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Abstract
Purpose of Review Formation control is a canonical problem in multi-robot systems, which focuses on the ability of a group
of robots to travel in coordination through an area, while maintaining a certain shape or a particular behavior. The robot
groups vary in their communication, computation, and sensing capabilities. Moreover, the formation control task itself may
have various objectives. These divergences force the use of different models for controlling the formation and for analyzing
the task performance. In this paper, we describe the formation control problem and survey recent advances focusing on
aspects of maintaining a formation by a group of robots distinguished by the means of analysis.

Recent Findings Various approaches may be applied for the sake of formation maintenance, whereas each approach
possesses a different perspective in regard with formation control. Recent research focuses on combining those approaches,
due to their applicability regarding certain scenarios. For instance, consensus-based control and collision avoidance are
usually intertwined together for the sake of reaching a consensus in a manner which is collision-free. Furthermore, machine
learning (ML)–based methods for navigating a robot team through unknown complex environments can be incorporated,
where the robot team aims to reach a goal position while avoiding collisions and maintaining connectivity. Moreover, recent
approaches focus on developing new mechanisms or adapt existing ones for formation control for tolerating limitations in
sensing, communication, and coordination, preferably distributively while providing performance guarantees.

Conclusion Such combined approaches yield that the means of analysis, which can be applied to each one separately, can
also be utilized in an intertwined manner, and thus provide us with novel methods for preserving formation. Whereas some
approaches were vastly investigated (e.g., consensus-based formation control) and need to be adapted to distributed imperfect
settings, others still require further insight for unveiling brand new architectures and tools (e.g., ML-based formation
control).

Keywords Formation control · Multi-robot systems · Multi-agent systems · Swarm robotics · Cooperative control · Motion
planning · Collision avoidance · Stability analysis · Graph theory · Machine learning · Deep learning · Task allocation

Introduction

The problem of formation control is long examined in the
literature of multi-robot systems. In nature, traveling in
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formation has significant advantages, providing individuals
with protection from predators (e.g., fish forming a bait
ball) and natural forces (e.g., birds flying in windy
conditions), as well as enabling them to perform otherwise
impossible tasks or performing them more efficiently
(e.g., carrying food). Stemming from the study of such
phenomena, the problem of formation control has been
vastly examined in the literature on multi-robot systems.
For robots, operating in formation improves the efficiency,
robustness, and feasibility of missions like exploration [1],
transportation [2], and containment [3]. This has led to
research on formation control as a canonical problem and
on its potential adaptation to other applications, yielding
thousands of papers in this subject in the past decade, as
well as numerous surveys. This paper summarizes key ideas
in the research on formation control from recent years.
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The canonical formation control problem is roughly
composed of two different sub-problems, each attracting
great interest of its own: generating a formation (referred
here as Formation Creation) and maintaining it (referred
to as Formation Maintenance). Although both are entwined
and in some cases inseparable, they may be profoundly
different in their goal, the tools to achieve them, and their
analysis. In the formation creation problem, the goal is
to have the robots arrange about a certain shape, where
they may be required to optimize some criteria during the
arrangement or determine a shape that best admits to some
characteristics. In the formation maintenance problem, the
goal is to have the robots travel in a connected formation
through an environment—either in a predefined shape
and while minimizing deviation from it, or simply in a
connected shape. One basic requirement shared between all
variants of the formation control problem is that the robots
travel while avoiding collisions with their peers as well as
obstacles in the environment.

In the formation creation problem, the focus is usually
on the aspects of determining which formation to create,
and/or how to position the robots about it. Determining a
best formation refers to choosing a shape that best suits the
robots, the environment, and the mission. The analysis of a
possible solution depends on the specific criteria in hand.
For example, how the placement of the robots optimize
their resilient to failures [4] or survivability of threats [5].
Best arranging robots about a given shape usually regards
to minimizing the time to complete the rearrangement
[6, 7], or, for simple robots with limited communication,
computation, or sensing capabilities, it is examined whether
formation (pattern) creation can be guaranteed and under
which conditions [8–10]. The two aspects may be combined
such that a formation is chosen in a way that optimizes
the process of spreading the robots about it [11, 12]. The
formation creation problem gained recent interest from the
modular robotics community, which are concerned with the
question of how to bring the autonomous parts of the robots
to gather in a desired configuration while minimizing cost
or maximizing data acquisition [13, 14].

The central problem in formation control, and thus the
main focus of this paper, is the formation maintenance
problem, which boils down to one question: deciding how
to calculate the next position of a robot as part of the
formation. The answer to this question depends heavily on
the decision-maker’s knowledge on the robots and on the
environment. If all the knowledge is concentrated in some
centralized unit (either within the formation or external to
it), then this unit can decide for each robot where to go next
in order to maintain the formation (or transfer a reference
point to each robot for calculating their next position relative
to that point). In the very opposite case, each robot holds
no global information about its peers or the environment,

and thus decision-making must be encapsulated in the
robot itself (thus decentralized) and depends solely on its
local sensing. A whole continuum lies in between these
two extremities, allowing the robots to act in different
centralized or decentralized control schemes, suitable for
the mission and the robots’ capabilities. With that being
said, the selection of all papers discussed throughout the
entire paper was due to their prominence in terms of
contributions with respect to other papers in the realm of
formation control.

Formation Control Classification

The fundamental approaches to the formation control
problem have been vastly expanded in previous studies. In
this section, we provide the main classifications of such
approaches.

Formation Control Coordination Schemes

Coordination within a formation of robots have been
historically characterized by Beard et al. [15]. They have
divided the means for multi-robot coordination to three
main approaches: leader-following, behavior-based, and
virtual structure. Although there are plenty of studies
that combine ideas from these three approaches (starting
from the work by Beard et al. themselves [15]), they are
still referred to as the three basic ways for controlling a
formation also today.

In the leader-follower approach, the formation is led by
one leader, the global leader, that navigates it through the
environment. This approach brings a flexibility of control
based on the capabilities and the knowledge of the formation
members: if they can communicate with the leader or sense
it directly, then they compute their next move based on their
location relative to it. Otherwise, each robot will follow
one or more local leaders (which may or may not be the
global leader), where the description of the local leaders is
formed in a control graph, a directed graph in which each
node represents a robot in the formation, and an edge from
a vertex u to v indicates that the robot u follows v in the
formation. Each robot must have a path leading to the global
leader. Determining the edges of the control graph is one
of the key points in leader-follower formations, where this
usually involves graph-theory based methods.

