 9 Dx. Therefore, RCM changeability of parallel

sliding mechanism is 4.237.
Conclusion

This paper proposed APA for MIS that can move RCM point by using

the parallel sliding mechanism. We validated the proposed mecha-

nism based on RCM changeability and the result shows that the

parallel sliding mechanism change less inertia of APA to move RCM

point than the double parallelogram mechanism.
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Purpose

Accurate percutaneous needle tip localization is essential during

minimally invasive procedures (MIPs). Usually, less experienced

surgeons face more complications during MIP-related interventions

and have more difficulties localizing the needle tip. Biological

punctures created during needle insertion procedures could deliver

valuable information that can be used to localize the needle tip.

Various imaging technologies are used to enhance accuracy and

support the clinician. However, these technologies face limitations,

such as image artifacts affecting the procedure’s accuracy and effi-

cacy. Increasing the accuracy of image-based needle guidance could

be achieved with complementary sensors to provide additional

guidance information. However, most of these specialized sensors are

placed on the needle tip, resulting in direct contact with the biological

tissue leading to increased risks, complexity, costs, and sterilization

issues.

An audio-based technique has recently been introduced [1],

showing promising results for different applications. However, the

relationship between soft tissue events created by the needle tip and

the audio signal excitation is still not well understood. A first study

has been performed [2] to better understand audio excitation using

force as a reference. It showed that force and audio dynamics are

strongly related during needle insertion.

This work aims to study the factors that can influence and affect

the audio signals recorded during a needle puncture and verify if

tissue-related audio dynamics can be identified. One of the main

challenges for audio event characterization is understanding the

transfer function (TF) between the audio wave generated from the

needle tip/tissue interaction at the contact zone and the received audio

signal at the tool’s proximal end. This work proposes a study of the

dynamics related to the TF and punctures to analyze tissue-related

audio dynamics’ identifiability.
Methods

An automatic experimental setup for needle insertions was created to

acquire the audio signals. A microphone attached to the proximal end

of a short bevel steel rod (1.6 mm diameter, 140 mm length, 45� tip)

via a 3D printed adapter was used for recording. The rod simulates a

simplified needle to perform insertions in two plastic tissues of dif-

ferent thicknesses. Two layers of each plastic were fixed in a 3D-

printed tissue holder immersed in a gelatin phantom at a depth of

3 cm and 5.5 cm the first and second layers, respectively. The

Fig. 1 Developed active positioning arm using parallel sliding

mechanism for MIS and its kinematic chain
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insertions were performed automatically using a testing machine

(Zwicki, Zwick GmbH & Co.KG, Ulm) at an insertion velocity of

5 mm/s that recorded the axial needle insertion force. The audio and

force frequencies sampling was 16000 Hz and 100 Hz, respectively.

The signals were synchronized using a simultaneous trigger event

visible in both the force and audio signals.

The setup aimed to test the effect of the TF modification on the

audio signal by adding weights to the needle shaft and subsequently

analyzing the impact of the tissue type on the audio excitation.

Moreover, the setup was used to test the influence of puncture depth

on audio dynamics.

For signal analysis, a dataset of 20 recordings/tissue/needle setup

was generated. Continuous Wavelet Transformation (CWT) was used.

As shown in Fig. 1, two main features were extracted from the CWT

of the audio excitation resulting from a needle puncture: the fre-

quency at which the maximum energy event occurs (Max.time-freq

energy) and the dominant frequency observed in the normalized CWT

spectrum that can be extracted at each time instant (see the last row of

Fig. 1). Our goal was to observe the influence of the TF modification

and a puncture excitation when different tissue types are punctured at

different depths.
Results

Table 1 shows the average and the standard deviation values for the

Max.time-freq energy feature for different insertions. It is possible to

observe that the thicker tissue (tissue (2) produces higher maximal

frequency responses than the thinner one. We can also observe that

the TF modification strongly affects the extracted maximal frequency

feature for both tissues. Additionally, another important observation is

that this feature is not affected by the depth of the layer. For both

tissues, the maximal frequency energy feature does not significantly

change during the first and second punctures (layers 1 and 2,

respectively).

Figure 2 shows the dominant frequency analysis results. Each row

of the displayed matrix represents the probability distribution of each

needle insertion’s dominant frequencies. This feature’’s behavior is

similar to the previously analyzed feature. The modification of the TF

results mainly in the apparition of new frequency dynamics around

the frequency scale 45. For both tissues, there are no significant

changes between the first and second punctures.

The final fundamental observation is that when the TF is fixed, the

dominant frequency behavior depends on the tissue punctured and not

on the depth. This is very important since it demonstrates that it is

possible to identify tissue puncture-related dynamics for automatic

insertions. Nevertheless, any modification on the TF could limit tissue

puncture identification.
Conclusion

An analysis of different dynamics involved in the audio excitation

during the needle insertion process was performed in this work. The

most important conclusion of this work is that it is possible to identify

tissue-related dynamics under a fixed TF and differentiate between

two punctured tissues. These results show that needle audio guidance

could be possible for automatic needle insertion.
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Fig. 1 Example of a puncture event (rectangle) and the computed

CWT illustrating the extracted features

Table 1 Max.time-freq energy mean and standard deviation (SD) for

all setups

Data Mean ± Std [Hz]

1st tissue, 1st puncture, One weight 730.5 ± 6.9

1st tissue, 1st puncture, Three weights 650 ± 10.7

1st tissue, 2nd puncture, One weight 750 ± 6.9

1st tissue, 2nd puncture, Three weights 550 ± 13.6

2nd tissue, 1st puncture, One weight 800 ± 5.2

2nd tissue, 1st puncture, Three weights 1069 ± 0.8

2nd tissue, 2nd puncture, One weight 700 ± 6.2

2nd tissue, 2nd puncture, Three weights 1000 ± 5.9

Fig. 2 Dominant frequency analysis results for both tissues during

needle insertion
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Purpose

Percutaneous interventions under intraoperative magnetic resonance

imaging (MRI) guidance have been used in various applications such

as aspiration, biopsy, and thermal ablations [1]. Intraoperative MRI is

useful in identifying target sites thanks to its superior soft-tissue

contrast, and locating the needle with respect to the target site in near

real-time based on the susceptibility artifact at the needle on the

image. The ability to visualize both the target site and needle

simultaneously potentially allows closed-loop control of the needle to

achieve accurate placement of the needle into the target site using

imaging guidance software and/or a needle-guiding robot. However,

distinguishing the intensity generated by the susceptibility artifact at

the needle is challenging to perform in real-time MRI. There have

been two categories of approaches to address this technical challenge,

including active and passive tracking [2]. Active tracking localizes

the needle using a small MR receiver coil or additional sensors fitted

to the needle. Although active tracking provides robust and accurate

localization, it requires specialized hardware and additional safety

considerations associated with it. Passive needle tracking, in contrast,

localizes the needle by detecting image features, e.g. the needle

artifact, bright spots produced by MR-visible markers. While passive

tracking does not require specialized hardware, automatic detection of

image features is not always reliable due to their inconsistent

appearances on the image. In this study, we hypothesize that the MRI

phase information can yield more distinct and consistent features

around the needle than the commonly-used magnitude image, because

of its direct correlation with local magnetic homogeneity; hence it

helps to improve the accuracy of passive needle tracking. The phase

image can be obtained as part of the standard scan output and

therefore is available at no extra acquisition time or change in scan-

ning parameters. This study proposes a new approach to passive

device tracking by generating positive-contrast images from MRI

phase images.
Methods

We implemented and evaluated the real-time MRI-based needle

tracking algorithm during insertions into biological tissues. The

algorithm uses a multi-step approach described in Fig 1, such as: (1)

A mask is generated from the magnitude image to eliminate the noisy

background in the phase images, (2) the phase image is unwrapped,

(3) a high pass filter is applied to increase the signal-to-noise ratio in

the background field, and (4) A hessian matrix is used for the needle

tip localization.

Mask Generation: It is known that areas with large susceptibility

(i.e. air-tissue interfaces) are prone to artifacts because phase image

measures the weighted summation of the magnetic properties of the

surrounding tissue. A binary threshold was used in the magnitude

image to mask out the areas with high susceptibility borders in the

phase image. This eliminates the noisy phase in the air and bone

surrounding the phantom and reduces computational time.

Phase Unwrapping: The original phase signal is encoded in such a

way that it can only measure phase values in the range of [- p, ?2p]

causing the signal to fold over in the opposite direction. This wrap-

ping operation makes the signal difficult to interpret because of the

random 2p jumps. Phase unwrapping is a process used to recover the

continuous phase values from the wrapped one by detecting phase

jumps and correctly adding appropriate 2p radians. In the proposed

tracking algorithm, the phase unwrapping is achieved using the Phase

Region expanding labeler for Unwrapping Discrete Estimates (PRE-

LUDE) technique.

Estimation and Removal of Background Field: Further filtering is

needed to increase signal-to-noise ratio and reduce artifacts. We

implemented a Gaussian high pass filter which serves two functions:

it helps remove background field inhomogeneities since they have

low spatial frequencies and enhance field inhomogeneity produced by

the needle tip. The implemented Gaussian high pass filter has the

following equation:

Hðu; vÞ ¼ 1 � e�D2ðu;vÞ=2D02

where with a kernel size of 128 9 128 and the cut off distance D0

experimentally tuned to 5.

Detecting Needle Tip position: To detect the needle tip from the

processed image, A blob detector is employed based on the eigen-

value of the hessian matrix. The advantage of the hessian process is

the ability to delineate the high intensity clusters. After the filter is

passed, the needle tip is selected based on the peak local maxima.

Experimental Protocol: In this study, we preformed needle insertion

experiments to validate the tracking accuracy and computational time

of our proposed method. A MRI-compatible 18-Gauge biopsy needle

was repeatedly inserted and retracted linearly with varying speed

along an ex vivo tissue. Magnitude and phase images were acquired

using a T2-weighted gradient echo sequence (5 mm slice thickness,

FOV of 300 9 300 mm, and 256 9 128 matrix). The tracking algo-

rithm was implemented in 3D Slicer. The algorithm was evaluated

using Sagittal (110 frames) and Coronal (110 frames) images acquired

in different needle insertion sequences. The needle tip was tracked in

all 220 image frames and the results were compared to the needle

locations manually tracked offline using the magnitude images. The

root mean square error (RMSE) between the needle tip locations

tracked by the algorithm and the one manually tracked and the mean

computational time required to track the needle in each image frame

were calculated.
Results

The root mean square error of the automated needle tip compared to

the manually segmented needle tip was 1.88 mm on average. Despite

the coronal slices containing bone tissue, which causes a strong

susceptibility artifact, the algorithm was able to consistently track the

needle tip. The discrepancy between the algorithm and the manual

tracking is within the expected range due to the limitations of man-

ually segmenting the needle tip, such as artifact size and visibility of

the needle tip in some frames. The average computational time was

0.72 s. It is worth noting that the computation time was mostly due to

the phase-unwrapping step and conversion of data format due to the

reliance on the multiple image processing library; we expect that

those steps could be potentially eliminated or optimized in the future

implementation to achieve a shorter computational time.

Fig. 1 Workflow of needle tip detection
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Conclusion

We demonstrated the use of phase imaging for MR guided device

tracking. Our method was able to consistently detect the needle tip

without any change in the scan parameters or additional input from

the operator. We are currently integrating this method with a closed-

loop scan plane control module. The proposed system will allow the

information from the device tracking to be used directly to re-adjust

the scan plane position and orientation to follow the needle trajectory

autonomously.
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Purpose

This extended abstract presents the work-in-progress of a research

project whose overall goal is the integration of a Robotic Circulating

Nurse (RCN) into the operating room (OR) environment. Specifically,

a human–machine interface is to be developed for this purpose, which

includes the communication of the sterile OR staff with the envi-

ronment. It should fit as seamlessly as possible into the surgical

workflow, which means it should not complicate communication.

Within the AURORA project of the MITI research group of the

TUM, a concept of a robotic assistant in the non-sterile OR envi-

ronment is being developed, which takes over tasks of a circulating

nurse to reduce the workload of the staff. The so-called circulating

nurse (CN) is non-sterile OR staff who has an assistant function and

whose responsibilities include handing out sterile items and operating

medical devices.

Concepts of robotic OR nurses for handling surgical instruments

were among others examined in [1]. However, robotic surgical nurses,

which have been developed so far all are located in the sterile area

and their tasks are limited to the handling of a predefined and small

number of sterile instruments. Further tasks in the non-sterile area,

such as those of a human CN, cannot be fulfilled.

For the implementation of an RCN, as in the AURORA project, a

human–machine interface is required that can comprehensively cover

the complex communication between the sterile and non-sterile OR

environment and which allows for seamless integration of this new

technology without causing additional workload.
Methods

An important first step is to determine the basic requirements for the

interface. Through field observations in the OR and user interviews,

the communication of the sterile staff with their environment is

analyzed. Particular emphasis is placed on the generation of tasks

regarding the human CN. Suitable protocols and questionnaires are

designed for this purpose.

Based on the information collected, the communication will then

be described in detail and thus narrowed down. Through a compre-

hensive structuring, for example a clustering into different task types,

a further, important prerequisite for the feasibility of a human–ma-

chine interface will be created.

In order to develop possible communication techniques, literature

research and analysis of existing products is carried out.

Based on the developed and structured communication, exemplary

use cases and a suitable dialogue design will be modeled.

Results

In order to realize the goal described above, the provision of a

human–machine interface for a non-sterile RCN, the framework

condition is defined, that an RCN can only take over a subset of the

tasks of a human CN. To enable such a partial integration in a

meaningful way, instead of directly communicating with a concrete

RCN, an OR-bound, universal interface is developed, which includes

any communication of the sterile OR staff with the environment,

including the RCN, but also the permanent staff or other devices in

the future.

The advantage of an interface, that is permanently present in the

OR and is independent of the target instance, is that the work orders

of several ORs can be simultaneously collected and prioritized. Fur-

thermore, this concept enables a work order to be subsequently

delegated either to a robot or a human, regardless of how the work

order is acquired.

The core functionality is defined as the generation of work orders,

which are fed by three types of information sources, namely verbal

communication, non-verbal communication and context-sensitivity.

Verbal communication includes keywords, freely formulated

requests and also further inquiries and suggestions from the system.

Non-verbal communication on the system side includes the visual

presentation of images and writing. On the staff side, non-verbal

communication includes haptic and gestures interacting with the

environment. Concerning the interaction with the environment, its

visual perception is required to a certain extent. For example, the

instrumenting nurse might present the packaging of a used sterile item

and verbally request further items, which requires the precise iden-

tification of the packaging.

Specifically with non-verbal communication, one of the most

important requirements is to maintain the integrity of the sterile area.

Sterile haptic communication and visual presentation of images and

writing are made possible, for example, by sterile wireless terminals

such as tablets. Another possibility of sterile, non-verbal communi-

cation is the clever combination of visual presentation and gestures

using modern technologies such as augmented reality and interactive

laser projection.

Context-sensitivity requires, on the one hand, the learning of

possible surgery situations and their temporal or causal sequence and,

on the other hand, the automated recognition of which of these situ-

ations is present at a given time. This is done in consideration of

previously manually defined framework conditions such as the nature

of the surgery and based on comprehensive process models. With help

of the knowledge of the present and likely following situation, a more

meaningful generation of work orders can take place. A work order

can either be generated solely on the basis of the present and predicted

situations or from a combination of these situations with explicitly

requesting communication on the part of the sterile OR staff.

Such context recognition and prediction was conceptualized and

implemented in the research project ‘‘IVAP 2025’’ [2]. From the

recognized context, work orders can also be assigned an urgency,

which is an important step in prioritizing the handling of multiple

work orders.
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Conclusion

Currently, field observations in the OR are already being conducted.

In the analysis of task generation for the CN, particular attention is

paid to the sources of information described above. Accordingly, a

protocol was designed, which on the one hand records verbally and

non-verbally communicated work orders, and on the other hand, also

records non-communicated work orders resulting from the situation.

Each generated work order is supplemented with further meta-infor-

mation, such as client, urgency level and phase of the surgery. This is

followed by the description and structuring of the collected infor-

mation as explained above.

For the exploration of possible communication techniques,

detailed research of the interaction models of existing linguistic,

visual, haptic and gesture-based assistance systems is carried out.

These are now widely used in the home and automotive sectors, for

example, and can take on numerous tasks.

The presentation will cover first results from literature research

and findings from OR field observation data that has been collected

and analyzed to date.
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Purpose

A small part of patients suffering from Wilms tumours (WT) can be

treated with open nephron sparing surgery (NSS). During this pro-

cedure intraoperative ultrasound is used to visualise the exact size of

the tumour. Unfortunately, approximately 30% of the NSS procedures

still result in a positive surgical margin. New visualization techniques

may help us reduce this percentage.

The size and infiltration of the tumour can be visualized intraop-

eratively with new techniques such as holographic navigation based

on Augmented Reality (AR). The HoloLens 2 projects an overlay of

the preoperative imaging in AR onto the open surgical field. Using

AR surgical navigation technology, our goal is to reduce positive

surgical margins during NSS. Therefore, we have developed an AR

application which determines the required overlay with a combination

of two algorithms; a registration algorithm based on anatomical

landmarks and a tracking algorithm based on QR-code recognition.

These self-developed algorithms are validated in this feasibility study.

The clinically maximally allowed error for this validation was

determined to be five mm by our surgical team.
Methods

The validation of this self-developed AR application is twofold. We

measure the accuracy of the tracking through QR-code recognition

and we estimate the accuracy of the resulting registration based on a

3D-printed kidney phantom.

In order to measure the accuracy of the QR-code recognition, a

calibration setup was built in which the HoloLens was placed onto a

3D-printed bearer and the QR-code could be moved manually in two

different directions. The HoloLens 2 measured the moved distance of

the QR-code, which was compared with the actual movement.

Additionally, we investigated the minimal workable size of the QR-

code without limiting the tracking quality. Three different sizes were

used, 5 9 5 cm, 4.5 9 4.5 cm, and 4 9 4 cm.

The accuracy of the registration algorithm was derived through a

phantom study in which ten volunteers participated. None of our

volunteers had prior experience with the AR application. A short

introduction on how to use the HoloLens 2 was given and eye-cali-

bration was performed. The volunteers were asked to perform the

registration by pinpointing five anatomical landmarks onto the kidney

phantom using a surgical pointer, as is shown in figure 1. After

mapping of the anatomical landmarks, the holographic 3D model is

automatically registered onto the 3D printed phantom. Subsequently,

six randomly placed positional markers are highlighted on top of the

holographic visualization. The volunteers were asked to mark these

holographic positional markers in the real world with a marker. These

marked positions were compared with the actual position using a 3D-

printed calibration mold, which allowed us to quantify the amount of

misalignment between the holographic 3D model and the corre-

sponding 3D printed model.
Results

We measured the movement of a moving QR-code with three dif-

ferent dimensions (5 9 5, 4.5 9 4.5 and 4 9 4 cm) in two directions.

The mean error and the standard deviation of the movement in the

X-axis was 0.29 mm (2.2 mm), 4.04 mm (4.6), and 11.54 mm (3.8)

respectively. For the movement in the Z-axis the mean error and

standard deviation was 0.47 mm (3.6), 4.18 mm (5.6), and 13.57 (8.2)

respectively. There was a significant difference in mean error between

the 5 9 5 cm and 4.5 9 4.5 cm QR-codes and the 5 9 5 cm and

4 9 4 cm QR-codes (p\ 0.001).

The accuracy of the registration was measured as a mean distance

between the holographic and actual position. This distance varied

between volunteers but these differences were statistical not

Fig. 1 The holographic overlay of the kidney (salmon), tumour

(cyan), artery (red), and a positional marker (purple) on top of the 3D

printed model are shown. Additionally, the QR-code used for tracking

and the QR-code placed onto the surgical pointer (blue) are visible.

The surgical pointer is used to pinpoint the anatomical landmark for

the HoloLens 2. There is a slight offset of the overlay due to a

difference in height of the camera of the HoloLens 2 and the eyes of

the user
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significant (0.056 B p C 0.963). Unfortunately, one positional mar-

ker was excluded from the measurements due to a complete

misalignment of the holographic marked position and actual position.

The mean distance error per volunteer is given in table 1. Three of the

50 holographic marked positions were placed with a distance greater

than 5 mm of the actual position by two different volunteers. Only

one volunteer obtained a mean error above the clinical error of five

mm.
Conclusion

The accuracy obtained by our surgical navigation AR application is

within the clinically allowed error and therewith we believe this

technique may be feasible for clinical use. The results show that the

QR-code tracking capacity of our application is sufficient and that

volunteers are capable to apply the anatomical landmark based reg-

istration satisfactory. Further implementation of this technique during

nephron sparing surgery is recommended. However, intraoperative

surgical workload and usability needs to be assessed beforehand.

Therefore, we recommend performing a surgical phantom study to

further explore this technique in pediatric oncologic surgery.
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Purpose

When aiming for motion preserving procedures in carpal pathologies,

patient specific design of carpal bone replacement is one option to

maintain individual anatomy. To restore carpal motion and kine-

matics, a correct fixation of the individualized implant is mandatory.

We present an image-based decision-making process to achieve the

best suspension.
Methods

Initial cadaver tests in which we assessed the kinematics of a cus-

tomized Scaphoid replacement using 4D-CT showed good results in

terms of movement and stability of the prosthesis. Based on these

data we performed the implantation of a patient specific scaphoid

prosthesis in a patient who had a failed reconstruction of a Scaphoid

pseudoarthrosis.

Due to a Scaphoidpseudoarthrosis on the contralateral side, the

prosthesis was designed according to a patented [1] shape based on a

polygon model of the non-united Scaphoid and adapted according to

the necessary carpal height needed. The SLS 3D-printed Titanium

patient specific prosthesis was implanted using a fibre tape augmented

palmaris longus tendon graft fixed to the Trapezium and to the

Lunate. Care was taken not to overtighten the suspension to allow for

carpal movement. Carpal alignment and stability was checked intra-

operatively using fluoroscopy.

Conventional X-rays and 4D-CT scans were taken during follow

up visit.

Results

Intraoperatively, the patient specific prosthesis provided good primary

stability of the carpus before carry out the suspension. With the

suspension, the implant seemed to be more stable and the carpal

alignment stable, especially the scapho-lunate interval. The postop-

erative clinical course was uneventful and the patient recovered very

well from the intervention. Conventional X-rays after 6 and 12 weeks

showed a good stability of the prosthesis. To assess carpal kinematics,

we performed a 4D-CT scan 12 weeks postoperatively.

The fixation technique of the prosthesis provided sufficient sta-

bility during flexion/extension and radial-/ulnar abduction. The carpal

alignment was stable but a dorsal intercalated segment instability of

the Lunate remained.
Conclusion

A patient specific design of the Scaphoid replacement is mandatory

for good primary stability documented intraoperatively using fluo-

roscopy. Postoperatively, conventional X-rays were sufficient to

check for the position of the prosthesis. For the assessment of carpal

alignment and—kinematics and especially decision making to change

the suspension, 4D CT imaging was the helpful tool.

When aiming for the best reconstruction of carpal kinematics

using a customized prosthesis of the Scaphoid, the correct alignment

of the Lunate needs to be considered. We therefore modified the

suspension technique using the anatomical front and back ligament

reconstruction (ANAFAB) developed by Michael J. Sandow [2] to

reconstruct the dorsal intrinsic and palmar extrinsic ligaments

according to the findings of the 4D CT scans. Further investigations

will show if this is going to improve stability of the lunate as well.

References

[1] Honigmann P, Schumacher R, Marek R, Büttner F, Thieringer F,
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Table 1 The mean distance and standard deviation of all 5 marked

positions per volunteer

Volunteer Mean error (mm) (SD)

1 2.80 (0.99)

2 2.75 (0.92)

3 2.87 (1.11)

4 3.01 (0.95)

5 2.27 (1.60)

6 5.19 (4.30)

7 3.93 (2.19)

8 2.86 (1.00)

9 2.98 (1.26)

10 2.95 (0.80)

Mean of all observers 3.16 (1.82)
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Purpose

Pelvic tumour resections are challenging due to the bone complexity

and the proximity to vital structures. In these surgeries, achieving

optimal resection margins is crucial to avoid adverse clinical out-

comes and local recurrence. However, the probability of obtaining

adequate margins following the conventional approach and under

ideal conditions is only 52% [1].

In recent years, intraoperative navigation has proved to success-

fully assist in these interventions. The preoperative surgical plan can

be easily translated to the operating room, and tumour and anatomical

structures can be located accurately thanks to the real-time visual

feedback. However, surgical navigation hardware can be expensive

and requires experience, a large space in the operating room, and an

operator.

Patient-specific instruments (PSIs) have reported similar accuracy

to surgical navigation [2]. They are easier to use, more convenient,

and faster. They also allow surgeons to focus on the surgical field

rather than looking at a screen. However, PSI placement can only be

checked subjectively, and therefore correct guidance cannot be veri-

fied. As PSIs are customized tools designed to fit in a particular region

of the patient’s bone, they are highly dependent on the morphology of

the bone surface. For instance, the correct placement of a PSI in the

iliac crest can become very challenging, as it covers a large area that

presents a homogeneous shape. In contrast, the supra-acetabular area

is more characteristic, thus less prone to errors.

In this work, we propose augmented reality (AR) guidance to

assist in the correct placement of PSIs for pelvic tumour resections.

Specifically, we focus on type I resections, where two PSIs are placed,

one in the supra-acetabular region and one in the iliac crest. Using a

reference marker placed on the supra-acetabular PSI, we can display

the bone and iliac crest PSI models in their correct position. These

models are then used as guidance for placement.
Methods

We conducted an experiment with a bone phantom and a total of 12

PSIs (6 for the supra-acetabular region and 6 for the iliac crest). The

pelvic bone used for the phantom was segmented from the CT of a

patient using 3D Slicer platform. The design of the PSIs and the

phantom was carried out in Meshmixer software (Autodesk, Inc.,

USA). The PSIs were designed in different locations and with varying

shapes inside their target area. Finally, we printed all the models in

PLA using the Ultimaker 3 Extended (Ultimaker B.V., Netherlands)

desktop 3D printer.

We created two versions of the phantom, a normal and a realistic

one. The first one was simply the printed bone, whereas the realistic

one included a silicone layer unequally distributed across the surface.

This layer simulated the tissue present in real scenarios, where the

bone surface is not entirely exposed.

A smartphone AR application was developed for guiding PSI

placement (Figure 1) using Unity platform and Vuforia development

kit. The application uses the internal camera to detect a cubic marker

(3D-printed) presenting a known black-and-white pattern. This

marker is placed on the supra-acetabular PSI through a socket. The

application detects the marker and, based on the location of the supra-

acetabular PSI in the virtual plan, displays the relative position of the

bone (used to verify the placement of the supra-acetabular PSI) and

the PSIs overlaid on the simulated surgical field.

In order to record the placement of the PSIs in the bone and

compare it with the virtual plan, we used the Polaris Spectra (NDI,

Waterloo, Canada) optical tracking system. A dynamic reference

frame was attached to the phantom and registration was performed

using pinholes included in the phantom design. Each PSI also con-

tained 4 pinholes to record their position using the optical tracker.

A total of 3 users placed the 6 pairs of PSIs, both manually and

using AR. The process was repeated twice, one for each version of the

phantom. We recorded the position of the 4 pinholes in each PSI after

their placement and measured the time required for each method. The

mean distance between the recorded points in every PSI and their

position in the virtual plan was computed for posterior analysis.
Results

Table 1 shows the mean, standard deviation, and maximum distances

of the PSIs to their virtual plan for each method and each phantom

type. The results obtained when using AR for guidance present lower

mean values (below 2 mm) than freehand placement in both phan-

toms. The variability is also reduced, especially for the iliac crest

PSIs, where maximum errors of almost 1 cm are reduced to 2.37 mm.

The realistic phantom presents higher errors in all cases. The use of

AR for placement increased the total time in approximately 1 min.
Conclusion

The results obtained prove the benefits of using AR for PSI place-

ment. The time added to the procedure is negligible while providing

precision and avoiding high errors. The results also highlight the

importance of using realistic phantoms to better resemble real sce-

narios. It is easy to find the correct placement with a smooth bone

surface (from which PSIs are designed) but this is usually not the case

in real interventions.

To conclude, AR is an effective tool to improve PSI placement.

Further studies should be conducted to ensure its feasibility and

accuracy inside the OR.

Fig. 1 PSI placement in the phantom using the AR app for guidance
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Purpose

Accurate assessment of 3D kinematics after total knee arthroplasty

(TKA) is very important for understanding the complexity of knee

joint mechanics after surgery and for evaluating the outcome of

surgical techniques. To achieve 3D kinematic analysis of TKA, 2D/

3D registration techniques, which use X-ray fluoroscopic images and

computer aided design (CAD) model of the knee implants, have been

applied to clinical cases. In most conventional techniques, although

the accuracy of 3D TKA kinematic analysis for clinical application

has been achieved, the analysis or measurement process requires

some manual operations and is still labor-intensive and time-con-

suming work.

For such a serious problem of manual operations for clinical

application, we have developed some elemental techniques [1] for full

automation of 3D TKA kinematic measurement based on 2D/3D

registration using a single-plane fluoroscopic image and CAD model

of the knee implant. As one of them, to automatically identify the type

of knee implant from X-ray fluoroscopic image is important. Such an

automatic identification of implant type is thought to be also useful

for supporting TKA diagnosis using simple X-ray radiograph.

In this study, therefore, we conduct a basic investigation of dis-

crimination performance of implant type based on machine learning,

using many kinds of TKA silhouette images. Specifically, we examine

the identification effect by Mahalanobis distance in conventional

machine learning, and also the discrimination performance by con-

volutional neural network (CNN) and its visualization by gradient-

weighted class activation mapping (Grad-CAM) [2].
Methods

To identify the implant type from TKA silhouette images, in this

study, discrimination method by Mahalanobis distance in conven-

tional machine learning (pattern recognition) and discrimination one

by CNN (deep learning) were used respectively.

In order to validate the discrimination performance of implant type

using each method, two experiments using synthetic images (com-

puter simulation test) and real X-ray images were performed.

In the first experiment using synthetic images, four type of knee

implant CAD model (F, N, P and V type) were used, and a set of 441

synthetic silhouette images were created for each implant type in

known typical orientations using perspective projection model.

Therefore, a total of 1764 (4 9 441) synthetic silhouette images were

created for femoral and tibial component, respectively. For identifi-

cation of implant type from synthetic images using conventional

machine learning (pattern recognition), two features which are

effective for identification (in this study, contour complexity, and area

ratio of implant silhouette relative to bounding box image) were

utilized. In order to verify the identification effect by Mahalanobis

distance which considers the distribution of the data, the identification

using Euclidean distance was also performed. For identification of

implant type from synthetic images using CNN, a simple network

which has one convolution (and pooling) layer and two features map

(3 9 3 filter size), AlexNet and VGG16 were used respectively. To

ensure the validity for each method, fivefold cross validation was

applied using 1764 synthetic silhouette images.

In the second experiment using real X-ray images, three type of

knee implant silhouette images (number of images for A, B and C

type are 325, 325, and 301 images) were collected, and a total of 951

real X-ray images were used. As a discrimination method to identify

the implant type from actual X-ray images, CNN, that is, a simple

network which has one convolution (and pooling) layer and two

features map (3 9 3 filter size), AlexNet and VGG16 were used

respectively. To ensure the validity for each CNN method, tenfold

cross validation was applied using 951 real X-ray images.
Results

The results of the experiment for synthetic images using conventional

machine learning are summarized in Table 1. The number of

misidentified images using the Mahalanobis distance compared to the

Euclidean distance was reduced for each implant type, and the

identification rate (discrimination performance) was improved from

71.2% to 83.7% for femoral component and from 33.0% to 71.9% for

tibial component. As results of the experiment for synthetic images

using CNN, there were no misidentified images in all networks (a

simple network, AlexNet and VGG16), and the identification rate

(discrimination performance) was 100% for femoral and tibial com-

ponent. Fig. 1 shows representative four type of knee implant

silhouette images (F, N, P and V type) and example for the results of

Grad-CAM visualization identified using VGG16.

As results of the experiment for real X-ray images using CNN,

identification rates using a simple network, AlexNet and VGG16 were

94.5%, 99.7% and 99.6% for femoral component, and 95.8%, 100%

and 99.9% for tibial component, respectively. In addition, the results

Table 1 Distances of the recorded points in every PSI (iliac crest and

supra-acetabular) to their planned position for each placement method

(freehand or AR) and each phantom (normal or realistic)

Normal Phantom Realistic Phantom

Freehand AR Freehand AR

Iliac crest

Mean 2.4 1.17 3.26 1.52

Std 1.67 0.42 1.88 0.39

Max 6.18 2.18 9.48 2.37

Supra-acetabular

Mean 1.07 0.92 2.14 1.66

Std 0.36 0.25 0.88 0.53

Max 1.8 1.44 4.56 2.61
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of Grad-CAM visualization identified using each network showed a

reasonable and explainable heatmap pattern.
Conclusion

In this study, to automatically identify the implant type from TKA

silhouette images, a basic investigation of discrimination performance

of implant type based on machine learning was conducted.

In the result of the experiment for synthetic images, the identifi-

cation effect by Mahalanobis distance in conventional machine

learning was confirmed as shown in Table 1. The reason for this

identification effect is thought that the distribution of two features

used in this study is close to a Gaussian distribution. While, as results

of the experiment for synthetic images using CNN, there were no

misidentified images in all networks, and the identification rate

(discrimination performance) was 100%.

In the result of the experiment for real X-ray images using CNN,

for all networks used in this study, the identification rate was very

high. In particular, identification rates using AlexNet and VGG16

were close to 100%, and this suggests that automatic identification of

the implant type from actual X-ray images is possible.
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Laparoscopic video

Purpose

Laparoscopic surgery is widely performed as minimally invasive

surgery. This surgery is generally difficult compared with the con-

ventional open surgery. Therefore, surgical assistance systems for

laparoscopic surgery have been studied. In these systems, scene

recognition from laparoscopic videos is important to generate surgical

assistance information. There are many research on laparoscopic

scene analysis such as surgical instruments and anatomical structures

segmentation. Our research group conducted segmentation of the

inferior mesenteric artery (IMA) regions, which are important

anatomical structures in laparoscopic colorectal surgery, from

laparoscopic videos using U-Net [1] and convLSTM U-Net [2]. In

this method, we introduced long short-term memory (LSTM) to

U-Net for improving segmentation accuracy along time axis. The

results showed that the convLSTM U-Net enabled stable segmenta-

tion along the time axis. However, this method was sensitive to

changes of blood vessel size in the images. The segmentation accu-

racy was affected by change of distance between the laparoscopic

camera and the blood vessels due to the camera movement in the

same surgical scene. In this paper, to reduce this problem, we intro-

duce a multi field of view (FOV) framework to fully convolutional

networks (FCNs) for segmentation.
Methods

In the proposed method, we input multiple images having different

FOV sizes to the FCN. Multi FOV images are generated by clopping

and resizing the original laparoscopic images. This operation simu-

lates distance changes between the laparoscopic camera and the blood

vessels. Images contains variations of blood vessel sizes are gener-

ated. We input three different FOV images to FCN. Size of these three

Table 1 Number of misidentified images for each implant type and

identification rate for synthetic images using conventional machine

learning

Types of

components

Distance type Number of misidenti-

fied images

Identification

rate (%)

F-

type

N-

type

P-

type

V-

type

Femoral

component

Euclidean

distance

74 148 202 84 71.2

Mahalanobis

distance

30 126 123 9 83.7

Tibial

component

Euclidean

distance

184 225 376 396 33.0

Mahalanobis

distance

123 122 105 147 71.9

Fig. 1 Representative four type of knee implant silhouette images (F,

N, P and V type) and example for the results of Grad-CAM

visualization identified using VGG16
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images are 512 9 512 pixels, 256 9 256 pixels, and 128 9 128

pixels. We utilize U-Net with dilated convolution as the FCN. U-Net

has encoder and decoder parts. We add a dilated convolution layer

before the decoder part. Furthermore, we extend this FCN to handle

multi FOV inputs. Our multi-input U-Net has three encoder parts to

process three FOV input images, respectively. Feature maps obtained

from these encoders are concatenated and fed to the dilated convo-

lution layer. Skip connections are made between the encoder part

corresponding to the largest image input and decoder part.

