
Theory of Computing Systems
https://doi.org/10.1007/s00224-021-10038-9

The Minimum Tollbooth Problem in Atomic Network
Congestion Games with Unsplittable Flows

Julian Nickerl1

Accepted: 18 February 2021
© The Author(s) 2021

Abstract
This work analyzes the minimum tollbooth problem in atomic network congestion
games with unsplittable flows. The goal is to place tolls on edges, such that there
exists a pure Nash equilibrium in the tolled game that is a social optimum in the
untolled one. Additionally, we require the number of tolled edges to be the minimum.
This problem has been extensively studied in non-atomic games, however, to the
best of our knowledge, it has not been considered for atomic games before. By a
reduction from the weighted CNF SAT problem, we show both the NP-hardness
of the problem and the W[2]-hardness when parameterizing the problem with the
number of tolled edges. On the positive side, we present a polynomial time algorithm
for networks on series-parallel graphs that turns any given state of the untolled game
into a pure Nash equilibrium of the tolled game with the minimum number of tolled
edges.

Keywords Atomic network congestion games · Minimum tollbooth problem ·
Series-parallel graph · Social optimum · Unsplittable flow · Weighted CNF SAT

1 Introduction

A class of games that are guaranteed to admit at least one pure Nash equilibrium are
congestion games, as introduced by Rosenthal [27]. However, several well-known
results (for example presented by Christodoulou and Koutsoupias [10] or Roughgar-
den and Tardos [28]) indicate, that playing a Nash equilibrium rarely leads to a state
that is socially beneficial. Especially in network congestion games, an approach to
push the players towards a social optimum is the levy of tolls on edges of the net-
work. The goal of these tolls is to turn a social optimum of the untolled game into a
pure Nash equilibrium of the tolled game. The application of such tolls was shown

� Julian Nickerl
julian.nickerl@uni-ulm.de

1 Ulm University, Ulm, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10038-9&domain=pdf
http://orcid.org/0000-0001-7885-3917
mailto: julian.nickerl@uni-ulm.de

Theory of Computing Systems

to be highly beneficial [6, 12]. If we allow the number of players to be infinite, each
routing an infinitesimal amount of flow through the network, it is well known that
tolls fulfilling the property exist and can be efficiently computed [5, 11, 17, 26].

Games with a finite number of players are called atomic. The use of tollbooths
in atomic games has a comparably short history. One of the main differences to the
previous problem is that the strategy change of a single player has a substantial impact
on all other players. Additionally, for the non-atomic games, it can be assumed that
the resulting pure Nash equilibrium is unique, requiring only light restrictions, see,
e.g., Roughgarden and Tardos [28]. As shown by Orda, Rom, and Shimkin, [25] this
is not necessarily the case in atomic games.

Further differentiating the problem leads to the question: Does it suffice that there
is at least one Nash equilibrium that corresponds to a social optimum, or must all
Nash equilibria correspond to a social optimum? Fotakis, Karakostas, and Kolliopou-
los analyzed whether tolls fulfilling the desired properties exist. They conclude in
[18] that in the latter case the existence cannot be guaranteed even for simple parallel-
link networks. On the other hand, for the former case, they can confirm the existence
of tolls in games where all players share the same source node and give a polyno-
mial time algorithm calculating the tolls. Other work on this topic is, e.g., Fotakis
and Spirakis [19] or Caragiannis, Kaklamanis, and Kanellopoulos [8]. Another line
of research allows the players to split up their flow [14, 30]. We focus on games with
unsplittable flows; therefore we do not go into detail with this other branch.