In the behavior-based approach, each robot determines
its actions based on a combination of several behaviors
(or forces), for example, obstacle avoidance and formation
keeping, which is determined by the local information each
robot possesses on its peers and the environment, sometimes
also combined with some global knowledge. This method
is commonly used in swarm robotics, implemented in a
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completely distributed manner, where each robot chooses
simple actions based only on very limited local sensing,
allowing the formation to easily scale to large groups of
robots (similar to a flock of birds).

The virtual structure approach is meant for cases in
which full information about the formation is collected by
one centralized source. According to this approach, the
formation is treated as a single structure, thus dynamics
planning is computed for this structure, and the control law
for each robot is then derived from the general plan and
monitored by this centralized unit.

Sensing Capability and Interaction Topology

Classifying various approaches to the formation control
problem, in terms of sensing capabilities and the interaction
topology, concerns with the following questions: what
variables are sensed and what variables are controlled in
an active manner for the sake of attaining the desired (or
undesired) formation. Where the types of sensed variables
determine the sensing capability of the agents, the types of
controlled variables are necessarily affecting the interaction
topology. Based on this observation, Oh et al. [16] suggest
a classification of the existing formation control schemes
into three main approaches: position-, displacement-, and
distance-based.

In the position-based control, a global coordinate
system is assumed, and each agent senses its own local
position with respect to it. The desired formation is thus
characterized in regards to the global coordinate system,
where each agent acts to reaching its corresponding position
in the final formation. This approach requires strong
coordination capabilities between the formation members.

In the displacement-based control, each agent is capable
of sensing its relative positions of its neighbors, with
respect to a global coordinate system. Accordingly, the
desired formation is specified by the desired displacements.
As opposed to the position-based control, neither any
knowledge regarding the global coordinate system nor the
agents’ local positions are required. However, the agents
ought to know the global coordinate system’s orientation.

In the distance-based control, the desired formation is
provided by inter-agent distances, which are controlled in
an active manner. In contrast to the displacement-based
control, it is not a necessity for the agents to acquire a
certain alignment with each other’s local coordinate system.
However, agents are assumed to have the capability of
sensing relative position of their neighbors with respect to
their own local coordinate system.

Each of the mentioned types of control above consists of
its own benefits and deficiencies. Where the position-based
control is the most beneficial with respect to the interaction
topology, its downside is the necessary knowledge and

tight coordination required in the system. On the contrary,
distance-based control is the exact opposite regarding those
terms. In accordance, displacement-based balances between
both characteristics.

Formation Control by Analysis

We distinguish between different researches for maintaining
multi-robot formations by the means of analysis. Methods
for guaranteeing the formation is kept can be applied
in the three main approaches described previously in
Section “Formation Control Coordination Schemes”, and
each focuses on a different perspective of the formation
control. Note that the research fields may be combined.
Many researches consider various approaches to the
formation maintenance problem at hand, due to their being
highly analogous to each other when regarding certain
scenarios. Swarm robotics is an obvious example, although
a combination might also be applied to other approaches
as well. For instance, consensus-based control and collision
avoidance are usually intertwined together for the sake of
reaching a consensus in a manner which is collision-free.

In Table 1, we present a concise comparison of the vast
research on the mentioned topic, while concentrating on
the following parameters: the relevant research fields, the
formation control approach, the sensing capabilities, the
information assumption, and the means of analysis proposed
in each work. The papers are listed in the order of first
section appearance and are tagged with additional fields in
which they engage.

Consensus-Based Formation Control

Consensus-based control focuses on the type of information
available to the robots on their peers and the environment,
and how those should be shared and integrated in order to
decide on the next move of the robot and guarantee a stable
consensus (thus stable formation).

One way for controlling a formation for all three
approaches of formation control when regarding a
consensus-based control is modeling the system by first- or
second-order dynamics [17]. This method is based on the
fact that each robot in the formation keeps an information
state that is updated based on its locals neighborhood. If
the information-flow topology forms a spanning tree, then
the robots are guaranteed to reach and maintain a consen-
sus. The core of the method is in choosing the information
that will yield consensus. The means of analysis utilized in
consensus-based control vary, and will briefly discussed in
the paragraphs which follow.

Recent developments in consensus-based formation con-
trol concentrate on determining when and how consensus
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can be guaranteed when the robots operate in imperfect
conditions. Peng et al. [18] convert the formation control
problem to an information consensus problem for non-
holonomic robots for converging to a desired formation and
maintaining it, assuming that the dynamics of the systems
is not entirely known to all robots. Wei et al. [19] examine
consensus in second-order multi-robot systems under com-
munication delays and noisy measurements, and prove that
if the maximum time delay of all robots is bounded, con-
sensus can be maintained. Wang et al. [20] examine the
problem of consensus in leader-follower systems in systems
suffering from time-delayed, noisy communication, show-
ing mean square consensus conditions by several formation
control schemes.

Such imperfect conditions sometimes arise the need for
utilizing estimation methods in various scenarios. Aditya
et al. [21] aim to estimate the movements trajectory of
these robots. They first make use of the consensus control
proposed by Listman et al. [22], which controls the robots
to a meeting point (rendezvous). The estimation of the
robots’ movements is done by a method called the extended
Kalman filter, which extends the original Kalman filter
to work with non-linear systems. Arranz et al. [23] deal
with the problem of estimating in a collaborative way the
gradient and the Hessian matrix of an unknown signal
via noisy measurements collected by a group of robots.
They also address the problem of noisy measurements
and their effect on the gradient and Hessian estimation.
Since the noise error increases rapidly for decreasing
formation radius, they propose a sensible choice for the
radius. Consequently, to validate the quality of the proposed
strategy, they numerically compare it with an alternative
least-squares-based solution [24]. Antonelli et al. [25] focus
on a distributed controller–observer schema for tracking
control of centroid and formation of a multi-robot system
with first-order dynamics. They design, for each robot, a
state observer providing an estimate for the overall system
state, which asymptotically converges to a collective state.