We train the proposed network using laparoscopic images and

manually segmented IMA regions for training. We use Dice loss as

loss function and Adam as optimizer in the training. Data augmen-

tation using rotation, scaling, and Gaussian blur is used to increase the

training data. In the inference using the trained network, we input

laparoscopic images for inference and obtain segmentation results.
Results

We extracted the IMA from laparoscopic videos using the proposed

method. Dataset was created by selecting frames in which IMA is

appeared from 37 laparoscopic videos of laparoscopic sigmoid

colectomy and laparoscopic high anterior resection for rectal cancer.

Total number of frames in the dataset was 2566 frames. For evalua-

tion, we performed fivefold cross validation. Mean Dice coefficients

of extraction results by U-Net [1], convLSTM U-Net [2], and the

proposed multi input U-Net were 0.386, 0.476 and 0.426, respec-

tively. An example of extraction results is shown in Fig. 1.

The blue regions in this figure indicate the extracted IMA regions.

These results showed that the proposed method could extract the IMA

regions from laparoscopic videos. The proposed method correctly

segmented IMA regions even if the distance between the laparoscopic

camera and IMA region changes, as shown in Fig. 1. We consider that

the proposed method was robust to size changes of the blood vessels

in the scene by using multi FOV input. However, mean Dice coeffi-

cient was reduced compared with the previous method [2]. Since each

encoder provides different feature maps, imposing different weights

to encoders will improve segmentation accuracy.
Conclusion

In this paper, we reported the blood vessel segmentation method using

multi field of view input from laparoscopic videos. The experimental

results showed that the proposed method could extract IMA regions

from laparoscopic video. Especially, the proposed method correctly

segmented IMA regions even if the distance between the laparoscopic

camera and IMA region changes. Future work includes improvement

of segmentation accuracy using weighing of the feature maps

obtained from each encoder.
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Purpose

Percutaneous needle insertion is one of the most common minimally

invasive procedures. Needle punctures are required in several appli-

cations such as laparoscopic access, biopsies, or regional anesthesia.

The clinician’s experience and accompanying medical imaging are

essential to complete these procedures safely. Imaging, however, may

come with inaccuracies due to artifacts, mainly generated by the

needle device.

Sensor-based solutions have been proposed to improve accuracy

by acquiring additional guidance information from the needle itself or

the needle path. This typically requires sensors to be embedded in the

needle tip, leading to direct sensor-tissue contact, associated steril-

ization issues, and added complexity and cost.

A novel concept for acquiring additional complementary infor-

mation for guiding minimally invasive instruments was previously

suggested and presented by our group [1], using an audio sensor

connected to the proximal end of a tool to capture interactions

between the tip the tissue. The obtained signal can then be processed

to extract useful guidance information that can then be mapped to

provide feedback to surgeons during minimally invasive procedures.

We were able to show promising results for monitoring medical

interventional devices such as needles and guide wires. It was also

demonstrated that audio could contain valuable information for

monitoring tip/tissue interaction by studying the relationship between

force and audio during needle punctures [2]. This study has been

extended in this presented work to show that the obtained relationship

between force and audio does not depend on the needle insertion

velocity. Significant signal-to-signal correlations are obtained

between audio and force during a puncture event occurring at four

different velocities.
Methods

For the signal analysis, the previous dataset [1] was used, where audio

signals were recorded using a stethoscope connected to a microphone

attached to the proximal end of a needle via a 3D printed adapter. This

dataset consists of 80 audio recordings acquired during automatic

insertion of an 18G 200 mm length biopsy needle (ITP, Germany)

into an ex vivo porcine tissue phantom. The insertion was performed

automatically using a testing machine (Zwicki, Zwick GmbH &

Co.KG, Ulm) at an insertion velocity of 3 mm/s that recorded the

axial needle insertion force. The audio and force frequencies sampling

was 44100 Hz and 100 Hz, respectively. The acquisition of force and

audio was synchronized using a trigger event visible in both signals.
Fig. 1 An example of extraction results by U-Net, convLSTM

U-Net, and proposed multi input U-Net
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Using the same setup, experiments at three other velocities, 6, 10, and

14 mm/s, were also performed. Thirty new audio and force recordings

were generated per velocity.

For relating force and audio signal dynamics, indicators from both

signals are first extracted. The audio signal is processed using a

bandpass filter followed by homomorphic envelope extraction. An

indicator for enhancing the force signal’s curvature information was

extracted using a 2nd-degree polynomial fitting inside a sliding

window [2] and then by computing the homomorphic envelope.

Finally, a signal-to-signal correlation by computing the Pearson

coefficient is performed between the audio and force indicators.

Results

Table 1 shows the average and standard deviation of the Pearson

coefficients obtained from the four tested velocities’ audio and force

indicators. It is possible to observe that the average Pearson coeffi-

cient for all the velocities is predominantly over 0.5, arriving to 0.71

and 0.72 for the extreme lower and higher velocities.

Fig. 1 displays a further analysis concerning the obtained corre-

lations, where the accumulative histograms of the Pearson coefficients

of insertions at each velocity are displayed. This analysis confirms the

results shown in Table 1. For all the insertion velocities, more than

80% of the recordings show Pearson coefficients between the audio

and force indicators over 0.5. Mainly for 3 mm/s and 14 mm/s

insertion velocities, more than 85% of the correlations are even over

0.6. These correlations are high, considering the completely different

nature between audio and force sensors.

Fig. 2 shows examples of high correlations between the audio and

force indicators for the 6 mm/s and 14 mm/s velocities. For both

recordings, it is possible to visualize the entry and exit of the porcine

tissue clearly. It is also possible to see how the audio indicator’s main

dynamics can follow the dynamics obtained from the force indicator.

Puncture of important tissues (mainly fascia) resulting in a high peak

in the force generates significant audio excitations that are enhanced

and delineated thanks to the homomorphic envelope indicator. All

these results suggest that the higher is the curvature in the force

signal, the higher is the resulting audio excitation in terms of

cumulative events enveloped by the audio indicator.
Conclusion

In this work, we explored the audio dynamics generated from the tip/

tissue interaction during needle insertion into soft tissue using audio

and force sensors. Different needle insertion velocities were tested to

analyze the signal dynamical responses in both sensors.

The results confirm what has been presented in previous works.

Audio contains valuable information for monitoring needle tip/tissue

interaction dynamics. Significant dynamics that can be obtained from

a well-known sensor as force can also be extracted from audio. The

results also show that the audio guidance approach is robust to

insertion velocities in terms of puncture acoustic excitations.
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Table 1 Average and standard deviation of the Pearson coefficients

for each tested velocity

3 mm/s 6 mm/s 10 mm/s 14 mm/s

0.72 ± 0.10 0.63 ± 0.09 0.61 ± 0.15 0.71 ± 0.14

Fig. 1 Cumulative histograms of the Pearson coefficients obtained

between the audio and force indicators for the four tested insertion

velocities

Fig. 2 Examples of force and audio indicators where high correla-

tions were obtained
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Purpose

One of the major problems for the transplantation medicine is the lack

of donor grafts as the need for organs far exceeds the number of

available donor organs. This high demand for donor organs shows in

particular the need to increase the number of successfully transplanted

organs ensuring an optimal use of the few donor organs is urgently

required. A contactless optical evaluation tool to monitor organ

quality before transplantation would therefore be of great interest.

Multispectral and hyperspectral imaging (MHSI) in medical appli-

cations can provide information about the physiology, morphology

and composition of tissues and organs. The use of these technologies

enables the evaluation of biological objects and can be potentially

applied as an objective assessment tool for medical professionals. For

example, in organ preservation prior to transplantation, HMSI could

be used to continuously monitor functional parameters of the organ

non-invasively. Based on the evaluation of organ quality, surgeons

could substantiate their decision-making process in general as well as,

in particular, it could help to ensure the appropriate use of donor

organs and increase the number of successful transplantations.
Methods

In this study, four MHSI systems (one hyperspectral pushbroom

camera and three multispectral snapshot cameras) were examined for

their applicability of detecting specific tissue properties to ease the

decision-making process during surgery especially during organ

transplantations. The four cameras were used in three different setups:

First, the pushbroom camera setup captured the complete spectral data

set of the first spatial dimension by recording a slit in one shot. The

second spatial component was created by moving the slit. Second,

two snapshot cameras (4 9 4-VIS and 5 9 5-NIR) were combined to

a multispectral 41-bands setup. Both cameras followed the same

capturing principle but covered different spectral intervals (4 9 4-

VIS: 463 nm to 638 nm and 5 9 5-NIR: 693 nm to 966 nm). The

third snapshot camera (3 9 3-VIS) covered the same spectral interval

as the 4 9 4-VIS camera but having fewer bands. This allowed an

analysis of the minimum required number of spectral bands (16 bands

of 4 9 4-VIS vs. 8 bands of 3 9 3-VIS) needed for robust organ

surveillance. All setups with illumination setting are described in

detail in [1] (Table 1).

A spectrometer was used as a reference system, beforehand cali-

brated with a standardized color chart. The spectral accuracy of the

cameras reproducing chemical properties of different biological

objects (porcine blood, four different physiological and pathological

porcine tissues—kidney, lung, heart and brain) was analyzed using

the Pearson correlation coefficient. To underline the applicability of

MHSI driven analysis of tissue characteristics during kidney

transplantation, the 41-bands snapshot setup has been used to acquire

spectral data of in vivo human kidney and ureter.

To obtain the reflectance spectrum from the measured raw data,

each image was corrected according to

Ireflectance ¼ Iraw � Idarkð Þ= Iwhite � Idarkð Þ

where Ireflectance is the resulting reflectance spectrum, Iraw is the

measured raw data, Idark contains the dark reference data and Iwhite is

the white reference intensity spectrum. The entire calibration process

is described in detail in [2].
Results

All four examined MHSI cameras are able to provide the character-

istic spectral properties of the porcine blood and tissue samples. The

pushbroom camera setup and the multispectral 41-bands setup

achieves Pearson coefficients of at least 0.97 compared to the ground

truth spectrometer data, indicating a very high positive correlation.

Only the 3 9 3-VIS snapshot camera setup performs moderate to

high positive correlation (0.59 to 0.85). The correlation coefficients of

the three setups to the spectrometer ground truth data of the four

porcine tissue samples are presented in Tab. 1.

All three setups allow exact reproduction of the physiological

conditions of the analyzed anatomical porcine structures, see Fig. 1.

The precision of these representations is dependent of each setup,

meaning the choice of the optimal setup would be dependent on the

specific clinical aim. Different tissue characteristics like oxygen sat-

uration (k = 400–575 nm), water (k = 970 nm) or hemoglobin

(k = 760 nm) concentration can be derived using all setups, whereas

a higher number of spectral bands is preferable for a snapshot setup

(4 9 4-VIS vs. 3 9 3-VIS camera). Thus, both basic acquisition

principles (pushbroom and snapshot) can be feasible for clinical tissue

analysis and differentiation or organ surveillance. Physiological

conditions can be analyzed, helping the surgeon to evaluate organ

quality as well as to detect dangerous incidents, like bad organ per-

fusion, during re-perfusion of the organ.

First measurements with the 41-bands snapshot setup during kid-

ney transplantation underline the achieved porcine analyses. The

analyzed kidney and ureter samples differ clearly between each other

as well as from the porcine kidney, see Fig. 1.
Conclusion

We have analyzed the possible use of three different spectral acqui-

sition setups for intraoperative organ surveillance. All camera setups

are able to reconstruct the spectral behavior of the analyzed organs in

their available wavelength range. For accurate and robust analysis of

clinically relevant biological materials, fine scanning of the analyzed

spectral range is essential. The knowledge of the suitability of MHSI

camera for accurate measurement of chemical properties of biological

objects offers a good opportunity for the selection of the optimal

evaluation tool for specific medical applications like organ

transplantation.

Table 1 Pearson coefficient between the averaged spectral curves of

the different acquisition methods and the acquired spectrometer

ground truth data

Camera Setup Kidney Lung Heart Brain k-area (nm)

1. Pushbroom 0.9938 0.9978 0.9957 0.9982 500–995

2. 41-bands 0.9707 0.9822 0.9817 0.982 460–970

3. 3 9 3-VIS 0.8369 0.8397 0.5894 0.8533 400–700

The curves of the pushbroom, the 41-bands and the 3 9 3-VIS

camera setup are linearly fitted between the single bands in the given

wavelengths area

Fig. 1 Different kidney measurements of healthy porcine kidney

tissue using all four setups (spectrometer ground truth, pushbroom,

41-bands and 3 9 3-VIS) as well as in vivo human kidney and ureter

tissue during transplantation using the 41-bands setup
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Purpose

Lung cancer is the leading cause of cancer incidence and mortality

worldwide, and Computed Tomography (CT) screening programs can

contribute to its early detection. However, CT still has shortcomings:

as this exam requires a considerable radiation dose, performing

periodic examinations can become undesirable because of the risks of

radiation-induced cancers.

In recent years, technical advancements made Magnetic Reso-

nance Imaging (MRI) a viable modality for chest disease

management. Besides not exposing the patient to radiation, MRI

presents certain advantages over CT, such as superior soft-tissue

contrast, allowing a better characterization of nodules. However,

thoracic MRI still requires further clinical trials and protocol devel-

opment to determine its actual capacities [1].

Multimodality medical imaging has been progressively applied in

research and clinical practice. The intuition behind multimodality

imaging is that different modalities can provide complementary

information and better support for decision making and treatment [2].

This work’s main goal was to assess whether MRI radiomics

features are well-suited for lung nodules characterization and whether

the combination of CT/MRI features can overcome its single

modalities.
Methods

We acquired CT and MRI imaging from a cohort of 33 lung cancer

patients. The sequences were obtained with patients in the supine

position and with the aid of the deep inspiration breath-hold tech-

nique. The clinical chest MRI protocol included the post-contrast

T1PC sequence. Our full image database comprises 33 nodules equal

or greater than 10 mm, of which 21 were diagnosed as malignant and

12 as benign. A senior radiologist pinpointed the nodules’ location on

the CT and T1PC sequences, and each lesion was segmented in both

modalities using the semi-automatic segmentation algorithm

FastGrowCut.

Next, We extracted a series of radiomics features from each

nodule using the open-source library pyradiomics. At the time of this

work, pyradiomics supported the following feature classes: First

Order Statistics; Shape-based; gray level co-occurrence matrix

(GLCM); gray level run length matrix (GLRLM); gray level size zone

matrix (GLSZM); neighboring gray-tone difference matrix

(NGTDM); and gray level dependence matrix (GLDM).

Since MRI has arbitrary intensity units, i.e., the grey level present

in the images has no physiological meaning, image quantification

with histogram-based features is impractical. Therefore, we discarded

the first-order statistics features, leading to 89 metrics for each

modality, divided into 14 shape-based, 24 GLCM, 16 GLRLM, 16

GLSZM, 5 NGTDM, and 14 GLDM features. For our multimodality

CT/MRI approach, we combined the single modalities features into a

new set containing 178 radiomic features. We scaled each feature

using Min–Max scaling.

Due to the inherent high dimensionality of radiomics, it is

essential to perform feature selection. We used a filter method by

ranking the best features according to the ANOVA F-value statistic.

For the decision tree and random forest classifier, we considered all

features. For the remaining algorithms, we evaluated sets of 5, 10, 20,

and 30 features. Because our dataset presents unbalanced classes, we

balanced our cases using the synthetic minority over-sampling tech-

nique (SMOTE), evaluating k values of 3 and 5 for each classifier.

We selected a set of machine learning algorithms: logistic

regression (LR); k-nearest neighbors (KNN); support vector machine

(SVM); decision tree (DT); random forest (RF); naive Bayes (NB);

and multi-layer perceptron (MLP). We performed hyperparameter

optimization using grid-search with the AUC as the scoring metric.

Moreover, we also measured each model’s sensitivity and specificity.

We performed validation using fivefold nested cross-validation to

ensure that no data leakage is happening within our optimization,

repeating the experiment 30 times to obtain the average and deviation

in performance for each metric.
Results

Figure 1 presents each classifier’s average AUC performance for CT,

T1PC, and CT ? T1PC.

Our results contain an intriguing finding, as the models trained

with T1PC radiomics presented superior performance compared to

those trained with CT features. To assess the statistical significance of

the classifiers’ performance difference across the two datasets, we

performed a Wilcoxon signed-rank test. We verified the significance

of this difference and rejected the null hypothesis with a confidence

level of 5% for Logistic Regression (p = 2.85e - 4); SVM

(p = 1.11e - 4); RF (p = 5.57e - 4); and Naive Bayes

(p = 2.36e - 6). A conceivable explanation is that MRI’s superior

soft-tissue contrast allowed for a better characterization of the tumors

in terms of radiomics features and led to a higher quality

segmentation.

We can also observe that the combination of CT and T1PC fea-

tures has not resulted in better classification performance, as T1PC

surpassed the combined models in every case, except for the MLP

classifier. This classifier, however, could not outperform the best

classifiers in the T1PC set. This result may indicate that our feature

selection approach was not suitable for combining multimodality

radiomics features.

In general, our models have exhibited higher sensitivity than

specificity. As our dataset contains more positive instances, the

models could better learn the patterns for positive classification.
Conclusion

This study aimed to evaluate MRI and CT/MRI radiomics features’

applicability to characterize lung nodules. Our results showed that

MRI radiomics features could characterize lung nodules and support

predictive models’ development, with AUC values up to 17% higher

than their CT counterparts. This advantage over CT is exciting, as

MRI can enable a more in-depth investigation of a lung nodule’s

physiology. Moreover, MRI can mitigate radiation exposure and

adverse reactions to contrast materials commonly used in CT.

On the other hand, our multimodality method has not proven

advantageous, with lower performance than the single modalities

models. Acknowledging that CT is the gold-standard modality for

lung cancer diagnostic, we believe that a more sound investigation

into multimodality medical imaging fusion techniques is needed.

Fig. 1 Average AUC for each classifier, by imaging modality
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Purpose

A number of different imaging tools have been used in the past as a

base for histopathological assessment of tumors in the larynx. White

light endoscopy, Narrow Band Imaging (NBI), and Contact Endo-

scopy (CE) are widely accepted to visualize the region of the larynx.

In spite of the technological advancements, differentiation between

malignant and benign lesions in the larynx is difficult in reality,

irrespective of the clinicians’’ level of experience. In addition, the

subjectivity in laryngeal cancer diagnosis has been recorded, which

reduces the confidence in the evaluation process by meter means of

visual tools [1]. A higher accuracy requires a long and expensive

training period.

This works investigated using Deep Convolutional Neural Net-

works (DCNN) for classifying 2-dimensional CE-NBI images into

benign and malignant classes. The proposed approach aimed at

introducing a fully automatic method with the objective orientation to

classify the input images.
Methods

The work used a dataset of 8181 CE-NBI images as a base for the

classification into benign or malignant classes. Images were resized to

284 9 224 pixels and normalized in the range (0–1).

Instead of training a deep convolutional network from scratch, the

method utilized a pre-trained network for classifying the images

efficiently. ResNet50 [2] model was picked for being a well-vetted

structure with an expected high success based on our literature

research. The ResNet design overcomes the degradation problem

shown in different convolutional networks’’ performance, which

achieved a lower error rate with deeper layers. The method included

transfer learning for accelerating the fine-tuning process of the net-

work’’s weights at the training phase. Transfer learning leads to a

better generalization on validation images as the pre-trained model

was trained on a larger number of images previously.

The implementation also included assessing the performance of

portions of ResNet50, after cutting out deep layers, rather than taking

the whole network ([ 23 million weights), which has more learning

capacity than needed for this application. This helped in reducing

weights (parameters) count, to reduce the odds of model overfitting

that happens in the case of neural networks, leading to a better gen-

eralization. For that, a ‘‘cut-off’’ layer was added to the conventional

set of hyperparameters (optimizer, learning rate, loss function). Many

models at different cut-offs were run and examined based on accu-

racy, sensitivity, and specificity metrics. Training and validation

curves were inspected visually to examine the quality of convergence.

A fivefold cross-validation technique was selected for assessing the

performance at each trial (6545 images). Additionally, a testing phase

was executed on 1636 unseen images for examining the generaliz-

ability of the model.
Results

The outcomes of the work showed that taking just a portion of the

ResNet50 model achieved very good results with a 97.95% validation

accuracy, against 96.75% for the complete provided ResNet50 model,

with the same set of hyperparameters. On testing images, the smaller-

sized network (after discard deeper layers) achieved 99.12%, 98.92%,

99.28%, for accuracy, sensitivity, and specificity, respectively. Small

structures were faster in the convergence than the complete pre-

trained model. Figure 1 shows the performance of a portion of

ResNet50 (around 230 K weights) on the training and validation

phases. As seen, the convergence was started at a high point,

smoothly over the short course of epochs. The training and validation

curves were moving forward to the optimal point in correspondence

with no sign of overfitting.

Fig. 1 Example of the model’s performance (4th fold) after discard-

ing deep layers of ReNet50. Training curve (orange line) and

validation curve (blue line)
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Conclusion

We conclude that the presented approach can be helpful in classifying

CE-NBI images into benign and malignant classes objectively,

especially with the current state of human-based diagnosis of laryn-

geal cancer being rather subjective. The high recognition rates

indicate the robust performance by the suggested method, and the

potential to have an objective diagnosis for helping the submission

process in clinical practice, especially in difficult cases. Fine-tuning a

portion of ResNet50 helps in decreasing the chance of overfitting, and

requires less memory, with retaining high-performance metrics.
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Purpose

The latest advances in machine learning and in particular with con-

volutional neurons (CNN) have proven more than once their great

accuracy in the detection of diseases [1, 2].

In this paper, we present a new approach for COVID-19 detection

from chest X-ray images using Deep Learning algorithms. An effi-

cient process consisting of techniques of transfer learning and a fine-

tuning from pre-trained CNN models (InceptionV3, VGG16, Mobi-

leNet, EfficientNet, etc.) is proposed. A comparison of different

architectures shows that VGG16 and MobileNet provide the highest

scores: 97.5% and 99.3% of accuracy.

Experimentations have been conducted using an anonymized

database from an Italian hospital thanks to a retrospective study. It is

composed of three classes (normal, COVID-19, other pathologies)

with a total number of 2905 images.

Methods

The goal of the proposed method consists of the separation of X-ray

images into two or three categories by selecting and adapting the best

CNN architecture. The classifier should be able to identify two

(normal, COVID-19) or three classes (normal, COVID-19, other

pathologies).

The dataset used was randomly splitted into three parts (70% for

training, 20% for validation, and 10% for test). We used data aug-

mentation techniques to artificially increase the dataset and so

significantly improve results accuracy.

We implemented a pre-trained architecture on ImageNet with

several modifications such as: reduction of the number of classes in

the last layer from 1000 to 3, integration of 5 dense layers to fine-tune

the weights in a progressive way. During the training process, we used

the training and validation datasets. Afterwards, we achieved our

model test on an independant test dataset whose images were not seen

by the neural network.

We evaluated six architectures (VGG16, MobileNet, Xception,

InceptionV3, EfficientNetB0, DenseNet169) with the best parameters

possible and we constated that the VGG16 and MobileNet architec-

tures were more efficient.

In order to be able to explain the decision taken by the CNN, we

used a technique to visualise the pixels responsible for the classifi-

cation. We opted for the GradCAM method which is frequently used

in the domain of Explainable Artificial Intelligence (XAI) but there

are many others.

Experiments were executed on a Linux cluster node with 32 CPU

cores using a single NVIDIA GeForce GTX 980 with 4 GB memory.

Keras 2 with Tensorflow 1.8 backend was used as a deep learning

framework.
Results

The analysis of Table 1 shows that MobileNet and VGG16 are the

best models in terms of accuracy with the highest scores: 99.3% and

98.7% of accuracy respectively, 98.7% and 96.3% of sensitivity

respectively, and 98.7% of specificity for both models.

For other architectures, the scores are acceptable but it is impor-

tant to note that the number of false negatives is much higher.

In Figure 1, shown pixels responsible for the classification thanks

to this temperature curve on the X-ray image and in particular in this

case of COVID-19 suspicion.
Conclusion

Our approach based on in-depth learning is very promising for

detecting pathologies, based on chest X-ray images. We recommend

VGG16 and MobileNet that have achieved the best results in terms of

precision, sensitivity and specificity.

Further investigations will be done using other datasets (and more

specifically with CT images) in combination with various visualiza-

tion methods.

Table 1 Comparison of models

Models #

Classes

#

Epochs

# Images

training

# Images

validation

# Images

test

Accuracy

test (%)

Sensibility (%) Specificity (%) # TP # FP # FN # TN

VGG16 3 48 2039 588 284 97.5 98.7 96.3 147 5 2 130

MobileNet 3 48 2039 588 284 99.3 99.3 99.2 152 1 1 130

Xception 3 48 2039 588 284 91.2 91.3 91.1 136 12 13 123

InceptionV3 3 48 2039 588 284 95.7 95.9 95.6 139 6 6 129

EfficientNetB0 3 48 2039 588 284 85.5 96.6 73.3 143 36 5 99

DenseNet169 3 48 2039 588 284 90.1 85.9 94.8 128 7 21 128
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Purpose

Cathartic bowel preparation remains as a major barrier to colorectal

screening. Laxative-free CT colonography bypasses the cathartic

preparation in colorectal screening by combining the use of a low-

fiber diet and an orally ingested fecal-tagging contrast agent with a

computer-assisted diagnosis (CADx) method called electronic

cleansing (EC) to perform virtual cleansing of the colon after the CT

image acquisition. However, current EC methods generate 3D image

artifacts that complicate the interpretation of the virtually cleansed

images. In this pilot study, we investigated the feasibility of per-

forming the EC in laxative-free CT colonography by use of

contrastive unpaired learning.
Methods

Addressing the virtual cleansing problem can be formulated as

learning an image-to-image translation, where the input image is a

laxative-free CT colonography image volume and the output image is

the corresponding virtually cleansed CT image volume. However,

such an approach has two basic problems. First, clinical laxative-free

CT colonography cases do not have precisely matching natural vir-

tually cleansed versions that could be used as paired training samples.

Second, the relationship between the input and output images is a

surjection, because the virtually cleansed output image has an infinite

variety of corresponding fecal-tagged input images. Although the first

problem can be addressed by use of the unpaired training method

provided by cycle-consistent generative adversarial networks (Cy-

cleGANs) [1], the cycle-consistency condition assumes that the

relationship between the input and output images is a bijection,

thereby failing to address the second problem.

Therefore, in this study, we made use of weakly unsupervised 3D

contrastive unpaired training (3D CUT), which is based on maxi-

mizing the mutual information between unpaired input and output

images sampled from two domains [2]. The method is implemented in

terms of a 3D GAN, where the generator that is trained to generate the

EC images is composed of sequentially applied encoder and decoder

networks. The encoder is trained to pay attention to common elements

between the input and output image domains while being invariant to

their differences, whereas the decoder is trained to synthesize the

domain-specific features. The discriminator of the 3D GAN is trained

to differentiate between real and synthetically generated EC images.

For a preliminary evaluation, we collected unpaired samples of 147

fecal-tagged laxative-free CT colonography cases and 147 catharti-

cally cleansed untagged CT colonography cases. The laxative-free CT

colonography preparation involved oral ingestion of a low-osmolar,

non-ionic iodinated agent for fecal tagging in combination with a low-

fiber diet, and the CT colonography scans were acquired by use of

multidetector CT scanners in supine and prone position with 120 kVp

and 50 mAs effective at a maximum 2.5-mm z-axis length with 1.25-

mm overlap interval. The cathartic untagged CT colonography

examinations were prepared with a standard pre-colonoscopy cleans-

ing without using fecal tagging, and the CT colonography scans were

acquired by use of helical CT scanners in supine and prone position

with 120 kVp and 60–100 mA at 2.5–5.0 mm collimation and

reconstruction intervals of 1.5–2.5 mm. A training dataset was

established by extraction of 128 9 128 9 128-voxel training volumes

of interest (VOIs) at an isotropic 0.625-mm voxel resolution from both

types of CT colonography cases. An independent external test dataset

was established by the sampling of additional laxative-free CT

colonography examinations that were not part of the 147 laxative-free

training cases. After the training, the 3D CUT was tested with the

independent test dataset to evaluate if it had been able to learn to

perform EC based on the unpaired training. As a reference method, we

also trained and tested a 3D CycleGAN in a similar manner.
Results

The 3D CUT and the reference 3D CycleGAN were trained with 9735

laxative-free VOIs and 10,152 untagged cathartic VOIs. However, the

3D CycleGAN did not produce meaningful test output.

Figure 1a shows an example of the result of the testing of the 3D

CUT on a laxative-free test case. As can be seen from the images, the

Fig. 1 VGG16 explanation with GradCAM method

Fig. 1 a An example of an axial CT image before (top) and after

(bottom) performing EC by the 3D CUT. b Plot of a line profile of the

bowel surface before (black dotted line) and after (blue line)

performing the EC by the 3D CUT
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3D CUT was able to subtract semi-solid residual tagged feces real-

istically from the laxative-free CT colonography images.

Figure 1b shows a line profile of the bowel surface before and

after the EC. The plot demonstrates that the 3D CUT was able to

subtract the tagged feces adhering to the bowel wall and also able to

reconstruct the mucosal thickening layer of the bowel wall. The

surrounding soft-tissue and lumen regions retained realistic radio-

density values.

We also noticed some problems. In regions that contained large

pools of fecal-tagged fluid, the 3D CUT could convert the tagged fluid

into untagged fluid rather than subtract the fluid. This happened

because the cathartically cleansed untagged CT colonography training

cases contained large quantities of untagged fluid. Thus, while the 3D

CUT did learn to perform EC of semi-solid tagged feces, it also

learned to convert tagged fluid into untagged fluid based on the

examples of the training cases. Resolving such issues provides topics

for follow-up studies.
Conclusion

We performed a pilot study to investigate the feasibility of performing

contrastive unpaired learning for EC in laxative-free CT colonogra-

phy. The 3D CUT model was trained with unpaired samples of

laxative-free CT colonography and untagged cathartic CT colonog-

raphy cases. Our preliminary results indicate that the resulting model

can be used to perform EC in laxative-free CT colonography. How-

ever, our study also revealed some issues to be addressed in follow-up

studies.
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Purpose

Computed tomography (CT) is the imaging method of choice in

patients with severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) disease 2019 (COVID-19), worsening of symptoms

and detection of persistent lung abnormalities after recovery. Sub-

jective scores currently classify CT findings based on severity of

pulmonary involvement (from mild ground glass opacities (GGO) to

marked consolidations) or estimate the amount of these findings.

Estimation of the percentage of involved lung parenchyma is time

consuming and prone to inter-reader variability. Computer assisted

pneumonia quantification software may provide an objective alter-

native. The prospective, multicentre, observational CovILD study

(development of interstitial lung disease (ILD) in patients with severe

SARS-CoV-2 infection) systematically evaluated the persisting car-

dio-pulmonary damage of COVID-19 patients 60 and 100 days after

COVID-19 onset. CT scans from this study were used to evaluate a

prototype software for pneumonia quantification.
Methods

The trial protocol was approved by the institutional review board at

Innsbruck Medical University (EK Nr: 1103/2020) and was registered

at ClinicalTrials.gov (registration number: NCT04416100). Informed

consent was obtained from each patient. CT scans in low-dose setting

(100 kVp tube potential) were acquired without ECG gating on a 128

slice multidetector CT hardware with a 128 9 0.6 mm collimation

and spiral pitch factor of 1.1. Overall, pulmonary findings were gra-

ded for every lobe using a modified CT severity score by consensus

reading of two pulmonary radiologists: 0-none, 1-minimal (subtle

GGO), 2-mild (several GGO, subtle reticulation), 3-moderate (mul-

tiple GGO, reticulation, small consolidation), 4-severe (extensive

GGO, consolidation, reticulation with distortion), and 5-massive

(massive findings, parenchymal destructions). The maximum score

was 25 (i.e. maximum score 5 per lobe). Syngo.via CT Pneumonia
Analysis (Siemens Healthineers, Erlangen, Germany) research pro-

totype for the detection and quantification of abnormalities consistent

with pneumonia was used to calculate the percentage of opacity

(indicating GGO), and percentage of high opacity (indicating con-

solidation). Correlations between CT severity score and software-

based pneumonia quantification were assessed with Spearman rank

test.
Results

In 145 COVID-19 patients, CT lung abnormalities typical for

COVID-19 were found in 77% of patients at visit 1 and in 63% of

individuals at visit 2. The CT severity score unveiled a moderate

structural involvement in most patients at 60-day follow-up and a

mean score of 8 points (IQR 2–15). Software based pneumonia

quantification revealed a mean percentage of opacity of 0.32% (IQR

0.01–3.91), and mean percentage of high opacity of 0.23% (IQR

0.00–0.12) at 60-day follow-up, and the software-based quantification

and the CT severity scoring by two radiologists demonstrated a high

correlation (correlation coefficient = 0.8, p\ 0.001). The majority of

participants (81%) demonstrated an improvement in both the CT

severity score and the software-based pneumonia quantification

100 days after COVID-19 onset.
Conclusion

Software-based pneumonia quantification may show a high correla-

tion to a subjective CT severity score. It is uninfluenced by observer

and objectives quantification of ground glass opacification and

consolidation.

Parametric identification of prostate shape using

the superellipses and its correlation with pathology

Y. Onodera1, N. Koizumi1, Y. Shigenari1, R. Igarashi1, Y.

Nishiyama2, S. Shoji3

1The University of Electro-Communications, Department

of Mechanical and Intelligent Systems Engineering, Chofu, Japan
2The University of Electro-Communications, Department

of Computer and Network Engineering, Chofu, Japan 3Tokai

University, Department of Urology, Isehara, Japan

Keywords superellipse, benign prostatic hyperplasia, SVM, CAD

S66 Int J CARS (2021) 16 (Suppl 1):S1–S119

123



Purpose

In recent years, due to the increase in the number of patients asso-

ciated with the aging population, emphasis has been placed on

prevention and early detection of diseases as a way of medical care.

One disease that has a high incidence among elderly men is benign

prostatic hyperplasia (BPH). BPH is a disease specific to elderly men

in which the enlargement of the internal glands surrounding the

urethra causes pressure on the urethra, leading to dysuria and a

decrease in QOL [1].

In this study, we focused on imaging diagnosis, which is relatively

common, and aimed at diagnosing benign prostatic hyperplasia from

the morphological characteristics of the prostate gland, which is

incidentally visualized by MRI and abdominal CT, in order to realize

a simple screening test. In this paper, we propose a diagnostic pre-

diction system for prostate MRI and evaluate its diagnostic

performance.
Methods

The proposed system is constructed in two major stages. The outline

of the proposed system is summarized in Fig. 1. In the first stage, we

extract features for classification from input images. The method of

feature extraction is described below. First, the prostate contour

depicted on the prostate MRI under the guidance of a doctor is treated

as the correct contour. We scan the pixels on the prostate MRI to

obtain the coordinates of the correct contour. Twenty-four points are

obtained at equal angles from the center of the image, and 100 spline

interpolation points are used to obtain smooth and continuous coor-

dinates. Based on the acquired coordinates, a mathematical model

called superellipses is used for fitting. In the prostate shape extraction,

we use a hyperelliptic model with eight deformable parameters

P = {lx, ly, r, sy, sq, xy, t, b} by Gong et al. [2]. Among the eight

hyperelliptic parameters P = {lx, ly, r, sy, sq, xy, t, b}, the position

parameter Pp = {lx, ly, r, sy} is calculated numerically and the shape

parameter Ps = {sq, xy, t, b} is identified using grid search.

In the second stage, a classifier is trained using the feature data set

obtained in the first stage, and the trained classifier is used to diagnose

whether or not the test data has benign prostatic hyperplasia. The

standardized feature data set obtained in the first stage is used as the

explanatory variable and the prostate pathology as the objective

function (normal = 0, BPH = 1), which is input to the SVM model to

build the learned model. The parameters are tuned using the grid

search method and k-cross partitioning validation to prevent over-

training and improve the generalization performance of the model.

Initially, we classify the pathological conditions using 4-dimen-

sional features with only the shape parameter Ps. Based on the results,

we then experimented with a six-dimensional feature set that includes

the shape parameter Ps plus ‘‘sy’’ and the area encompassed by the

prostate contour (number of pixels) ‘‘S’’. We use prostate MRI as the

training and diagnostic data for the system evaluation experiments.