Several papers have focused on special cases of the above problem, restricting,
e.g., the height of the tolls [7], the set of tollable edges [20], or knowledge about the
number of players [13]. We consider here the minimum tollbooth problem, first intro-
duced by Hearn and Ramana [22]. In this problem, we additionally try to minimize
the number of tolled edges. Work on this topic is mainly restricted to non-atomic
games, with several heuristics as a result (e.g., [1–3, 21, 29]). The NP-hardness of
the non-atomic case with multiple commodities was shown by Bai, Hearn, and Law-
phongpanich in [1] and later for the single commodity case by Basu, Lianeas, and
Nikolova in [4]. On the positive side, Basu, Lianeas, and Nikolova give a polynomial
time algorithm, if the network is a series-parallel graph [4].

Contribution In this work, we analyze the complexity of the minimum tollbooth
problem for atomic network congestion games with unsplittable flows. As mentioned
before, it is already known that such tolls may not exist considering the case in which
every pure Nash equilibrium of the tolled game must correspond to a social opti-
mum of the original one [18]. Therefore, we focus on the problem in which it is only
required that there exist a pure Nash equilibrium that corresponds to a social opti-
mum of the untolled game. By a reduction from the weighted CNF SAT problem,
we show that the problem is NP-hard. Furthermore, we also prove that the parame-
terized problem considering the number of tollbooths as the parameter is W[2]-hard,
giving evidence that the parameterized problem is not in FPT. An additional spin-off
result originates in the nature of the reduction: Finding a social optimum in atomic
network congestion games with unsplittable flows is hard, supporting and extend-
ing existing results (see, e.g., Chakrabarty, Mehta, and Nagarajan [9] or Meyers and
Schulz [24]).

Theory of Computing Systems

We also show that for a non-trivial graph class, it is possible to efficiently calculate
a solution with the smallest possible number of toll booths. Based on the algorithm
by Basu, Lianeas, and Nikolova from [4], we construct a polynomial time algorithm
on games based on series-parallel graphs that turns any given state of the untolled
game into a pure Nash equilibrium of the tolled game with the minimum number of
tolled edges.

2 Preliminaries

This section introduces essential general definitions. In an attempt to shorten some
statements, we will sometimes use the expression [d] for the set {1, ..., d} for any
natural number d throughout the work.

Definition 1 An atomic network congestion game is a tuple

Γ = (G, N, (ce)e∈E, (si, ti)i∈N)

with G = (V , E) being an undirected graph, N = {1, ..., n} a set of players, ce non-
negative, monotonically non-decreasing cost functions from the set of non-negative
integers of to the real numbers, and (si , ti) source-sink pairs with si, ti ∈ V . The
strategies for a player i are the paths from si to ti . A state S = (S1, ..., Sn) is a
vector of strategies of players (Si is a strategy of player i). The congestion ne(S)

on an edge e is the number of players using that edge in their strategy in state S.
The cost of a player in state S is γi(S) = ∑

e∈Si
ce(ne(S)), where Si is the strat-

egy of player i in S. The social cost SC(S) = ∑
e∈E

(
ce(ne(S))ne(S)

)
of a state

S is the sum of the costs of all players in S. A social optimum is a state with min-
imum social cost. A state S is a pure Nash equilibrium, if for every player i and
every state S′, γi(S) ≤ γi((S

′
i , S−i)). Hereby, the state (S′

i , S−i) denotes player i

playing his strategy from S′ and all other players remaining on their strategy of
state S.

Definition 2 A toll vector θ = (te1 , ..., te|E|), with ti ∈ R
+
0 , describes tolls on edges.

An edge ei is called tolled if tei
> 0, and untolled otherwise. If an edge is tolled, we

say it requires a tollbooth.
We say a state S is implemented in an atomic network congestion game Γ θ if θ is

a toll vector such that Γ θ = (G, N, (cθ
e)e∈E, (si, ti)i∈N) with cθ

e (S) = ce(S)+ te has
S as a pure Nash equilibrium. The state is optimally implemented if for this purpose
the minimum necessary number of tollbooths is required.

The minimum tollbooth problem (MINTB) on an atomic network congestion game
Γ is the task of finding a toll vector θ such that a social optimum of Γ is optimally
implemented in Γ θ .