Goodwine [26] investigates fractional-order modeling
for multi-robot coordinated control problems, even when
the individual robots and interconnections have the usual
integer-order dynamics. They study a specific system with
a topological structure for the interactions motivated by a
viscoelastic model [27, 28], which can be described with
mechanical models constructed of elastic springs obeying
Hook’s law and viscous dashpots obeying Newton’s
law of viscosity. Recalling that a generalization of the
factorial function is the gamma function, it is used as
a generalization of the derivatives in the fractional-order
modeling. Afterwards, the Grünwald-Letnikov derivative,
which allows one to take the derivative a non-integer
number of times, is used to give an approximation for
the resulting fractional-order differential equations. This

work puts forth the fractional-order model as a useful tool
in the multi-robot control area, which has been relatively
unstudied.

Habibi et al. [29] are interested in techniques for the sake
of multi-robot transportation. They aim to address situations
where global sensing, communication, and geometry are not
readily available or too costly to implement. They use multi-
hop communications [30] to exchange local information
and local geometry in order to cooperate with other robots,
avoiding the need for a shared global coordinate frame.
They use a distributed, tree-based algorithm to estimate
the centroid, in which each robot builds a tree rooted on
itself, extending to all robots responsible for transporting an
object. Each robot needs to relay the trees for every other
robot, which requires each robot to maintain a list of those
trees, that is built with the Extreme-Comm algorithm [31],
in which each robot constructs a list of all the robots’ hard-
coded IDs, and then selects its task based on its relative
position in this list.

Montijano et al. [32] present a fully distributed solution
to drive a team of robots to reach a desired formation in
the absence of an external positioning system that localizes
them. They propose a 3D distributed control law, designed
at a kinematic level, that uses two simultaneous consensus
controllers: one to control the relative orientations between
robots, and another for the relative positions. For applying
the controller to aerial robots, they also deal with the
problem of estimating the relative orientations and positions
using a vision sensor. Thus, they employ a novel sensor
fusion algorithm to estimate the relative pose of the robots
using on-board cameras and information from the inertial
measurement unit (IMU). The overall idea is to compute a
rectification homography with the information given by the
IMU in such a way that the features are observed as if the
robots’ roll and pitch are equal to zero.

As opposed to other studies, Aranda et al. [33] propose
a new vision-based control method to drive a set of robots
moving on the ground plane to a desired formation. This
visual information is obtained by aerial cameras carried by
unmanned aerial vehicles (UAVs) acting as control units,
whose motion needs to be controlled to ensure that the
visibility of the ground robots is maintained. Using a current
image of a subset of the ground robots and a reference
one, each camera computes a transformation that creates a
set of desired image points, from which it defines desired
motion objectives, which are transmitted to the robots.
Then, each robot computes its actual control input using this
information, received from one or multiple sources.

Rigid Formation

Rigidity in formation maintenance concerns with the
conditions under which multi-robots systems can perform
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as one body, while retaining persistence after the loss of
any one edge in the formation. In various scenarios, agents
should perform as a single (rigid) body, for accomplishing
several tasks. In such cases, agents are not capable of
achieving a certain mission on their own (such as the
purpose of transporting goods [2]), and thus they are
required to maintain a fixed shape and minimize the
deviation from it.

The Back-Stepping control method, which was proposed
to control a class of non-linear systems by Kokotovic in
1992 [39], may be utilized in several variations of rigid for-
mation. Back-Stepping is a recursive and Lyapunov-based
approach, which addresses several significant problems,
such as time-varying formation and tracking error mini-
mization. More precisely, suppose the system can be defined
as follows [94]:

η̇ = f (η) + g(η)ε, ε̇ = u (1)

where [ηT ε] ∈ R
n+1 is the vector of states and u ∈ R is

the control signal. If f is a smooth function in its domain,
then the goal is to design a state feedback controller which
stabilizes the origin (i.e., η = ε = 0).

Rahimi et al. [38] aim at designing a decentralized
controller, based on a synchronization signal in the presence
of time-varying formation. For special applications of
rescue and surveillance, a set of agents, consisting of
both unmanned aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs), are considered. They utilize a
combination of the Back-Stepping control method and a
cross coupling synchronization. Intertwined together, each
agent receives the errors of its neighbors in a coupling way
in the feedback for the sake of producing its control signal.

Cai et al. [60] extend the graph rigidity-based forma-
tion control framework to planar multi-robotic vehicles
with dynamics, while assuming the vehicles parameters are
subjected to uncertainty. Using an interactions undirected
graph, they model the problem as a distance-based for-
mation control problem. The key tools for the proposed
solution were rigid graph theory and the Back-Stepping
control technique. The latter enabled to rigorously embed
a high-level, single-integrator-based control law into an
actuator-level adaptive controller that accounts for para-
metric uncertainty in the vehicle dynamics, while ensuring
asymptotic convergence of the inter-vehicle distance errors
to zero using a Lyapunov analysis.

Burns et al. [40] focus on persistent leader-follower
formations, which maintain local distance constraints in
order to preserve the global shape of the formation after
the failure of sensors used to maintain constraints. In
particular, they deal with collective transport, defined as the
transportation of an object by a group of robots which are
not physically attached to each other, what one robot could
not carry on its own, the group can move together. They deal

with the problem by defining redundant persistence which,
in the same way that a rigidity circuit remains rigid after the
loss of any one edge, retain persistence after the loss of any
one edge in the formation.

Chen et al. [41] present a distributed control law for a
group of three differential-drive robots to maintain a desired
rigid formation with a common desired velocity. They first
define the problem using an undirected interaction topology
for a group of three agents with the single-integrator
model, under the assumptions that the initial positions
of the robots are not collinear. With a set of potential
functions that have their minimums at the desired distances,
a gradient-descent control law is derived. While employing
this control law, a Lyapunov-based approach is utilized
to minimize the formation separation error and prove that
each robot reaches the desired velocity. The control law is
extended to a group of non-holonomic robots by using a
coordinate transformation technique while considering the
input saturation non-linearity.