Four consecutive prostate MRI images were used per patient, focus-

ing on the area with the largest endoglandular area in the 3-mm slice

T2-weighted images. Only images that show typical morphological

features and that are equivalent to the diagnostic results and the

physician’s imaging results will be used in this experiment.
Results

The results of this experiment using 6-dimensional features are shown

in the Table 1; the results using 4-dimensional features show that the

correct answer rate, fit rate, recall rate, F value, and AUC are 0.771,

0.749, 0.826, 0.781, and 0.789, respectively. Then, for the diagnostic

system using 6-dimensional features, the correct answer rate, fit rate,

recall rate, F value, and AUC were 0.961, 0.971, 0.951, 0.960, and

0.960, respectively, as shown in the table. In this experiment, the

morphological features using the hyperelliptic model are considered

to be effective features for the diagnosis of benign prostatic hyper-

plasia with ideal morphology, since we have shown that features with

relatively low dimensionality in this experiment produce a correct

answer rate of nearly 80%. Since low dimensionality was thought to

be the cause of the misidentification, experiments were conducted

with additional features, and the accuracy was improved.
Conclusion

In this study, we evaluated a method for predicting the diagnosis of

benign prostatic hyperplasia (BPH) using morphological features

based on superellipses and machine learning to realize a diagnostic

system from imaging in screening tests for BPH. We conducted

experiments using the shape deformation parameter of the superel-

lipses, and confirmed the effectiveness of the method by proposing

new features, since problems in diagnosis were confirmed. In the

future, we would like to improve the discriminative performance of

the model by extracting more features, and introduce algorithms to

reduce the number of missed pathologies, such as the introduction of

multi-step diagnosis using the confidence level. In addition, there are

some problems to be solved, such as the variation of the fitting per-

formance depending on the setting of the reference axis of the

superellipses, and the large computation time required for the grid

search method, so we would like to automate and speed up the

superellipses fitting.
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Fig. 1 Proposed algorithm outline

Table 1 Result of experiment

Mean Standard

Accuracy 0.961 0.035

Precision 0.971 0.038

Recall 0.951 0.056

F-score 0.96 0.036

AUC 0.96 0.176
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Purpose

Lung interstitial diseases (LID) includes a group of more than 200

chronic lung disarrangements, which can reduce the ability of the air

sacs to capture and carry oxygen into the bloodstream and conse-

quently lead to permanent loss of the ability to breathe [1].

Autoimmune diseases, genetic abnormalities, and long-term expo-

sures to hazardous materials can cause these diseases [1]. Another

disease is the Coronavirus disease 2019 (Covid-19), highly contagious

has spread rapidly throughout the world since January of 2020 [2].

According to the World Health Organization (WHO), the mortality

rate reaches 2–3% of people affected by Covid-19 [2].

Chest X-ray is often the initial exam in the face of clinical sus-

picion of lung diseases, in addition to being the simplest, cheapest,

and most available imaging exam. To help specialists improve the

diagnostic accuracy of LID and Covid-19 diseases presented on chest

X-ray images by acting as a second opinion through a computer-

supplied suggestion, computer-aided diagnosis (CAD) systems has

been developed.

One machine learning technique that has emerged to improve

CAD systems is the convolutional neural network (CNN) that is based

on deep learning [1, 2]. CNN extracts the image’’s features, selects the

most important features, and classifies the input images. Nevertheless,

modeling the best CNN architecture for any specific problem by hand

can be an exhausting, time-consuming, and expensive task. However,

an alternative is the use of the Transfer Learning technique, which

uses a network pre-trained on a large dataset applied on a new dataset.

In this work, we performed a CNN analysis with a transfer-learning

algorithm to predict LID and Covid-19 diseases on chest X-ray

images.
Methods

This was a retrospective study approved by our institutional review

board with a waiver of patients’ informed consent. Frontal chest

X-ray images of patients diagnosed in three groups have been used:

healthy (380 images), with LID (310 images), and with Covid-19 (199

images). All images were previously analyzed by a thoracic radiol-

ogist and covid-19 diagnosis was confirmed by RT-PCR. Figure 1

shows an example from the Covid-19 set. Original DICOM images

were converted to PNG with 3 channels (RGB), to augment the

database and improve CNN’’s performance in the experiments. Next,

pixel values were normalized between 0 and 1.

A balanced subset of images was also randomly organized with

199 cases from each group, that was splitted in 80% for training (159

samples from each group) and 20% for testing (40 samples from each

group). An unbalanced testing was also performed using 222 images

from healthy, 151 images from LID groups, and 40 images from

Covid-19 set.

The experiments were performed using a graphics-processing unit

(GPU) NVidia Titan X with 12 Gigabytes of RAM, 3584 cores, speed

of 1.5 GHz, and Pascal Architecture. For training, the samples were

shuffled for tenfold cross-validation using CNN through the

framework Tensorflow (v.2.1.0.). Through the technique of transfer

learning, the pre-trained network used was the VGG19, so the reso-

lution of the images was fixed in 224 9 224. From the VGG19, all

layers until the block4_pool layer were frozen preventing their

weights from being updated during the training, and the layers until

block5_pool were retrained. Next, some layers were added: Glob-

alAveragePooling2D, BatchNormalization, a dense layer with 128

units with the activation function ReLU, a dropout layer with the rate

of 0.6, and the final dense layer with 3 units for the classification of

the three classes with Softmax activation function. The values of

batch size and epoch were 36 and 100, respectively. The optimizer

function used was Adam to minimize the categorical cross-entropy.

The processing time for training was 50 min.

To evaluate the performance of testing cases the statistical metrics

used were the area under the receiver operating characteristic curve

(AUC), sensitivity, specificity, and accuracy. We evaluated the met-

rics sensitivity, specificity, and accuracy considering each class as a

positive at a time. The confidence interval (CI) used was 95%.
Results

In the evaluation using the balanced testing set, results considering

the healthy class as positive were sensitivity of 85% (CI: 0.69–0.93),

specificity of 92.50% (CI: 0.83–0.96), and accuracy of 90% (CI:

0.82–0.94). Results for the LID class as positive were sensitivity of

80% (CI: 0.63–0.90), specificity of 96.25% (CI: 0.88–0.99), and

accuracy of 90.83% (CI: 0.83–0.95); and for the Covid-19 class as

positive results were sensitivity of 92.50% (CI: 0.78–0.98), specificity

of 90% (CI: 0.80–0.95), and accuracy of 90.83% (CI: 0.83–0.95). The

AUC values were 0.96, 0.97, and 0.97 for classes healthy, LID, and

Covid-19, respectively.

In the evaluation using the unbalanced testing set, the results

considering the healthy class as positive were sensitivity of 84.23%

(CI: 0.78–0.88), specificity of 91.62% (CI: 0.87–0.95), and accuracy

of 87.65% (CI: 0.83–0.90). Results for the LID class as positive were

sensitivity of 84.77% (CI: 0.77–0.89), specificity of 93.13% (CI:

0.89–0.95), and accuracy of 90.07% (CI: 0.86–0.92); and for the

Covid-19 class as positive results were sensitivity of 92.50% (CI:

0.78–0.98), specificity of 92.76% (CI: 0.78–0.98), and accuracy of

92.74% (CI: 0.89–0.94). The AUC values were 0.95, 0.94, and 0.97

for classes healthy, LID, and Covid-19, respectively.

Fig. 1 Frontal CXR of a patient with COVID-19 pneumonia showing

most typical interstitial, hazy opacities, predominantly involving

basal and peripheral areas of the lungs (arrows). As all patients

included in this study, diagnosis was confirmed by RT-PCR and

images were previously analyzed by a thoracic radiologist
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Conclusion

This study performed a CNN modeling integrated with a transfer

learning architecture for the prediction of chest X-ray images in

healthy, LID, or Covid-19. The small number of cases is a clear

limitation of this study. Even so, the proposed approach presented

potential to be used as a tool for classifying chest X-ray images.

Moreover, our method does not require image segmentation, use of

handcrafted features extractors, or clinical features as prerequisites.
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Purpose

Nowadays, cancer is one of the leading causes of human death in the

world. In 2020, breast carcinoma represented 11.7% of cancers

reported in the female world population. Medical imaging is crucial

for breast cancer screening and occupies a large place in diagnosis.

Early screening with digital mammography is the key factor of suc-

cessful detection of breast cancer. Also, automatic tumor detection

could help radiologists in their work and them to achieve fast and

accurate diagnosis. We propose in this work, a deep learning-based

classification method to assist radiologists in the context of breast

cancer screening and diagnosis. This system is able to classify digital

mammograms into two categories: negative or benign and malignant.

The main objective of this automatic imaging based detection method

is to avoid human second reading and at the same time reduce radi-

ologists workload. Several deep convolutional neural networks

architectures were assessed in this work, and a three stage training

process was proposed. Our experiments were conducted by using a

real database collected from the CHR Mons-Hainaut in Belgium

composed of 2410 images including 378 malignant cases.
Methods

Recently, a lot of research projects were conducted to assess early

detection of breast cancer, either with masses or microcalcification

detection. However a large majority of the research projects in this

field [1, 2] were based on publicly available databases like CBIS-

DDSM, INbreast or MIAS. These databases could be used to assess

automatic tumor detection approaches but could not fit to local or

regional populations and their specificities. The main objective of our

work is to propose an efficient mammography image classifier using a

real database collected from CHR Mons-Hainaut hospital in Belgium

and an adapted pre-trained convolutional neural network. The pro-

posed method consists of developing a binary classifier using deep

neural networks applied to mammography images. The classifier is

able to identify two classes: malignant and benign in order to assist

the radiologist in his diagnosis. The dataset used was randomly

splitted into three parts (70% for training, 20% for validation, and

10% for test). We used data augmentation techniques to artificially

increase the dataset and so significantly improve results accuracy.

During the development of our model the training strategy was

defined by implementing transfer learning from pre-trained architec-

tures with ImageNet database and fine-tuning techniques. We tested

the following CNN pre-trained architectures: ResNet50, ResNet152,

InceptionV3, ResNet101, AlexNet, VGG19, VGG16. We can note

that pretrained networks allow faster training and improve the gen-

eralization capacity of the network compared to random initialization.

Also, it is worth mentioning that pretrained networks present in their

bottom layers the main primitive features that tend to be universal and

common to the majority of the datasets. On the other side, top layers

represent high level descriptive features related to final labels. Hence,

finetuning could be achieved in depth for the top layers. So, applying

a higher learning rate for top layers could take into account this fact.

That is why; we propose in our work a three stage training framework

similar to the computational framework proposed by Shen li et al. in

[1]. So, our learning strategy freezes in the first stage all parameter

layers except the last one. This step allows to finetune the model by

using only the last layer. We use in this stage a learning rate of 0.001

for 3 epochs. In a second stage we unfreeze top layers and apply a

learning rate of 0.0001 for 10 epochs. Finally, we train the whole

network with a learning rate of 0.00001 for 50 epochs combined to an

early stopping condition. Also, in order to overcome overfitting we

added a dropout layer with a probability set to 0.5. On the other hand,

Stochastic gradient descent (SGD) and Adam algorithms were both

used in our tests to optimize the networks.

The proposed method was tested with a real database composed of

2410 images from CHR Mons-Hainaut taken in 2016 and containing

negative or benign and malignant cases with verified pathological

information. This dataset includes 378 mammograms with cancer

(malignant cases). The proportion between benign and malignant

cases was chosen to maintain the frequency of occurrence of breast

cancer in real life. During the training process, we used the training

and validation datasets. Afterwards, we achieved our model test on an

independent test dataset whose images were not seen by the neural

network.
Results

We present in Table 1 the results obtained with our binary classifier

for the different CNN architectures tested with the Adam optimizer, a

batch size equal to 16 and a Dense layer size of 512. The ES column

is EarlyStopping parameter and AUC is the area under the ROC

curve. The third column from the left corresponds to the number of

top layers trained in the second training phase. These results show that

the three best results were obtained with AlexNet, VGG19 and

VGG16. For VGG16 architecture, training and validation accuracy

was respectively 99.47% and 98.96%, while test accuracy reached

97.10%, and AUC 93.1%.

In a second experimentation we kept the VGG16 model which has

shown the best results and we have applied a final configuration with

EarlyStopping and a Dense layer size of 128. In this final experi-

mentation, we increased the batch size to 32 and applied SGD

optimizer. Figure 1 shows the accuracy convergence at the end of the
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third training phase. After a total of 30 epochs, the training accuracy

reached 98.34% and the validation was slightly higher with a value of

99.17%.

For our test dataset the achieved accuracy was of 98.34% and the

AUC of 96.1%. The confusion matrix obtained with the VGG16

classifier generates a very few number of false negatives (FN = 4,

FP = 0, TP = 47, TN = 190). Indeed, out of a total of 51 cancer cases

in the test dataset, the model missed only four ones. In addition, all

benign class images were properly classified.
Conclusion

In this paper, we addressed the problem of breast cancer detection by

using digital mammography and deep convolutional neural networks.

Several pre-trained CNN architectures were used such as: ResNet50,

ResNet152, InceptionV3, ResNet101, AlexNet, VGG19, VGG16. The

major contribution of this paper is the use of a real database, and the

use of an adapted pre-trained model based on a three stage training

process. The adapted VGG16 model achieved the best accuracy score

of 98.34% for the test dataset. This result overcomes the latest results

that use CBIS-DDSM database and present encouraging steps to

automate breast cancer detection in hospitals. Further investigations

will be done using a bigger dataset in order to improve screening

results.
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Purpose

Mild cognitive impairment (MCI) is one of the consequences of

small vessel disease (SVD) and the prediction of the cognitive

status of patients with SVD and MCI from neuroimaging data is

crucial to identify possible markers of the cognitive deficit. In

recent years, deep learning schemes have been applied for the

prediction of the cognitive status from brain imaging. Indeed, the

ability to extract patterns and latent features from complex data,

such as magnetic resonance imaging (MRI) data, makes deep

learning schemes and, in particular, convolutional neural networks

(CNN), a powerful tool in neuroimaging applications. The objective

of this study is to develop and test a 2D-CNN model to predict the

cognitive status of patients with SVD and MCI in terms of the Trial

Making Test part A (TMT-A) score—a popular neuropsychological

test sensitive to psychomotor speed and executive functioning—

from multi-input data, i.e., MRI-derived features and demographic

data.
Methods

In our study, we considered 58 patients with SVD and MCI from one

center of the VMCI-Tuscany study (27 women and 31 men, aged

74.18 ± 6.98 years, mean ± standard deviation) [1]. For each

patient, MRI data were collected using different techniques. In

Table 1 Accuracy results for the different proposed architectures

Modèle ES Top Layers Train_acc (%) Val_acc (%) Test_acc (%) AUC (%)

InceptionResNetV2 6 48 99.94 84.23 79.67 52.00

ResNet50 11 46 100.00 84.23 79.67 52.00

ResNet152 8 46 100.00 84.44 79.67 52.00

InceptionV3 6 48 99.88 85.68 81.33 55.90

ResNet101 12 46 100.00 92.32 86.31 67.60

AlexNet 10 11 98.52 95.23 93.36 84.30

VGG19 8 13 99.47 98.96 96.68 92.20

VGG16 8 11 99.47 98.96 97.10 93.10

Fig. 1 training and validation accuration evolution at the third

training stage
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particular, T1-weighted, T2-weighted fluid attenuated inversion

recovery (FLAIR), white matter hyperintensity lesion maps (LM),

mean diffusivity (MD) and fractional anisotropy (FA) features

derived from diffusion tensor imaging (DTI), resulting in five sets of

voxel-wise MRI-derived feature maps, were available [1–2]. These

maps were used, separately, as input to a 2D-CNN after a linear and

non-linear image registration onto the MNI152 standard template

(Figure 1). Since our CNN has a 2D architecture, we sliced each

volume into 2D images in the axial plane and, for each patient, we

selected the 16 most informative slices according to the entropy

maximization principle, i.e., the 16 slices that maximized the entropy

value. Then, a voxel-wise standard feature scaling has been applied to

achieve faster convergence.

Since the size of the training set was relatively small, we

employed a transfer learning technique by adapting a pre-trained

VGG16 model, trained on a large dataset of labeled natural images

(ImageNet dataset). Then, we modified the VGG16 architecture to be

able to feed multiple inputs (MRI-derived feature maps and demo-

graphic data, i.e., sex, age and education level of participants)

(Figure 1). Specifically, while VGG16 is a single input CNN that

accepts only a 2D image as input, our proposed model consisted of

two input branches: a CNN and a fully connected (FC) branch. The

CNN branch is formed by the convolutional layers of the VGG16

model and by a newly added global average pooling (GAP) layer that

replaces the FC layers of the VGG16 network. This branch takes the

MRI-derived feature map as input. On the other hand, the FC branch

is constituted of a FC layer followed by a dropout layer and accepts

demographic data as input. The outputs from the two branches are

concatenated and further processed by the last FC layers.

For training and validation of the proposed model, we used a

tenfold nested CV loop, where the inner fold was used for grid-search

hyperparameter tuning of the model and the outer fold for evaluating

the generalization ability of the optimized model on unseen test

samples. The nested CV was based on a subject-level to assure that no

data leakage was created during the data split. The adaptive Adam

optimizer was chosen for training all models for 40 epochs with a

mini-batch gradient descent algorithm and batch size of 128.

To assess the model’s performance, the average value of the

Pearson’s correlation coefficient between the actual and predicted

values of the TMT-A score on the outer folds was computed.
Results

Table 1 illustrates an overview of the results. The model’s develop-

ment, training, validation and testing were implemented using Python

code and Keras library (using a Tensorflow backend). A workstation

equipped with Ubuntu 16.04, a high performance 12 GB G5X frame

buffer NVIDIA TITAN X (Pascal) GPU with 3584 CUDA cores and a

64-bit 16 M RAM hardware was used. For each model, the compu-

tational time needed to run a nested CV loop was about 75 h.

Conclusion

In this study, the cognitive status of patients with SVD and MCI,

measured by the TMT-A score, was predicted using CNN models

trained on multiple MRI features. Although all the models employing

different MRI-derived features produced good predictions, the TMT-

A score was best predicted using features derived from DTI data (MD

and FA maps), yielding a correlation coefficient of 0.513 and 0.504,

respectively. These values were greater than that obtained in the same

population using a least absolute shrinkage and selection operator

(LASSO) regression trained on 13 demographic and neuroimaging

features (coefficient of correlation = 0.354) [1]. However, in the

previous study, DTI-derived indices were not available and the model

predicted demographically adjusted TMT-A scores, rather than raw

scores. Our results are in accordance with the fact that cognitive

deficits associated with information processing speed are mainly the

effect of white matter damage which may be reflected by changes of

DTI-derived indices [2]. In conclusion, our results showed that a deep

learning approach could be a valuable tool in predicting the cognitive

status of patients with SVD and MCI.

References

[1] Pantoni L, Marzi C, Poggesi A, Giorgio A, De Stefano N,

Mascalchi M, Inzitari D, Salvadori E, Diciotti S (2019) Fractal

dimension of cerebral white matter: A consistent feature for

prediction of the cognitive performance in patients with small

vessel disease and mild cognitive impairment. NeuroImage:

Clinical, 24, p.101990

[2] Ciulli S, Citi L, Salvadori E, Valenti R, Poggesi A, Inzitari D,

Mascalchi M, Toschi, N., Pantoni, L. and Diciotti, S., 2016.

Prediction of impaired performance in trail making test in MCI

patients with small vessel disease using DTI data. IEEE journal

of biomedical and health informatics, 20(4), pp. 1026–1033.

Machine learning for lung CT texture analysis

in connective tissue disease: capability for disease

severity and therapeutic effect evaluations

Y. Ohno1,2,3, K. Aoyagi4, D. Takenaka5, T. Yoshikawa5,6, Y.

Fujisawa4, N. Sugihara4, H. Hattori1, K. Murayama1, H. Toyama1

1Fujita Health University School of Medicine, Radiology, Toyoake,

Japan 2Fujita Health University School of Medicine, Joint Research

Laboratory of Advanced Medical Imaging, Toyoake, Japan 3Kobe

University Graduate School of Medicine, Division of Functional

and Diagnostic Imaging Research, Department of Radiology, Kobe,

Japan 4Canon Medical Systems Corporation, Otawara, Japan 5Hyogo

Cancer Center, Diagnostic Radiology, Akashi, Japan 6Kobe

University Graduate School of Mediciine, Division of Functional

and Diagnostic Imaging Research, Department of Radiology, Kobe,

Japan

Fig. 1 Overview of the architecture of the proposed CNN for

prediction of the TMT-A score

Table 1 Average Pearson’s correlation coefficient between the actual

and predicted values of the TMT-A score on the test sets of the outer

folds (the bold value highlights the best performance)
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Purpose

In response to a need for quantitative assessment of interstitial lung

involvement, machine learning (ML)-based CT texture analysis was

developed for patients with various pulmonary diseases. Recently, we

developed and proposed ML-based CT texture analysis software and

demonstrated its’’ capability to play as second reader similar to chest

radiologists with more than 20 years experiences. In this situation, we

hypothesized that our newly developed ML-based algorithm has a

better potential than qualitatively assessed disease severity for disease

severity assessment and treatment response evaluation for patients

with connective tissue diseases. The purpose of this study was to

evaluate the capability of ML-based CT texture analysis software for

disease severity and treatment response assessments in comparison

with qualitatively assessed thin-section CT for patients with con-

nective tissue disease (CTD).
Methods

Between January 2016 and December 2017, 149 patients with CTD

related ILD (CTD-ILD) who underwent initial and follow-up CTs, as

well as pulmonary function and serum KL-6 level tests, were initially

included as test cases with no overlaps between training, validation

and test cases. 149 consecutive patients with CTD-ILD were included,

consisting of 56 males (60 ± 11 years, age range: 39–83 years) and

93 females (58 ± 9 years, age range: 30–85 years) comprising 54

cases of progressive scleroderma (PSS), 34 of dermatomyositis (DM),

29 of rheumatoid arthritis (RA), 14 of polymyositis (PM), 7 of mixed

connective tissue disease (MCTD), 7 of anti-neutrophil cytoplasmic

antibody (ANCA)-associated vasculitis, and 4 of Sjogren’s syndrome.

Changes in disease severity between two serial CT examinations of

each of these cases were assessed into three groups: Stable, n = 188;

Worse, n = 98; and Improved, n = 78. Next, quantitative index

changes were determined by using software as well as qualitative

disease severity scores. To determine the relationship among all

radiological findings, each pulmonary function parameter or serum

KL-6 level, step-wise regression analysis were performed. To eval-

uate differences in each quantitative index as well as in disease

severity score between two serial CT examinations, Tukey’’s honestly

significant difference (HSD) test was performed to determine differ-

ences among the three statuses. Stepwise regression analyses were

performed to determine changes in each pulmonary functional

parameter and all quantitative indexes between two serial CTs.
Results

Results of stepwise regression analysis of differences between all

quantitative radiological indexes and each pulmonary functional

parameter as well as serum KL-6 level revealed that FEV1/FVC %

was significantly affected by % normal lung and % reticulation

(r2 = 0.27, p = 0.04), %VC was significantly affected by % normal

lung, % reticulation and % GGO (r2 = 0.36, p = 0.01), while %

DLCO/VA was significantly affected by % normal lung, % reticu-

lation and % GGO (r2 = 0.27, p = 0.04). In addition, serum KL-6

level was significantly affected by % normal lung and % reticulation

(r2 = 0.27, p = 0.04). D % normal lung, D % consolidation, D %

GGO, D % reticulation and Ddisease severity score showed signifi-

cant difference among the three statuses (p\ 0.05). D % honeycomb

showed a significant difference between the ‘‘Stable’’ and ‘‘Worse’’

groups and between the ‘‘Worse’’ and ‘‘Improved’’ groups (p\ 0.01).

All differences in pulmonary functional parameters as well as in

serum KL-6 levels were significantly affected by D % normal lung,

D % reticulation and D % honeycomb (0.16 B r2 B 0.42, p\ 0.05).
Conclusion

Newly developed ML-base CT texture analysis has better potential

than qualitatively assessed thin-section CT for disease severity

assessment and treatment response evaluation for patients with con-

nective tissue diseases.
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Purpose

The severity of the cases with COVID-19 together with its rapid

progression has placed great pressures on healthcare services around

the world. Therefore, fast and accurate prediction of the disease

progression of patients with COVID-19 is needed for logistical

planning of the healthcare resources. The purpose of this study was to

develop a prediction model, called pix2surv, for predicting the

COVID-19 progression from patients’’ chest CT images.
Methods

Subjects and chest CT
Patients who had been diagnosed as COVID-19 positive based on a

positive result for SARS-COV-2 by the reverse transcriptase-poly-

merase chain reaction (RT-PCR) test were included retrospectively in

this study. As a result, we identified, from the medical records of our

institution, high-resolution chest CT images of 105 patients with

confirmed COVID-19. For these patients, the CT scans were per-

formed with a single-phase, low-dose acquisition protocol by use of

multi-channel CT scanners with slice thickness of 0.625–1.5 mm,

pitch of 0.3–1.6, tube voltage of 80–140 kVp, and automatic tube

current modulation.

pix2surv model
The pix2surv is based on an adversarial time-to-event model [1],

which was adapted to predict a patient’’s disease progression. Here,

we define the survival time of a patient as the number of days from

the patient’’s chest CT scan to either ICU admission or death.

Figure 1 shows our generative-adversarial-network-based architecture

of the pix2surv model, in which the time generator G is used to

generate or estimate a ‘‘survival-time image’’ from the input CT

images of a patient. The survival-time image is an image that has a

single survival time value at each pixel. The discriminator D attempts

to differentiate the ‘‘estimated pair’’ of an input CT image and a

generated survival-time image, from the ‘‘observed pair’’ of an input

CT image and the observed true survival-time image of the patient.

The training of pix2surv involves the optimization of G and

Fig. 1 Schematic architecture of the proposed pix2surv model for the

prediction of the COVID-19 progression
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D through a modified min–max objective function, so that G learns to

generate a survival time (predicted disease progression) that is close

or equal to the observed survival time (observed disease progression).

Total severity score for crazy paving and consolidation (CPC)
We evaluated the performance of pix2surv in the prediction of

COVID-19 progression in comparison with an existing COVID-19

progression predictor of the ‘‘total severity score for crazy paving and

consolidation’’ (CPC) [2]. The CPC for a patient was assessed by a

pulmonologist with over 20-year experience as the sum extent of

crazy paving and consolidation in the chest CT images of the patient

based on the ‘‘total severity score’’ criteria, where the sum involve-

ment of the five lung lobes is taken as the total lung score (value

range: 0–20).

Evaluation
As metrics of the prediction performance, we used the concordance

index (C-index), as well as the relative absolute error (RAE) that is

defined by Ri |ti
est - ti|/ti, where ti

est is the predicted survival time and

ti is the observed survival time for patient i. A patient-based bootstrap

method with 100 replications was used to obtain an unbiased estimate

of the C-index and RAE, and they were compared with those of the

CPC using a two-sided unpaired t test.

We also evaluated the stratification of the patients into low- and

high-risk groups by generating Kaplan–Meier survival curves based

on the predicted survival times. The log-rank test was used to evaluate

the difference between the survival curves of the risk groups.
Results

Our experimental results show that the C-index values (larger is

better) obtained from the CPC and pix2surv were 62.1% [95% con-

fidence interval (CI): 61.3, 63.0] and 82.5% [95% CI: 81.5, 83.5],

respectively. The RAE values (smaller is better) obtained from the

CPC and pix2surv were 49.9% [95% CI: 49.3, 50.5] and 26.3% [95%

CI: 25.5, 27.0], respectively. These results indicate that the prediction

performance of pix2surv is significantly higher than that of the CPC

(p\ 0.0001), and that its prediction error is significantly lower than

that of the CPC (p\ 0.0001).

Figure 2 shows the Kaplan–Meier survival curves of the COVID-

19 patients stratified into low- and high-risk patient groups based on

the survival times predicted by (a) the CPC and (b) pix2surv. Both

visual assessment and the P-values from the log-rank test indicate that

the separation between the two curves is larger with pix2surv than

with CPC, indicating that pix2surv is more effective than CPC in the

stratification of the progression risk of COVID-19 patients.
Conclusion

We developed a novel survival prediction model, pix2surv, which

directly predicts disease progression from patient’’s chest CT images.

We demonstrated that pix2surv outperforms the CPC in predicting the

disease progression in patients with COVID-19, indicating that

pix2surv can be an effective predictor of the COVID-19 progression.
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Purpose

Laryngeal leukoplakia is a clinical term, describing the presence of a

white plaque of the vocal fold. Laryngeal lesions with benign

leukoplakia can remain stable for months or years; however, some of

these lesions will eventually undergo malignant transformation.

Contact Endoscopy (CE) in combination with Narrow-Band Imaging

(NBI)—as a minimally invasive optical diagnostic imaging proce-

dure—can improve the evaluation of these types of lesions by

visualizing the microvascular changes in the area surrounding the

leukoplakia [1]. In clinical practice, diagnosis of benign and malig-

nant leukoplakia lesions based on the vascular patterns and other

endoscopic features is a subjective process resulting in invasive sur-

gical biopsy and subsequent histological examination. The main

objective of this work is to evaluate the potential of an automatic

machine learning-based approach for the classification of CE-NBI

images of vascular patterns around leukoplakia into benign and

malignant; and then, to compare the results with the multi-observer

manual classification.
Methods

Video scenes of 40 patients with histologically examined leukoplakia

lesions were acquired. An Evis Exera III Video System with a xenon

light source plus integrated NBI-filter (Olympus Medical Systems,

Hamburg, Germany) and a rigid 30-degree contact endoscope (Karl

Storz, Tuttlingen, Germany) was used. 1998 high-resolution CE-NBI

images with unique vascular patterns were manually extracted from

these videos. The images were labeled into benign and malignant

groups based on histological diagnosis according to the World Health

Organization (WHO) classification.

Two image subsets were created from the CE-NBI dataset. The

Subset I included a series of four to five randomly selected CE-NBI

images of each patient with a total of 199 images. Subset II included

1799 images and was used as the training set in the automatic

approach. The Subset I was evaluated by the otolaryngologists in the

manual approach and then used as the testing set for the automatic

approach.

Fig. 2 Kaplan-Meier survival curves of the COVID-19 patients

stratified into a low-risk patient group (gray color) and a high-risk

patient group (black color) based on a the CPC and b pix2surv. The

shaded areas represent the 95% confidence intervals of the survival

curves
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In the manual approach, two experienced otolaryngologists visu-

ally evaluated the CE-NBI images of Subset I. They were blinded to

the histologic diagnosis and independently classified the lesions into

benign and malignant based on the vascular patterns. Malignant

labeled lesions with malignant histopathology were considered true

positives for the calculation of sensitivity and specificity.

The method presented in [2] was used to perform the automatic

classification. The algorithm has been tested on several CE-NBI

datasets for the classification of laryngeal lesions and histopatholo-

gies. It consists of a pre-processing step involving vessel

enhancement and segmentation. A feature extraction step was then

applied to extract 24 geometrical features based on the consistency of

gradient direction and the curvature level. The supervised classifica-

tion step was conducted using the Polynomial Support Vector

Machine (SVM) and k-Nearest Neighbor (kNN). Subset II was used

for the hyperparameter tuning process with a grid search method and

fivefold cross-validation. In the automatic approach, Subset I and

Subset II were used as the testing and training sets, respectively. Each

classifier was trained using the images’’ labels and feature vectors of

the CE-NBI images of the training set. For the testing, the feature

vectors computed from the CE-NBI images of the testing set were fed

into the predictive model of each classifier, and then the expected

labels were collected. This training and testing set strategy was used

to be able to compare the results of manual and automatic classifi-

cations. The sensitivity and specificity were calculated from a

confusion matrix for each classification.
Results

Table 1 presents the results of the automatic and manual classification

in CE-NBI images of leukoplakia lesions. The mean specificity of

0.875 in manual classification can be explained by the difficulty to

visually distinguish benign leukoplakia lesions from malignant ones

based on the vascular pattern around the lesion. This issue happens

due to the presence of similar microvascular structures in some

benign and malignant leukoplakia lesions. Figure 1 illustrates the

qualitative performance of the automatic approach. Two presented

indicators (Histogram of Gradient Direction and Curvature) show

different behaviors on CE-NBI images of benign and malignant

leukoplakia lesions. Furthermore, the automatic classification showed

a better performance than manual classification with a sensitivity of 1

by both classifiers. The sensitivity value of 1 means that all the CE-

NBI images of malignant leukoplakia lesions were correctly classified

by the predictive model of two classifiers. These results emphasize the

potential of the automatic approach to solving the problem of mis-

classification of laryngeal leukoplakia lesions based on the evaluation

of vascular patterns around the lesion.
Conclusion

The results showed that the visual differentiation of vascular patterns

that indicate benign leukoplakia lesions from malignant ones can be

challenging for otolaryngologists in clinical practice. The automatic

algorithm demonstrated its ability in the classification of CE-NBI

images of leukoplakia lesions. We believe that the combination of the

geometrical features with machine learning classifiers has the

potential to provide a confident way for clinicians to make the final

decision about the dignity of the laryngeal leukoplakia and prevent

unnecessary surgical biopsies.
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Purpose

Endoscopic Submucosal Dissection (ESD) surgery [1] is a minimally

invasive treatment for early gastric cancer. In ESD, physicians

directly remove the mucosa around the lesion under internal endo-

scopy by using flush knives. However, the flush knife may

accidentally pierce the colonic wall and generate a perforation on it. If

there is a perforation, a patient needs emergency open surgery, since

perforation can easily cause peritonitis. Our research purpose is to

construct a Computer-Aided Diagnosis (CAD) system to support ESD

surgery [1]. To support physicians in ESD surgery, the final goal is the

prevention of perforations in ESD. At the current stage, image-based

perforation detection is very challenging. Thus, we tackle with

detection and localization of perforations in colonoscopic videos. We

believe the automatic perforation-detection function is useful for the

analysis of ESD videos for the development of a CAD system.

Table 1 Classification results of manual versus automatic approach

for CE-NBI images

Manual classification Automatic classification

SVM kNN

Sensitivity 0.958 1 1

Specificity 0.875 0.872 0.897

Fig. 1 Behavior of two indicators for CE-NBI images of vascular

patterns around benign and malignant leukoplakia lesions
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In our previous research, we have used You Only Look Once

(YOLO-v3) to detect and localize perforations [2]. Our experimental

results indicated a trained YOLO-v3 can perform high perforation

detection and localization accuracy. However, the sensitivity of

detection results always stays at a low level. The low sensitivity

problem illustrates that overlooking of perforation happed by a

trained YOLO-v3. Purpose of this work is development of new loss

functions for the training of YOLO-v3 for perforations detection and

localization with high detection sensitivity.
Methods

In our previous work, we have constructed a perforation detection and

localization model by training an original YOLO-v3 with our dataset

[2]. For each training image, YOLO-v3 predicts a probability and a

region for every detected perforation, as detection and localization

tasks, respectively. YOLO-v3 predicts Intersection over Union (IoU)

between a predicted region and a ground truth region. By multiplicate

an estimated probability and IoU, YOLO-v3 outputs a score for each

box. For the training of YOLO-v3, the original loss function of YOLO-

v3 consists of object and box losses. These two losses evaluate mean

square error (MSE) between true class labels and scores, and error of

location of bounding boxes between prediction and true boxes.

To improve detection sensitivity, we introduce two object losses.

One is the cross-entropy (CE) loss, which evaluates the cross-entropy

error between scores and true class labels. The other is the softmax

loss, which evaluates the cross-entropy error between the true class

labels and normalized scores, where we input scores to a softmax

function. By combining one of the CE and the softmax losses with the

original box loss, we have two loss functions for YOLO-v3 training.

To compare with the previous method, we use the original object and

box losses as loss function to train a YOLO-v3, too. We experi-

mentally evaluate the detection and localization performances of the

proposed methods with several evaluation terms.
Results

We used 1814 and 385 images for model training and validation,

respectively. For evaluation of the detection and localization perfor-

mance, we collected 22,598 and 150 images, respectively. All detail

settings of the constructed model are the same as the original YOLO-

v3. For the training process, we set the mini-batch size to be 64 to

train all models for 300 epochs on NVIDIA Tesla V100 PCIe 32 GB

with CUDA 10.0 and used Adam as an optimizer function.