The upcoming section describes an FPT-reduction from the weighted CNF SAT
problem to atomic MINTB.

Theory of Computing Systems

Definition 3 A Boolean formula F is in conjunctive normal form (CNF) if F =
C1∧...∧Cn. Hereby, Ci is called clause and must have the form Ci = (ui,1∨...∨ui,ki

).
The ui,j are called literals, with ui,j ∈ {x1, ..., xn} ∪ {x1, ..., xn}. The xi are called
variables, with xi ∈ {0, 1}.

Definition 4 weighted CNF SAT:

Input: A Boolean formula F in CNF
Parameter: A positive integer k

Question: Does F have a satisfying assignment with weight k?

The weight of an assignment is its Hamming weight, i.e., the number of variables
with value 1.

It is well known, that weighted CNF SAT is a W[2]-complete problem, see, e.g.,
chapter 12 of [16] or chapter 13 of [15]. This gives evidence that the problem does
not lie in the class FPT.

Definition 5 Let A be a parameterized problem with parameter k. We say that A is
fixed-parameter tractable (FPT), if there exists an algorithm solving A with running
time in O(p(n) · f (k)). Here, p(n) is a polynomial that depends on the problem size
of A but not on the parameter k, and f (k) is any function that only depends on the
parameter k.

Definition 6 The W-hierarchy is a collection of complexity classes, with FPT =
W[0] and W[i]⊆W[j] for all i < j . For a given t , the class W[t] encompasses
parameterized decision problems of the form (x, k) with the parameter k that are
reducible to WeightedWeft-t Depth-h Circuit-SAT, for some constant h. Weighted
Weft-t Depth-h Circuit-SAT is defined as follows:

Input: A Boolean circuit C, consisting of fan-in-2 and unbounded-fan-in
gates. On any path to the root, the total number of fan-in-2 and
unbounded-fan-in gates is at most h, while the number of unbounded-
fan-in gates is at most t .

Parameter: A positive integer k

Question: Does C have a satisfying assignment with weight k?

A problem Q is W [i]-hard, if there exists a W [i]-hard Problem P and a function
φ : P → Q with the following properties [23]:

– φ(x) is a yes-instance of Q ⇔ x is a yes-instance of P

– φ(x) can be computed in time f (k) · |x|O(1), where k is the parameter of x.
– If the parameter of x and k′ is the parameter of φ(x), then k′ ≤ g(k) for some

function g.

Such a reduction is called FPT-reduction.

Theory of Computing Systems

For more information on parameterized problems, we highly recommend [16] by
Downey and Fellows or [15] by Cygan et al.

3 Atomic MINTB is Hard

We will reduce weighted CNF SAT to atomic MINTB in such a way, that the min-
imum number of necessary tollbooths is exactly the minimum weight of a satisfying
assignment of the formula. The reduction will be polynomial, with the runtime inde-
pendent of the parameter. Hence the reduction will fulfill the requirements of an
FPT-reduction. We construct an atomic network congestion game ΓF based on for-
mula F , where F is in CNF with n variables x1, ..., xn and m clauses C1, ..., Cm. We
call Λ0

xi
(Λ1

xi
) the number of occurrences of variable xi in F in negative (positive)

form, Λxi
= Λ0

xi
+ Λ1

xi
and Λ = ∑n

i=1 Λxi
. The game will be played by a total of

m + Λ + n players, each fulfilling a specific role. The m players, called clause play-
ers, each try to find a strategy that can be identified as satisfying a different clause.
This will be done by each player choosing the occurrence of a literal in the clause in
order to satisfy it. The Λ players, or occurrence players, ensure that while satisfying
the clauses, a variable cannot be assigned both value 0 and 1. Lastly, the n players are
the variable players, that state which edges have to be tolled to optimally implement
a social optimum. Most players have both different sources and different sinks.