Machine Learning

Machine learning (ML) control aims at characterizing
various policies, which shall be obtained by the agents in
the formation, through the use of machine learning methods.
The three basic machine learning paradigms of supervised
learning, unsupervised learning and reinforcement learning
are widely utilized for the sake of formation creation and
maintaining it. Numerous variations of those paradigms are
utilized in the literature, and will briefly discussed in this
section.

Fuzzy actor-critic reinforcement learning (FACRL) is
a combination of fuzzy system as function approximation
and classic actor-critic method. There are two fuzzy
systems, one for generation of action (called actor), and
other for estimation of value function (called critic).
This architecture is applied in condition that the defined
reinforcement signal is the same for all the agents,
and due to the fact that each agent is in a different
state, their related critic function will also be different,
whereby the agent’s policy will be improved. Derhami
and Momeni [61] propose a method which is called
multi-agent fuzzy reinforcement learning (MAFRL). Since
classic RL requires a discretization of the action space,
a linear interpolation based action selection is applied
for generating a continuous action selection method. The
utilized selection method improved the results from the view
point of average distance passed by the agents as well as
from the view point of system resistance against failure,
although it decreased the convergence speed.

Deep learning is a machine learning paradigm, which
allows computational models that are composed of multiple
processing layers to learn representations of data with
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multiple levels of abstraction. Jiang et al. [63] consider the
problem of deep learning robot control policies to achieve
multi-robot formation from the robot’s local observation
without inter-robot communication. During the training
phase, the deep neural network (DNN) is trained by model-
based methods to generate analytic decentralized control
laws with full state measurement. The DNN is composed
of a three-layered convolutional neural network (CNN)
and a fully connected (FC) network to approximate the
control policy function. They define the loss function for
each iteration of the minibatch learning as the Euclidean
loss. They also use a centralized, gradient-descent-based
training algorithm with Adam optimizer to learn the optimal
parameters of the DNN.

Khan et al. [62] consider the problem of learning policies
to control a large number of homogeneous robots, while
exploiting the underlying graph structure among the robots
and the team and environment are assumed to be Markovian.
Inspired by convolutional neural networks (CNNs), they
make use of a new architecture called graph convolutional
networks (GCNs), which utilize a bank of graph filters.
A GCN actually exploits the underlying interactions graph
which represents the swarm of robots. Similar to standard
reinforcement learning, they execute these policies in the
environment, collect a centralized reward, and use policy
gradients [95] to update the weights of policy network. They
call this algorithm Graph Policy Gradients (GPG). They
show that their proposed method is able to scale better than
existing reinforcement methods that employ fully connected
networks. More importantly, they show that by using their
locally learned filters they are able to zero-shot transfer
policies trained on just three robots to over hundred robots.

Some researches combine both FACRL and Deep
Learning, which were mentioned earlier. Lin et al. [64]
introduce a novel deep reinforcement learning (DRL)–
based method for navigating a robot team through unknown
complex environments, where the geometric centroid of
the robot team aims to reach the goal position while
avoiding collisions and maintaining connectivity. The multi-
robot navigation problem is formulated as a partially
observable Markov decision process (POMDP). They
propose a centralized policy learning, which employs an
actor-critic-based DRL algorithm. Once this algorithm
and a decentralized executing paradigm are applied, a
decentralized policy can be derived. In this paper, the
recently proposed proximal policy optimization (PPO) [65],
which is a state-of-the-art DRL algorithm, guarantees stable
performance improvement during training.

Optimization-Based Formation Tracking

The concept of collision avoidance is usually discussed
alongside formation tracking. Collision avoidance schemes

are usually designed by a control framework for achieving
formation, while maintaining a safe inter-agent distance.
For their sake, the most frequent approach is modeling the
problem at hand as an optimization problem, which aims
at minimizing the tracking error. Furthermore, optimization
problems with inequality constraints can significantly
increase the computation time compared to problems
without those constraints. To address this problem, some
studies incorporate penalty terms to indirectly express the
inequality constraints. Readers could refer to [96], which
pays special attention to the collision avoidance problem.

Given a set of target formation shapes, Alonso-Mora et
al. [35] aim to optimize the parameters (such as position,
orientation, and size) of the multi-robot formation in a
neighborhood of the robots. Their approach relies on
convex and non-convex optimization methods to obtain the
locally optimal state of the formation. If all the robots
first agree on a convex obstacle-free region, and then
compute a target formation therein, then a formation in
collision with an obstacle would not appear. Then, the robots
optimize, via sequential convex programming, the formation
parameters. Their proposed method is intended for local
motion planning, and thus deadlocks may arise. To avoid
deadlocks, their method can be employed in combination
with a global planner, in a manner similar to the work on
centralized formation control by Alonso-Mora et al. [36].
As opposed to [34], here, the computation is carried out by
each robot in the formation and does not rely heavily on the
leader; thus, it can scale more easily to large teams.

Desai et al. [67] defined a control graph as an unweighted
directed graph (digraph) whose vertices are the robots in
the formation. They show that a formation can be stably
maintained if the control graph implies each robot (except
a single leader) maintains its bearing (angle) and separation
(distance) with respect to one other robot (target). This
type of formation control is known as SBC (separation-
bearing control). In light of their work, Kaminka et al.
[68] tackle this problem by the use of monitoring multi-
graphs, from which directed trees are induced. Each such
tree is an optimal control graph for a given task (e.g.,
message passing, formation maintenance), with respect to a
given criteria (e.g., sensing costs, individual position error).
Such multi-graphs distinguish between different sensing
configurations of robots. That is, they compactly represent
all possible SBC control graphs for a given placement of
robots.

Dai et al. [71] describe a switching formation strategy
for multi-robots with velocity constraints to avoid and cross
such obstacles. Using the geometric obstacle avoidance
control method (GOACM), the leader robot is responsible
for planning a safe path and guiding the follower robots.
The follower robots switch into an obstacle avoidance
formation from the predefined formation, by calculating the
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new desired distances and desired angles. Furthermore, with
a robot priority model, the proposed strategy also solves
the collision problem between the follower robots, while
minimizing the robot’s trajectory and velocity tracking
errors.