For detection performance evaluation, we introduced the accuracy,

recall, and Receiver Operating Characteristic (ROC) curve. Figure 1

shows the ROC curve of three trained models, respectively. For

localization performance evaluation, we introduced the mean Average

Precision (mAP) score. We set the localization thresholds to be 0.6.

We defined a true positive box when the IoU of the box is larger than

0.6. Table 1 shows accuracy, recall, Area Under Curve (AUC) score,

and mAP score of three trained models. Table 1 illustrates the pro-

posed method did not provide a higher mAP score than the original

YOLO-v3. This phenomenon is due to the loss function is the com-

bination of box and object losses, change of object loss also affects

the backpropagation of the localization part.
Conclusion

This work experimentally evaluated two loss functions in YOLO-v3

for the training of perforation detection and localization in colono-

scopic videos. The constructed model trained by the box loss plus CE

loss achieved 0.881 accuracy, 0.631 recall, 0.863 AUC, and 0.732

mAP in detection and localization for the limited-size samples.

Compare with the MSE and softmax losses, the CE loss has larger

output when misclassification happened, which is better for opti-

mization of the detection part in YOLO-v3. To acquire higher

localization accuracy, we will try to modify weights of two losses in

the loss function and looking forward to implying new loss functions

for YOLO-v3 in the future. Parts of this research were supported by

MEXT/JSPS KAKENHI (26108006, 17H00867, 17K20099), the

JSPS Bilateral International Collaboration Grants, the AMED

(19hs0110006h0003), and the Hori Sciences & Arts Foundation.
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Fig. 1 ROC curve of three trained models

Table 1 Qualitative evaluation of detection and localization

performances

Loss functions Accuracy Recall AUC mAP

Box loss ? MSE 0.835 0.458 0.834 0.746

Box loss ? softmax loss 0.866 0.555 0.853 0.698

Box loss ? CE 0.881 0.631 0.863 0.732

Int J CARS (2021) 16 (Suppl 1):S1–S119 S75

123



Purpose

Breast cancer screening with two-dimensional (2D) full-field digital

mammography (FFDM) is the imaging modality that is the gold

standard currently used in many countries to reduce cancer mortality

in women. In 2011, digital breast tomosynthesis (DBT) was approved

by the FDA to be used with FFDM to screen women for breast cancer.

However, this leads to double radiation exposure in women.

Thus, Hologic Inc. obtained FDA approval to produce 2D syn-

thesized mammograms (2DSMs) from DBT data, called ‘‘C-view’’

images. If 2DSM images can be used in place of FFDM in standard

screening procedure, this eliminates the need for exposing women to

double radiation exposure.

However, the question remains whether 2DSMs are equivalent in

diagnostic quality to replace FFDMs. Thus, many studies were con-

ducted to examine the use of 2DSM in conjunction with DBT over

conventional FFDM images, but almost all of them were subjective

observer studies [1].

This study compares the diagnostic quality of 2DSMs with

FFDMs using a different objective based approach by computing

structural similarity measures and feature correlations between the

two modalities. We also develop and compare two new computer-

aided detection (CAD) schemes based on global features computed on

2DSM and FFDM, which to the best of our knowledge is the first

study of its kind.
Methods

We studied 407 women subjected to 2D FFDM and DBT examination

for screening or diagnostic purposes at our institution from September

2014 to February 2016. Thus, 3216 craniocaudal (CC) and medio-

lateral oblique (MLO) mammograms were analyzed altogether.

We calculated 152 structural similarity, texture and mammo-

graphic density based features previously used to predict breast

cancer risk [2] on all mammograms. We included/computed boxplots

to analyze the interquartile ranges/variations of the structural simi-

larity features from their median values.

To compare the performance of 2DSM and FFDM for developing

two cancer detection schemes based on global features computed on

the whole breast region, we computed 112 texture and mammo-

graphic density features, and trained and examined different

classifiers on them.

We compared the performances of the linear discriminant analysis

(LDA), logistic regression, and bagged decision trees classifiers. To

prevent ‘‘overfitting’’ of the classifiers on the high-dimensionality

features, we applied stepwise regression feature selection to select the

‘‘relevant’’ features in a leave-one-case-out (LOCO) cross-validation

scheme.

To compare the performances of the two global detection models,

we computed the area under a receiver operating characteristic (ROC)

curve (AUC). Using all classifier-generated detection scores, we

computed AUC and 95% confidence intervals (CIs) using a maximum

likelihood data analysis based ROC curve fitting program (ROCKIT

http://www.radiology.uchicago.edu/krl/). We also evaluated statisti-

cally significant differences at the 5% significance level using

DeLong’’s test to compare the classifier performances between 2DSM

and FFDM.
Results

Figure 1 displays the boxplots of the highest structural similarity

features computed in our study. It can be observed that the structural

similarity feature of the CC image had the highest median, namely

CB-CW-SSIM of the Weber Local Descriptor (WLD) differential

excitation feature computed at scale s = 24. The CC image had the

highest median, namely 0.92 for CC1; MLO1 without the pectoral

muscle had a very low median, namely 0.797. MLOpect1 with the

pectoral muscle, had a higher median, namely 0.90, but it was still

less than CC1. The results show that CC images were the most similar

between 2DSM and FFDM modalities and coarse structures computed

at a coarse scale (i.e., s = 24) are similar between both modalities.

Table 1 tabulates the AUC values and 95% CIs of all 3 classifiers

that we analyzed in the LOCO cross-validation scheme. We observe

that all 3 classifiers trained on 2DSM outperformed the corresponding

classifiers trained on FFDM. The best-performing classifier was

bagged decision trees. The AUC values of all corresponding classi-

fiers achieved for FFDM and 2DSM were not significantly different

using DeLong’’s test at the 5% significance level.
Conclusion

This study presents a comprehensive objective evaluation of simi-

larity between 2DSM and FFDM images, with results indicating that

coarse structures are similar between the two images. The perfor-

mance of global mammographic image feature-based cancer detection

schemes trained on 2DSM images outperformed corresponding

schemes trained on FFDM images. Further investigation is required to

examine whether DBT can replace FFDM as a standalone technique,

negating the need for women to undergo mammography twice,

especially for the development of automated objective-based

methods.

Table 1 Computed AUC values and corresponding 95% CIs when

applying the classifiers to FFDM and 2DSM image sets using a

LOCO cross-validation method

Image

type

Classifier AUC (SE) 95% CI P-value computed

from DeLong’’s

test

2DSM Bagged

decision trees

0.878 (0.034) [0.799–0.933] 0.103

FFDM Bagged

decision trees

0.756 (0.052) [0.643–0.846]

2DSM LDA 0.737 (0.059) [0.611–0.838] 0.382

FFDM LDA 0.710 (0.058) [0.587–0.813]

2DSM Logistic

regression

0.789 (0.045) [0.689–0.866] 0.265

FFDM Logistic

regression

0.721 (0.057) [0.600–0.821]

Fig. 1 Boxplots of the highest structural similarity feature values

computed in our study. CC1, MLO1 and MLOpect1 correspond to

CB-CW-SSIM WLD differential excitation (s = 24) computed on the

CC, MLO without pectoral muscle, and MLO with pectoral muscle

view images, respectively
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Purpose

Breast magnetic resonance imaging (MRI) has many advantages such

as non-invasive, no radiation damage and multi-view section. Breast

MRI is often used in women who already have been diagnosed with

breast cancer, to help measure the size of the cancer and look for other

tumors in the breast. MRI uses radio waves and strong magnets to

make detailed three-dimensional (3D) images of the breast tissue after

contrast agent injection. Breast MRI offers valuable information

about many breast conditions which are unable to identify by other

imaging modalities [1]. Hence, MRI performs to monitor the response

of the neo-adjuvant chemotherapy which is the administration of

therapeutic agents prior to surgery. The shape and contour of the

malignant tumor would be used as a significant information to eval-

uate the effect of the neo-adjuvant chemotherapy or breast-conserving

surgery. The aim of this study is to develop an accurate tumor

detection/screening scheme on 3D breast MRI by using deep learning

techniques. The detection procedure identified the malignant tumor

region using region-based convolutional neural networks (R-CNN)

and image processing techniques.
Methods

– Data acquisition
This study utilized the breast MRI image database from 30

patients. MRI was performed with the patient in the prone posi-

tion. Examinations were performed with a 3.0-T commercially

available system (Verio�; Siemens AG, Erlangen, Germany) and

use of a dedicated16 Channel breast coil. Imaging sequences

included a localizing sequence, an axial tse_T1 weighted (3 mm),

tse_T2_tirm, pre, during, and post-Gd 3D-FSPGR (1 mm) with fat

saturation images, before and five times after rapid bolus injection

of 0.1 mmol/L gadobenate dimeglumine (Multihence�; Bracco,

s.p.a., Milano, Italy) per kilogram of body weight at a rate of

2 ml/s; followed by a saline flush, acquired at 60 s intervals were

obtained. All obtained images were stored on the hard disk and

transferred to a personal computer using a DICOM (Digital

Imaging and Communications in Medicine) connection for image

analysis.

– Malignant tumor detection with deep-learning
Mask R-CNN is a two-stage framework [2]: the first stage scans

the image output feature map and output through region proposal

network (RPN) generates proposals; the second stage classifies

proposals and generates bounding boxes and masks. In this study,

the mask R-CNN model utilized the ResNet (deep residual

network) and FPN (feature pyramid networks) backbone with

standard convolution and fully connected heads for mask and box

prediction, respectively. This model would obtain the best speed/

accuracy trade-off. Generally speaking, we believe that shallower

features mainly provide detailed information, while deeper infor-

mation provides semantic information. The deep-learning

techniques have the opportunity as a robust automatic

scheme for identifying malignant tumors on breast MRI without

human intervention.

In the proposed method, the mask R-CNN model identified the region

of malignant tumors from transverse, coronal and sagittal planes. The

3D regions generated from the transverse, coronal and sagittal planes

denoted RT, RC and RS, respectively. Then, this study developed the

intersection version of the 3D regions from the three views. RAND

denoted the contour of region that occurred simultaneously (such as

AND operation) from RT, RC and RS. RAND was performed as the

final result of malignant tumor regions.
Results

This study totally used 30 breast MRI with malignant tumors

(pathology-proven cases) to test the accuracy of the proposed method.

The k-fold cross-validation method was used to estimate the perfor-

mance. The k is selected as 3 in the simulations and each group has 10

breast MRI. The sensitivity of the proposed detection method for

malignant tumors is 100.0% and the positive predictive value (PPV) is

71.0%. Figures 1 illustrates the identified results of RT, RC and RS

from a sample case. The 3D view of the final result RAND is shown

in Fig. 2. Moreover, the proposed method identified tumors from the

three 2D planes which could save much of the time required to detect/

screen malignant tumor on 3D breast MRI.
Conclusion

This study presented an efficient method for automatically detecting

malignant tumors in breast MRI. The proposed method applied the

deep-learning model to automatic produce the region of malignant

tumors from transverse, coronal and sagittal planes. The experimental

results revealed that the proposed method can practically identify

malignant tumor from breast MRI images. Results of this study could

be utilized to 3D contouring procedure for malignant tumor and then

expected to be helpful for surgeon in evaluating the effect of neo-

adjuvant chemotherapy or breast-conserving surgery.
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Purpose

Bone scintigraphy is useful for the diagnosis of bone metastases in

prostate or breast cancers. The bone scan index (BSI) is a popular

index for quantitatively estimating the stage of bone metastasis that

requires bone segmentation and hotspot extraction. Accurate extrac-

tion of hotspots caused by bone metastatic lesions is a difficult task

because of the high similarity between hotspots of bone metastasis

and hotspots of non-malignant lesions, such as physiological

accumulation.

Computer-aided diagnosis systems [1, 2] have been developed to

compute the BSI. These systems, however, often under-extract a part

of the bone metastatic lesion or over-extract a part of non-malignant

lesions, which are often observed at specific locations over multiple

cases. Prior knowledge of frequent sites for hotspots would be useful

for increasing the processing accuracy.

This paper presents a Bayesian approach for deep-network-based

hotspot extraction reported in [2] to exploit the occurrence probability

of hotspots caused by bone metastasis. We propose to combine the

output of the deep network with a conditional probabilistic atlas of

hotspots given a skeleton, because frequent sites of hotspots caused

by bone metastasis depend on the type of skeleton. We show the

results of applying the proposed method to 246 cases and demonstrate

its effecntiveness.
Methods

The anterior and posterior bone scintigrams constitute the input. They

are normalized in terms of spatial coordinates and gray values, and are

forwarded to two BtrflyNets to perform skeleton and hotspot

segmentation. The conditional probability P(Bl|Ak) of hotspot Bl of

class l given skeleton segmentation Ak of the kth bone is calculated as

follows:

P(Bl|Ak)
=

PN
n = 0(Ank \ Bnl)/PN

n=0(Ank)

(
PN

n=0(Ank) C 30) (1)

0 (otherwise)

where n is the case index, and N is the total number of training cases.

The probability is set to 0 when the number of extracted labels is less

than 30, which implies statistical unreliability.

Subsequently, the conditional probability is combined with the

output of BtrflyNet for hotspot extraction through the following

expression:

x’H = xH ? wxH P(Bl|Ak) (2)

where xH is the output matrix of BtrflyNet, w is a coefficient, and the

operator denotes a Hadamard product of two matrices.

During the training process, pre-training of two BtrflyNets is

carried out by independently minimizing the dice loss of skeletons

and that of hotspots. Then, fine tuning of the entire network is per-

formed by minimizing the loss functions as follows:where is the

output matrix of BtrflyNet, is a coefficient, and the operator denotes a

Hadamard product of two matrices.

Loss = Lskeleton (xS) ? L0
hotspot (G(x0

H,xS)) (3)

where Lskeleton is the dice loss of the skeleton, L’hotspot is the L1 loss

with weight k for the integrated malignant hotspot and the dice loss

for the non-malignant hotspot, and G is a function to evaluate the

inconsistency between bone segmentation and hotspot extraction.
Results

Anterior and posterior bone scintigrams of 246 patients were used to

assess the proposed method. The original image size was

1024 9 512, and it was cropped to 576 9 256 after preprocessing.

The number of skeleton labels was 12 for the anterior images and 11

for the posterior images. Three-fold cross-validation was used in

which 164 cases were employed for training, 41 cases were employed

for validation, and 41 cases were employed for testing. The maximum

number of training iterations was 4500, and the mini-batch size was 6.

The Adam parameters were set as a = 0.0005, b1 = 0.9, and

b2 = 0.999, and the learning rate was reduced to 1/10 every 100

epochs. The weights of the loss function, k and w, were set to 0.01

and 1, respectively.

This pilot study focused on hotspots in the pelvic area of posterior

images to prove the aforementioned concept. The average dice score

(DS) without the proposed conditional probabilistic atlas was 0.633,

whereas that with the conditional probabilistic atlas was 0.644. The

statistical difference between the two distributions of DSs was found

to be significant (p\ 0.005).

Figure 1 presents an example of cases in which false negatives of

hotspots caused by bone metastasis on the pelvis were reduced when

using the proposed atlas. The DS of malignant hotspots was increased

by 0.643 compared to that without prior knowledge. The rightmost

figure shows the conditional probabilistic atlas with the prediction of

Fig. 2 3D view of a original breast MRI and b the final identified

result
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the malignant hotspot. Note that the hotspot was enhanced by the

proposed atlas, resulting in a reduction of false negatives and higher

DS.
Conclusion

We propose a Bayesian approach for deep-network-based hotspot

extraction. A conditional probabilistic atlas of hotspots caused by

bone metastasis given skeleton segmentation was introduced prior to

the occurrence of hotspots. The effectiveness of the proposed method

was demonstrated using 246 cases in terms of the DS of hotspot

segmentation in the anterior pelvic area.
Acknowledgements

This work was partly supported by MEXT/JSPS KAKENHI Grant

Number JP18H03255.

References

[1] Koizumi M, Miyaji N, Murata T, Motegi K, Miwa K, Koyama

M, Terauchi T, Wagatsuma K, Kawakami K, Richter J (2015)

Evaluation of a Revised Version of Computer-Assisted Diag-

nosis System, BONENAVI Version 2.1.7, for Bone Scintigraphy

in Cancer Patients, Ann Nucl Med 29:659–66

[2] Hara M, Saito A, Daisaki H, Higashiyama S, Kawabe J, Shimizu

A (2020) Simultaneous process of skeleton segmentation and

hot-spot extraction in a bone scintigram, International Journal of

Computer Assisted Radiology and Surgery, 15 (1):23–24

Self-supervised 3D-ResNet-GAN for electronic

cleansing in dual-energy CT colonography
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Purpose

Early detection and removal of polyps can prevent the development of

colon cancer. CT colonography (CTC) provides a safe and accurate

method for examining the complete region of the colon, and it is

recommended by the American Cancer Society and the United States

Preventive Services Task Force as an option for colon cancer

screening. Electronic cleansing (EC) performs virtual subtraction of

residual materials from CTC images to enable radiologists and

computer-aided detection (CADe) systems to detect polyps that could

be submerged in the residual materials.

Previously, we developed a self-supervised 3D-ResNet-GAN EC

scheme that used residual blocks (ResBlocks) to enhance the per-

formance of EC based on partially self-generated training samples in

single-energy CTC (SE-CTC) [1]. The 3D-ResNet-GAN EC was

trained to transform an uncleansed CTC volume with tagged fecal

materials into a corresponding virtually cleansed image volume. It

was shown that the 3D-ResNet-GAN EC could be used with SE-CTC

images to generate higher quality EC images than those obtained by

our previous 3D-GAN EC scheme.

In this study, we extended the 3D-ResNet-GAN EC scheme to

dual-energy CTC (DE-CTC). We also evaluated the cleansing per-

formance of the scheme on an anthropomorphic phantom and on

clinical CTC cases in comparison with those of the previous 3D-GAN

EC scheme in DE-CTC [2].
Methods

An anthropomorphic phantom (Phantom Laboratory, Salem, NY) that

had been designed to imitate a human colon in CT scans was filled

with 300 cc of simulated tagged fecal material, which was a mixture

of aqueous fiber (30 g of psyllium), ground foodstuff (10 g of cereal),

and non-ionic iodinated contrast agent (300 cc of Omnipaque iohexol,

GE Healthcare). The native (empty) and partially filled versions of the

phantom were scanned by use of a CT scanner (SOMATOM Defi-

nition Flash, Siemens Healthcare) with 0.6-mm slice thickness and

0.6-mm reconstruction interval at 140 kVp and 80 kVp energies for

acquiring the DE-CTC volumes. To simulate different concentrations

of fecal tagging, the phantom was partially filled by simulated fecal

materials with three contrast concentrations (20, 40, and 60 mg/ml).

Figure 1 shows the architecture of the generator network of our

3D-ResNet-GAN EC scheme. The 3D-ResNet-GAN model consists

of a generator network with ResBlocks and a discriminator network.

Given an uncleansed DE-CTC image pair, the generator network

learns to generate the corresponding EC image volume. The archi-

tecture of the generator network is based on a 3D-U-Net architecture

that has several matching down-/up-sampling convolution layers. The

generator has a ResBlock on each convolutional layer in the down-

sampling path and between the downsampling and upsampling paths.

We trained the 3D-ResNet-GAN EC scheme iteratively with a

self-supervised method that performs an initial training with a

supervised-training dataset followed by an adaptive iterative self-

training with a self-training dataset that is constructed from each new

input dataset [1]. Each dataset contained paired uncleansed and

cleansed 1283 voxels volumes of interest (VOIs) extracted from the

CT images. For the supervised-training dataset, we used 200 paired

VOIs from precisely matching lumen locations of the CTC scans of

the colon phantom acquired without and with 20 mg/ml and 60 mg/

ml contrast concentrations. For the self-training dataset, we used 100

paired VOIs from a new unseen input CTC volume, where the output

VOIs matching the input VOIs were obtained by the application of the

current 3D-ResNet-GAN EC.

Thus, the EC method works as follows. In the initial training, the

3D-ResNet-GAN is pre-trained with a supervised-training dataset.

After this initial pre-training, we test the pre-trained 3D-ResNet-GAN

model on VOIs extracted from the new unseen input case. This will

generate a self-training dataset with paired VOIs from the new input

Fig. 1 Schematic architecture of the generator network of the 3D-

ResNet-GAN EC with ResBlocks

Fig. 1 Examples of hotspot extraction with or without the proposed

conditional probabilistic atlas
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case. After the second training, the self-training dataset is updated by

replacing the target EC VOIs with the 100 new output VOIs from the

3D-ResNet-GAN EC for the next step of the training.

For quantitative evaluation, we used the peak signal-to-noise ratio

(PSNR) to assess the quality between EC VOIs and the corresponding

VOIs of the native phantom. The 100 paired VOIs that were acquired

with 40 mg/ml contrast agent concentration were used as the test data.

To evaluate the effect of the ResBlocks and different numbers of

convolution layers, we compared the performance of the proposed

3D-ResNet-GAN EC scheme with that of our previous non-ResNet

3D-GAN-EC scheme based on DE-CTC datasets. The statistical

significance of the differences of PSNRs between the EC schemes

was compared by use of the paired t test with Bonferroni correction.
Results

The image quality assessment was performed for the initial training

step and for the first three self-supervised training steps (Figure 1a).

The quality of the EC images progressively improved as the number

of training steps increased. The proposed self-supervised 3D-ResNet-

GAN EC scheme yielded a higher PSNR value than that of the self-

supervised non-ResNet 3D-GAN EC scheme, except for a version of

the EC scheme that was implemented with six down/up-sampling

layers. The performance differences were statistically significant

between the 3D-ResNet-GAN and the 3D-GAN EC schemes

(p\ 10-6), except for those with six down/up-sampling layers where

the performance differences were not significant in any training step.

Visual assessment of the results of clinical cases indicated that the

proposed self-supervised 3D-ResNet-GAN EC scheme with six

down-/up-sampling layers improves the image quality in comparison

with those obtained by using our previous self-supervised 3D-GAN

EC scheme (Figure 2b).
Conclusion

We developed a self-supervised 3D-ResNet-GAN scheme that uses

ResBlocks to enhance the performance of EC based on partially self-

generated training samples and DE-CTC features. Our preliminary

results indicate that the scheme can generate EC images of higher

quality than those obtained by the 3D-GAN EC scheme without

ResBlocks. Thus, the proposed self-supervised 3D-ResNet-GAN

scheme is expected to provide a high quality of EC in DE-CTC.
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Purpose

Low dose chest computed tomography (CT) is routinely performed

for various indications such as lung cancer screening, pneumonia

quantification and diagnosis of interstitial lung disease. It has been

shown that coronary artery calcium score (CACS) can be derived

from low dose, non-gated chest CTs as additional information about

patient cardiovascular risk. Software tools detect calcium deposits,

defined by a density above a threshold of 130 HU, while the radiol-

ogist manually assigns these calcium deposits to the coronary arteries,

sparing calcifications of other sources like bones, aortic calcified

plaques or valve calcifications. We tested an artificial intelligence

(AI) prototype software for detection and quantification of coronary

artery calcium volume and compared it to standard manual calcium

scoring.
Methods

50 consecutive CT scans derived from the CovILD study (develop-

ment of interstitial lung disease (ILD) in patients with severe SARS-

CoV-2 infection) were used to perform CACS assisted by the soft-

ware package Syngo.via CT CaScoring (Siemens Healthineers,

Erlangen, Germany) as well as by a prototype artificial intelligence

network AI Rad Companion (Siemens Healthineers, Erlangen,

Germany).

CT scans in low-dose setting (100 kVp tube potential) were

acquired without ECG gating on a 128 slice multidetector CT hard-

ware with a 128 9 0.6 mm collimation, spiral pitch factor of 1.1 and

image reconstruction 3 mm slice width. Calcium scoring was per-

formed by two experienced radiologist and at the same time the data

set was send to the cloud based AI software. Correction of threshold

to 147 HU was applied due to the low dose CT with 100 kVp tube

potential. Calcium volume values were divided into four categories

(0–9, 10–99, 100–499,[ 500). Correlation and comparison of group

means were assessed with Kendall’’s tau and Wilcoxon sign rank test.

Reliability between AI and standard CACS categories was determined

by weighted kappa. A two-tailed p\ 0.05 was considered statistically

significant.
Results

Standard calcium volume was significantly related to AI calcium

volume values, s = 0.909, 95% BA CI (0.828–0.965), p\ 0.001.

Mean averages values of calcium volume was significantly higher

Fig. 2 a Improvement of the image quality of EC by use of the

proposed self-supervised 3D-ResNet-GAN EC scheme in comparison

with the previous self-supervised 3D-GAN EC scheme, where N

indicates the number of down-/up- sampling layers. b Examples of the

application of EC to a clinical CTC case with a polyp submerged in

fluid. The white arrows on the 3D-GAN EC image indicate EC

artifacts
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detected by AI (M = 144.9, SD = 334.5) than by standard scoring

(M = 129.2, SD = 316.3), T = 389.5, p\ 0.001.

Weighted kappa showed a very good reliability for the AI cate-

gories (j = 0.90), however, AI lead to a shift of five patients into

higher strata compared to standard CACS (10%).

Of all patients with no detectable calcium volume AI classified all

but one correctly as zero (95.2%). In this patient small valve calci-

fication adjacent to the coronary artery was misclassified. AI did not

detect calcium deposits in four patients (8%), which had a very low

calcium volume (M = 1.2, SD = 1.1).
Conclusion

AI CACS can be routinely obtained from low dose non-gated chest

CTs and add value for patient risk stratification.

A computer-aided diagnosis system based on 3-D

attention-CNN architecture for tumor diagnosis

on automated breast ultrasound
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and Bioinformatics, Taipei, Taiwan
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Purpose

Automated breast ultrasound (ABUS) is a widely used screening

modality in detecting and diagnosing breast cancer. It could scan the

whole breast and provide the complete breast three-dimensional (3-D)

volume. It is a time-consuming task for a radiologist to diagnose

tumors by reviewing an ABUS image. Moreover, misjudgment exists

if the radiologist interprets cancer only with the information offered

by ABUS. Therefore, the computer-aided diagnosis (CADx) systems

developed with texture or morphology features are proposed to assist

the radiologist. Recently, convolutional neural networks (CNN),

which extract features automatically, have been widely used in

medical images, and the CNN-based CADx could achieve outstand-

ing performance. Hence, in the study, a CADx system developed

with3-D CNN architecture is proposed for ABUS tumor classification.
Methods

The proposed CADx system for tumor diagnosis consists of the VOI

extraction, a 3-D tumor segmentation model, and a 3-D tumor clas-

sification model. The volumes of interest (VOIs) are defined by an

experienced radiologist and resized to fixed-size first in the VOI

extraction. Second, in the tumor segmentation, a 3-D U-Net ?? is

applied to the resized VOI to create the tumor mask. Finally, the VOI,

the enhanced VOI using the histogram equalization, and the corre-

sponding tumor mask are fed into the tumor classification model. Our

tumor classification model is constructed with different Inception

blocks. However, there are many redundant features also regarded as

useful features in the subsequent classification process. Hence, the

attention mechanism, the squeeze-and-excitation (SE) model, is

embedded in our classification model to select critical elements for

classifying the tumor as benign or malignant.
Results

This study collected the used dataset from collected by InveniaTM

automated breast ultrasound system (Invenia ABUS, GE Healthcare).

An automatic linear broadband transducer obtains all ABUS volumes

with a covering area of 15.4�17�5 cm. Each ABUS volume is made of

330 serial 2-D images, and each 2-D image consists of

831 9 422pixels, and the distance between each slice is 0.5 mm. 396

patients (age 49.2 ± 10.3 years) with 444 pathology-proven tumors,

including 226 malignant and 218 benign lesions, are utilized in our

experiments. To estimate the system performance, three indices,

including accuracy, sensitivity, and specificity, are used to validate

our CADx system. Moreover, to ensure the robustness and reliability

of CADx, fivefold cross validation is performed in our system training

and testing. In our experiments, the proposed system could achieve

85.6% of accuracy, 85.0% of sensitivity, and 86.2% of specificity. In

conclusion, the results imply that our system can classify tumors as

malignant or benign.
Conclusion

A CADx system composed of the VOI extraction, a 3-D tumor seg-

mentation, and a 3-D SE-Inception classification model is proposed

for tumor classification on ABUS volumes. First, in VOI extraction,

the VOIs are cropped by an experienced radiologist and resized into

fixed-size. Second, the tumor masks are outlined by a 3-D

U-net ?? model. Finally, VOIs and masks are fed into the 3-D SE-

Inception model to extract useful features for diagnosing tumors. The

proposed CADx system takes advantage of texture and morphology

for medical images, and the overall performance shows the proposed

CADx has a capability for tumor classification on ABUS volumes.
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Purpose

Lung cancer was with the highest mortality rate in the world. Low-

dose Computed Tomography (LDCT) is an essential tool for lung

cancer detection and diagnosis. It can provide a complete three-di-

mensional (3-D) chest image. Although the LDCT was a useful lung

examination modality, the different nodule decision rules and radi-

ologist’s experience would result in different diagnosis results.

Therefore, the computer-aided diagnosis (CADx) system was devel-

oped for assisting radiologist. In recent, designing a CADx system

based on the convolution neural network (CNN) in the medical image

has become a tendency toward cancer diagnosis due to the powerful

capability of automatic feature extraction and classification. Many

studies have proven that a CADx system with CNN could help

radiologists to make a preliminary diagnosis. Therefore, in this

research, a CADx system that used an advanced residual network,

ResNeXt block, as the backbone was proposed for lung nodule

diagnosis. Moreover, to prevent the ResNeXt block from generating

redundant features, a lightweight and attention mechanism module,

squeeze-and excitation (SE), was embedded in the ResNeXt block to

help focus on important features.
Methods

In this research, the proposed CADx system for lung nodule diagnosis

consists of the VOI extraction and a 3-D attention ResNext nodule

classification model, which integrates ResNeXt block with attention

machine module. The volumes of interest (VOIs) are defined and

normalized into the range from - 1 to 1 first in the VOI extraction. In

the nodule classification model, the ResNeXt block inspired by the

ResNet block and the split-transform-merge strategy of InceptionNet
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is built, and the SE module is embedded into the block for developing

the 3-D SE-ResNeXt classification model. The defined VOIs are then

delivered to the 3-D SE-ResNeXt model to determine nodule as

malignant or benign.
Results

In this research, the materials were collected from the National Lung

Screening Trial (NLST). All participants have received three screen-

ings, including GE Healthcare, Philips Healthcare, Siemens

Healthcare, and Toshiba machine brands. The number slice of LDCT

volume was between 100 and 300, and the range of pixel spacing was

between 0.5 and 1, and the range of slice thickness was between 1 and 3.

The used dataset consists of 880 nodules, including 440 malignant and

440 benign. In malignant, there are 171 lesions smaller than 1 cm and

269 lesions larger than 1 cm, whereas there are 398 nodules smaller

than 1 cm and 42 nodules larger than 1 cm in benign. For system val-

idation, three performance indices, including accuracy, sensitivity,

specificity, and fivefold cross validation, are used to validate our CADx

system. In experiments, the proposed system’s accuracy, sensitivity,

and specificity are 84.7%, 83.6%, 85.7%. In conclusion, the results

indicate that the proposed system has the capability for discriminating

malignant nodules from benign ones.
Conclusion

In this study, a CADx system made of the VOI extraction and the 3-D

CNN-based classification model is proposed for lung nodule classi-

fication in LDCT images. First, the VOIs are defined, and then the

VOIs are fed into the 3-D Att-ResNeXt for determining nodule types.

The proposed CADx system takes advantage of CNN for medical

images, and the overall performance of this study may be further

improved by using other CNN models.
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Purpose

According to global statistical results for leading causes of life loss in

2017, chronic obstructive pulmonary disease (COPD) (including

emphysema) and lung cancer were the seventh and twelfth of the

leading causes, respectively. Clinical researches [1] indicate that early

detection and treatment could mitigate the mortality rate of COPD.

Hence, early detection and treatment are important for patients with

thorax disease. In the chest radiograph, the radiologic features are

useful to diagnose thorax diseases, and each thorax disease has dif-

ferent radiologic features. Some clinical researches indicate that with

the help of the computer-aided diagnosis (CAD) system, the diag-

nostic performance of junior radiologists could be improved. The

diagnosis performance of radiologists with the CAD system for

malignant lung nodules has better sensitivity and false-positive rate

[2]. Besides, the CAD system might detect some missed finding by

humans and reduce the reader-dependent problem between radiolo-

gists. Therefore, detecting thorax diseases with the CAD system is

useful for clinical. Taking the benefits of deep learning techniques,

the CAD system’s diagnosis performance could be almost similar to

radiologists and the related methods have been extended to employed

in different topics. In this study, we proposed a CAD system to

diagnose thorax diseases using chest X-ray images through the CNN

model and the graph neural network (GNN) model with the graph

attention mechanism.
Methods

In this study, we proposed a CAP system for diagnosing thorax dis-

eases using chest X-ray images, which contains a feature extractor

and GNN with the graph attention mechanism, called CGAM (CNN

Model with graph attention mechanism). First, we employed the CNN

backbone (EfficientNet) model to extract the detailed image repre-

sentation information. Second, the GNN with the graph attention

mechanism was used to enhance the correlation between thorax dis-

eases. Finally, the CAD system predicts the diagnostic results and the

visualization results (gradient-weighted class activation mapping,

Grad-CAM). Figure 1 shows the overall flow chart of our proposed

X-ray thorax CAD system.
Results

In this study, the open dataset (NIH Chest X-ray dataset) was

employed to diagnose thorax diseases in X-ray images, which con-

tained 112,120 frontal-view chest X-ray images, labels with 14

common thorax diseases. The data ratio for the training set, validation

set, and test set were 7:1:2, respectively. In this study, we used the

AUC (area under the receiver operating characteristic (ROC) curve)

score for evaluating model performance. In our model (CGAM-Ef-

ficientNet-B4) the AUC scores of atelectasis, cardiomegaly, effusion,

infiltration, mass, nodule, pneumonia, pneumothorax, consolidation,

edema, emphysema, fibrosis, pleural thickening, hernia, and average

were 0.7817, 0.8834, 0.8337, 0.7049, 0.8330, 0.7840, 0.7371, 0.8689,

0.7525, 0.8515, 0.9424, 0.8365, 0.7957, 0.9420, 0.8248, respectively.
Conclusion

The chest X-ray is one of the most common imaging examinations in

clinical diagnosis, and chest X-ray images are useful to diagnose

different thorax diseases. In this study, we proposed a CNN model

combined with GNN and the graph attention mechanism to diagnose

thorax diseases using chest X-ray images. The experiment results show

convolution neural network models can effectively predict different

thorax diseases. In this study, we proposed a CAD system to diagnose

thorax diseases using chest X-ray images with clinical values.

References

[1] Csikesz NG, Gartman EJ (2014) New developments in the

assessment of COPD: early diagnosis is key. International

journal of chronic obstructive pulmonary disease, vol. 9,

pp. 277–286.

[2] Hwang EJ, Nam JG, Lim WH, Park SJ, Jeong YS, Kang JH,

Hong EK, Kim TM, Goo JM, Park S, Kim KH, Park CM (2019)

Deep Learning for Chest Radiograph Diagnosis in the Emer-

gency Department. Radiology, vol. 0, pp. 191225.

Fig. 1 The overall flow chart of our proposed X-ray thorax CAD

system
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Purpose

Although a quantified breast density is an effective index for indi-

vidualized screening mammography, the technique has not yet been

realized because of the differences in the perceptions for mammary

gland region among practitioners. Recently, a deep learning technique

has been applied to segment a mammary gland region in two-di-

mensional mammograms to achieve a reliable individualized breast

cancer screening based on an accurate breast density measurement,

instead of relying on human vision. In contrast, a large amount of

ground truth (prepared by mammary experts) is required for highly

accurate deep-learning practice; however, this work is time- and

labor-intensive. If multiple radiological technologists can share the

process for producing training images in deep learning practice

independent of their certified level, we can more easily prepare a large

number of training images to construct a segmentation model. In a

previous study, we investigated the differences in the acquired

mammary gland regions among three radiological technologists

(hereafter referred to as practitioners) having different experiences

and reading levels to streamline the ground truth in deep learning,

who shared the segmentation criteria based on the Breast Imaging

Reporting and Data System (BI-RADS). As a result, a good agree-

ment was found among the segmented mammary gland regions;

however, only dense breasts were used in that study because of easy

visual recognition of the mammary gland tissue. In this study, we

tried an identical experiment from the previous study for non-dense

breasts in which visually recognizing the mammary gland region was

difficult.
Methods

A total of 150 mediolateral oblique-view mammograms of Japanese

women, who underwent digital mammography from 2017 to 2018

with normal breasts, were used in this study. All mammograms were

assessed as scattered mammary gland or fatty breasts, that is, non-

dense breasts, based on a BI-RADS criterion. All images were

radiographed with the Canon Pe-ru–ru mammographic system,

equipped with a target/filter of molybdenum/molybdenum (for 20-mm

breast thickness).