We start by constructing a graph for the game. For easier reference, the graph is
split into three components:

Let G(V1 ∪ V2, E1 ∪ E2 ∪ E3) be the undirected graph with

V1 = {s}
∪ {vi, v

0
i , v

1
i |i ∈ [n]}

∪ {l0
xi ,j,k

, r0
xi ,j,k

, z0
xi ,j

|i ∈ [n], j ∈ [Λ0
xi

], k ∈ [Λ1
xi

]}
∪ {l1

xi ,j,k
, r1

xi ,j,k
, z1

xi ,j
|i ∈ [n], j ∈ [Λ1

xi
], k ∈ [Λ0

xi
]}

∪ {ci |i ∈ [m]},
E1 = {{s, vi}, {vi, v

0
i }, {vi, v

1
i }|i ∈ [n]}

∪ {{v0
i , l

0
xi ,j,1}, {l0

xi ,j,k
, r0

xi ,j,k
}, {r0

xi ,j,k
, l0

xi ,j,k+1}|i ∈ [n], j ∈ [Λ0
xi

],
k ∈ [Λ1

xi
]}

∪ {{v1
i , l

1
xi ,j,1}, {l1

xi ,j,k
, r1

xi ,j,k
}, {r1

xi ,j,k
, l1

xi ,j,k+1}|i ∈ [n], j ∈ [Λ1
xi

],
k ∈ [Λ0

xi
]}

∪ {{r0
xi ,j,Λ

1
xi

, z0
xi ,j

}, {z0
xi ,j

, ck}|i ∈ [n], j ∈ [Λ0
xi

],
k is the j th smallest index s.t. xi ∈ Ck}

∪ {{r1
xi ,j,Λ

0
xi

, z1
xi ,j

}, {z1
xi ,j

, ck}|i ∈ [n], j ∈ [Λ1
xi

],
k is the j th smallest index s.t. xi ∈ Ck}

∪ {{v0
i , z

0
xi ,j

}|∀i s.t . Λ1
xi

= 0, j ∈ [Λ0
xi

]}
∪ {{v1

i , z
1
xi ,j

}|∀i s.t . Λ0
xi

= 0, j ∈ [Λ1
xi

]}.

Theory of Computing Systems

V2 = {o0
i,j |i ∈ [n], j ∈ [Λ0

xi
]}

∪ {o1
i,j |i ∈ [n], j ∈ [Λ1

xi
]}

E2 = {{o0
xi ,j

, z0
xi ,j

}|i ∈ [n], j ∈ [Λ0
xi

]}
∪ {{o0

xi ,j
, l1

xi ,1,j }|i ∈ [n], j ∈ [Λ0
xi

]}
∪ {{o1

xi ,j
, z1

xi ,j
}|i ∈ [n], j ∈ [Λ1

xi
]}

∪ {{o1
xi ,j

, l0
xi ,1,j }|i ∈ [n], j ∈ [Λ1

xi
]}

∪ {{r0
xi ,j,k

, l0
xi ,j+1,k}|i ∈ [n], j ∈ [Λ0

xi
], k ∈ [Λ1

xi
]}

∪ {{r1
xi ,j,k

, l1
xi ,j+1,k}|i ∈ [n], j ∈ [Λ1

xi
], k ∈ [Λ0

xi
]}

∪ {{r0
xi ,Λ

0
xi

,k
, cj }|i ∈ [n], k ∈ [Λ1

xi
], j is the k th smallest index s.t. xi ∈ Cj }

∪ {{r1
xi ,Λ

1
xi

,k
, cj }|i ∈ [n], k ∈ [Λ0

xi
], j is the k th smallest index s.t. xi ∈ Cj }.

E3 = {{v0
i , v

1
i }|i ∈ [n]}.