Benzerrouk et al. [73] deal with the navigation in
formation of a multi-robot system (MRS) in a fully
reactive way without any motion path planning. The
obstacle avoidance controller proposed by Benzerrouk et
al. is based on the limit cycle methods [74–76]. They
proposed to combine the virtual structure and behavior-
based approaches, due to the drawbacks that each approach
has separately. The achieved task is thus divided into
two behavior patterns: attraction to a dynamic target and
obstacle avoidance. In the first basic task, it is a cost
minimization function which helps each robot to choose this
target. Their method is actually inspired by auction sales
activities, which allow a task allocation for the MRS. They
propose a Relative Cost Coefficient (RCC) algorithm which
is derived from this kind of strategies. By comparing RCCs
of the same target, robots negotiate and decide whether to
take a specific target or give it up to another robot.

Choi et al. [77] consider a team of unmanned underwater
vehicles (UUVs) such that each UUV measures the arrival
time of sound signal generated from the evader. The purpose
of the UUV team is to intercept the underwater evader
based on the arrival time measurements. Time Difference
of Arrival (TDOA) was utilized to localize an evader gene-
rating a signal and algorithm to estimate the evader position.
The Maximum Likelihood (ML) algorithm is used for the
sake of estimating the true evader position based on sensing
measurements. The proposed approach only requires that
the leader measures the relative position of a follower
using proximity sensors. Thus, to enable this control, the
communication link between the leader and a follower
must be established. In accordance, they acknowledge that
the maximum formation size is limited by the maximum
communication range between the leader and a follower.

Liu et al. [79] study the problem of constructing topology
graph that represents magnitude of robots interaction
via observing trajectories. They transform the inference
problem into a linear regression problem. The optimal
estimation of Perron matrix that contains the interaction
profile is derived using l2-norm least square algorithm (l2-
LS). Considering the link failure and creation, they propose
a novel dynamic window least square algorithm (DWLS) to
identify dynamic changing topology. This is the first time
to consider the topology inference problem of multi-robot
formation control systems via external observation, which
requires no prior knowledge of system dynamics.

Otte et al. [43] deal with finding solutions to the
multi-robot path-planning (navigation) problem that have
guarantees on completeness, are robust to communication

failure and incorporate varying team size. They extend
their previously proposed algorithm, Any-Com intermediate
solution sharing algorithm (Any-Com ISS) [44], which
is used to minimize computational complexity per robot
and maximize communication bandwidth between team-
members. Consequently, each team is formed into a
distributed computer that utilizes surplus communication
bandwidth to help achieve better solution quality and to
speed-up consensus time.

Pan et al. [45] investigate the path planning problem and
formation controls which ensure the robots’ collaborative
working. Based on the K-neighbor model [46], they propose
the K-spring model topologies’ network, according to the
number of virtual springs connected to each robot. The
leader robot is connected to all followers through virtual
springs. In order to solve the local minima using this
approach, a virtual target search method is designed. They
thus propose a novel approach for the multi-robot local
path planning in the predefined formation, which can ensure
that the robots maintain the original formation during the
path planning. Furthermore, compared with the artificial
potential field method, the proposed method can deal with
complex and diverse obstacles without any priori knowledge
of the working environment. The proposed method is also
capable of resolving the multi-robot path planning, whereas
the artificial potential field method can be solely utilized for
the single robot path planning.

Model Predictive Formation Control

Model Predictive Formation Control (MPFC) refers to a
class of control algorithms which utilize an explicit process
model to predict the future response of an entity (such as a
robot), and is widely investigated in the settings of collision
avoidance and formation tracking. It is also referred to as
receding horizon control or moving horizon control.

Kuriki and Namerikawa [34] propose a cooperative for-
mation control strategy with collision-avoidance capability
for a multi-unmanned aerial vehicle (UAV) system using
decentralized MPFC and consensus-based control. Specifi-
cally, each UAV regarded as a decoupled subsystem solves
a local sub-problem, which is a local optimization prob-
lem, only for its own plan. Lee et al. [72] propose a novel
MPFC based on receding horizon particle swarm opti-
mization (RHPSO) for formation control of non-holonomic
mobile robots by incorporating collision avoidance and
control input minimization and guaranteeing asymptotic sta-
bility. They suggest a dynamic coevolving particle swarm
optimization algorithm that under some conditions can guar-
antee stability of the system.

Abichandani et al. [42] address the problem of decentral-
ized, outdoor formation coordination with multiple quad-
copters. The coordination of motion of multiple robotic
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vehicles in a shared workspace so that they avoid collisions
is known as Multi-Vehicle Path Coordination (MVPC). In
previous work, they reported on simulation and experimen-
tal validation of a real-time Receding Horizon Mixed Inte-
ger Non-linear Programming –based optimization frame-
work that achieves decentralized MVPC under communi-
cation constraints [97–99]. Here, they extend their work
to autonomous outdoor quadcopters by explicitly enforcing
spatial formation constraints, while maintaining a connected
Mobile AdHoc Network (MANET). The optimization prob-
lem aims to minimize the total distance (arc length) between
their current location and the goal position over the entire
receding horizon.

Nascimento et al. [80] propose a solution to the obstacle
avoidance problem in multi-robot systems when applied
to active target tracking—a non-linear model predictive
formation control (NMPFC). They present an approach
which uses potential functions as terms of the NMPFC.
These terms penalize the proximity with mates and
obstacles. A strategy to avoid singularity problems with
the potential functions using a modified A∗ path planning
algorithm was then introduced.

Peng et al. [81] deal with the leader–follower formation
control problem for a group of networked non-holonomic
mobile robots that are subject to bounded time-varying
communication delays and an asynchronous clock. Based
on MPFC and ACADO tool [82], they implement a fully
distributed unified control framework to address the leader–
follower formation control problem.

Xiao et al. [66] offer a neural-dynamic optimization-
based non-linear MPC (NMPC) method for controlling
leader–follower mobile robots formation. The leader–
follower robots contain two models: separation-bearing-
orientation scheme (SBOS) for regular leader–follower for-
mation and separation-distance scheme (SDS) for obstacle
avoidance. Regarding the obstacles in the environments, a
control strategy is proposed for two-robot formations which
includes SBOS leader–follower model and SDS collision
avoidance model. After deriving the formation-error kine-
matics of both SBOS and SDS, a constrained quadratic
programming (QP) can be obtained by transforming the
MPC method. Then, over a finite-receding horizon, the QP
problem can be solved by utilizing the primal-dual neural
network (PDNN) with parallel capability.