We investigated the degree of agreement among mammary gland

regions segmented by three radiological technologists as A, B, and C

with 20, 10, and 1 year of certified experience in mammography,

respectively. This investigation was performed in the following four

steps: (1) Three certified radiological technologists were stringently

lectured regarding the segmentation criteria of the mammary gland

region by a certified radiologist, with[ 20 years of experience, using

20 non-dense breast images. For example, the mammary gland region

converges on the nipple conically, and the existence and character-

istics of the retromammary space. The lecture was followed by a

discussion on the criteria among the three practitioners. (2) They

attempted to independently segment the mammary gland region in

150 non-dense breast images, including the aforementioned 20 lecture

images (this was called the 1st time experiment). (3) Six months after

the 1st time experiment, a lecture by the same radiologist was held

again using the same images, and an identical experiment with the 1st

time experiment was performed again (this was called the 2nd time

experiment). (4) The degree of agreement in the segmented mammary

gland region among the three practitioners in the 1st and 2nd time

experiments was assessed according to the following six factors:

breast density, mean glandular dose, region size, mean pixel value,

and central coordinate (X- and Y-directions). The breast density and

mean glandular dose were calculated using our original method [1]

and the Dance formula [2], respectively. The other assessment factors

were obtained using ImageJ software. The presence of significant

differences was judged via Bland–Altman analysis (for breast density)

and Student’s t-test with Bonferroni correction (for all assessment

factors).
Results

In the 1st time experiment, the breast densities obtained from the

mammary gland regions segmented by practitioners ‘‘A’’ and ‘‘B’’

were in good agreement, and all assessment factors, except for the

central coordinate for the Y direction, showed no significant differ-

ences. Bland–Altman plot also revealed no fixed or proportional bias

in the breast densities derived from ‘‘A’’ and ‘‘B.’’ In contrast, the

breast density derived from the most inexperienced practitioner ‘‘C’’

was significantly lower than that from the other two practitioners

because of the large region.

In the 2nd time experiment, the degree of agreement between the

segmented regions by ‘‘A’’ and ‘‘B’’ was even higher, and all

assessment factors showed no significant differences. The results of

the t-test are listed in Table 1. Figure 1 shows the Bland–Altman plot

for breast density between ‘‘A’’ and ‘‘B.’’ There was no fixed bias or

Table 1 Results of six assessment factors on segmented mammary

gland regions

Practitioner Breast

density

(%)

M G D

(mGy)

Area

(mm2)

Mean

pixel

value

Central

coordinates

(mm)

X Y

1st time experiment

A 12 1.24 7192 652 85.8 115.0

B 10 1.19 7004 661 86.1 118.6

C 6 0.95 8923 690 85.2 113.0

|A - B| 2 0.05 188 9 0.3 3.6*

|A - C| 6* 0.29* 1731* 38* 0.6 2.0

|B - C| 4* 0.24* 1919* 29* 0.9 5.6*

2nd time experiment

A 12 1.30 6529 649 85.2 115.6

B 10 1.30 6898 658 85.9 116.8

C 12 1.32 7375 652 85.0 113.9

|A - B| 2 0.00 369 9 0.7 1.2

|A - C| 0 0.02 846* 3 0.2 1.7

|B - C| 2 0.02 477 6 0.9 2.9*

*p\ 0.05

S84 Int J CARS (2021) 16 (Suppl 1):S1–S119

123



proportional bias, and the 95% confidence interval narrowed from

11.14 in the 1st time experiment to 9.18. The breast densities derived

from practitioner ‘‘A’’ and ‘‘B’’ can be deemed as identical. In

addition, the result of practitioner ‘‘C’’ was also significantly

improved by performing two lectures with a long interval. After

receiving the second lecture, the significant difference between ‘‘B’’

and ‘‘C’’ disappeared. Thus, the two-step lecture is an avenue for

criteria sharing for segmenting the mammary gland region, especially

for inexperienced practitioners.
Conclusion

We concluded that certified radiological technologists can create the

training data for deep learning that satisfies a certain criteria by

receiving one- or two-time lecture regarding mammary gland region

segmentation from a certified radiologist. This leads to an increase in

training images for highly accurate deep-learning practice.
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Purpose

Size of necrosis is an important prognostic factor in the management

of femoral head necrosis (AVN), usually estimated on radiographs

and MRI which is subjective and requires experienced physicians.

Ideally, a fast-volumetric assessment of necrosis size would be

desirable for a more objective standardized evaluation. Thus, we

evaluated a deep-learning method to automatically quantify the

necrotic bone in AVN.
Methods

IRB-approved retrospective study of 34 patients (mean age 30 years,

14 women) with AVN according to the commonly recommended

2019 ARCO grading: I (negative X-rays): 3 hips; II (no fracture): 5

hips; IIIA (head collapse 2 mm): 12 hips. Patients underwent pre-

operative 3T hip MRI including 0.8 mm3 3D T1VIBE on which

manual ground truth segmentation of necrosis and the vital bone from

the femoral head was performed by an expert reader and then used to

train a set of convolutional neural networks (nnU-Net [1]). The raw

data had a median image shape and spacing of

104 9 384 9 384 voxels and 1 9 0.44 9 0.44 mm, respectively.

The highest in-plane resolution was oriented axial-oblique parallel to

the femoral neck. As a preprocessing step, the images were resampled

to the medial spacing and volume cropped around the femoral head

center to the shape of 80 9 160 9 160 voxels. Volume cropping

reduced the background complexity and accelerated the network

training time. A fivefold cross-validation was performed between

manual and automatic volumetric analysis of absolute/relative

necrosis volume. The mean difference between manual and automatic

segmentation was compared with paired t-tests and correlation was

assessed with Pearson correlation coefficients. We compared the

absolute and relative size of the necrosis between early and advanced

stages of AVN (ARCO I/II versus IIIA/B) using Mann–Whitney U

tests. A p-value\ 0.05 determined statistical significance.
Results

The best performing configuration was the ensemble of the 2D and

3D U-net. The mean Dice coefficient for the vital femoral head bone

and necrosis was 89 ± 9% and 69 ± 25%, respectively. The indi-

vidual 2D (89 ± 9%, 67 ± 23%) and 3D (89 ± 10%, 69 ± 26%)

networks were performing very similarly on both vital and necrotic

bone (p[ 0.05). Mean absolute and relative AVN volume was

comparable between manual (8.2 ± 7.4 cm3, 17 ± 15%) and auto-

matic (7.3 ± 6.7 cm3, 15 ± 14%) segmentation (both p[ 0.05) and

showed a strong correlation (rp = 0.90 and rp = 0.92, both

p\ 0.001), respectively. Manual and automated segmentation

detected a difference (both p\ 0.05) in relative necrosis volume

between early and advanced AVN: 8 ± 8% vs. 20 ± 16% and

7 ± 8% vs. 18 ± 14%, respectively.

Fig. 1 Bland–Altman plot of practitioner A versus B for breast

density in the 2nd time experiment. The mean of difference between

A and B is - 1.82 (black solid line), the upper and lower limits of the

95% confidence interval are 2.77 and - 6.41, respectively (blue solid

lines), and the slope of the regression line is - 0.0344 (red broken

line)
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Conclusion

Due to the large number of parameters, it is known that 3D convo-

lution networks have a less good generalization performance

compared to the 2D counterparts. Even if the 3D context is essential

this often makes both networks perform very similar. So far, it seems

that the deep learning approach cannot benefit from the 3D MRI

sequence. Future additional tests and 2D MRI sequences are required

to reject or confirm this hypothesis. However, applying a deep

learning method for volumetric assessment of AVN is feasible and

showed very strong agreement and enabled to distinguish early versus

advanced disease stages which paves way for evaluation in larger

datasets, with the goal to determine its prognostic value.
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Purpose

Monte Carlo radiation simulations have been used in areas of han-

dling radiations accurately, such as high energy physics, nuclear

physics, accelerator physics, medical science, and space science. It

takes charge of the important role in high energy physics in order to

verify a theory, explore an unknown particle, and so on. In radio-

therapy, it has been used it in order to precisely evaluate dose

distributions in an irradiated human body constructed from medical

data or optimize devices of a beam delivery system [1].

Geant4 toolkit has been used for a Monte Carlo simulation of the

passage of particles through matter [2]. It has been done physics

validations and developed as a C ?? class library for developing

user software applications. Therefore, it comes to be used for medical

physics simulations.

We had developed and released gMocren since 2006. It has

reached over 2400 downloads since the release. It is volume visual-

ization software for Geant4-based radiotherapy simulations. It had

been designed according to the requirements of medical users for the

visualization system of Geant4. gMocren can visualize fused images

of patient data, a dose distribution, particle trajectories and treatment

apparatus with 3D view and 3 cross-sectional sliced images. It can

only visualize RoIs, and it has no capability to edit RoIs and create a

DVH.

In this research, an RoI editing software tool using NVIDIA Clara

has been developing. It supports extracting region of tumors using an

artificial intelligence from medical image data such as DICOM

dataset and editing RoIs for radiotherapy simulation. It is useful to

create RoIs and a DVH for Geant4-based radiotherapy simulation.
Methods

NVIDIA Clara is a healthcare application framework for AI-powered

imaging and genomics. It uses NIVIDA GPU to accelerate extracting

tumor or organ regions from medical images. NVIDIA provides pre-

trained models due to tumor or organ extractions.

In user requirements of radiotherapy simulations, functions of

importing RoI data and creating DVH are required in order to analyze

outcomes of a radiotherapy simulation. Geant4 toolkit has not

provided those functions as an analysis tool. Therefore, medical users

create RoI and DVH by using such a treatment planning system in a

hospital. The RoI editing tool will be freely available, so it is useful

and available not only for students or beginners but also researchers

using Geant4-based radiotherapy simulation.

The RoI editing tool has function to export RoI data to DICOM-

RT Structure or DICOM-RT Dose files. gMocren can visualizes

extracted organ regions with DICOM-RT Structure Set file, such as

outlines of a human body, organs, tumors, and so on. The RoIs are

drawn on a medical image used in the tissue extraction. The RoI

editing tool is implemented by using Python and HTML5.

NVIDIA Clara is used to extract initial RoIs in the RoI editing

tool. It is possible to edit RoI shapes from the initial RoIs. The tumor

region of edited RoI will be able to return to and update the trained AI

model of NVIDIA Clara.
Results

NVIDIA Clara is provided as a docker container for a Linux PC with

a NVIDIA GPU [5]. It can work on a Linux PC as a standalone AI

server and provides an HTML interface to communicate with the

other software. A Linux PC shown in Table 1 is used for NVIDIA

Clara server.

Table 1 A Linux server specification for NVIDIA Clara

CPU AMD Ryzen 7 2700

GPU NVIDIA GeForce RTX 2080

Main memory 16 GB

Linux OS Ubuntu 18.04.3 LTS

CUDA Toolkit 10.2.89

Docker NIVIDA Docker 2.0.3

Fig. 1 Process of creating DVH from DICOM image dataset with

Geant4-based radiotherapy simulation
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A spleen region in DICOM images can be extracted adequately by

using NVIDIA Clara and MITK (Medical Image Interaction Toolkit).

A spleen region is extracted from chest region of a patient dataset

within 10 s. The size of the patient dataset is 512 9 512 9 34 voxels.

The process to create DVH from DICOM image dataset with

radiotherapy simulation is shown in Fig. 1. NVIDIA Clara extracts

tumor or organ regions in DICOM Image. The extracted regions are

used as initial RoIs data. User analyzes and edits the extracted RoIs

with the RoI editing tool. And Geant4-based radiotherapy simulation

calculates dose distributions with the DICOM image dataset. Finally,

a DVH is calculated with the edited RoIs and the calculated dose

distributions and visualized by using gMocren or an analysis tool.
Conclusion

The RoI Editing tool using AI has been developing. NVIDIA Clara is

used as an AI server to extract tumor or organ regions in medical

image dataset such as a DICOM dataset. The extracted region is used

to create RoIs, and then the RoIs can be edited by user. The RoI

editing tool will be available as standalone software. Therefore, it is

useful and available not only for students or beginners but also

researchers using Geant4-based radiotherapy simulation.
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Purpose

Preclinical patient treatment in an acute emergency situation (e.g. car

accident) benefits greatly from support by a medical expert. Espe-

cially in rural areas, with a lack of trained medical staff and long

travel distances to the hospital, a fast and reliable preclinical diag-

nosis, e.g. by mobile ultrasound, significantly increases patient safety.

This support with virtual presence of a medical expert can be

achieved by tele-medical applications, enabling bi-directional data

communication between the first responder and the hospital.
Methods

Tele-medical applications require reliable, fast and secure wireless

data transmission. 5th. generation mobile communication (5G)

facilitates an up to 100 9 higher data rate (up to10.000 MBit/s), up to

200x higher data capacity and a (very) low latency (Ping\ 1 ms)

compared to 4G/LTE. Previous research has shown, that 5G data

transmission volume, rate, and latency met the requirements for real-

time track and trace and telemedicine applications [1].

In the herein presented preclinical study, a 5G based data trans-

mission of ultrasound, video and audio source between a moving

point of care (ambulance car = first responder) and hospital (sta-

tionary unit = medical expert) is evaluated.

The 5G network uses a carrier frequency (C-Band) of 3.41 GHz

and bandwidth of 40 MHz. Both the base transceiver station (BTS)

and the unified user equipment (UE) modem consist of 8 antennas.

Subcarrier spacing is 30 kHz.

Ultrasound examination was performed by Clarius C3 HD

(2–6 MHz) multipurpose scanner (Clarius Mobile Health Corp.,

Vancouver, Canada). For video and audio transmission, an IP-based

pan tilt zoom (PTZ) camera was used (Hikvision DS-2DE2A404IW-

DE3/W, Hangzhou, China).
Results

The ultrasound system was successfully connected to the 5G modem

and processing system which was installed in a regular vehicle

(moving point of care). The remote hospital PC (stationary unit) used

to receive and read the ultrasound image data was integrated to the

base transceiver station. Through the 5G network, the ultrasound

system has been used to transmit image data to the remote hospital PC

(figure 1).

Throughput of total transmitted data through the 5G network

between the ultrasound scanner at UE side and the remote hospital PC

at BTS side revealed a peak of 6 Mbps (average 4 Mbps).

The transmission control protocol (TCP), representing the control

signalling, showed a peak throughput of 650 Kbps and was trans-

mitted with interruptions. The user datagram protocol (UDP)

transmitted data without interruptions, representing the image/data

stream from the ultrasound system to the remote hospital PC. Peak

UDP throughput was 450 Kbps (average 240 Kbps). Similar is

expected for video and audio data transmission, however, final results

are pending.
Conclusion

Preliminary testing of the 5G based data transmission has been per-

formed successfully. Data throughput requirements for e-health use

cases were achieved. The ultrasound image/data has been streamed to

the remote hospital PC at BTS side through the 5G network. Logfiles

were saved for further analysis.
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Purpose

Accurate facial nerve segmentation is considered to be important to

avoid any physical damages or paralysis from a patient’s face during

mastoidectomy for cochlear implantation surgery [1]. Several meth-

ods based on conventional approaches have been proposed to perform

this segmentation task. Yet, there hasn’t been any attempts to utilize

deep learning which is the popular approach in many study fields

recently. In this work, we studied automatic facial nerve segmentation

using various deep learning networks.
Methods
2D U-net, 2D SegNet, 2D Dense U-net, and 3D U-net were utilized as

deep learning networks which are commonly used deep learning

neural networks for anatomical structure segmentation in the medical

imaging fields, such as mammography, MRI, CBCT/CT, etc. The CT

data were acquired from 114 subjects and the dataset was split into 91

for train, 23 for test respectively. To obtain label images, a manual

segmentation task has done by otolaryngology experts. The resolution

of data was 512 9 512 9 90 with 0.6 mm of voxel spacing. For 2D

networks, each slice of CT data was vertically flipped and randomly

rotated in the range of 10 degrees with width-height shifting. For 3D

U-net, the data were cropped into 256 9 256 due to the memory issue

and computational cost. Then zero-padding was implemented to train

the network with constant input volume size 256 9 256 9 48 to

cover the whole length of the facial nerve which varies from 20 to 45.

We trained networks by using Adam optimizer, learning rate of

0.00025 by reducing on plateau every 25 epoch in 300 epochs with

dice coefficient loss. The dice coefficient score was calculated to

evaluate each network’’s prediction result.
Results

Table 1 shows the quantitative evaluation result of each network’s

performance. Even if, 3D U-net has the limitations of high compu-

tational cost and memory efficiency, it achieved the best dice

coefficient score compared to other 2D networks. Especially, 3D

U-net outperformed preserving the continuous feature of facial

nerve’s canal-like anatomical structure in the perspective of learning

spatial information. While, Dense U-net, the modified U-net with

dense connections, showed a nearly similar dice coefficient score to

3D U-net, it still had some false positives like 2D U-net and 2D

SegNet.
Conclusion

This work showed the possibility and limitations of automatic facial

nerve segmentation using deep learning. In the perspective of its

possibility, it is optimistic that the facial nerve segmentation can be

done by deep learning which can less labor-intensive and time-con-

suming annotation task. On the other hand, it is still challenging to

achieve accurate facial nerve segmentation result without any dis-

connections or false positives that can be utilized in clinical

application. In future work, we will study advanced and efficient deep

learning neural networks that can be applied in real clinical practice.
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Purpose

Knee osteoarthritis (OA) is one of the leading causes of muscu-

loskeletal functional disability and its real burden has been

underestimated. Magnetic resonance imaging (MRI), serving as a

three-dimensional, noninvasive assessment of cartilage structure, is

widely used in OA diagnosis. And many clinical applications, such as

quantitative analysis of knee cartilage, requiring efficient segmenta-

tion of knee cartilage. To get objective, reproducible clinical analysis,

an accurate and high-quality cartilage segmentation from MRI is

crucial. Knee cartilages usually have low contrast with surrounding

tissues in magnetic resonance imaging. Manual segmentation of the

knee joint is tedious, subjective, and labor-intensive. In recent years,

with the development of deep learning, knee cartilage segmentation

has made great progress. Previous deep learning-based method either

integrate Statistical Shape Model (SSM) which need extra prior

knowledge or limit in performance. Thus, the objective of this study is

to develop a refined knee cartilage segmentation strategy to get high-

quality knee cartilage segmentation.
Methods

As shown in Fig. 1, we propose a two-stage knee cartilage segmen-

tation method. It consists of a coarse segmentation stage and an

entropy guided refinement stage. Both stages use 3D-Unet with deep

supervision as the segmentation network. In the first stage, the net-

work takes original MRI data as input and output probability maps

and labels of femur, tibia, femoral cartilage and tibial cartilage. Then,

in the second stage, the bone distance map is calculated based on

labels of femur and tibia generated in stage one. Bone and cartilage

entropy maps are calculated based on probability maps of femur,

tibia, femoral cartilage and tibial cartilage generated in the second

stage. Entropy maps encode uncertainty information which could

guide the network to pay more attention to the boundary of knee

Table 1 The quantitative evaluation result of each network (Dice

Coefficient Score; DSC)

Network 2D U-net 2D SegNet 2D Dense U-net 3D U-net

DSC 0.61 ± 0.37 0.6 ± 0.36 0.68 ± 0.21 0.71 ± 0.18
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cartilages. Finally, entropy maps, distance map and original MRI data

are concatenated and feed as the input to the network at stage two, and

output refined cartilages segmentation labels. Our method was eval-

uated on the publicly available dataset, namely OAI-ZIB dataset [1]

with femur, tibia, femoral cartilage and tibial cartilage manually

segmented, and it contains 507 objects.
Results

Two-fold cross-validation studies are performed for the dataset of

OAI-ZIB, and the quantitative results are presented in Table 1. Our

method also outperforms the state-of-the-art knee cartilage segmen-

tation method [1] with an improvement of DSC of 0.4%, ASSD of

0.02 mm and HD of 0.89 mm. In femoral cartilage segmentation, our

method achieves DSC of 89.8%, ASSD of 0.16 mm, HD of 5.22 m.

And in tibial cartilage segmentation, our method achieves DSC of

86.4%, ASSD of 0.20 mm, HD of 4.70 mm.
Conclusion

In summary, we propose a two-stage entropy guided knee cartilage

segmentation method. Our method consists of coarse segmentation

and refinement segmentation stages and without the need for addi-

tional prior knowledge. In the refinement segmentation stage, the

distance map, entropy maps and original MRI data are concatenated

to the input. The entropy maps encode the uncertainty information to

force the network to pay more attention to the uncertainty area. The

distance map encodes more spatial information into the next stage.

Our result has shown that the present method achieves good refine-

ment of uncertainty area and get better results than the state-of-the-art

method on the OAI-ZIB dataset.
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Purpose

Intestine (including small intestines) segmentation is desired for

diagnosis assistance of the ileus and the intestinal obstruction. There

are very few work [1, 2] for intestine segmentation methods whose

segmentation target is the small intestine. Oda, et al. [1] estimated

distance maps on the intestine regions, which represent distances from

outside the intestines. Regions in the intestine generated by Water-

shed transformations on the distance maps are connected and

represented as graphs. Those graphical representations allow us to

find the longest paths for each intestine’s part which is enlarged by

contents. This scheme prevents the generation of incorrect contacts

between the intestine’s different parts, by choosing a high threshold

for the Watershed transformation on the distance maps. However,

segmentation results become thinner, which cover only around the

intestine’s centerlines. The intestinal sections tend to be divided at the

intestines’ sharp curves, even if two sections are apparently contin-

uing for human eyes. Since the small intestines are complicatedly

winding, it may not be proper to connect multiple intestinal sections

only by examining the minimum distance between their endpoints.

We introduce a dual-threshold scheme for the Watershed transfor-

mation, which allows us to (1) obtain segmentation results that

sufficiently cover intestine regions and (2) check whether two

neighboring sections are continuing or not.
Methods

Overview
Our proposed method performs the segmentation of the intestines

from CT volumes. Input is a CT volume. The distance map is esti-

mated on the CT volume, which has high on the centerlines, and low

on the intestines’ peripheral parts. Using two thresholds for the

Watershed transformation, the distance map is converted to two

graphs. The higher threshold generates the graphs following major

parts of the intestines, in which incorrect contacts are prevented. The

low threshold allows us to obtain regions including peripheral parts,

and those regions tend to be connected along sharp curves. The output

intestine segmentation results are generated by merging the graphs

from the higher and the lower thresholds.

Estimation of distance maps

Distance maps are estimated by using the method proposed by

Oda, et al. [1]. We introduce a weak-annotation scheme, which

requires the intestine labels only on several axial slices for each CT

volume in the training dataset. The intestine labels are converted to

the distance maps. The distance maps have high values (1.0) in the

centerlines, and low values (0.0) in intestine walls or outside the

intestines. The 3D U-Net is trained by utilizing pairs of the input CT

volumes and the distance maps generated as above. For the testing

dataset, distance maps are estimated by the trained 3D U-Net.

Generation of ‘‘intestinal segments’’

Fig. 1 A schematic illustration of the two-stage deep learning-based

method for knee cartilage segmentation is shown

Table 1 Quantitative results of two-fold cross-validation studies for

the dataset of OAI-ZIB

Method Parts DSC (%) ASSD

(mm)

HD (mm)

Ambellan et al.

[1]

Femoral

cartilage

89.9 – 3.60 0.16 ± 0.07 5.35 ± 2.50

Tibial cartilage 85.6 ± 4.54 0.23 ± 0.12 6.35 ± 4.36

Ours Femoral

cartilage

89.8 ± 2.49 0.16 – 0.05 5.22 – 2.47

Tibial cartilage 86.4 – 4.12 0.20 – 0.09 4.70 – 2.12
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We introduce two threshold values s and t (0\ s\ t\ 1). The

Watershed transformation is utilized for each threshold on the dis-

tance maps. Local maxima of the distance maps are used as seeds.

Generated regions by the Watershed transformation are called ‘‘low/

high-threshold intestinal segments.’’ The high-threshold intestinal

segments are thinner than actual intestine regions, and they do not

include incorrect contacts between the intestine’s different parts.

Although the low-threshold intestinal segments sufficiently cover the

intestine regions, they often contain incorrect contacts running

through the intestine walls.

Representation of intestinal segments’ connections as graphs

Connections between the high-threshold intestinal segments are

represented as graphs. The graphical analysis allows us to obtain the

intestine segments’ sequences (called ‘‘intestinal paths’’). Since the

high-threshold intestinal segments are used here, the intestine paths

are covering only the intestines’ thick parts.

Those intestinal paths are often incorrectly divided at curves of the

intestines. Two neighboring intestinal paths are merged into one

graph when two intestinal paths are apparent to be connected by the

following rule: When intestinal segments of two endpoints of

intestinal paths are adjacent (the intestinal segments’ shortest distance

is less than d [mm]), their corresponding low-threshold intestinal

segments are checked. If those low-threshold intestinal segments are

touching, two intestinal paths are connected.

Segmentation of intestines

The low-threshold intestinal segments whose corresponding nodes

are connected as the intestinal paths are regarded as intestine seg-

mentation results. Other low-threshold intestinal segments are

regarded as false positive regions.
Results

Four-fold cross-validation across 19 patients was conducted. A

trained medical student manually traced the intestine regions on 7–10

axial slices for each CT volume as the ground-truth. Parameters were

set as: s = 0.01, t = 0.2, and d = 50 mm.

The performances are compared to Oda, et al. [1] which utilizes

only one threshold t. The Dice score was improved from 0.491 to

0.672. Furthermore, our dual-threshold scheme joined many discon-

nections. The average number of intestinal paths per CT volume was

decreased from 7.9 to 6.2 by joining 1.7 disconnections per CT vol-

ume on average. Note that clinicians have not manually confirmed

that all of those joinings are correct. Figure 1 shows an example of

segmentation results covering entire intestinal regions with connect-

ing incorrectly-divided intestinal paths.
Conclusion

An intestine segmentation method was proposed. The dual-threshold

scheme allowed us to (1) obtain segmentation results that are suffi-

ciently covering intestine regions and (2) check whether two

neighbouring sections are continuing or not. Future work includes the

improvement of network architectures for more accurate

segmentation.
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Purpose

The shoulder has the largest range of motion of the major joints in the

human musculoskeletal system. This high range of motion and

mechanical stability is provided by an arrangement of bony and soft-

tissue structures. Differences in the morphology of the scapula result

in different biomechanical strains which may predispose a patient to

develop certain pathologies or result in worse outcomes of different

surgeries. Therefore, morphology analysis has become a crucial tool

for clinicians. Novel morphology analysis requires a patient-specific

3D model which is generated from the semantic segmentation of a

medical image data of the patient. However, manual segmentation is

time-consuming which hinders the technology to be even more

widely integrated into the clinical process. Several techniques are

investigated for automatic segmentation of various body-tissues in

magnetic resonance images (MRI) or computer tomography (CT)

images. Due to the different Hounsfield units of bones and muscles,

basic threshold algorithms can be used to segment bones in CT

images. However, the different bones can not be distinguished, and

contrast agent and image inhomogeneity can reduce the segmentation

accuracy. More advanced segmentation techniques, such as atlas-

based or statistical shape model-based segmentation techniques,

reduce these problems. However, recently the highest segmentation

accuracies are achieved with convolutional neural networks (CNN).

Segmenting the scapular and humeral bones in shoulder CT arthro-

grams exhibits multiple additional challenges. The thin structure of

the scapular bone shows high variance in shape which aggravates an

accurate segmentation. Taghizadeh et al. present in [1] a statistical

shape modeling-based algorithm for bone segmentation in non-con-

trast shoulder CT images. However, in CT arthrograms, which are

Fig. 1 Segmentation results. Compared to Oda, et al. [1], intestine

regions were sufficiently segmented. False division was corrected

S90 Int J CARS (2021) 16 (Suppl 1):S1–S119

123



acquired for the diagnosis of different shoulder pathologies, the

contrast agent surrounds the shoulder joint and makes accurate seg-

mentation with a threshold algorithm impossible. The purpose of this

study was to develop a CNN-algorithm for accurate bone segmenta-

tion of the shoulder in CT arthrograms and evaluate its performance.
Methods

Image Acquisition

Shoulder CT arthrograms from 64 patients were acquired during

the clinical routine with different CT scanners (Siemens, Toshiba) at

the University Hospital of Bern and were used for this study with the

approval of the Ethics Committee. Manual Segmentation was per-

formed by clinical experts and used for training the algorithm and as

ground truth. All CT images were acquired in the lateral direction

with a consistent in-plane resolution of 0.4 9 0.4 mm and 512 9 512

pixels. The images were created with different Kernels and showed a

high variety of quality. The slice thicknesses were between 0.4 and

0.6 mm and the volumes consisted of various numbers of planes

reaching from 160 to 550 (Fig. 1).

Algorithm implementation details

For segmentation, a standard U-Net [2] was applied. The network

was trained to segment the scapular and humeral bone separately. An

average of the cross-entropy loss and the dice loss was used as loss

function during training. Prior to the U-Net, several preprocessing

steps were applied. The pixel values were normalized to be around

zero with a standard deviation of one and the volumes were inter-

polated to isotropic volumes with a pixel size of 0.4 mm in each

direction and cropped or extended to volumes with the size 512 in

each direction. Data augmentation methods including random zoom

and shear were applied during the training process to prevent the

network from overfitting. The U-Net was separately trained along all

three planes of around 20 epochs. Random initialization was used for

the axial plane. For the coronal and sagittal plane, the weights from

the axial plane were used for refinement.

Algorithm training and evaluation

Training and predictions were done on a PC (Core i9-9900 K

CPU, 64 GB) with two GPUs (GeForce RTX 2080 Ti). Predictions

were done on unseen samples in a fivefold cross-validation process.

The predictions of all three planes were averaged for final segmen-

tation. The final segmentation was created by isolation of the largest

connected component of each label (in 3D) and cropping of all

outliers.
Results

In a fivefold cross-validation process, all CT-Volumes of the 64

patients were segmented by the presented algorithm. The automatic

segmentations are compared to the manual segmentations. The seg-

mentations of the humerus show an average Dice coefficient (DC) of

0.988 an average surface distance of 0.21 mm and a Hausdorff-Dis-

tance (HD) of 3.18 mm while the segmentations of the scapula show

an average Dice coefficient of 0.976 an average surface distance of

0.18 mm and a Hausdorff-Distance of 5.41 mm.
Conclusion

The CNN-algorithm presented in this study segment the scapular and

the humeral bones in shoulder CT arthrograms with high accuracy.

The algorithm is capable to segment very thin structures of the sca-

pula despite this bone region shows a high variety in shape.

Furthermore, in the majority of the CT arthrograms, the algorithm

accurately distinguished between contrast agent and bone and

achieved high segmentation accuracies even in the region at the joint,

where the contrast agent is close to the bones and shows similar voxel

intensities. Therefore, the study results show that automatic seg-

mentation of the shoulder bones with high accuracy is feasible even in

CT arthrograms from different CT scanners. This automated process

may allow the use of 3D patient data to be more widely integrated

into the clinical process for shoulder diagnosis and surgical planning

in the future.
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Purpose

Among mandible fractures, the mandibular angle is a frequently

fractured region. When stabilization is required, open reduction

internal fixation (ORIF) is usually performed using miniplate

osteosynthesis. Angular fractures are among the most complex

mandible fractures to treat due to the common occurrence of com-

plications related to unsuitable fixation, such as infection, injury of

Fig. 1 Example of the automatic scapula and humerus segmentation

in a CT Angiogram with an average segmentation accuracy
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the teeth’ nerve and roots, loosening of the screws, and damage of the

implant. The patient-specific mandible geometry, fracture character-

istics, bone composition, and biomechanical forces strongly affect the

treatment outcome and should be considered when choosing the

plating technique [1, 2].

Computer-assisted virtual planning tools such as finite element

(FE) simulation provide patient-specific solutions in the surgical

decision-making process. The use of FE analysis in medical devices,

for example, for the in silico validation of implant designs, is

becoming increasingly popular. For the successful treatment of

defects and fractures of the mandible and to prevent treatment errors,

extensive knowledge of the complex biomechanics and time-con-

suming and expensive quality examinations are required. Due to the

increasing availability of patient-specific implant designs and the

ability to model the bone geometry with the aid of computed

tomography (CT) data of the patient, the FE method can display the

biomechanical bone-implant interaction. An accurate biomechanical

model can provide valuable information on the implant’s suitability if

in vitro and in vivo validation is not possible.

In literature, most of the FE models of the human mandible are not

validated. Besides, there is no standard method available to create and

validate FE analyses of mandible models. This study aims to develop

an accurate bone-implant modelling approach by investigating the

fixation of a mandibular angle fracture. The FE model’s credibility

was assessed in a biomechanical test to establish the suitability of the

use of FE methods in pre-surgical planning of mandibular fracture

treatment.
Methods

A digital model of the mandible was created by segmenting the

mandibular cortical bone of a female patient’s CT scan. Two expe-

rienced craniomaxillofacial surgeons were involved in selecting and

placing the osteosynthesis plate (Medartis AG, Basel, Switzerland) to

fixate an unfavourable angle fracture with a high susceptibility for

deformation. The implant was designed explicitly for ORIF of

mandible angle fractures. From the patient data, Polyamide 12 (PA12)

mandibles (n = 11) were additive manufactured using Selective Laser

Sintering (SLS) technology. For the transfer of the virtual fracture

planning to the biomechanical/experimental setup, patient-specific

cutting and drilling guides were additive manufactured using PolyJet

printing technology with a photosensitive polymer DM_8505_Grey20

and OBJET 260 Connex (STRATASYS, Rechovot, Israel) to accu-

rately reproduce the placement of the fracture and the implant on the

n = 8 PA12 mandible models. The remaining mandibles (n = 3) were

used to determine suitable material properties for the FE model.

Tensile tests on PA12 samples were performed based on the ISO

527:2019 guidelines to determine the elastic and non-linear plastic

deformation of the material, which was incorporated in the engi-

neering data of the simulation. The FE model was set up according to

the biomechanical bench test. The intact mandible model was ana-

lyzed under loading, and suitable material and friction properties were

determined to validate the final, fractured model. In the biomechan-

ical tests, a servo-hydraulic testing machine (Walter and Bai AG,

Löhningen, Switzerland) applied a linear, uniaxial load to the

mandible angle area to allow the creation of a fracture gap at the

anterior border of the ramus. The load was applied in discrete 1 mm

steps, and the reaction force was recorded until 5 mm axial dis-

placement was reached. The stress-induced surface deformation of the

mandible and implant was recorded with an optical scanning device

(Atos 3 Triple Scan ARAMIS Professional, GOM GmbH, Braun-

schweig, Germany). The surface deformation and the fracture gap

were compared qualitatively and statistically with the FE simulation

results in MATLAB R2019b.
Results

The comparison between the intact experimental and simulated

models resulted in a model with the E-Modulus of 1600 MPa, a non-

linear plastic deformation for the PA12 mandible according to the

tensile tests, as well as a friction coefficient of 0.2 for the mandible-

steel interface. The additive manufactured cutting and drilling guides

effectively reproduced the fracture location and implant positioning.