The cost functions for the edges in E1 are a constant 7 for each {vi, v
1
i } edge,

a constant 2 for each {vi, v
0
i } edge and a constant 0 for each {s, vi} edge. All

other edges have cost 0 for one, and ∞ (symbolizing a very large number) for any
other number of players. Now to edges in E2. The edges {rb

xi ,j,k
, cl}, {o1

xi ,j
, l0

xi ,1,j },
and {o0

xi ,j
, l1

xi ,1,j } have cost 6 for one player and ∞ otherwise, while the edges

{o1
xi ,j

, z1
xi ,j

} and {o0
xi ,j

, z0
xi ,j

} have cost 12 for one player and ∞ otherwise. All other
edges have cost 0 for one player and ∞ for any other number of players. The cost
function for all edges e in E3, is ce(x) = 2x, where x is the number of players that use
edge e.

What remains to define are the source-sink node pairs for each player. Each clause
player i has source s and sink ci . Each of the Λ occurrence players represents the
occurrence of a variable xi in clause Cj . If the occurrence is positive, the player has
the source o1

xi ,k
, where j is the kth-smallest index s.t. xi occurs positively in Cj .

Analogously the source is o0
xi ,k

if the occurrence is negative. In both cases, the sink

is cj . A variable player i has source v0
i and sink v1

i .
Figure 1 illustrates the graph on the example F = A∧(A∨B)∧(A∨B∨C). In an

attempt to make the graph clearer, some nodes appear multiple times; however they
all represent one single node. Nodes with this property are displayed as rectangles. If
they have the same name, they represent the same single node.

We continue to prove several useful properties of the above construction that will
allow us to prove the desired result. In the following, we will say that a clause player
chooses to assign 0 (1) to a variable x, if in her strategy she leaves node v0 (v1) to a
node l0

x,i,j or z0
x,i (l1

x,i,j or z1
x,i).

Lemma 1 Let F be satisfiable. There exists a state in ΓF where each player has cost
less than ∞.

Theory of Computing Systems

Fig. 1 The segment of the graph G for the formula F = A ∧ (A ∨ B) ∧ (A ∨ B ∨ C) concerning variable
A. Depicted are the strategies of one clause player (red arrows), three occurrence players (green arrows),
and one variable player (blue arrow) in a social optimum

Proof Figure 1 demonstrates the intended behavior of the players. Observe that if all
clause players are consistent with their assignments of the variables, the only edges
that are used by more than one player are the {s, vi} edges. Hence none of the edges
produces a cost of ∞ and a state is reached where every player has cost less than
∞. The clause players are forced to make the assignments inconsistent only if the
formula is unsatisfiable.

Let A be a satisfying assignment of F . For each clause player, there exists a
variable x, s.t., she can reach her clause by assigning A (x) to it. The cost for each
clause player is at most 7. All variable players can choose the corresponding edges
{v0, v1}, resulting in a cost of 2. The occurrence players reach their corresponding
clauses again based on A . If x occurs negatively in a clause Ci and A (x) = 0,
then all clause players assign 0 to the variable if they use it. Consequently, all of the
{l1

x,j,k, r
1
x,j,k} edges are unused and the occurrence player can choose the zigzag path,

resulting in a cost of 12. If A (x) = 1 the clause players assign 1 to x if appropriate
and the edge {z0

x,j , Ci} is unused. Hence the occurrence player can choose the direct
path to the clause with cost 12. The symmetric cases apply when the variable occurs
positively.

Lemma 1 implies, that the social cost in the social optimum is less than ∞ if F is
satisfiable.

Lemma 2 Let F be satisfiable. In a social optimum, if two clause players choose
the same variable in order to satisfy their clause, they either both assign it 0 or both
assign it 1, but not a mixture.

Theory of Computing Systems

Proof The occurrence players ensure this property. Observe, that this type of player
always has total cost 12 in a social optimum, because they have to either choose edges
{ob

x,i , l
b′
x,1,i} and {rb

x,Λ0
x ,j

, ck} or an edge {ob
x,i , z

b
x,i} in order to reach their clause and

exactly one of these choices always suffices. The other edges in their strategies have
cost 0. We prove by contradiction that the occurrence players lead to the effect stated
in the lemma.