Adaptive Estimators of Formation Controls

Adaptive estimators are widely used in order to decrease
uncertainties in the system, due to their nature of
approximating the unknown variables in a recursive manner.
Such estimators consider an estimate of the parameters
at hand (e.g., desired position), and are then dynamically
adjusted so as to minimize the measured formation errors.

Cao et al. [47] study the problem of distance-based
relative docking of a single robot and the distance-based
spatiotemporal cooperative formation control problem for
multiple robots. They design an adaptive estimator for
estimating the desired docking position with distance mea-
surements from the range sensor and self-displacements
from the odometer. Furthermore, the convergence of the sys-
tem employing the proposed controller is proved via the
discrete-time Lasalle’s invariance principle [48] provided
that the triggering positions satisfy some mild condition.
While generalizing this problem to spatiotemporal cooper-
ative formation control, the previous controller is extended
to a cooperative adaptive estimator, which is consensus-
based and can communicate with and measure its distance
to neighbors, but not necessarily to the landmark. This
extension is done by applying the diminishing persistent
excitation idea [49–51] or the adaptive radius assignment
idea in [52].

Regarding Shen et al. [87], their objective is to investigate
a formation controller design for the non-holonomic mobile
robots system, where the leader robot’s velocity information
including linear velocity and angular velocity is not
available for the follower robot. They first use the state
feedback linearization method to obtain the ideal control
law. Then, they propose an adaptive proportional integral
derivative (PID) algorithm, which in each step utilizes the
output of the former ideal control law for dynamically
adjusting the PID parameters according to the formation
errors. By employing the proposed adaptive PID algorithm,
it is shown that the leader–follower formation can be
achieved without knowing the leader robot’s velocities.

Considering Dai et al. [71], for solving the non-
holonomic navigation problem, given that each robot
correctly tracks its waypoints, the formation for the system
can be correctly formed and maintained. An adaptive
tracking control algorithm for the kinematic part is designed
based on [100]. This adaptive control algorithm is used to
minimize the robot’s trajectory and velocity tracking errors.

Some studies consider Unmanned Underwater Vehicles
(UUVs). According to Choi et al. [77], which was
mentioned earlier, the UUVs chase an evader while
preserving a spherical formation. A leader is located at the
center of spherical the formation, while all other UUVs
are called followers. If the distance between the evader
and the UUVs is much longer than the formation size of
UUVs (far-field evader), then the estimation diverges. Thus,
the formation size is controlled adaptively to assure the
convergence of the evader estimation.

He et al. [53] introduce a cooperative formation
control system with static and dynamic target rounding
up, using small-scaled underwater spherical robots. Given
the environmental disturbances in practical underwater
scenarios, an adaptive control algorithm is designed to
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control the underwater spherical robot, which has good
robustness and adaptability. The linear quadratic regulator
method was adopted to plan the trajectories of three
underwater spherical robots, and these three robots rounding
up the target in the form of arc.

Yoo and Park [70] present a distributed connectivity-
preserving formation tracking scheme which is designed by
deriving only a non-linearly transformed formation error
without defining any potential functions. Even though this
approach sheds light upon the problem at hand, it still
lacks the full solution in two aspects: their proposed non-
linear error transformation cannot deal with the collision
avoidance problem among the robots, and the same
communication ranges of the robots (i.e., the undirected
graph topology) are only considered. In [70], they develop
a unified error transformation strategy. A new non-linear
error function different from [69] is derived to deal
with additional control objectives besides the distributed
formation tracking, namely, connectivity preservation and
collision avoidance. The unified formation strategy using
the proposed error function is recursively established
to design approximation-based adaptive local tracking
controllers.

Formation Control in Other Settings

The fundamental approaches to the formation control
problem might be applicable in other settings as well. In this
section, we briefly discuss such applications in the settings
of both swarm robotics and coalition formation.

Formation Control in Swarm Robotics

Swarm robotics is a specific research field of multi-
robot systems which is highly motivated by natural
phenomena, where a large number of robots are controlled
in a cooperative manner. The individual robots in the
swarm have extremely low computational, sensing and
communication capabilities, thus require the use of simple
coordination mechanisms.

Deng et al. [37] analyze the limitations of existing algo-
rithms for large-scale mobile robot swarm formation and
consensus control problems. They introduce a distributed
control architecture and the extended consensus algorithm
with two-layer nearest neighbor information (TNNI). It is
shown that convergence is reached if the directed graph of
the system contains a swarm of directed spanning trees.
Combined with the distributed control architecture, the
entire control system can change the number of formation
robots arbitrarily.

Xu et al. [83] extend the behavior-based navigation
method to swarm robot systems and focus on two kinds

of important formation control problems: initial formation
and formation control while avoiding obstacles. The overall
behavior conducted by a robot is the combination of
several sub-behaviors, that is, moving to the goal, avoiding
obstacles, wall-following, avoiding robot, and formation
keeping. Based on the information detected from the
surrounding environment, the robot chooses the proper
behaviors. For the initial formation problem, they present an
improved algorithm named classification-based searching
for initial formation. This algorithm is suitable for large-
scale robot formation where the number of robots is more
than one hundred. Based on the initial state of the robots,
the algorithm will classify robots to different types and use
different methods and processing sequences to handle these
types, which can significantly reduce the time complexity.

In Vásárhelyi et al. [84], a flocking algorithm had to
be found that is not sensitive to large delays in terms
of stability, that is, in which delays do not generate
undesired oscillations. They propose the first outdoor
“GPS-vision”-based swarm of ten autonomous flying
robots with decentralized hardware, self-control, and stable
self-organization capabilities for flocking, target tracking,
and formation flights. Their methods combine several
techniques, such as using smooth functions instead of sharp
ones, using slack in potential valleys or using special over-
damped dynamics.