The qualitative analysis of the surface deformation showed a maxi-

mum deviation of 0.249 mm at the inferior border of the proximal

segment, as shown in Figure 1. The comparison of the FE analysis

and the biomechanical surface deformation of the fixed mandible

showed a high degree of agreement in the linear regression (1.045

slope, 0.06 mm offset, and an R2 of 99.7% (p\ 0.05)). The FE

model’s mean deformation was approximately - 0.11 mm with a

95% confidence level of [0.097 0.320] mm. At the maximum axial

deformation of 5 mm, the approximate deviation of 0.09 kN and

0.22 mm was recorded for the reaction force and fracture gap,

respectively (Table 1).
Conclusion

In this study, a biomechanical test setup of a mandible angle fracture

model was reproduced in a computational model. The patient

mandible model was generated using additive manufacturing of

segmented CT data for the biomechanical examination. The FE data

regarding surface deformation showed a high level of agreement with

the experimental records. This confirms the validity of

using FE analysis for the representation of the biomechanical testing

outcome. However, to accurately predict the clinical outcome, the

model boundary conditions and material properties will have to be

adapted to more closely represent the in vivo conditions with the

objective of validating the FE results for the human mandible.
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deformation of 0 mm and 5 mm
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Purpose

Femoral head-preserving surgery is often performed on a patient with

an early stage of osteonecrosis. During surgery, the femoral head is

evacuated through a window made at the femoral head–neck junction

and replaced by some specific bone materials. The volume of the

cavity in a femoral head, where necrotic bone is removed, should be

accurately measured. Recent studies propose automatic segmentation

methods for segmenting necrotic femoral head based on k-means [1]

or deep learning [2]. Overall accuracy of 81.5% in [1] and 38.9% in

[2] are reported. We propose an automatic CT image segmentation

method based on a confidence connected image filter and modified

geodesic active contour method. The evaluation of our method shows

that a mean of dice coefficients is 82.8% and a mean segmentation

error is 0.9 cm3.
Methods

In this work, input data is a 3D CT image of a hip joint; output data

include the segmentation and the volume size of the necrotic area in a

femoral head. Our automatic segmentation method is based on (1) a

confidence connected image filter for rough segmentation and (2) the

well-known geodesic active contour method for segmentation

refinement. The segmentation result of step (1) is used as an initial

mask for the step (2) to improve the final segmentation result. The

volume size of a necrotic area is calculated by multiplying the voxel

size of the 3D CT image by the total number of voxels of the final

segmentation result.

1. Confidence connected image filter

Confidence connected image filter extracts a connected set of

pixels with pixel intensities close to a seed point. Histogram of the

CT image is computed and a range of pixel intensities of necrotic

bone is defined for automatic selection of a seed point. Then, the

mean and standard deviation across a neighborhood of the selected

seed point are calculated. They are used with a multiplier factor to

define a confidence interval. Pixels with intensity values within the

confidence interval are grouped. Finally, in the iteration step, the

mean and standard deviation of all the pixels in the previous seg-

mentation are re-calculated to grow the segmented area.

However, segmentation results of confidence connected image

filter contain some imperfections and holes. To solve this problem,

we use morphological method to fill the holes and obtain a rough

segmentation of necrotic bone.

2. Geodesic active contour with a shape-influenced term (GACS)

In a CT image, the boundary of necrotic area in femoral head is

not distinct, so we choose the well-known GACS segmentation

method which adds the shape and position information of an object to

aid the segmentation process. We propose to use the segmentation

result of step (1) as an initial contour for GACS method, thereby

avoiding manual initialization of level set. Moreover, it provides the

surface information of a femoral head to the GACS segmentation

process, that adds robustness at the step of the contour evolution. It is

because GACS method is based on a prior shape information of a

target object to evolve the initial contour globally towards to the

shape of the object. Locally, contour evolution is based on image

gradients and curvature. Output is a binary mask of the necrosis area

of a femoral head.
Results

The proposed method was evaluated with 6 patients’’ 3D CT images

(size: 512 9 512 9 100, voxel size: 0.782 mm 9 0.782 mm 9 0.3

mm) with osteonecrosis. Algorithm was implemented in C ?? lan-

guage and Insight Toolkit (ITK). A CT slice of case 1 and the

automatic segmentation result are shown in Figure 1. We evaluated

the accuracy of our method with a ground truth (i.e. manual seg-

mentation of an orthopedic surgeon). For each case, we computed

dice coefficients using each slice of automatic segmentation and the

corresponding slice of the ground truth; then, we calculated a root

mean square (RMS) and a standard deviation (STD) using these dice

coefficients, as shown in table 1. The mean of dice coefficients of 6

cases were 82.8%. In addition, a volume size of necrotic bone in

femoral head was computed for each case (table 1). We found a mean

difference of necrotic bone volumes between our segmentation and

the ground truth was 00.9 cm3 (boxplot in Figure 1).
Conclusion

The main contribution of this work is to propose an automatic CT

image segmentation method for osteonecrosis. It is based on confi-

dence connected image filter and geodesic active contour method.

The evaluation results show that the proposed method is able to

segment femoral head necrosis in a reasonable accuracy which is

Fig. 1 A slice of CT image of case 1 (left), automatic segmentation

of the CT slice (middle) and a boxplot of the volume difference from

table 1 (right)

Table 1 Evaluation of the proposed method with the ground truth

Cases RMS dice

(%)

STD

dice (%)

Volume of necrotic

bone/cm3
Volume diff./

cm3

Automatic Ground

truth

1 83.6 4.45 6.87 5.96 0.91

2 81.7 4.58 5.03 6.11 1.08

3 83.2 3.76 5.28 4.35 0.93

4 80.3 5.61 4.06 4.93 0.87

5 82.9 4.37 5.62 4.78 0.84

6 85.2 4.12 8.31 7.52 0.79

Mean 82.8 4.48 5.86 5.61 0.9
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higher than the accuracy in other studies [1] [2]. The segmentation

results can be used for our augmented reality application for femoral

head-preserving surgery. Future work will combine CT and MRI

image in order to improve the segmentation accuracy and extract

more anatomical information in osteonecrosis area.
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Purpose

Numerous factors could lead to partial occlusion of medical images

which may affect the accuracy of further image analysis tasks such as

semantic segmentation, registration, etc. For example, metallic

implants may cause part of the images to deteriorate. The objective of

this study is to develop an efficient deep-learning based method to

inpaint missing information and to evaluate its performance when

applied to spinal CT images with metallic implants.
Methods

Prior to the partial convolution concept introduced in [1], the

inpainting algorithm based on standard convolution usually initialize

the holes with some constant placeholder value, and the pixels inside

and outside the holes are both regarded as valid pixels. As a result,

these methods often produce artifacts so that expensive post-pro-

cessing needs to be introduced to reduce the impacts of artifacts. To

deal with this limitation, the partial convolution applies a masked

convolution operation that is normalized to be conditioned only on

valid pixels. Then a rule-based mask update strategy that updates the

valid locations layer by layer is followed. Partial convolution

improves the quality of inpainting on the irregular mask, but it still

has remaining issues, such as the mask update mechanism ignoring

the receptive field, a varying amount of valid feature points (or pixels)

leading to consistent update results, etc. To address the above limi-

tations, the gated convolution is proposed in [2]. Different from the

rule-based hard-gating mask updating mechanism in partial convo-

lution, the gated convolution is able to learn the gating mechanism to

dynamically control the feature expression of each spatial position of

each channel, such as inside or outside masks. Inspired by [2], we

propose a gated convolution network (GCN) for spine CT inpainting.

The GCN adopts the framework of the generative adversarial network

(GAN), which is composed of a generator and discriminator.

Specifically, the generator consists of coarse and refinement networks,

and both of them use a simple encoder-decoder structure similar to

Unet. While the differences are mainly in the following two points.

First, all conventional convolutions are replaced by the gated con-

volution. Secondly, in image inpainting tasks, it is important that the

size of the receptive field is large enough. Therefore, we removed the

two downsampling layers in Unet and introduced dilated convolution

to expand the model receptive filed without increasing any parame-

ters. Then the combination of dilated convolution and gated

convolution, dilated gated convolution, is applied to the GCN. In

addition, rich and global contextual information is an important part

of discriminant representation for pixel-level visual tasks. However,

the convolution operations lead to a local receptive field and thus are

not effective for borrowing features from distant spatial locations. To

overcome the limitation, we integrate a contextual attention module to

capture long-range dependencies. For the discriminator, motivated by

global and local GANs, MarkovianGANs, perceptual loss, and

spectral-normalized GANs, a spectral-normalized Markovian dis-

criminator is presented to distinguish the inpainting results from the

ground truth, thereby prompting the generator to produce more real-

istic results.
Results

We evaluate the proposed GCN on the spine CT data from 50 dif-

ferent patients, 10 of which contain real pedicle screw implants. Due

to the lack of registered reference image before pedicle screw

implantation, the 10 data could not be quantitatively evaluated at the

pixel level. Therefore, we adopt subjective experiments to qualita-

tively evaluate the inpainting image quality of this part of the data.

For the other 40 data without implants, we randomly select 20 of them

to use the free-form mask generation method to synthesize corre-

sponding masks for training and validation (16 data for training and 4

data for validation). To quantitatively and realistically evaluate the

performance of the two inpainting algorithms, for the remaining 20

data, we developed a method to generate simulated pedicle screw

implant masks. We respectively adopted subjective and objective

methods to evaluate the performance of our method on real data and

simulated data. The subjective evaluation metric refers to Mean

Opinion Score (MOS), and the objective evaluation metrics include

commonly used Mean Absolute Error (MAE), Peak Signal to Noise

Ratio (PSNR), and Structural Similarity Index Measure (SSIM). The

Table 1 The quantitative evaluation results of PCN and GCN on the

simulated data

Case

number

MAE PSNR SSIM

GCN PCN GCN PCN GCN PCN

1 3.3167 3.5547 45.1766 44.9548 0.9971 0.9969

2 2.0114 2.4877 48.1416 46.6749 0.9982 0.9976

3 1.7505 3.6995 50.5821 45.1820 0.9982 0.9932

4 1.8512 3.4265 49.6895 44.9026 0.9970 0.9917

5 2.3212 3.2296 47.9500 45.2147 0.9960 0.9917

6 2.7930 3.1543 45.7366 44.9263 0.9974 0.9968

7 3.8326 4.8446 43.2729 41.5865 0.9945 0.9923

8 1.8237 3.4827 50.1937 45.2708 0.9973 0.9903

9 6.6554 7.3014 39.4796 38.8284 0.9880 0.9858

10 2.8412 3.4628 46.7240 45.1855 0.9957 0.9939

11 1.7596 2.7496 49.3223 45.9686 0.9881 0.9726

12 3.2994 4.9775 45.0228 42.6120 0.9610 0.9421

13 2.5129 4.4035 46.8528 42.9081 0.9906 0.9746

14 2.3651 2.6504 46.8711 45.6282 0.9830 0.9777

15 1.7867 3.9835 50.3818 44.5360 0.9973 0.9886

16 3.4360 5.3470 44.5197 41.1009 0.9934 0.9866

17 2.4982 3.0073 46.4653 44.5323 0.9984 0.9974

18 2.0163 3.1258 47.8110 43.7487 0.9989 0.9977

19 3.6754 4.0220 44.0539 42.8442 0.9973 0.9972

20 1.4526 3.7497 51.0639 44.5460 0.9975 0.9885

Mean 2.7000 3.8330 46.9655 44.0576 0.9932 0.9877
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evaluation of the inpainting effect consists of two parts: quantitative

evaluation of simulated data with reference images and qualitative

evaluation of real data without reference images. The quantitative

evaluation results of PCN and GCN on the simulated data are shown

in Table 1. From a one-to-one quantitative comparison, the MAE of

GCN on each data is lower than PCN, while PSNR and SSIM are

higher than PCN, which indicates that the superiority of GCN over

PCN in quantitative evaluation metrics is universal. For real implant

data, we conducted subjective experiments and used MOS to evaluate

the performance of the two models. Finally, the average MOS of

GCN and PCN is 8.18 and 7.12, respectively, which indicates that the

subjects generally believe that the inpainting results of GCN are more

realistic. Figure 1 shows visual examples of image inpainting results

based on two algorithms. It can be observed that there are faint traces

of implants in the inpainting result of PCN, while the traces are

almost imperceptible in the inpainting result of GCN.
Conclusion

In this study, we propose a gated convolution network for spine CT

inpainting. The GCN is based on the generative adversarial network

for more realistic prediction, and the gated convolution is used to

learn a dynamic feature selection mechanism for each channel and

each spatial location. To evaluate the performance of GCN, we

respectively carry out a quantitative evaluation on simulated data with

reference, and qualitative evaluation on real data without reference.

The experimental comparison results with the state-of-the-art method

PCN show that the qualitative and quantitative evaluation of GCN has

universal advantages. From the final visualization results, we believe

that GCN has the potential to be applied to clinical practice.
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Purpose

A high level of data quality is mandatory for 3D-modelling in Hand

Surgery. Used data are Digital Communication in Medicine

(DICOM)-images obtained by computed tomography (CT) scans.

The digital three-dimensional (3D) preparation of acquired data is

usually in the hands of the radiologist who is a mandatory member of

the team offering a 3D-printing service in-hospital.

Usually a multi-detector CT (MDCT)-scanner is available in lar-

ger hospitals and sometimes a Magnetic Resonance Imaging (MRI)

machine. During the last decade the use of cone-beam computed

tomography (CBCT) extended from the main application field of

dental imaging to hand- and foot imaging. Recent developments aim

for full body cone-beam computed tomography.
Methods

We compared the quality of the data obtained by MSCT and CBCT

using different segmentation software (Mimics, DDS Pro, Horos,

DISIOR) to create 3D models for hand surgical purposes. The data

were compared using standard registration procedures in GOM

Inspect and Mimics.
Results

There are differences in terms of quality of segmentation between the

types of software. DIfferences were below 1 mm. We found that -

DICOM-data from cone beam CT showed less noise and artifacts

compared to multislice CT data. This led to better segmentation

results which facilitated 3D modeling, see figures 1 and 2.

Fig. 1 Example cases of qualitative comparison on real data, where

a, b, c represent input with implants, inpainting result of PCN and

inpainting result of GCN

Fig. 1 Palmar-dorsal view of a segmented wrist model comparing of

segmentation results of Mimics and DDS of CBCT DICOM-data
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Conclusion

DICOM data obtained by CBCT meet the quality requirement of

almost all purposes for 3D modeling in Hand Surgery. There need to

be an awareness that differences in segmentation procedures throuout

the available software on the markers may lead to clinically relevant

changes in 3D-modeling for a precision needed for hand surgical

purposes.
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Purpose

The biopsy of brain tumor plays a vital role in the minimally invasive

interventional treatment of tumor. The accuracy of the biopsy of the

tumor directly determines the therapeutic effect of the subsequent

surgery. At present, the clinical biopsy of tumors is generally per-

formed by free-hand under image-guidance. There are still many

drawbacks to free-hand biopsy, which limit the clinical use of biopsy

technology. The primary research goal of this paper is to study several

key technical problems in the process of biopsy surgery, and a

computer-aided personalized biopsy planning system of brain tumor

is developed to provide the surgeon with more spatial information

about the tumor while reducing the fatigue of the surgeon, and assist

the surgeon in completing the biopsy operation more conveniently

and accurately.
Methods

A personalized biopsy planning system of brain tumor is developed

based on the Medical Imaging Interaction Toolkit (MITK), which

consists of four parts: multi-modality image registration and fusion

module, semi-automatic segmentation module, 3D reconstruction

module and plan design of biopsy path module.

For the multi-modality image registration and fusion module, a

multi-modality image 3D rigid registration method based on mutual

information is designed to register the MR image into the physical

space of the CT image. The registered MR image and the CT image

are fused with an average weighting method, so that the fused image

contains both the tumor and soft tissue information in the MR image

and the bone and skin information in the CT image. The multi-

modality image registration algorithm is implemented by the Insight

Toolkit (ITK). The multi-modality image registration and fusion

module is integrated into the biopsy planning system as the ‘‘Regis-

tration plugin’’.

For the semi-automatic segmentation module, the graph cut

algorithm[1] is used to semi-automatically segment brain tumor in the

registered MR image. With the graph cut algorithm, users need to

interactively delineate the tumor area and the normal tissue area on

the registered MR image, and the algorithm will automatically

complete the segmentation calculation of the entire tumor area. The

graph cut algorithm is implemented by the Insight Toolkit (ITK). The

semi-automatic segmentation module is integrated into the biopsy

planning system as the ‘‘GraphCut3D plugin’’.

For the 3D reconstruction module, a reconstruction pipeline based

on the marching cubes algorithm[2] is designed. Before the marching

cubes algorithm, the image pre-processing operations, such as median

filtering and Gaussian filtering, are used to reduce noise in the image.

Then the marching cubes algorithm is used to reconstruct the 3D

mesh model of the surface skin and tumor. After the surface model is

obtained, post-processing operations are used to improve the quality

of the model, such as mesh smoothing, normal vector calculation, and

connected region analysis. Based on the CT image and the segmented

tumor binary image, 3D mesh models of the surface skin and tumor

are reconstructed respectively. The reconstruction pipeline is imple-

mented by the Visualization Toolkit (VTK). The 3D reconstruction

module is integrated into the biopsy planning system as the ‘‘Mesher

plugin’’.

For the plan design of biopsy path module, users can interactively

select biopsy target point and needle entry point on the tumor and skin

surface to generate the biopsy path, and interactively cut out the skin

surface to generate a biopsy guide plate STL model through 3D

printing. The biopsy guide can be obtained to assist the surgeon to

realize a more accurate and personalized biopsy plan design of brain

tumor. The plan design of biopsy path module is integrated into the

biopsy planning system as the ‘‘Plan Design plugin’’.
Results

The multi-modality image registration algorithm is evaluated on the

‘‘ACRIN-FMISO-Brain’’ dataset from ‘‘The Cancer Imaging Archive

(TCIA)’’. The Euclidean distance between the anatomical landmarks

after registration is calculated to represent the registration error. The

graph cut algorithm is evaluated on the ‘‘MICCAI BraTS2017’’

dataset. The dice similarity coefficient (DSC), positive predictive

value (PPV) and sensitivity are calculated to represent segmentation

accuracy. The mean registration error is 1.3321 ± 0.3070 mm. The

mean DSC is 0.9130 ± 0.0188, the PPV is 0.9387 ± 0.0297, and the

sensitivity is 0.8910 ± 0.0452.The results of registration error and

segmentation accuracy are shown in Table 1. With the aid of the

biopsy planning system, the surgeon can perform a personalized

biopsy plan design for the patient, and the biopsy guide will be

generated to assist the surgeon in performing the biopsy operation.

Fig. 2 Dorso-palmar view of a segmented wrist model comparing of

segmentation results of Mimics and DDS of CBCT DICOM-data

Table 1 The results of registration error and segmentation accuracy

Segmentation accuracy Registration error

(mm)
DSC PPV Sensitivity

Mean 0.913 0.9387 0.891 1.3321

Median 0.921 0.9552 0.9077 1.1896

Maximum 0.9404 0.9825 0.9536 2.3478

Minimum 0.8803 0.8838 0.8 0.5291

Standard deviation 0.0188 0.0297 0.0452 0.307
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The interface of the biopsy planning system is shown in figure 1.

The data management module is located on the left side of the system

interface, which is used to manage, display and modify data. The core

plugins are located on the right side of the system interface, which

realize the functions of registration and fusion, semi-automatic seg-

mentation, 3D reconstruction and planning design respectively. The

four windows in the middle of the system interface display two-

dimensional images of different views and three-dimensional space

respectively. Figure 1 shows the result of the biopsy planning. The

red tumor model reconstructed from the 3D reconstruction module is

segmented from the registered MR image, which is in the same space

as the CT skin model. The path pointed by the white guide plate hole

is the biopsy path designed by the user. This guide model can be used

to assist in biopsy surgery after being printed by 3D printing

technology.
Conclusion

A computer-aided personalized biopsy planning system of brain

tumor is developed to help the surgeon design an ideal biopsy path of

brain tumor before surgery, thereby reducing the complexity of

biopsy surgery, increasing the success rate of subsequent surgery, and

reducing the amount of extra trauma and radiation for patients. With

the aid of this system, the surgeon can complete the biopsy operation

more conveniently and accurately.
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Purpose

Although panoramic dental X-ray imaging is usually used for diag-

nosis of dental lesion, the spatial resolution of those images is

relatively low. Thus, small and obscure lesions are often overlooked.

Therefore, it is desirable to develop a computer-aided diagnosis

(CAD) scheme for panoramic dental X-ray images. In the CAD

scheme for dental images, it is often necessary to segment tooth for

each tooth type.

Semantic segmentation (SS) is one of the labeling methods that

associate each pixel of an image with a class label. The SS models

have been developed with deep learning approaches such as convo-

lutional neural networks (CNNs). Those SS models are usually

trained to minimize the error in an entire image. When applying those

SS models to the segmentation of small region such as each tooth, the

segmentation accuracy might be low. It is necessary in the segmen-

tation of each tooth to train the SS model with more focus on image

features for each tooth type.

There is an adversarial training as a learning method to train

Generative Adversarial Network (GAN). In this study, we propose a

computerized method for the segmentation of tooth focusing on each

tooth type by applying the adversarial training to the learning of a SS

model. A novel network was constructed by adding a CNN to the SS

model. The added CNN classified ROIs (region of interest) sur-

rounding a tooth extracted from a SS result image and the teacher

label image. The SS model and the CNN in the proposed network

were learned with the adversarial training.
Methods

Our database consisted of 161 panoramic dental X-ray images

obtained from 161 patients. Label images for each of 32 tooth types

were generated by manually annotating each tooth region in the

panoramic dental X-ray images. Those images were randomly divided

into three datasets. The training, validation, and test datasets included

81, 20, and 60 images, respectively.

In this study, a novel network was constructed by adding a CNN to

a SS model for the segmentation of tooth for each tooth type. Figure 1

shows the proposed network. To determine the SS model to use in the

proposed network, three different SS models (FCN, U-Net, and

DeepLab v3) were employed to segment tooth for tooth type. The

model with the highest segmentation accuracy for the validation

dataset was then determined as the optimal SS model. Based on the

label image, ROIs (region of interest) surrounding each tooth were

extracted from the original image, the label image, and the SS result

image, respectively. The pair of the original ROI and the label ROI or

the SS ROI was inputted to the added CNN. The CNN outputted two

classification results. The CNN discriminated the SS ROI pair from

the label ROI pair, and also identified the tooth type of the inputted

ROI pair. The added CNN was constructed from five layer-blocks

consisting of a convolutional layer, a Leaky ReLU, and a batch

normalization layer. The SS model was trained with more focus on

Fig. 1 Interface of the biopsy planning system

Fig. 1 Schematic of the proposed network
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image features for each tooth type by applying the adversarial training

to the SS model and the added CNN. In this study, IoU (Intersection

over Union) was used as the evaluation index for the segmentation

accuracy of tooth for each tooth type.
Results

The mean IoU with DeepLab v3 for the validation dataset was 0.562,

which was significantly improved compared to FCN (0.554,

P = 0.023) and U-Net (0.488, p\ 0.001). Therefore, DeepLab v3

was determined as the optimal SS model in the proposed network.

The mean IoU with the proposed network for the test dataset was

0.687, which was greater than that with DeepLab v3 (0.611,

p\ 0.001). Tooth roots with a low contrast to the alveolar bone were

more accurately segmented using the proposed network than DeepLab

v3.
Conclusion

To train the SS model with more focus on image features for each

tooth type, a novel network was constructed by adding a CNN to

DeepLab v3. The proposed network with the adversarial training

exhibited higher segmentation accuracy of tooth in panoramic dental

X-ray images compared to DeepLab v3.
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Purpose

Periodontal diseases, including gingivitis and periodontitis, are some

of the most common diseases that humankind suffers from. In 2017,

the American Academy of Periodontology and the European Feder-

ation of Periodontology proposed a new definition and classification

criteria for periodontitis based on a staging system [1].

In our previous study, a deep learning hybrid framework was

developed to automatically stage periodontitis on dental panoramic

radiographs according to the criteria that was proposed at the 2017

World Workshop [2]. In this study, the previously developed frame-

work was improved in order to classify periodontitis into four stages

by detecting the number of missing teeth/implants using an additional

CNN. A multi-device study was performed to verify the generality of

the method.
Methods

Overview
Figure 1 shows the overall process for a deep learning-based CAD

method for measuring the radiographic bone loss (RBL) and deter-

mining the periodontitis stage.

Data preparation
The panoramic radiographs of each patient were acquired with three

dental panoramic X-ray machines from three devices. A total of 410

panoramic radiographs of the patients were acquired by using device

1, an orthopantomograph OP 100 (Instumentarium corporation,

Tuusula, Finland). A total of 60 panoramic radiographs of the patients

for devices 2 and 3 were acquired using PaX-i3D Smart (Vatech,

Seoul, Korea) and Point3D Combi (PointNix, Seoul, Korea),

respectively. With regard to the panoramic image dataset, 500, 500,

and 300 images were used to detect the anatomical structures, such as

the periodontal bone level (PBL), cementoenamel junction level

(CEJL), and teeth/implants, respectively.

To detect the location of the missing teeth and to quantify their

number, the image of the patient with the missing teeth was selected

and classified into two types according to the number of missing teeth.

The loss of one non-contiguous tooth was classified as type 1, and loss

of two consecutive teeth was classified as type 2. As a result of the

selection, 147 and 62 images were used for detecting and quantifying

the missing teeth for type 1 and type 2, respectively.

Detection of anatomical structures using CNN
By using a similar procedure in a previous study [2], the PBL was

annotated as one simple structure for the whole jaw on the panoramic

radiograph; the CEJL of the teeth (the fixture top level of implants)

was annotated as one structure that included the crowns of the teeth

and implants at the maxilla and the mandible, respectively.

Mask R-CNN was trained for detecting the PBL, CEJL, and teeth/

implants by using the multi-device image dataset. After training the

CNN, the segmentation accuracy of each CNN was calculated using

the images in the test set. The CNN was implemented by using Python

with the Keras and TensorFlow libraries. The CNN was trained by

applying the transfer learning method based on the weights that were

calculated in the previous study.

After training, the CNNs produced a segmentation mask of the

anatomical structures for the input panoramic image. The periodontal

bone levels were then detected by extracting the edge of the seg-

mented image (Figure 2a–c). The same process was applied for the

detection of the CEJL (Figure 2d–f), teeth, and implants from their

segmentation mask (Figure 2g–i).

Detection of the missing teeth using the CNNs
Each image was manually labeled by drawing rectangular bounding

boxes around the location of the missing teeth with a labeling soft-

ware for the bounding box detection task named the YOLO mark.

Two modified CNNs from the YOLOv4 networks named CNNv4,

and CNNv4-tiny were used for detecting and quantifying the missing

Fig. 1 Overall process for a developed computer-aided diagnosis

method for radiographic bone loss and periodontitis stage based on

deep learning on dental panoramic radiographs
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teeth on the panoramic radiographs. The network was trained on a

total of 2000 epochs with a 64-batch size and one- or two-stride sizes.

Staging periodontitis by the conventional CAD method
The method of automatically diagnosing the stage of periodontitis

was the same as the method that was used in our previously published

paper [2]. The RBL of the tooth was automatically classified to

identify the stage of periodontitis according to the criteria that was

proposed at the 2017 World Workshop [1].
Results

Detection performance for the anatomical structures and the
missing teeth.
The DSC values for Mask R-CNN were 0.96, 0.92, and 0.94, for the

detection of the PBL, CEJL, and teeth/implants, respectively.

For the detection of the missing teeth, the precision values for

CNNv4-tiny, and CNNv4 were 0.88, and 0.85, respectively. The

recall values for CNNv4-tiny, and CNNv4 were 0.85, and 0.85,

respectively. The F1-score values for CNNv4-tiny, and CNNv4 were

0.87, and 0.85, respectively. The mean of the AP values for CNNv4-

tiny, and CNNv4 were 0.86, and 0.82, respectively.

Classification performance for the periodontitis stages.
Figure 2 shows the completely classified stages of the periodontitis

for the teeth/implants using the multi-device images.

To evaluate the classification performance of the periodontal bone

loss, the mean absolute differences (MAD) between the stages that

were classified by the automatic method and the radiologists’’ diag-

noses were compared. These MAD values were 0.26, 0.31, and 0.35

for the radiologists with ten-years, five-years, and three-years of

experience, respectively, for the teeth of the whole jaw. The overall

MAD between the stages with the automatic method and the radiol-

ogists while using all the images was 0.31. For the images from

multiple devices, the MAD values were 0.25, 0.34, and 0.35 for

device 1, device 2, and device 3, respectively, for the teeth/implants

for the whole jaw.
Conclusion

The developed method used the percentage rate of the periodontal

bone loss to automatically and classify the periodontitis into four

stages of the whole jaw according to the renewed criteria that was

proposed at the 2017 World Workshop [1]. The developed method

can help dental professionals to diagnose and monitor periodontitis

systematically and precisely on panoramic radiographs. In future

investigations, the method must be improved to diagnose the stage of

periodontitis while considering both the severity and complexity

factors.
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Purpose

For the laparoscopic access, the artificial creation of a pneumoperi-

toneum, carbon dioxide must be introduced into the abdominal cavity

to create the field of vision and work for the laparoscopic procedure.

For the safe generation of the pneumoperitoneum at the beginning of

a laparoscopic procedure, the Veress needle is widely used. Currently,

there is no imaging modality or other means of providing navigation

information for this procedure. The surgeons rely on their sense of

touch to guide the Veress needle. Due to this subjective and error-

prone technique, the procedure is associated with considerable risks.

About 50% of all laparoscopy complications, like injuries to blood

vessels or intra-abdominal organs, are caused when surgical access is

created [1]. In addition to the patient’s risk and an extended recovery

time, this results in considerable additional procedure time and cost.

Alternative sensor-based tools have been proposed for improving

the precision and safety of laparoscopic access. Usually, those solu-

tions comprise of a sensor embedded at the tip of the tools leading to

direct tissue contact and sterilization issues. Additionally, those tools

are mostly complex and expensive and have not been commercially

successful.

Proximal audio sensing has demonstrated to be able to differen-

tiate between Veress needle events and detect tissue-layer crossings

[2]. This concept uses an audio sensor mounted to the proximal end of

a tool to capture information about tool-tissue interactions. Based on

this concept, we are developing Surgical Audio Guidance (SURAG).

This intraoperative feedback system processes the acquired audio

signal and extracts useful guiding information to provide safety-rel-

evant feedback. We proposed and tested an auditory and a visual

feedback method. The results show that the information provided is in

Fig. 2 The stages of the periodontitis for each tooth and implant on

the dental panoramic radiographs acquired from multiple devices. The

automatic diagnosis results by the developed method on the

images. The first, second, and third rows are the images from the

device 1, device 2, and device 3, respectively
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line with the events detected by proximal audio sensing and can

enhance the surgeons’ perception.
Methods

The visual feedback is based on the time-domain audio signal and its

Continuous Wavelet Transformation (CWT) and is presented in real-

time to the surgeon. To evaluate this variant, 40 needle insertions

were performed using two types of Veress needles, one for single-use

and one for multiple-use. As shown in Figure 1, the insertions were

performed by a testing machine (Zwicki, Zwick GmbH & Co. KG,

Ulm) that recorded the axial needle insertion force at 100 Hz, while

the needle was inserted into an ex vivo porcine tissue phantom at an

insertion velocity of 8 mm/s. An audio signal was acquired during the

insertion at a sampling frequency of 16.000 Hz using a MEMS

microphone sensor placed at the needle’s proximal end. The acqui-

sition of force and audio was synchronized using a trigger event

visible in both the force and the audio signals. The visual feedback

was evaluated by comparing the events observed in the audio and

CWT spectrum with the reference force signal.

The auditory feedback was implemented into a small add-on

mounted to the proximal end of a Veress Needle. The add-on com-

prises of a piezoelectric MEMS microphone (PMM-3738-VM1000-R,

Vesper, Boston), an nRF52832 microcontroller (Nordic Semicon-

ductor, Trondheim) for digital processing, and a speaker for playing

the feedback. Due to the speaker’s low mass and damping measures in

the add-on housing, it is ensured that potential vibrations caused by

the speaker do not interfere with the audio acquisition. To evaluate if

the auditory feedback enhances the surgeons’ perception of tissue-

layer crossings, compared to the existing approach, the add-on has

been tested by three domain experts who repeatedly inserted different

Veress needles into an ex vivo porcine tissue phantom.
Results

Figure 2 shows an exemplary comparison of an audio and a force

signal and the time-domain visual feedback. Each significant response

in the audio and CWT spectrum corresponds to an event triggered by

the Veress needle’s entry into a major anatomical structure, identifi-

able by a significant peak in the force signal. For each of these events,

a response in the spectrum can be observed. Equal observations have

been made for more than 95% of the insertions independent of the

needle’s type and the insertion velocity. This indicates that the visual

feedback can accurately display tissue-layer crossings during

laparoscopic access.

For the auditory feedback, the domain experts invited to test the

add-on consistently stated that the feedback was in line with their

tactile feedback and enhances their perception of tissue-layer cross-

ings. Furthermore, they indicated that additional feedback might be

constructive for young surgeons with limited experience in per-

forming laparoscopic access and obese patients, where the detection

of tissue-layer crossings is challenging.
Conclusion

In this work, we explored the suitability of a visual and an auditory

feedback variant for enhancing the surgeons’ perception of tissue-

layer crossings during laparoscopic access using the Veress needle.

Different needle types were tested at various insertion velocities to

evaluate if visual feedback based on Continuous Wavelet Transfor-

mation can accurately display tissue-layer crossings. Additionally, an

add-on for auditory feedback has been implemented and tested by

domain experts.

The results confirm that both feedback variants are accurate and

enhance the surgeons’ perception of tissue-layer crossings while

being independent of the Veress needle’s type and insertion veloci-

ties. The findings indicate that Surgical Audio Guidance could be an

efficient means to improve precision and safety during laparoscopic

access and motivate further research and development on the feed-

back variants presented in this paper.
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Fig. 1 The visual feedback has been tested using a Zwick testing

machine that inserts a Veress needle into an ex vivo porcine tissue

phantom. The audio sensor is mounted to the proximal end of the

needle

Fig. 2 The comparison of the audio (top) and the force (bottom)

signal with the CWT-based feedback shows that events triggered by

tissue-layer crossings can be clearly observed in the visual feedback
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Purpose

Mohs micrographic surgery (MMS) is a dermatologic procedure that

involves the removal of skin cancer while sparing as much healthy

tissue as possible. MMS delivers decreasing cure rates with increasing

sizes of cutaneous carcinoma. Postoperative complications increase

with the increasing size of the reconstruction. Clinical errors may be

introduced by biomechanical forces that deform tissue during routine

manipulation during both MMS histologic processing and surgical

flap reconstruction.

This interdisciplinary work seeks to ultimately reduce cancer

recurrence and surgical complications by improving intra-operative

surgical techniques that are used to remove and intra-operatively

pathologically examine skin cancer. To that end, we seek to develop

more accurate models of 3D tissue deformation during current clinical

practice. To gather data on non-rigid tissue deformation, strain, and

forces in real-world intra-operative surgery, we need new tools to

study the 3D deformation of excised skin-cancer tissue, from its

original in situ 3D shape to the final 3D shape when pressed against a

surgical slide for intra-operative pathology. This current work is

laying a foundation for those studies.

We have developed novel micro-painted fiducial landmarks that

adhere to the fatty skin tissue. The focus of this paper is our custom

computer-vision methodology for detecting, localizing, and matching

those fiducial dots in tissue samples before-versus-after flattening on a

microscope slide. The appearance of these landmarks makes it chal-

lenging to precisely define a center point for each dot, and the

complex nonrigid tissue deformation, when pressed against a slide,

makes it challenging to automatically match landmarks and compute

the tissue-motion field.
Methods

Multichromatic acrylic microdots were painted onto porcine skin and

tracked before and after hypodermal tissue bending (10 sample

images) and epidermal flap reconstruction simulations (6 sample

images). The painting process results in irregularly shaped dots of

adhered acrylic. Two-dimensional microdot ‘‘center’’ coordinates

were estimated by the blob detection algorithm from digital images

and compared to a consensus of two expert-raters using two-tailed

Welch’’s t-tests. Color tagging, mutual information and Euclidean

distance regulation were then used to measure the similarity between

microdot pairs. For each microdot in either the before-surgery image

or after-surgery image, we picked the microdot with the highest

similarity with it in the other image as the best corresponded

matching. When the bidirectional matching is mutually verified, then

together with RANSAC, we established the correspondences between

microdots from before and after images. The matching microdot pairs

with high correlation values were used as key-point inputs to a thin

plate spline method, warping the before image to register with the

after image. Iteration over RANSAC matching and thin plate spline

led to the final correspondence map for tissue deformation.

Results

The blob detection algorithm detected 83% of microdots overall.

Detection of microdots on epidermal flaps was higher before recon-

struction than after, though not significantly (91% vs. 84%, p = 0.16),

figure 1. There was no difference in detection of microdots on

hypodermal tissue before and after bending (80% vs. 80%, p = 0.87).