Dang et al. [85] consider a swarm of robots and their mis-
sion is to track a moving target in two-dimensional space,
under influence of the dynamic and noisy environments.
Moreover, robots must also automatically escape the obsta-
cles in order to continue to track the moving target with
their swarm. Firstly, surrounding the virtual nodes, distance-
based attractive force fields are created to drive the free
robots towards the desired positions. They present a forma-
tion control law, which utilizes the positive gain factors, the
relative position vector, the relative velocity vector between
each robot and each virtual node. Additionally, a damping
term is also utilized. The stability analysis based on the Lya-
punov approach is given. Furthermore, a new combination
of rotational force field and repulsive force field in designing
an obstacle avoidance controller allows the robot to avoid
and escape the convex and non convex obstacle shapes.

Gallardo et al. [88] deal with formation control of a col-
lection of vehicles (both UAVs and UGVs) using a virtual
leader-follower approach. They employ Robot Operating
System (ROS), a robust message passing infrastructure, to
pass all of the navigation data mentioned above back and
forth between each sub-process that may need this data.
Their Central Command Station, running the ROS Master,
can be executed on any piece of hardware that is running
ROS. Each agent and a Drone communicates with the ROS
Master through Wireless Network. The ROS Master gets
real-time video from the Drone, identifies and tracks each
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agent from the video feed using the HSV algorithm, and
calculates the forces between the agents based on their pro-
posed algorithm. This force value is then translated into
linear and angular data to the agents, so that they can move
in formation. Additionally, the HSV algorithm also calcu-
lates a virtual leader position for the formation, which is
essentially the geometric center of the formation. In this for-
mation control algorithm, potential functions between the
agents are used to implement group cohesion and separation.

Hauri et al. [54] describe a system that takes real-
time user input to direct a robot swarm. The goal of this
work is to allow a non-expert user to represent drawings
and animations with a robot swarm. They incorporate the
traditional flocking approach defined by Reynolds [55],
and use the implementation offered by Olfati-Saber [56].
They augment the traditional steering rules by formulating
an additional steering rule called the shape-steering rule,
which has the effect of causing the robots to adopt a target
shape. The preferred holonomic velocity, which defines a
preferred velocity for a non-holonomic agent, is achieved
using the velocity mapping method in [57]. The proposed
shaped flocking method is then compared to a goal-directed
approach, which executes a geometric analysis of a target
shape, and explicitly computes the goal positions for robots
within the shape.

Jia and Wang [58] study leader–follower cohesive
flocking and formation flocking of multiple robotic fish
swimming in the water surface under the guidance of only
one leader with zero-value external input. Based on the
combination of consensus protocol and potential function,
a distributed cohesive flocking algorithm is designed for
the robotic fish system consisting of one leader and
several followers to structure a cohesive formation. The
stability of the closed-loop system is analyzed by means
of graph theory and the LaSalle–Krasovskii invariance
principle [48], which addresses the difficulty of finding
a negative definite derivative of a considered Lyapunov
function for the sake of proving motion stability. They draw
the swimming robotic fish by an extended unicycle model,
whose geometrical center and mass center don’t coincide.

Li et al. [89] address the problem of progressively
deploying a swarm of robots to a formation defined as a
point cloud, in a decentralized manner. They propose a
progressive formation approach, which transforms a given
point cloud into an acyclic directed graph (DAG). This
graph is used by the control law to progressively form the
target shape based only on local decisions. The problem is
presented as a translation and rotation problem, while the
behavior is represented as a finite state machine. This paper
constitutes a first step towards the definition of behaviors
for progressively deployed swarms, and it shows how a
formation can gradually grow in time, with guaranteed
convergence for the joining process.

Coalition Formation

Coalition formation in the sense of formation control
is usually considered when regarding the task allocation
problem. The task allocation problem concentrates on the
following question: how a set of N robots can be optimally
partitioned into M coalitions to complete M tasks without
considering how each task may be subdivided among the
robots in a single coalition.

Dutta et al. [90] study single-task multi-robot instan-
taneous (ST-MR-IA) task allocation problem, which is a
well-known NP-hard problem. Their approach employs
a clustering-based coalition formation methodology [91].
They present the problem from a cooperative game theoretic
approach, while defining a similarity function w between a
pair of robots or a robot-task pair. That is, a higher value
of w indicates that the members of the pair of robots or the
robot-task pair are “similar” and they should be in the same
coalition, while a lower value of w would mean that they
are “dissimilar” and should be in different coalitions. With
the goal of reducing the exponential complexity of find-
ing the optimal coalition structure, they use the framework
of Demaine [92] which models the set of robots and tasks
as a weighted complete graph. Afterwards, this problem is
given as a 0-1 integer linear program, which minimizes
the penalty. The coalition structure found by their proposed
algorithm maximizes the cohesion quality, yet its social wel-
fare (the sum over all coalitions’ payoffs) is not taken into
consideration. Thus, a region growing process is defined, in
which a virtual ball (centered around a task) is grown in an
iterative manner.

Ge et al. [93] study the problem of cluster formation
control for a networked multi-agent system (MAS) in
the simultaneous presence of aperiodic sampling and
communication delays. By a proper modeling of aperiodic
sampling and communication delays, an aperiodic sampled-
data cluster formation protocol (CFP) is constructed
such that the information exchanges among neighboring
agents only occur intermittently at discrete instants of
time. Furthermore, a discontinuous Lyapunov approach is
developed to derive a design criterion on the existence of an
admissible sampled-data CFP.

Gunn and Anderson [59] describe a framework for
coordinating a changing collection of heterogeneous robots
in complex and dynamic environments such as disaster
zones. The framework includes facilities for team formation
and management as well as facilities for task discovery and
assignment. Their work assumes task allocation is generally
centralized to a single robot. The minimum requirements
expression for a task is a simple Boolean expression
defining the attributes and corresponding values required for
a robot to carry out a task. Similarly, suitability expressions
are composed of and and or clauses, except the individual
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clauses are assigned a weight. In accordance, calculating
a robot’s suitability to fill a role involves summing up its
suitability to carry out the tasks normally expected of that
role. A robot’s suitability is used for various purposes in
their methodology. A team recognizes the failure of robots
and responds by adjusting the roles of the remaining robots
in a decentralized manner (this process is named Role
Check). Upon encountering a robot from another team, a
robot’s suitability is used to determine whether it is suitable
to perform team coordination activities on behalf of the
overall team. Task lists are used by each robot in order to
prioritize one task over another, whereas role-based task
assignment is utilized.

Huang et al. [86] study the behavioral control of a
group of autonomous robots under human intervention,
and each agent is modeled by an single integrator. They
design a behavior control under human intervention, where
the highest priority task is the human-dominated task
(human task), and all the robot self-determination tasks are
turned into the second or even lower priority. The human
operator could make an emergency decisions for the sake of
helping the robot in complex environments. In such cases,
when a robot encounters an obstacle, obstacle avoidance
task is active and has the highest priority, unless human
intervention occurs.

Conclusion

In this paper, we presented a literature review on the
recent advances regarding formation control for multi-robot
systems, while concentrating on the means of analysis
introduced for addressing this problem. For the sake of
formation maintenance, we presented various approaches
which may be used either separately or in a combined
manner. Thus, we provided a comparison of the state-of-
the-art means of analysis in different scenarios which are
regarded as instances of the formation control problem.

At the inception of one’s research in regard with the
realm of formation control, choosing the most appropriate
approach is of vital importance. The approach is strongly
affected by the following four aspects (as depicted by
Table 1): (1) the research field, (2) the formation control
coordination scheme, (3) the sensing capabilities, and (4)
the information assumption. As discussed earlier in this
paper, the chosen approach determines the set of methods,
which are available for researchers throughout their study,
thus affecting the scope to which the research at hand
can be expanded. Consequently, recent research focus on
combining those approaches, due to their applicability
regarding certain scenarios and for the sake of utilizing
additional means of analysis.

Hence, once the four factors above are resolved,
one should consider the possibility of forming such
combinations as well, for the sake of enlarging the extent
to which his research can reach. For choosing a specific
approach comprising those combinations, a comparative
analysis of approaches presented in the literature can be
executed (based, among others, on the information provided
in Table 1), so as to provide the researcher with suitable
knowledge regarding both the benefits and the deficiencies
encompassed by different techniques.

Declarations

Competing interests The authors declare no competing interests.

Human andAnimal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any
of the authors.

References

1. Amigoni F, Banfi J, Basilico N. Multirobot exploration of
communication-restricted environments: a survey. IEEE Intell
Syste. 2017;32(6):48–57.

2. Tuci E, Alkilabi MHM, Akanyeti O. Cooperative object
transport in multi-robot systems: a review of the state-of-the-art.
Front Robot AI. 2018;5:59.

3. Dong X, Li Q, Ren Z, Zhong Y. Formation-containment
control for high-order linear time-invariant multi-agent systems
with time delays. J Franklin Inst. 2015;352(9):3564–3584.

4. Ramachandran RK, Preiss JA, Sukhatme GS. Resilience
by reconfiguration: exploiting heterogeneity in robot teams.
arXiv:1903.04856. 2019.

5. Shapira Y, Agmon N. Path planning for optimizing survivability
of multi-robot formation in adversarial environments. In:
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS); 2015. p. 4544–4549.

6. Mosteo AR, Montijano E, Tardioli D. Optimal role and
position assignment in multi-robot freely reachable formations.
Automatica. 2017;81:305–313.

7. MacAlpine P, Price E, Stone P. Scram: scalable collision-
avoiding role assignment with minimal-makespan for forma-
tional positioning. In: AAAI; 2015. p. 2096–2102.

8. Bose K, Adhikary R, Kundu MK, Sau B. Arbitrary pattern
formation on infinite grid by asynchronous oblivious robots.
Theor Comput Sci. 2020;815:213–227.

9. Flocchini P, Prencipe G, Santoro N, Viglietta G. Distributed
computing by mobile robots: uniform circle formation. Distrib
Comput. 2017;30(6):413–457.

10. Hyondong O, Shirazi AR, Sun C, Jin Y. Bio-inspired self-
organising multi-robot pattern formation: a review. Robot Auton
Syst. 2017;91:83–100.

11. Wang Y, Cheng L, Hou Z-G, Yu J, Tan M. Optimal formation
of multirobot systems based on a recurrent neural network. IEEE
Trans Neural Netw Learn Syst. 2015;27(2):322–333.

12. Wan S, Lu J, Fan P. Semi-centralized control for multi robot
formation. In: 2017 2nd International Conference on Robotics
and Automation Engineering (ICRAE). IEEE; 2017. p. 31–36.

172 Curr Robot Rep (2021) 2:159–175

http://arxiv.org/abs/1903.04856


13. Dutta A, Dasgupta P, Nelson C. Distributed configuration
formation with modular robots using (sub) graph isomorphism-
based approach. Auton Robot. 2019;43(4):837–857.

14. Dutta A, Dasgupta P. formation and Information collection by
modular robotic systems. In: Simultaneous configuration IEEE
international conference on robotics and automation (ICRA).
IEEE; 2016, p. 5216–5221. 2016.

15. Beard RW, Lawton J, Hadaegh FY. A coordination architecture
for spacecraft formation control. IEEE Trans Control Syst
Technol. 2001;9(6):777–790.

16. Oh K-K, Park M-C, Ahn H-S. A survey of multi-agent
formation control. Automatica. 2015;53:424–440.

17. Ren W. Consensus strategies for cooperative control of vehicle
formations. IET Control Theory Appl. 2007;1(2):505–512.

18. Peng Z, Yang S, Wen G, Rahmani A. Distributed consensus-
based robust adaptive formation control for nonholonomic
mobile robots with partial known dynamics. Math Probl Eng.
2014: 2014.

19. Wei H, Lv Q, Duo N, Wang G, Liang B. Consensus algorithms
based multi-robot formation control under noise and time delay
conditions. Appl Sci. 2019;9(5):1004.

20. Wang C, He P, Li H, Tian J, Wang K, Li Y. Noise-tolerance
consensus formation control for multi-robotic networks. Trans
Inst Meas Control. 2020;42(8):1569–1581.

21. Aditya P, Apriliani E, Zhai G, Arif DK. Formation
control of multi-robot motion systems and state estimation using
extended kalman filter. In: International Conference on Electrical
Engineering and Informatics (ICEEI). IEEE; 2019, p. 99–104.
2019.

22. Listmann KD, Masalawala MV, Adamy J. Consensus for
formation control of nonholonomic mobile robots. In: IEEE
international conference on robotics and automation. IEEE;
2009, p. 3886–3891. 2009.
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