Detection of microdots was higher on the epidermis than hypodermis

(88% vs. 80%, p = 0.01). The correlation algorithm detected micro-

dot coordinates within an average error of 11 pixels overall

(corresponding to 201 lm, smaller is better). There was no difference

in accuracy on epidermal flaps after reconstruction (5 vs. 7 px,

p = 0.25, corresponding to 170 vs. 209 lm), nor on hypodermal tis-

sue after bending (13 vs. 16 px, p = 0.12, corresponding to 189 vs.

231 lm). Accuracy was better on the epidermis than on the hypo-

dermis (6 vs. 15 px, p.
Conclusion

Our custom microdots detection and matching algorithm based on

iterative RANSAC and thin plate spline warping is an important step

towards practically measuring biomechanical forces in the clinic

using only digital images of irregular microdot fiducials. This largely

decreases the labor work of manual annotations. It has been optimized

for specificity over sensitivity, compared to expert-raters’’ annotation,

and the algorithm shows sufficient pixel and micron accuracy to

estimate deformation in exchange for a modest loss of resolution.

Improving these techniques and introducing additional data such as

three-dimensional point clouds, which will expand the applications of

optical mapping in clinical research.
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Purpose

Foot deformities such as hallux valgus are common foot deformities

that may require surgery. However, during these surgeries many

Fig. 1 Visualization of microdots matching between iteratively-

warped before image and after image with location annotations

(epidermis)
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operative decisions are made based on inexact parameters. Conse-

quently, surgical complications such as transfer metatarsalgia often

arise [1]. Obtaining a proper plantar pressure distribution (PPD) is an

important factor in the surgical success. However, it is difficult to

measure intraoperatively since it is normally obtained in standing

posture, while the surgery is performed in the supine position. A

device which can measure this parameter in supine could improve the

clinical result of surgical treatment by guiding surgeons to reliably

restore a healthy standing plantar pressure distribution to the patient.

In previous research, an intraoperative plantar pressure measure-

ment (IPPM) device was proposed, which can reproduce the PPD of

standing posture intraoperatively [2]. It was found that in standing

posture, the ground reaction force vector originates at the foot center

of pressure and passes through the femoral head center. The IPPM

device uses a force plate to align these two parameters, and a pressure

sensor to measure PPD. The IPPM device demonstrated high repro-

ducibility in experiments with healthy subjects, and now its

usefulness must be clinically validated [2].

However, the IPPM device has two remaining issues that prevent

it from being validated through clinical testing. One problem is its

heavy hardware—it weighs 2.5 kg. The other is that there is no

convenient way for the user to hold and maneuver the device. These

issues result in the device being difficult to operate, rendering it

impractical for a clinical setting. Our research aims to redesign the

IPPM device to be more ergonomic by solving the above two prob-

lems while maintaining its position measurement accuracy.
Methods

A. Reducing Hardware Weight

The original IPPM device’’s force plate weighed 1.4 kg. This

force plate contained four force sensors, however, the parameters

measured by the device can be measured by a single 6-axis force

sensor. Hence, a new force plate was designed with only one

sensor in the center of the plate, reducing the total weight by

allowing the size of the force plate to be reduced. The new force

sensor was chosen by its specifications for this application

(FFS080YA501U6 Leptrino Co. Ltd.). The maximum force and

moment limits of this sensor were determined from experiments

conducted with the original device, where the maximum applied

force during operation was around 100 N.

The original force plate was made from aluminum which is a

lightweight, strong, and inexpensive material. However, when

optimizing strength and weight, composite materials are superior

options. Carbon fiber was chosen due to its properties of being

lightweight and high strength.

B. Improving Operability

To use the original device, the operator is forced to put their

hands in a particular orientation to avoid contacting a measure-

ment component and introducing error. As a result, operating the

device can be strenuous. To improve maneuverability, a carbon

fiber ring-shaped handle was attached to the back of the force

plate.

C. Position Measurement Accuracy

To evaluate the position measurement accuracy of the new

device, an optical tracking sensor (Polaris Spectra, NDI Co. Ltd.)

was used. A tracking marker was pressed onto the device at

different points, and the position of the marker measured by the

sensor was compared to the position measured by the device

(N = 5). The required system accuracy for this test is less than

5 mm of position error.

Results

A comparison of the original and new device weight is shown in

Table 1. The original device weighs 2500 g, and the new device

weighs 1750 g.

The new device design was qualitatively evaluated by two sur-

geons that had experience operating the original device. Both noted

that the decreased weight along with the added handle provided a

significantly more comfortable experience. Each surgeon concluded

that the ergonomic design is appropriate for future clinical testing.

The results of the position measurement accuracy test are shown in

Figure 1. The measured position error between the optical tracking

sensor and the device mean was 0.61 mm (SD 0.31 mm), which is

below the system accuracy threshold of 5 mm of position error. There

was no noticeable difference in measurement error for different

positions on the device.
Conclusion

In this research, the IPPM device was redesigned to decrease its

weight and improve its usability. Despite the inclusion of a 400 g

Table 1 Comparison of the original and new device weight

Component weight (g) Old device New device

Pressure sensor 700 500

Top plate 1400 400

Force sensor 200

Bottom plate 250

Interfacing plate 400 N/A

Ring handle N/A 200

Handle supports N/A 200

Total 2500 1750

Fig. 1 Device Position Error Using Optical Tracking Sensor
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ergonomic handle, the device weight was decreased by 30% without

compromising its position measurement accuracy. Two surgeons

confirmed the increase in usability from the new design and stated

that the device design is suitable for clinical validation studies. In the

future, clinical testing will be done to determine the system’’s ability

to reproduce plantar pressure distribution in a clinical environment.
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Purpose

Sacral nerve stimulation (SNS) is a procedure where an electrode is

implanted through the sacral foramina to stimulate the nerve modu-

lating colonic and urinary functions. This practice has been

implemented efficiently to treat several pathologies such as fecal

incontinence, urinary retention, and constipation.

Currently, X-ray fluoroscopy is used during electrode placement to

estimate the location of the needle with respect to the sacral foramina

(usually S3 or S4). However, this needle insertion is very challenging

to surgeons, and several X-ray projections are required to interpret the

needle’’s position correctly. Furthermore, the need for multiple

punctures causes an increase in surgical time and patients’’ pain.

Navigation systems based on optical tracking combined with intra-

operative CT have been previously used to guide needle insertion in

SNS surgeries, reducing procedural time and improving surgical

outcomes. Nevertheless, these systems require an intraoperative CT

and imply additional radiation exposure during the intervention to

both patients and professionals, restricting their clinical practice

integration. Additionally, the navigation information is displayed on

external screens, requiring the surgeon to divert his attention from the

patient. In this context, augmented reality (AR) technology could

overcome these limitations, providing the surgeon with real-time

navigation information directly overlaid in the surgical field and

avoiding external radiation during surgery [1].

In this work, we propose a smartphone-based AR application to

guide electrode placement in SNS surgeries. This navigation system

uses a 3D-printed reference marker placed on the patient to display

virtual guidance elements directly on the affected area, facilitating

needle insertion with a predefined trajectory. The proposed system

has been evaluated on an anthropomorphic phantom.
Methods

A patient-based phantom was manufactured to simulate the affected

area for an SNS treatment. The phantom included the sacrum bone,

3D-printed in polylactic acid, covered with silicon (Dragon Skin 10

Slow), imitating the patient’s soft tissue. The location of the sacrum

foramen was obtained by segmenting both materials from a CT of the

phantom using 3D Slicer software.

We developed a smartphone AR application on Unity platform.

This app uses Vuforia development kit to detect and track the position

of a 3D-printed cubic reference marker (30 9 30 9 30 mm) with

unique black-and-white patterns on each face. Once the marker is

detected in the smartphone camera field of view, the virtual models

are displayed overlaid on the real-world image. These virtual models

will indicate the insertion point on the surface of the phantom and the

optimal trajectory to reach the target sacral foramen (Figure 1).

The marker was fixed on top of the phantom in the superior area of

the gluteus. We obtained the position of the marker with respect to the

phantom by a two-step procedure. Firstly, we acquired a 3D pho-

tograph (including geometric and textural information) of the

phantom’’s surface with the cubic reference marker already in place.

With this information, we applied a surface-to-surface registration

algorithm to align the acquired 3D textured with the phantom model

obtained from the CT scan. Secondly, we identified seven landmarks

from the marker patterns on the 3D textured images. These landmarks

were used to compute the position of the marker with respect to the

phantom after a fiducial-based registration. Finally, the virtual mod-

els’’ position was calculated and uploaded to the AR application.

We evaluated our solution during needle insertion on several

simulated SNS interventions on the manufactured phantom. After

detecting the AR marker with the smartphone’’s camera, the user held

the smartphone with one hand and inserted the needle with the other

one. The trajectory and the target were displayed as virtual elements

on the AR-display. Once the needle was oriented as indicated in the

AR system, the user inserted the needle. A total of three inexperi-

enced users performed this procedure ten times on two sacrum

foramina of different sizes (S3 and S4). We measured the insertion

time and the number of punctures required to place the needle in the

target foramen for each repetition.
Results

Table 1 shows the insertion time and the number of punctures for

each user and foramen. The average insertion time was 30.5 ± 13.9 s,

slightly lower than the figures reported with alternative SNS guidance

methods (35.4 ± 14.6 s) [2]. The results obtained with the proposed

system showed that users performed a maximum of two punctures to

reach the target for both foramina with an average of 1.13 ± 0.34,

Fig. 1 User during needle insertion simulation on the manufactured

phantom using the smartphone-based augmented reality application

for needle guidance
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significantly reducing the average number of insertions reported with

traditional methods (9.6 ± 7.7) [2].
Conclusion

This work proposes a novel smartphone-based AR navigation system

to improve electrode placement in sacral neuromodulation proce-

dures. The results obtained on the patient-based phantom show that

our system could reduce the number of punctures and the insertion

time compared with the traditional methods. The smartphone appli-

cation is intuitive, facilitating needle insertion without requiring tool

tracking. Further studies should be performed to ensure feasibility

during surgical interventions. To our knowledge, this is the first work

proposing an AR solution to guide needle insertion in SNS

procedures.
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Purpose

Computer assisted surgery (CAS) system, which includes surgical

planning system and surgical navigation system, has been developed

to assist understanding of patient specific anatomical structures in the

liver. These systems enable surgeon to perform preoperative surgical

planning and intraoperative surgical navigation of the liver resections

while observing the 3D reconstructed patient specific anatomical

structures from CT volumes. In resent year, since three dimensional

(3D) print technologies have been rapidly developed, a 3D printed

organ model is widely spread in medical field. The 3D printed organ

model makes easy to recognize 3D positional relationships among

anatomical structures. Therefore, in addition to CAS system, a 3D

printed liver model is also used for assisting liver surgery [1, 2]. In the

3D printed liver model, patient specific anatomical structures in the

liver, such as the portal vein and the hepatic vein, are usually fabri-

cated. Surgeon can comprehend positional relationships among these

anatomical structures and tumors in the liver by observing the 3D

printed liver model preoperatively and intraoperatively. Surgeon can

also plan liver resections by considering these positional relation-

ships. If the surgical plan such as liver partition line reproduced in the

3D printed liver model in addition to the anatomical structures, the 3D

printed model will be more useful for assisting liver resection surgery.

In this paper, we describe the three-dimensional surgical plan printing

for assisting liver resection surgery.
Methods

The proposed method fabricates two 3D printed liver models sepa-

rated by liver partition line planned preoperatively as surgical plan

printing. The proposed method consists of image processing part and

fabrication part. In the image processing part, the anatomical struc-

tures are extracted from CT volume and the liver partition line is

planned. In the fabrication part, the 3D liver model is fabricated based

on the result of the image processing part using a 3D printer. We

extract anatomical structures semi-automatically from portal venous

phase contrast-enhanced CT volumes. The liver, the portal vein, the

hepatic vein, and the tumor regions are extracted using region

growing method and morphological operations such as opening and

closing. Surgeon performs surgical planning by considering the

locations of the tumor and its surrounding anatomical structures on

CT volumes. Voronoi tessellation is performed to obtain liver parti-

tion line based on the portal vein information. Surgeon checks and

corrects the segmentation results and liver partition line manually if

necessary. The Blood vessel regions are dilated by morphological

operation to reproduce the thin blood vessels. The blood vessel and

tumor regions are subtracted from the liver region. The liver partition

line also subtracted from the liver regions to divide the liver model.

We convert the obtained binary images to polygon data using

marching cubes algorithm. The two 3D printed liver models is fab-

ricated the polygonal model using a 3D printer (Agilista 3100,

Table 1 Number of punctures and insertion time for each foramen and user during simulation with the proposed augmented reality system

Foramen S3 Foramen S4

User 1 User 2 User 3 Avg. users User 1 User 2 User 3 Avg. users

Puncture time (s)

Mean 27.1 34.3 29.8 30.4 25 36.3 30.7 30.6

Std 10.1 16.6 16 14.4 5.9 18.7 11.9 13.6

Min 18 18 15 17 20 17 23 20

Max 45 71 70 62 40 69 62 57

Number of punctures

Mean 1 1.2 1.1 1.1 1.2 1.2 1.1 1.2

Std 0 0.4 0.3 0.3 0.4 0.4 0.3 0.4
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Keyence, Osaka, Japan). After fabrication, support material covered

with the 3D printed liver models is removed. The surface of the 3D

liver models is polished by abrasive sponge and coated by urethane

resin to smooth the surface. The portal vein and tumor is colored

white by filling support material. The hepatic vein regions are colored

by blue dye after removing the support material.
Results

We created the 3D liver models using the proposed method. Figure 1

shows an example of the fabricated 3D printed liver model. This 3D

liver model is divided into two models by the planned liver partition

line. Since the liver regions are fabricated translucent acrylic resin,

the anatomical structures in the liver can be observed. The portal vein

and the tumor are showed white color, and the hepatic vein is showed

blue color in the model. The positional relationships between the

portal vein, the hepatic vein, and the tumor inside the liver are con-

firmed using the fabricated 3D liver model. Furthermore, the

anatomical structures around the planned liver partition line are also

confirmed by using the divided 3D liver model. This will be helpful to

surgeon for understanding the complex anatomical structures around

partition line during the liver resection. Therefore, the 3D printed

liver model with surgical plan is useful for assisting liver surgery.
Conclusion

In this paper, we described a three dimensional surgical plan printing

for assisting liver resection surgery. The proposed method created two

3D printed liver models divided by the preoperative liver partition

plan. The experimental results showed that the anatomical structures

along the planned partition line are confirmed using the fabricated 3D

printed liver models. Future works includes application to additional

cases and development of an automated segmentation method of

anatomical structures from CT volumes.
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Purpose

Development of autonomous surgical robotic machines for standard

surgical procedures is under requisition rather than master–slave

machines. Surgery with standardized procedures is technically in high

demand as an autonomous surgical robot in local cities where the

number of surgeons is decreasing. However, it is necessary to obtain

the patient consent when collecting simulation data, and there are

crucial hurdles in such data collection. Therefore, we created a dataset

that using a simulation model of contraceptive surgery, which is a

routine surgery for small animals, dogs. Ovariohysterectomy is the

common sterilization procedure for small animals, namely cats and

dogs, etc. In the study, we tried the simulation of the canine (dog)

spay surgery, ovariohysterectomy, and made the data set of the

surgery.
Methods

The automatic image recognition of tools (surgical instruments) and

surgical operation (work-flow) phases were carried out using image

recognition technology. Using a simulation model of the canine spay

surgery, 42 video movies (1080 9 720 pixels, 24 fps), in the range of

15 min to 25 min in length, were recorded during every surgical

procedure (Fig. 1). The annotation of surgical tools was carried out in

the first 15 video movies (down-sampling to 1 fps) by means of the

bounding-box annotation.
Results

The annotation of surgical tools was carried out in the first 15 video

movies (down-sampling to 1 fps) by means of the bounding-box

annotation. Two or more tools are annotated on more than 80 percent

in 16,327 frames in total. This method is fitting for the precise object

detection having the individual locational data. Since surgical tools

are often held by hand and it is not easy to annotate the entire tool,

only a part of the tool was annotated. The scissors, needle holder, and

forceps are very similar when viewed from the side, and there is a

problem that they cannot be discriminated by the human eye.

Therefore, when annotating the needle holder that sandwiches the

Fig. 1 Example of fabricated 3D printed liver model. 3D printed

liver model is divided two models by planned liver partition line

Fig. 1 Forty-second videos was taken for surgical practice and has a

resolution of 1920 9 1080.Intraoperative lighting setting: bright
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suture needle, we improved it so that the needle holder can be dis-

tinguished by attaching a bounding box together with the suture

needle. By annotating in this way, it is considered that the recognition

accuracy when the image of the needle holder is blurred can be

improved (Fig. 2). Suture needles were also used, but, for these three

reasons, that the size of the suture needle is small, it is rarely seen

depending on the angle, and it is often pinched by a needle holder, we

didn’t annotate the bounding-box individually. The annotation of

surgical operation (work-flow) phases was carried out in all 42 video

movies. Six consecutive phases in the canine spay surgery were

recognized. Since selected tools are used in specific phases, correla-

tions between tools and phases are helpful for the automatic phase

recognition.
Conclusion

We made the data set for tool recognition and phase recognition while

the canine spay surgery is carried out using a simulation model. The

annotation data-set of surgical instruments (tools) and surgical oper-

ation (work-flow) phases were obtained using the simulation of the

canine spay surgery, ovariohysterectomy. The next step is the

designing of a neural network to recognize these tools and surgical

phases. We had an opportunity to collaborate with veterinary sur-

geons in a veterinary medicine school. We also plan the similar

simulation in oral and maxillofacial surgical procedures.
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Purpose

Craniosynostosis is a congenital defect characterized by the prema-

ture fusion of one or more cranial sutures. This medical condition

usually leads to dysmorphic cranial vault and may cause functional

problems. Surgical correction is the preferred treatment to excise the

fused sutures and to normalize the cranial shape of the patient.

Open cranial vault remodeling is the standard surgical technique

for the correction of craniosynostosis. This approach consists of three

steps: osteotomy and removal of the affected bone tissue, reshaping

the bone fragments into the most appropriate configuration, and

placement and fixation of the reshaped bone fragments to achieve the

desired cranial shape [1]. Nowadays, surgical management of cran-

iosynostosis is still highly dependent on the subjective judgment of

the surgeons and, therefore, there is high variability in the surgical

outcomes. Inaccuracies in osteotomy and remodeling can compromise

symmetry, harmony, and balance between the face and the cranial

vault and, therefore, the aesthetic outcome.

In a previous work [2], we presented a novel workflow for intra-

operative navigation during craniosynostosis surgery. This system

requires a tracked pointer tool to estimate the positions of bone

fragments by recording points along their surface. Although this

methodology presents a high accuracy, it is time-consuming and does

not enable real-time tracking of the bone fragments. Continued

monitoring of individual fragments� position would facilitate intra-

operative guidance and improve matching with the virtual surgical

plan.

In this study, we present and evaluate a novel workflow for real-

time tracking of bone fragments during open cranial vault remodeling

combining patient-specific 3D printed templates with optical tracking.

The proposed methodology was evaluated through surgical simula-

tions in a 3D printed phantom.
Methods

A 3D printed phantom was designed and manufactured to replicate a

realistic scenario for surgical simulation and performance evaluation.

This phantom is based on data from a patient with metopic cran-

iosynostosis previously treated in our center. Bone and soft tissue

were simulated with polylactic acid and silicone materials,

respectively.

Experienced craniofacial surgeons performed a virtual surgical

plan to define the location of osteotomies to remove the affected bone

tissue, the best approach to reshape the bone fragments, and the

optimal position of the fragments in the patient to achieve the desired

cranial shape. Two different interventional plans were defined to

create two distinct scenarios for surgical simulation: a simple plan,

with symmetric overcorrection and adjacent to anatomical landmarks;

and a complex plan, with asymmetric overcorrection and distant to

characteristic anatomical References.

We developed a surgical navigation system based on optical

tracking and desktop 3D printing to guide surgeons during the

intervention (see figure 1). First, a patient-specific template was

designed and 3D printed according to the virtual surgical plan. This

template enables the surgeons to reshape the bone fragments of the

supraorbital region as defined during planning. In addition, this

template incorporates spherical optical markers for position tracking.

Then, the reshaped bone fragments can be attached to the template

and their position can be computed in real-time by the optical tracking

system. To our knowledge, this is the first approach to track the

position of bone fragments using patient-specific 3D printed

templates.

A software application was specifically developed to display the

3D position of the bone fragments during surgery with respect to the

patient’s anatomy, providing visual and acoustic feedback to the

surgical team to ensure optimal placement and fixation according to

the preoperative virtual plan. A 3D printed reference frame is attached

to the patient to compensate for possible movements during surgical

Fig. 2 An example of tool annotation. Needle holder, holding the

suture needle
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intervention, and a stylus tool is used to record landmarks for patient-

to-image registration.

The accuracy of this navigation system was evaluated by simu-

lating the surgical intervention using a 3D printed phantom. A total of

20 surgical simulations were performed in two scenarios with dif-

ferent complexity (i.e. simple and complex virtual plans). An

experienced user performed 10 simulations using the navigation

system, and 10 simulations using the standard freehand approach

(without navigation). The final position of the supraorbital bone

fragment was computed by recording the position of 5 pinholes using

the optical tracker. This position was compared with the virtual plan,

and translation and rotation errors were computed for each simulation.
Results

Average translation and rotation errors show increased performance

when using the navigation system (see table 1). The navigated sim-

ulations showed a similar positioning accuracy in both simple and

complex scenarios, presenting an average error below 1 mm in

translation and 1 degree in rotation. However, the standard freehand

approach showed a lower accuracy in the complex surgical scenarios,

with maximum errors of 7.91 mm in translation and 5.21 degrees in

rotation.
Conclusion

The proposed navigation workflow enables an accurate reshaping and

positioning of the remodeled bone fragments to match the preopera-

tive virtual plan. In contrast with previous approaches, this technique

provides surgeons with real-time 3D visualization and metrics to

accurately control the bone fragment position during cranial remod-

eling. Our framework outperforms the standard freehand approach for

remodeling in both simple and complex surgical scenarios, showing a

higher accuracy and potential to improve surgical outcomes.

Our novel methodology based on intraoperative navigation and 3D

printing can be integrated into the current surgical workflow to ensure

an accurate translation of the preoperative surgical plan into the

operating room. This solution could improve the reproducibility of

surgical interventions and reduce inter-surgeon variability.
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Cuéllar C, Darriba-Allés JV, Garcı́a-Leal R, Calvo-Haro JA,
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Purpose

In addition to visual assessment for tumor differentiation, palpation of

tissue by the surgeon during surgery is of great importance, for

example during resection of intracranial lesions. This intraoperative

differentiation of soft tissue can be a challenging task that usually

requires years of expertise and intuition. For this reason, research is

currently being conducted on tactile sensors as an assistive device for

better tumor delineation. However, these sensors are typically inten-

ded for robotic applications which are not usable in every surgical

Fig. 1 Intraoperative navigation system for open cranial vault

remodeling

Table 1 Average translation and rotation errors in the positioning of

the remodeled supraorbital fragment for two different scenarios:

simple and complex

Scenario Mode Translation error (mm) Rotation error (�)

Mean Std. Max. Mean Std. Max.

Simple Freehand 1.5 0.61 2.47 2.37 1.11 4.45

Navigated 0.52 0.33 1.16 0.68 0.52 1.74

Complex Freehand 2.85 2.36 7.91 2.04 1.48 5.21

Navigated 0.56 0.29 1.09 0.65 0.65 1.77

Int J CARS (2021) 16 (Suppl 1):S1–S119 S107

123

https://doi.org/10.1142/9789814295109_0013
https://doi.org/10.1038/s41598-019-54148-4
https://doi.org/10.1038/s41598-019-54148-4


case and are required to measure the force applied to the tissue. This

leads to the development of new devices that must be integrated into

the surgical workflow. On the other hand, ultrasonic aspirators are

commonly used as hand-held instruments during tumor resec-

tion. Since ultrasonic aspirators and piezoelectric tactile sensors

operate in a similar manner, the idea of using a commercially avail-

able ultrasonic aspirator as an intelligent intraoperative probe for

tissue differentiation is motivated. This eliminates the need to change

instruments during surgery and improves the workflow of the sur-

geons. The final aim is to predict the tissue properties by only using

the electrical features of the ultrasonic aspirator, and by that com-

pensating for the missing contact force which is not available in this

surgical instrument. In the following, it is investigated as a first step in

a simplified laboratory setting, whether machine learning methods can

learn a relationship between the electrical features of an ultrasonic

aspirator and the mechanical properties of different tissues.
Methods

Data is acquired using four synthetically created tissue models. Each

tissue model represents a different tissue consistency and is charac-

terized with a stiffness value that is derived from its chemical

contents. This means that the higher the stiffness value, the higher the

tissue model consistency. Data acquisition is done with a CNC

machine that holds the ultrasonic aspirator directly over the tissue

model, brings it into contact and moves up again while exerting as

little force on the tissue model as possible. Furthermore, the settings

of the instrument are set to a non-resection mode so that the tissue

model remains intact. For each tissue model, seven or eight record-

ings are made, each having a length of 12–24 s at a recording

frequency of 21 Hz. This results in a total of 30 recordings with more

than 11,000 data points, each of which containing the corresponding

stiffness value and several electrical features of the ultrasonic

aspirator.

Since tissue properties can take different continuous values,

regression is performed on the different stiffness values using the

electrical features as input. In order to perform a regression on this

data, three empirically determined nonlinear methods are used. The

first two methods are deep learning-based regression models: a Fully

Connected Network (FCN) that takes the features as input to regress

to the respected stiffness value and a 1D Residual Network (ResNet)

which uses a sliding windows approach with a window size of four

seconds to regress to the center point of the window. While the first

method is only taking information of the current data into account for

the regression, the latter method tries to leverage temporal informa-

tion of the adjacent data to increase performance. The last method

uses a Gaussian Process (GP) with an exponential kernel to determine

the stiffness value. An advantage of using GPs for a regression is the

incorporation of uncertainty into the predictions, which can be ben-

eficial in later applications.
Results

A five-fold cross-validation is conducted over the 30 recordings with

a total of more than 11,000 data points. The same splits are used

across the different methods and normalized to have zero mean and

unit variance. Data points without any contact to the tissue models are

assumed to have a stiffness value of zero. To evaluate the perfor-

mance of the methods, the metrics root-mean-square error (RMSE),

mean absolute error (MAE) and R2 are obtained and averaged over

the five folds. The summarized results of the regression can be found

in Table 1. For all methods, a high R2 value of more than 0.9 can be

obtained. Since the two deep learning-based methods show similar

results it can be deduced that there is limited impact of temporal

information to the predictions. The GP regressor model yields supe-

rior performance compared to the deep learning-methods. A

qualitative result of the GP can be found in Fig. 1. Particularly

noteworthy are the large uncertainties in the area of the jump dis-

continuities of the signal and the samples around. Those jump

discontinuities are caused by bringing the instrument into contact with

the tissue model and removing it again, and pose a challenge in the

methods investigated. However, the communication of the uncertainty

of the model’s prediction to the user allows to reject the prediction in

a later clinical application, which can be particularly relevant in this

safety–critical environment.
Conclusion

This work shows the possibility to learn a relationship between the

electrical features of an ultrasonic aspirator and the mechanical

properties of tissue models with a R2 metric of more than 0.9. This

indicates the feasibility to distinguish between different tissue types

using the surgical instrument. Future work needs to investigate the

performance on a larger variety of mechanical properties and the

influence of contact force. Furthermore, a more in-depth analysis of

the temporal influence to the regression is necessary, especially dur-

ing initial and final contact with the tissue model. In addition,

performance on data involving resection of tissue needs to be

investigated to pave the way for later clinical application.
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Table 1 Results of different methods on five-fold cross-validation in

mean ± standard deviation

Methods RMSE MAE R2

FCN 0.894 ± 0.619 0.473 ± 0.409 0.906 ± 0.106

ResNet 0.823 ± 0.870 0.454 ± 0.621 0.903 ± 0.188

GP 0.561 ± 0.539 0.286 ± 0.365 0.940 ± 0.092

Fig. 1 Example of regression with GP on 400 test data points. In

areas with large deviation of ground truth, high uncertainty occurs
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Purpose

The accuracy of image-based navigation tools is essential for their

benefit during an intervention. Validation of such systems requires

phantoms with similar properties of the human target structure

including the visibility under certain imaging devices. An already

introduced patient-specific cardiac phantom focuses on clinical

training [1], though not on validation of image-guided techniques. We

introduce here the method of creating a patient-specific phantom to

validate XR-based navigation tools, allowing identification of unique

target points. The phantom was created by 3D-printing of a left atrium

(LA) cast model, segmented from a patient-specific CT volume,

which was filled with a silicon compound. Predetermined anatomical

landmarks could be validated under MRI and XR.
Methods

Phantom Creation

Patient-specific 3D model of the LA was segmented from CT-dataset

(Fig. 1a). The segmented model was modified to obtain an offset

between two LA hulls of 4 mm with the outer layer corresponding to

the original segmentation in scale 1:1. A flange was placed at the

location of the mitral valve to hold the hulls in place. Besides, 3-mm-

diameter connectors were placed annularly around the pulmonary

vein pairs to provide ‘‘negative’’ anatomical landmarks. The resulting

cast model (Fig. 1b) was printed and subsequently filled with

DragonSkinTM 10 MEDIUM mixed with Silicon ThinnerTM

(SmoothOn, Macungie, Pennsylvania, USA) in a ratio of 3:2

(Fig. 1c). After removing the printout from the dried silicon, sepa-

rately printed cylinders of height 6 mm and diameter 3.5 mm were

inserted into negative anatomical landmarks of the silicon model

(Fig 1d).

Validation

3D MRI volume of the silicon model was generated at a resolution of

0.34 mm/0.34 mm/1.0 mm with a T2-weighted TSE sequence on a

3.0T Philips Achieva, R5.6 (Philips Medical Systems B.V, Best, The

Netherlands). 12 of the predetermined landmarks were approached

under XR (AlluraXper FD20/10, Philips Medical Systems B.V,

Eindhoven, The Netherlands) with various C-arm angulations using a

TherapieTM Cool PathTM Duo ablation catheter (St. Jude Medical,

St. Paul, Minnesota, USA). During landmark approach, the phantom

was fixed with tape on the interventional table. To evaluate the fea-

sibility of the phantom for accuracy validation of XR-navigation

tools, the 3D landmark positions approached under XR were com-

pared to the target landmark positions determined in the cast model

using the average Euclidean distance (aed) and the standard deviation

(±). Therefore, 3D reconstruction of the catheter tip approaching the

landmarks from two differently angulated 2D XR fluoroscopies was

done using the 3D-XGuide [2] after manual registration of the 3D

MR-Phantom segmentation to XR fluoroscopies. To determine whe-

ther deviations already occurred during phantom creation,

segmentation and landmark positions in the MRI were additionally

compared to the target structures.
Results

The silicon phantom achieved a measurable MRI signal (Fig. 1a),

resulting in an accurate segmentation including the marker positions

as non-signal. The thinner amplifies the MR signal and also ensures a

lower viscosity and thus a better distribution of the silicon in the

casting model. Point cloud comparison of MRI-segmentation and

target-segmentation resulted in aed of 0.6 mm (± 0.4 mm) and a

maximum deviation of 2.6 mm (Fig. 2b). The silicon phantom is

visible in XR. In contrast to the inserted printed markers (Fig. 2c),

negative markers appear in visible contrast to the silicon model in XR

(Fig. 2d), depending on C-arm angulation. Further, evaluation of the

accuracy of the phantom based on comparison of the 3D marker

positions, resulted in an aed of 1.5 mm (± 0.6 mm) between XR-

reconstruction and target-segmentation, 0.9 mm (± 0.2 mm) between

MR-landmarks and target landmarks, and 1.7 mm (± 0.7 mm)

between MR segmentation and XR reconstruction (Fig. 2e). The

cutout in the mitral valve provides a good opportunity for marker

placement and visibility inside the phantom without distorting the

anatomy (Fig. 2f).
Conclusion

The silicon phantom is clearly visible under MRI and XR, which

allows accurate anatomic mimicking of the patient’s specific atrium

including the identification of anatomical landmarks. The elasticity of

the silicon phantom represents a rough approximation of tissue

Fig. 2 Results: slice of MR-volume (a), MR-cast model comparison

(b), XR of catheter and silicon phantom including printed markers

(c) and negative markers (white arrows) (d), comparison of marker

positions reconstructed from XR (blue), MR marker positions

(yellow), and cast model (red) annularly arranged around left superior

and inferior vein (LSPV, LIPV) (e), view during landmark approach

(f)

Fig. 1 Phantom creation: segmentation of patient CT (a), cast model

(b), printed cast model with removed flange and dried silicon mixture

(c), silicon phantom with markers (d)
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elasticity and is a property of the silicon compound that allows vis-

ibility under MRI. However, the maximal deviation of the MRI-cast

model comparison could be attributed to the sinking of the silicon

model as a result of the elasticity. Similarly, the deviations in the XR

measurements might be related to the elasticity, but also to the manual

registration of the phantom model in XR configuration. To reduce the

elasticity, a lower proportion of thinner in the silicon compound could

be tested. The silicon phantom allowed identification of unique target

points with XR and MRI, thus enabling accuracy validation of static

XR-based navigation. Additionally, the patient-specific phantom has

high accuracy, might enable usage for pre-procedural planning and

clinical training.
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Purpose

We have been tackling to develop computer-aided detection of cancer

metastases on FDG-PET/CT data based on AI anomaly detection [1].

FDG-PET is an effective modality to find metastases of cancer, but

such accumulations of FDG to hypermetabolic regions suffer radi-

ologists to read the image. Our previous studies showed that the

simple voxel anomaly detections with simple features, such as raw

voxel intensities, caused many false positive (FP) voxels due to

physiological FDG accumulations. This study proposes a two-step

anomaly detection process with Mahalanobis distance-based anomaly

detection and anomaly detection using a one-class support vector

machine (OCSVM). The proposed method uses not only the raw

voxel intensities but also intensity curvature features [2]. We exper-

imented with using the clinical images to investigate the effectiveness

of the proposed method.
Methods

Figure 1 shows the flowchart of the proposed method. The proposed

method includes a two-step anomaly voxel classification. It consists

of (1) a coarse anomaly detection by a Mahalanobis distance to

extract suspicious areas (SAs) and (2) a detailed anomaly detection by

using OCSVM to detect lesion voxel candidates from the SAs.

First, CT and FDG-PET images are resampled to 2.4 mm isotropic

resolution. Second, bone areas are extracted from the iso-scaled CT

data. The bone area extraction consists of thresholding the HU value,

a connected component analysis, and morphological processes. Third,

the Mahalanobis distance from normal bone voxel data is measured at

each voxel in the extracted bone area. The two features for measuring

the Manalanobis distance are voxel intensities of CT image (HU

value) and FDG-PET image (SUV). Thresholding the Mahalanobis

distance provides the SAs, which are bone voxel clusters with

abnormal intensities. Fourth, the detailed voxel analysis using the

OCSVM with seven voxel features and an RBF kernel is performed to

the voxels in the SAs to detect the metastasis voxel candidates. The

seven voxel features are HU value, SUV, two curvature parameters

(mean curvature and gaussian curvature) of the HU value surface and

the SUV surface, and the Mahalanobis distance measured at the last

step. The metastasis voxel candidates are detected by the thresholding

for the degree of voxel anomaly calculated using the OCSVM.

Normal distribution parameters for measuring the Mahalanobis

distance and the OCSVM are learned in an unsupervised fashion with

29 normal FDG-PET/CT data cases. The hyperparameters of the

OCSVM and the thresholds of the two anomaly detections are

adjusted experimentally.

In the experiments for evaluating the proposed method, ten clin-

ical FDG-PET/CT data cases, including 19 bone metastases, were

used. These data were scanned at Kindai University Hospital and

Hyogo College of Medicine Hospital.
Results

The experimental result shows that the proposed method brought

100% bone metastasis sensitivity with 131.7 voxels/case FPs. As

shown in Table 1, the number of the FPs was smaller than when one

of the components of proposed two-step anomaly detection, which

was by the Mahalanobis distance or by using the OCSVM, was used.

Table 1 Comparison of detection performances

Sensitivity (%) FP voxels/case

Proposed method 100 131.7

Only Mahalanobis distance 100 473

Only OCSVM 100 1100.9

Fig. 1 The flowchart of the proposed method
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Conclusion

We proposed the detection method of bone metastases on FDG-PET/

CT data using two-step anomaly detection with the Mahalanobis

distance calculation and the OCSVM. The evaluation experiments

show that the proposed method has an adequate detection accuracy of

bone metastasis. Future works include developing the lesion area

estimation process based on the detected lesion voxel candidates and

developing an accurate lesion area identification using features

quantifying the local image pattern characteristics.This work was

supported by JSPS KAKENHI Grant Number 20K11944.

References

[1] Tanaka A, Nemoto M, Kaida H, Kimura Y, Nagaoka T, Yamada

T, Hanaoka K, Kitajima K, Tsuchitani T, Ishii K (2020) Auto-

matic detection of cervical and thoracic lesions on FDG-PET/

CT by organ specific one-class SVMs. Int J Computer Assisted

Radiology and Surgery 15(Suppl 1): S208-S209

[2] Monga A, S Benayoun (1995) Using Partial Derivatives of 3D

Images to Extract Typical Surface Features. Computer Vision

and Image Understanding 61(2): 171–189

Benign and malignant non-cystic breast lesion

differentiation on the ultrasound image

D. Pasynkov1, I. Egoshin2, A. Kolchev3, I. Kliouchkin4,

O. Pasynkova5, A. Shefer3

1Mari State University, Radiology and Oncology, Yoshkar-Ola,

Russian Federation 2Mari State University, Applied mathematics

and informatics, Yoshkar-Ola, Russian Federation 3Kazan Federal

University, Yoshkar-Ola, Russian Federation 4Kazan State Medical

University, General Surgery, Kazan, Russian Federation 5Mari State

University, Fundamental Medicine, Yoshkar-Ola, Russian Federation

Keywords breast lesion, benign, malignant, ultrasound

Purpose

Breast cancer (BC) remains an important problem for the worldwide

healthcare system. Each year more than one million BC cases is

diagnosed, and BC itself represents almost a quarter of all malig-

nancies in women. The highest morbidity values are typical for

developed countries and they correspond to more than 360,000 new

cases per year in the Europe and more than 200,000 new cases per

year in the USA. Moreover in women BC is the most frequently seen

malignancy (24.2% of all malignancies) that responsible for the

highest proportion of the cancer-related deaths (15.0%).

The most relevant strategy to decrease BC-related mortality

nowadays corresponds to the wide introduction of mammographic

screening. However, along with the improving of ultrasound (US)

equipment, they performed large studies, according to which the

incremental cancer detection rate for the combination of mammog-

raphy and US is 2.2–14.2 (median: 5.2) per 1000. The majority of the

BCs detected by US were less than 1 cm, noninvasive and had no

nodal metastases. Such approach can be easily introduced into the

population screening programs for women with low or intermediate

BC risk and dense breast parenchyma. However the limitations

include the relatively high rate of false positive results that require

future assessment and biopsy (BIRADS 3–5 lesions were found in

approximately 25% of women).

During the US examination in case any lesion is found, the first

question is to decide if this lesion cystic or solid. On the second step it

is important to characterize the solid lesions as benign or malignant,

that was the aim of our study.

Methods

We used the digital 8-bit ultrasound images of 107 histologically

proven (53 malignant and 54 benign, without regard to their histo-

logical subtype) breast lesions obtained with the help of the following

systems: Siemens-Acuson X150, Esaote MyLab C, Mindray DC-8EX

(see Fig. 1a, d).

To characterize the detected lesions as malignant or benign it is

proposed to analyze the areas of the image that surround the lesion.

At the first step, the segmenting of the outer contour of the lesion is

performed (see Fig. 1b, e) both in semi-automatic and manual (or

correction of an automatically selected contour) modes. The features of

the gradient difference in the brightness of the image pixels were taken

into account to implement the semi-automatic selection of the lesion

external area. From the center of lesion, rays were conducted with a

given degree of inclination relative to the horizontal axis along the

entire circumference. The brightness of the pixels located on the ray

was used to calculate the difference of the gradients using one-di-

mensional filter window of a given size. And the smallest and largest

extrema corresponded to the approximate boundaries of the required

segmented area.

The border of the selected area was subjected to subsequent cor-

rection by filtering the points of the border [1]. If the Euclidean

distance between the points of the area border and the nearest points

of their regression line is greater than the threshold, then this point

was replaced with an interpolated one. Here the threshold was cal-

culated using the Niblack method. This approach allowed to get rid of

abrupt changes in the boundaries of the object, which give a false

result when selecting the area.

At the second step, the selected area was assigned to one of the lesion

groups on the basis of its statistical characteristics of the brightness

distribution, textural features (Haralick, Tamura, etc.) [2], as well as

geometric features (broadening) of the selected surrounding area of the

object. When obtaining textural features, not only the original images

were used, but also their transformations with the help of various

operators, and the difference between the textural features obtained

with different parameters of the algorithms was taken into account.

The support vector machine with different kernels of the trained

model was used as a classifier (see Fig. 1c, f).

Finally we compared the rate of differentiation mistakes made by

trained radiologist and our software before the biopsy.

Results

Our approach was able to correctly characterize 49 of 54 (90.7%)

benign and 51 of 53 (96.2%) malignant lesions. On the contrary, with

the bare eye it was possible to identify correctly 46 of 54 (85.2%)

Fig. 1 a, d—Input US images of the malignant and benign breast

lesions, respectively; b, e—Segmented lesions and their surrounding

belts; c, f—Software output for a, d images, respectively
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benign and 49 of 53 (92.5%) malignant lesions. The corresponding

overall specificity values were 90.7% and 86.0%, respectively.
Conclusion

Automated approach may surpass the visual assessment performed by

trained radiologist that can be clinically relevant.
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Purpose

The number of patients with dementia is increasing rapidly due to the

recent super-aging society. Early diagnosis of dementia can help to

reduce the incidence of the disease and to determine the optimal

treatment for the patient.

A single-photon emission computed tomography (SPECT) scan

visualizes the distribution of blood flow in the brain. Typical

dementia, such as Alzheimer’’s disease (AD), dementia with Lewy

bodies (DLB), or frontotemporal dementia (FTD), shows reduced

blood flow in different parts of the brain. We proposed a convolu-

tional neural network (CNN) [1] for the classification of patients with

AD, DLB, and FTD, and healthy controls (HCs).

This paper presents the improvement of the dementia classification

accuracy by combining the CNN with an attention mechanism [2],

which can lead the attention of the CNN to a specific part of brain.
Methods

The input SPECT volume was standardized by a three-dimensional

stereotactic surface projection in terms of spatial coordinates and gray

values, that is, a WSFM image with normalized density values from 0

to 1. In addition, Z-score volumes were generated by referring to four

sites: whole brain, cerebellum, thalamus, and pons. The input of the

CNN is a set of five volumes of a subject, or WSFM and four Z-score

volumes.

The proposed network is shown in Figure 1, where the CNN [1] of

the perception branch is combined with the attention branch network

(ABN) trained using an attention map [2].

First, the whole network was trained by minimizing the following

loss function

Labn ¼ Lper þ Latt ð1Þ

where Lper and Latt are cross entropy losses for the perception and

attention branches, respectively, computed using classification labels.

The trained network generates an attention map M(xi) of a case xi to

emphasize feature maps and visualizes the region of attention.

Next, the ABN was fine-tuned using the loss function below

L ¼ Labn þ cLmap ð2Þ

where c is a constant value and Lmap evaluates the difference between

the attention map and a map manually designed by a user. It is dif-

ficult for our study to manually design the teacher map because of the

large variety of locations of reduced blood flow that depends on the

dementia class. This study proposed a loss Lmap that encourages the

values of the top N % voxels of the attention map to be 1. Note that

Lmap is calculated in different brain parts depending on the dementia

class, and the brain part P(xi) was manually specified for each

dementia class by the authors in advance. Specifically, the parietal

lobe, temporal lobe, and posterior cingulate gyrus are the parts for the

AD class; parietal and occipital lobes for the DLB class; frontal and

parietal lobes for the FTD class; and none for the HC class.
Results

The materials were 421 SPECT volumes of 60 9 77 9 59 voxels

comprising 119 AD, 109 DLB, 93 FTD, and 100 HC cases. We

conducted a three-fold cross validation in which the training, vali-

dation, and testing volume ratios were 4:1:1. The flip of an input

volume was performed as an augmentation with a probability of 0.5.

The Adam optimizer was used in which the initial learning rate for the

training of the whole network was 0.001 and it was multiplied by 0.1

at every 100 epochs. In the fine-tuning of ABN for attention induc-

tion, the learning rate was fixed at 0.0001. N was set as 50%.

Table 1 shows the classification results of the proposed network,

and the differences from the conventional network [1] are presented

in parentheses. Consequently, the classification accuracy was

increased by 2.8 points by the proposed network with attention

induction.
Conclusion

This study presented a method that can induce the attention of the

network to the specific brain part. We applied the network trained by

the proposed method to the classification of dementia (AD, DLB, and

FTD) and HC. The experimental results of the three-fold cross

Fig. 1 Proposed network for dementia classification using attention

induction

Table 1 Classification results of the proposed network

True Prediction

HC AD DLB FTD Sensitivity

(%)

Accuracy

(%)

HC 79 (- 6) 8 (3) 6 (2) 7 (1) 79 (- 6) 80 (2.8)

AD 6 (- 3) 94 (9) 9 (- 2) 10 (- 4) 78 (7)

DLB 9 (- 1) 2 (- 5) 97 (6) 1 (0) 88 (5)

FTD 10 (- 4) 11 (1) 5 (0) 67 (3) 72 (3)
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validation demonstrated the effectiveness of the proposed method.

Optimization of N and suppression of attention remain as future

works. We will improve the classification accuracy of cases with

atypical attention patterns in the future.
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Purpose

At present, the research & development of computer-aided diagnosis

(CAD) is being conducted in various medical fields. Because of the

difficulty in separating the large intestine from peripheral organs,

little development has been carried out in the area of CAD that

employs CT. Recently, due to improved endoscopic precision and the

widespread use of CT colonography, research has been underway into

such areas as applying CAD to discover colorectal cancer. However,

endoscopy and CT colonography require advance preparation. CT

colonography in particular is difficult to conduct in some cases

because of stress placed on the colon when the colon is inflated by

injecting carbon dioxide gas.

In this study, research & development was conducted into a

method for detecting, at high resolution, the large-intestine region

from plain abdominal CT images captured during an abdominal

examination. This method makes it possible to acquire images for use

in CAD development without necessitating colon-stressing CT

colonography. The concordance rate of 71% between the detection

results of this method and manual detection demonstrate this meth-

od’s detection performance.
Methods

1. Procedural Flow for the Extraction of the Large-intestine Region

Figure 1 shows the procedural flow of the proposed incremental

learning method

2. Preprocessing

As preprocessing, first-gradation conversion processing was per-

formed to enhance the large intestine. In this study, gradation

conversion was performed with the window level set to 50 HU—the

ordinary value for the abdomen—and, in consideration of subsequent

gas detection, the window width was set to 400 HU.

Next, bone-region detection and the detection of gas regions inside

the intestine were conducted.

During subsequent multi-stage extraction using a threshold value,

because of a tendency for incorrect extraction around the spine and

some rib areas, bone-region extraction is conducted in advance for use

as a feature.

3. Method of Extracting the Large-intestine Region Using Multi-

stage Region Extraction[1, 2].

The multi-step extraction method used for large-intestine extrac-

tion is a method for detecting the optimal shape based on the set

features by binarization while gradually changing the threshold from

a high value to a low value. Digitization is conducted by gradually

changing the threshold value from high to low. Detection of the

optimal shape is carried out based on the features that have been set.

Images for which gradation conversion was performed at widths in

the range of –350 HU to 450 HU using the above gradation process

were processed by setting the initial threshold value to 90 HU and

then by subtracting in 10 HU increments until 0 HU was reached.

Individual seed points are set for each extraction region to reduce the

shifting of extraction regions caused by threshold fluctuations. For

each of these regions, an optimal threshold value is determined using

extraction results for gas regions inside the intestine, bone-region

information, circularity and shape features, and features such as

centroids. Because there are also cases of the large intestine existing

in multiple areas on a slice, individual optimal threshold values are set

for each extraction area. This enables the precise extraction of the

large-intestine region.
Results

The detection results of the colonic region by this method are shown

in Fig. 1 (Left) and the manual extraction results are shown in Fig. 2

(Right) for comparison. The concordance rates of the detection results

are 71%, demonstrating high detection performance.

Some of the incorrect detection results can be attributed to

looseness in setting the threshold for regions where body surface fat

Fig. 1 Large-intestine region extraction procedural flow

Fig. 2 Detection results of the present. (Left: present method, Right:

manual extraction)
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regions, the small intestine, and the large intestine adjoin with other

organs.
Conclusion

In this paper, a method for extracting the large-intestine region using

plain abdominal CT images was proposed. A multi-stage extraction

method enabled the precise extraction of the large intestine, which

tends to have faint contrast with peripheral organs. A comparison of

the detection results of the present method with manual detection

results indicates a concordance rate of 71%, verifying the extraction

performance of the present method.

While the present method is capable of extracting the large

intestine from plain abdominal CT images, there were no colorectal

cancer cases in the samples used in this study. However, the high-

level extraction results obtained with the present method suggest that

it can be expected in the future to be applied to colorectal cancer

detection methods that use plain abdominal CT images.
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Purpose

The purpose of this study was to use machine learning experiments

and information gain ranking to determine the relative importance of

several breast mass fine-needle aspirate (FNA) diagnostic features in

correctly differentiating malignant from benign breast disease, with

the goal of understanding what features may be most important in

predicting malignancy.
Methods

A dataset from the University of Wisconsin consisting of 699 cases

was used to train a machine learning algorithm, BayesNet, to cor-

rectly classify breast FNA results as benign or malignant on the basis

of nine cytopathological attributes: bare nuclei, bland chromatin, cell

clump thickness, marginal adhesion, mitoses, normal nucleoli, single

epithelial cell size, uniformity of cell shape, and uniformity of cell

size [1]. All data analysis was performed using the Weka machine

learning platform [2]. Information gain ranking of the attributes was

calculated to identify the relative importance of each of the nine

cytopathologic attributes in correctly distinguishing malignant from

benign lesions. First, the classifier was applied to the dataset with all

nine cytopathologic attributes included. Next, the classifier algorithm

was applied with attributes successively removed, starting with

removal of the attribute with the lowest information gain ranking and

continuing through to removal of all but the attribute with the highest

information gain ranking. After each successive removal of an attri-

bute from the dataset, the classifier was re-applied, and changes in

classifier performance with each attribute reduction were recorded.

Three additional experiments were performed: (1) the classifier was

applied using only data from lowest-information gain attribute (2) the

classifier was applied using only data from the highest-information

gain attribute and (3) the classifier was applied using only data from

the two highest-information gain attributes. Classifier performance

was measured using Area Under the Receiver Operator Curve (AUC),

Kappa statistic and percent accuracy of classification. ZeroR, a

classifying algorithm that selects the most common classification and

applies it to all cases, was used as a control classifier. Stratified ten-

fold cross validation allowed for the use of one dataset for both

classifier training and testing (Fig. 1).
Results

Information gain ranking revealed degree of mitoses as the least

valuable attribute for correctly predicting malignancy, while cell size

uniformity and cell shape uniformity were determined to be the most

important attributes. In order of most to least information gain, the

attributes were: cell size uniformity, cell shape uniformity, bare

nuclei, bland chromatin, single epithelial cell size, normal nucleoli,

clump thickness, marginal adhesion, and mitoses. With all nine

attributes included, the AUC was 0.992, with percent correct classi-

fication of 97.1% and Kappa of 0.937. Removing mitoses from the

dataset improved the performance of the classifier by percent correct

classification and Kappa statistic, but AUC showed no significant

change: upon removal of this attribute, correct classification of

malignancy increased to 97.4%, Kappa increased to 0.944, and AUC

decreased slightly to 0.991. Using mitoses as the only attribute in the

dataset, the AUC was 0.683, the percent correct classification was

78.9%, and Kappa was 0.472. This performance was only marginally

better than the performance of ZeroR, the control algorithm, with

AUC of 0.496, percent correct classification of 65.5%, and Kappa of

0. The greatest decreases in performance by AUC were seen after

removal of the 7th attribute, cell shape uniformity, and after the

8th attribute, cell size uniformity. Removal of cell shape uniformity

decreased AUC from 0.987 to 0.971, decreased percent correct

classification from 95.4% to 94.3%, and decreased Kappa from 0.899

to 0.874. Further removal of cell size uniformity as an attribute

decreased AUC to 0.959, decreased percent correct classification to

92.4%, and decreased Kappa to 0.874. Removing these same two

high-information gain attributes from the data first, but maintaining

all seven other lower-information gain attributes in the dataset, yiel-

ded an AUC of 0.992, a percent correct classification of 97%, and a

Kappa of 00.934 (Table 1).
Conclusion

In this data set the degree of mitoses does not appears to significantly

improve classifier performance when the remaining 8 attributes are

available. Using only one or two of the highest information gain

ranked attributes results in relatively robust performance of the

classifier although there are small improvements in performance

when additional attributes are included, with the exception of mitoses.

Fig. 1 Comparison of information gain of cytopathologic attributes.

Mitoses provided the least useful information, while cell size and cell

shape uniformity provided the most useful information for correctly

identifying malignancy in breast FNA
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Inclusion of mitoses appeared to decrease the performance of the

classifier using the kappa statistic and correct classification rate.
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Purpose

Bone mineral density (BMD) evaluated by bone densitometry

(DEXA) is the international reference standard for diagnosing

osteoporosis, but DEXA is far from ideal when used to predict sec-

ondary fragility fractures [1]. These fractures are strongly related to

morbidity and mortality. New techniques are necessary to achieve

better prediction of patients at risk to develop fractures. Previous

literature showed that spine MRI texture features correlate well with

DEXA measurements [2]. Our aim is to evaluate vertebral bone

texture analysis searching for potential biomarkers to predict bone

fragility fractures secondary to osteoporosis.
Methods

The study group comprises 63 patients submitted to DEXA and spine

MRI: 16 healthy volunteers without osteoporosis and without verte-

bral fractures, 12 osteopenic patients without fractures and 12

osteopenic with fragility fracture, 12 osteoporotic patients without

fractures and 11 osteoporotic with fragility fracture.

T1-weighted (T1w) and T2-weighted (T2w) MRI were segmented

for feature extraction (figure 1).

In total, 1316 features were extracted from each vertebral body

(L1-L5), including shape and textures features. A few variations were

added using log and wavelets. All features were extracted using

pyradiomics.

We performed a binary classification, in which we aimed at pre-

dicting if there could be a fracture or not. In total, 97 volumetric

vertebral body were previously classified as osteopenia/osteoporosis

but had no posterior fracture and 97 volumetric vertebral body were

previously classified as osteopenia/osteoporosis and presented a

future fracture.

K-nearest neighbor (k-nn), Support Vector Machine (SVM),

Trees, Naive Bayes and Discriminant Analysis were tested separately

for classification, using tenfolds cross validation. We compared the

classifications with and without feature selection. We employed Chi

square tests and Principal Component Analysis (PCA) for the selec-

tion of features. The hyperparameters of every classifier considered in

the experiments were trained so that to achieve the best result. For

comparison, we use well-known measures, such as Accuracy, Preci-

sion, Sensitivity, F-Measure, and Area Under de Curve (AUC).
Results

Classification results using the features extracted from T1w and T2w

MRI, with binary classification predicting fracture or not are depicted

on Table 1. Note that, in general, SVM performed better with selected

features, achieving up to 95% AUC and 89% Accuracy.
Conclusion

Texture analysis from spine MRI achieved high diagnostic perfor-

mance for differentiation of patients with and without vertebral body

fragility fracture. The best results were obtained with feature selection

and combining texture features extracted both from T1w and T2w

images. Our results are promising and encourage prospective and

longitudinal studies to search for the best MRI features with potential

to become biomarkers.
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Table 1 BayesNet classifer performance with sequential removal of

cytopathologic attributes

Percent

correctly

classified as

malignant or

benign (%)

Kappa

statistic

Area

under

the curve

Successive

attribute

removed

All 9 Attributes 97.10 0.937 0.992 None

8 Attributes 97.40 0.9437 0.991 Mitoses

7 Attributes 97.30 0.9406 0.991 Marginal

Adhesion

6 Attributes 97.30 0.9405 0.989 Clump

Thickness

5 Attributes 96.40 0.9214 0.988 Normal

Nucleoli

4 Attributes 96.30 0.918 0.989 Single

Epithelial

Cell Size

3 Attributes 95.40 0.8993 0.987 Bland

Chromatin

2 Attributes 94.30 0.8741 0.971 Bare Nuclei

1 Attribute 92.40 0.8368 0.959 Cell Shape

Uniformity

The attributes were removed in order of least information gain to most

information gain, and the classifier was re-applied after each removal

Fig. 1 Example of MRI segmentations for patient 10. a Sagittal T1

weighted MRI. b 3D Segmentation of T1 weighted MRI. c Sagittal T2

weighted MRI. d 3D Segmentation of T2 weighted MRI
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Purpose

Low-grade gliomas (LGG) with co-deficiency of the short arm of

chromosome 1 and the long arm of chromosome 19 (1p/19q

codeletion) are longer survival and positive response to chemother-

apy. Therefore, it is important to diagnose whether the LGG has 1p/

19q codeletion or not in planning effective treatment for individual

patient. However, the gene analysis for 1p/19q codeletion requires a

lot of time and expense. In previous studies, computerized prediction

methods for 1p/19q codeletion from brain MRI (Magnetic Resonance

Imaging) images have been developed using a convolutional neural

network (CNN). Those CNNs trained the relationship between ROIs

(Region of Interest) including an entire tumor and teacher signals (1p/

19q codeletion or not). Those ROIs included not only the tumor but

also background tissue. Therefore, the CNNs might not be trained

focusing on the tumor. The purpose of this study was to develop a

computerized prediction method for LGG with 1p/19q codeletion

using a 3-dimensional attention branch network (3D-ABN) with an

attention mechanism that can extract features focusing on a tumor in

brain MRI images.
Methods

Our database consisted of brain T2-weighted MRI images obtained in

159 patients from The Cancer Imaging Archive (TCIA). Those ima-

ges included 102 LGGs with 1p/19q codeletion and 57 LGGs without

it. The image size was 256 9 256, whereas the number of slices was

from 20 to 60. T2-weighted MRI images first were interpolated to

isotropic voxel sizes by a linear interpolation method. A ROI

including an entire tumor was manually extracted from T2-weighted

MRI images.

Figure 1 shows a proposed 3D-ABN architecture. The 3D-ABN

was constructed from a feature extractor, an attention branch, and a

recognition branch. The ROIs with a tumor first was resized to

160 9 160 9 48 voxels and then inputted to the input layer of 3D-

ABN. The feature extractor had four convolutional blocks and

extracted feature maps from the input ROI. Each convolutional block

composed of the 3D convolutional layer, the batch normalization

layer, the rectified linear unit (ReLU) function, and the global average

pooling (GAP) layer. The feature extractor generated feature maps for

different resolutions from the second, third, and fourth convolutional

blocks. The 3D-ABN had three attention branches that generated

attention maps for weighting the tumor region. The attention maps

first were generated by using the feature maps from each attention

branch. The attention maps were then applied to the feature maps in

the attention mechanisms, as shown in Fig. 1. A tumor segmentation

mask was used for modifying the attention map in attention branch 1.

The recognition branch evaluated the likelihood of LGG with 1p/19q

codeletion using the feature maps from the feature extractor. The

recognition branch was constructed from three sub-networks con-

sisting of a GAP layer, two fully connected (FC) layers, two dropout

layers, and two ReLU functions. The features generated from the

three sub-networks were connected in the final FC layer. Finally, the

output layer with the softmax function outputted the likelihood of

LGG with 1p/19q codeletion.

A loss function for training the 3D-ABN was defined by a sum of

losses for the attention branches and for the recognition branch. The

losses for the attention branches and for the recognition were given by

mean squared error and a class-balanced cross-entropy with a weight

factor b, respectively. A three-fold cross-validation method was

employed to evaluate the classification performance of the proposed

3D-ABN. In training the proposed 3D-ABN, the learning rate, the

Table 1 Classification results for the extraction of features in T1 and

T2. Binary classification predicting fracture or not

Classifier Measure (%)

Accuracy Precision Sensitivity F-

Measure

AUC

Without feature selection

k-nn 84 82 87 84 84

SVM 86 82 91 86 95

Tree 81 80 84 82 90

Naı̈ve Bayes 66 61 93 73 67

Discriminant

Analysis

71 69 75 72 71

With feature selection

k-nn 88 89 88 88 88

SVM 89 88 91 89 95

Tree 77 75 80 78 82

Naı̈ve Bayes 73 71 77 74 82

Discriminant

analysis

82 84 78 81 87

Bold values represent the highest percentages while underlined values

represent the second-best result. For the feature-selected results, in

total, 69 out of 1316 features were considered

Fig. 1 Overview of the proposed 3D-ABN
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mini-batch size, the number of epochs, the weight factorb, and the

weight decay were set to 0.0001, 3, 50, 0.99, and 0.01, respectively.

The classification performance of the proposed 3D-ABN was com-

pared with that of a 3D-CNN constructed from four convolutional

layers, four batch-normalization layers, four max-pooling layers, and

three fully connected layers. The learning parameters for the 3D-CNN

were the same as those for the 3D-ABN. The classification accuracy,

the sensitivity, the specificity, the positive predictive value (PPV), the

negative predictive value (NPV), and the area under the receiver

operating characteristic curve (AUC) were used as the evaluation

indices of the classification performance.
Results

The classification accuracy, the sensitivity, the specificity, the PPV,

the NPV, and the AUC with the proposed 3D-ABN were 78.0% (124/

159), 79.4% (81/102), 75.4% (43/57), 85.3% (81/95), 67.2% (43/64),

and 0.804, respectively. All evaluation indices for the proposed 3D-

ABN were greater than those for the 3D-CNN (68.6%, 75.5%, 56.1%,

75.5%, 56.1%, and 0.736). The AUC for the 3D-CNN was improved

significantly by the proposed 3D-ABN (p\ 0.014). These results

implied that the proposed 3D-ABN was effective in predicting LGG

with 1p19q codeletion when compared as the 3D-CNN.
Conclusion

In this study, we developed a computerized prediction method for

LGG with 1p/19q codeletion in brain MRI images using the 3D-ABN.

The proposed method was shown to have a high classification per-

formance for 1p/19q codeletion and would be useful in planning

effective treatment for LGG.
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Purpose

Early identification of Diffuse Large B-cell Lymphoma (DLBCL)

patients with a poor prognosis from baseline 18F-FDG PET/CT scans

allows for the tailing of their curative remediation plan for an

improved chance of cure. However, this task often challenge since it

suffers from the problem of insufficient labeled data and severe class

imbalance. Deep learning-based algorithms have recently gained

momentum for a number of computer-aided diagnosis and prognosis

applications. In this work, we propose a novel multi-task deep

learning (DL)-based method for joint segmentation and predictive of

2-year progression-free survival (2y-PFS) of DLBCL, enabling out-

come prognostication directly from baseline 18F-FDG PET/CT scans.

Furthermore, in order to tackle the problem of data insufficient and

class imbalance, we introduce Batch Nuclear-norm Maximization loss

to the prediction matrix.
Methods

In this paper, we propose a multi task learning method for PET

images. The proposed method do the segmentation and classification

task in a end-to-end deep learning model, this deep learning model

takes PET volumes as inputs and produces two outputs, including a

volume-level prediction probability and a segmentation map. The

proposed network is shown in Fig. 1. We adopt U-Net as the back-

bone network as it achieves excellent performance in 3D medical

image analysis. There are three modules in U-Net architecture: (i) an

encoding module, (ii) a decoding module, and (iii) skip connections

between encoding module and decoding module. As shown in

Fig. 1q, there are four down-sampling operations in the encoding

module to extract high-level semantic features. Symmetrically, there

are four up-sampling operations in the decoding module to interpret

the extracted features from the encoding module to predict the 3D

segmentation map. Skip connections connect feature maps of same

level from the encoding module to the decoding module to propagate

spatial information and refine segmentation convolution layer. We

set all convolution kernel sizes to 3 9 3 9 3, every convolution

operation followed with batch normalization (BN) and rectified linear

unit (ReLU). We use Max-pooling to down-sample feature maps.

In our Multi-task U-Net architecture, we share the encoding

module for classification and segmentation task to extract common

features for those two tasks. As illustrated in Fig. 1, a classification

branch is added to the bottom of the U-Net, Firstly, feature maps from

bottom of the U-Net are fed into the classification network which has

a convolution layer and a fully connected (FC) layers, and followed

with one softmax layer to predict the input volume as 2-year pro-

gression-free survival (2y-PFS) of DLBCL. Since our task is label

insufficient and suffer from class imbalance problem. In order to

tackle this issue, we reinvestigate the structure of classification output

matrix of a randomly selected data batch.

As [1] find by theoretical analysis that the prediction accuracy

could be improved by maximizing the nuclear-norm of the batch

output matrix. Accordingly, to improve the classification perfor-

mance, we introduce Batch Nuclear-norm Maximization (BNM) on

the output matrix. BNM could boost the performance under label

insufficient learning scenarios.

A cohort study containing clinical data including baseline 18F-

FDG PET/CT scans of 124 patients was used for the evaluation of the

proposed method under a five-fold cross validation scheme.
Results

We use Accuracy, area under the receiver operating characteristic

(ROC) curve (area under the curve [AUC]), sensitivity and specificity

for quantitative evaluation of classification performance. For seg-

mentation, we use Dice similarity coefficient (DSC) to evaluate the

performance. We compare our method with two method: the alter-

native radiomic model and the model without BNM. As shown in

Table 1, our multi-task learning method achieves consistent

improvements on all metrics over radiomics model, this showing that

our multi-task deep learning model could learn better representation

of the PET images for classification and segmentation. Furthermore,

the multi-task learning framework could do the segmentation in the

same time. By introduce the BNM for our multi-task deep learning

model, we improve the AUC, Specificity and Dice, especially with

significant improves on Specificity and Dice, showing that the BNM

is indeed helpful for more effective tackle of this label insufficient

situation.

Fig. 1 Overall architecture of our method
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Conclusion

The proposed multi-task deep learning prognostic model achieved

much better results than the alternative radiomic model. Our experi-

mental results demonstrated that the proposed model has the potential

to be used as a tool for tumor segmentation of PET images and risk

stratification for patients with DLBCL.
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Purpose

2D ultrasound (US) is widely used in many clinical practices such as

needle biopsy and surgery guidance since it is real-time, safe and

cheap. Images are acquired using a handheld probe, resulting in a

series of 2D slices, which must be further related to the underlying 3D

anatomy of the patient for effective navigation. This could be

accomplished by simultaneously acquiring 2D images and tracking

the probe using an optical or electromagnetic (EM) tracking system.

Moreover, an US Probe Calibration (UPC) procedure should be

performed beforehand in order to get the spatial relationship between

the image plane and the probe.

An important component of the Augmented Reality (AR) US

frameworks is the underlying tracking system. Many commercial

solutions exist, for instance the NDI Polaris/Aurora. A complex UPC

procedure is generally necessary, during which multiple sensors are

attached to the calibration phantom, the probe, as well as the stylus
which is an auxiliary tool used to localize the phantom. The cali-

bration matrix can be estimated using the open-source software PLUS

toolkit. Such classical AR US frameworks usually ensure a high

precision level. However, a costly, complex, and somewhat cum-

bersome system is required, which might hamper their utilization in

clinical routine.

Recently, in [1], the authors introduced a simpler and cheaper AR

US system based on a standard RGB-D camera. The camera is fixed

upon the probe, and its pose is estimated from contextual image

information. The cost is much reduced. However, textured scenes are

required and multiple fiducial markers should be installed in the

Operating Room (OR). This could have a non-negligible impact on

the routine clinical environment.

In this paper, we propose a simple and low cost RGB-D camera-

based AR US framework. A specifically-designed 3D-printed marker

and a fast model-based 3D point cloud registration algorithm FaVoR

[2] are seamlessly merged. Unlike in [1], the tracking is merely based

on depth information. This is aimed at obtaining a stable solution

despite the constraints related to the OR, such as the strong OR light

which can sometimes saturate the RGB sensors. In addition, the UPC

procedure is much simplified, additional sensors or tools, such as the

stylus, are no longer needed.

Methods

In AR US, a first step is to perform US probe calibration. Figure 1

illustrates our calibration system using the N-wire phantom fCal-2.1.

Nine metal wires of 1 mm diameter were installed so as to form the

‘‘N’’ shape at three different depth levels. The patent-pending marker

actually results from a sophisticated combination of small cubes of

size 1 cm, forming an object of roughly 4 cm span. Both the RGB-D

camera and the US image stream are connected to the mobile

workstation via USB 3.0 cables, and are managed by the fCal
application of PLUS.

The calibration consists of three key steps: phantom localization,

probe tracking and PLUS calibration. Unlike most calibration pro-

cedures where additional markers need to be attached to the phantom

for its localization, we make full use of the generic nature of FaVoR

and directly register the virtual model of the phantom with the 3D

point cloud (depth map). Then, FaVoR is reparametrized with the

probe marker’s virtual model for the tracking. The probe is placed

over the phantom to image the installed fiducial wires, producing US

images with nine visible white spots. Those points are segmented by

PLUS, and the middle-wire points are matched to the groundtruth

positions in the phantom. Since both the phantom and the probe

marker are localized by the same camera, spatial positions in the

phantom space are easily mapped to 3D coordinates in the marker’s

space. This generates correspondences between the image and marker

spaces, from which is further computed the calibration matrix via

least-square fitting. Once calibrated, our system is deployed to aug-

ment a real-world scenario with US image information. A

visualization software based on OpenGL has been developed for

rendering an US image within a standard RGB image.

Results

The distance between the RGB-D camera and the top of the phantom

is a key variable that could impact the accuracy. As a result, we

performed the calibration at five different distances. The magnitudes

of the calibration errors on N-wire phantom generated by PLUS are

listed in Table 1.

We observe that the Occipital Structure Core achieved its best

accuracy at 50 cm, corresponding to an average calibration error of

2.6 mm. Figure 2 shows the deployment of the calibrated probe for

augmenting a real-world video on a BluePrint phantom. A needle

insertion procedure was simulated. The US images are rendered using

a proper color map which highlights pixels with higher intensities in

bright yellow. A spatial continuity is observed between the needle

Table 1 Performance of three models when evaluated with fivefold

cross validation

Methods AUC Accuracy Sensitivity Specificity DICE

Radiomics model 0.735 0.718 0.856 0.353 –

Multi-task U-net 0.792 0.814 0.875 0.622 0.964

Multi-task U-net

with BNM

0.818 0.814 0.846 0.725 0.992

S118 Int J CARS (2021) 16 (Suppl 1):S1–S119

123



part which is outside the phantom (highlighted for better visualiza-

tion) and the inside part revealed by US.

Conclusion

A simple and low cost AR US framework including an RGB-D

Camera, a 3D-printed marker, and a fast point-cloud registration

algorithm FaVoR was developed and evaluated on an Ultrasonix US

system. Preliminary results showed a mean calibration error of

2.6 mm. The calibrated probe was then used to augment a real-world

video in a simulated needle insertion scenario. Visually-coherent

results were observed. Future work should include a more rigorous

and thorough validation of the proposed method, through quantitative

evaluations in both simulated and real world medical scenarios.
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Fig. 1 The ultrasound probe calibration setting of the proposed AR US framework. An Ultrasonix US machine, an Occipital Structure Core

RGB-D camera, a 3D-printed marker, a water tank containing the N-wire phantom and a mobile workstation are combined for the calibration

Fig. 2 Augmented reality ultrasound simulating needle insertion in

real-world video. The tracked marker is rendered in blue and the

calibrated US image is displayed on the RGB image

Table 1 Evolution of the calibration error over the camera-phantom

distance

Distance

(cm)

40 50 60 70 80

Calib. Err.

(mm)

30.1 ± 20.0 2.6 ± 0.4 3.4 ± 0.5 3.3 ± 0.7 4.0 ± 0.6
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