Assume that there are two clause players, P1 and P2, that, in a social optimum,
satisfy their respective clause by choosing variable x, however P1 assigns x the value
1, while P2 assigns it 0. There exists an occurrence player representing the positive
occurrence of x in the clause satisfied by P1. If she chooses the edge {o1

x,i , z
1
x,i} in

the beginning, she can only leave the z node through an edge already use by P1. This
increases the cost of both players to ∞. If, on the other hand, she chooses the edge
{r0

x,Λ0
x ,i

, ck}, she has to follow a zigzag path of the form o1
x,i − l0

x,1,i − r0
x,1,i − l0

x,2,i −
r0
x,2,i − · · · − r0

x,Λ0
x ,i

. In doing so, she has used at least one edge on every path that

can be used to assign the value 0 to x. However, P2 has to use at least one of these
edges as well, hence the cost of P2 and the occurrence player increases to ∞. Since
a state exists where all players have cost less than ∞, none of the two options can be
a social optimum. This is a contradiction.

The property of Lemma 2 guarantees that in a social optimum, the clause players
choose a consistent assignment of the variables. It is not clear yet however, that the
chosen assignment is one that satisfies the formula.

Lemma 3 Let F be satisfiable. In a social optimum, each clause player in ΓF

chooses a strategy that represents the satisfaction of a different clause.

Proof Each clause player has the node of a different clause as sink. In order to reach
the clause she has to choose a variable x and then follow the l, r, z nodes until she
finally reaches the clause. Such a path costs her at most 7 and indicates, that she
chooses variable x in order to satisfy the clause. Defecting to another node on the
way will only increase her cost by at least 6 without reducing another player’s cost,
hence it is not beneficial to the social cost.

Since every clause player satisfies a different clause and the number of clause
players coincides with the number of clauses, Lemma 3 shows that the assignment
encoded in the strategies of the clause players satisfies F . If there exists a variable
that is not chosen by any of the players to satisfy a clause, we can assume that its
value is irrelevant and assign it the value 0. We call this assignment encoded by the
clause players. A final property is that in the social optimum indeed the minimum
satisfying assignment is encoded. However, before we further discuss this property,
note the effect of the variable players illustrated in Fig. 2. It makes clear, that in
a social optimum a clause player chooses the path vi − v1

i with cost 7 instead of
vi − v0

i − v1
i with cost at least 6.

Theory of Computing Systems

Fig. 2 A demonstration of the effect of the variable player (blue arrow). The clause player (red arrow)
leaves the social optimum (left graph) for the pure Nash equilibrium (center graph). Tolling an edge
prevents this defection (right graph)

Lemma 4 Let F be satisfiable. In a social optimum, the assignment A encoded by
the clause players is the minimum satisfying assignment.

Proof We prove this property through contradiction. Let A be the minimum satis-
fying assignment, and B the assignment encoded by the clause players in the social
optimum with a higher weight than A . In both cases, each occurrence player has
cost 12 and each variable player has cost 2. A clause player that assigns a vari-
able the value 0 has cost 2, and one who assigns it the value 1 has cost 7. Let
ω(X) indicate the weight of an assignment X. The difference in the costs is then
7·(ω(A)−ω(B))+2·((n−ω(A))−(n−ω(B))) < 0. Hence, the social cost of the
state where the clause players encode A is less than the social cost of the state where
B is encoded. This is a contradiction, as we have assumed that the state encoding B
is the social optimum.

Now everything is set up to finalize the reduction.

Theorem 1 Solving atomic MINTB is NP-hard and W[2]-hard with the number of
required toll booths as the parameter.

Proof Let F be a Boolean formula in CNF. If F is satisfiable, Lemma 4 ensures
that a social optimum of ΓF encodes a minimum satisfying assignment. This state
is not a Nash equilibrium, unless all variables are assigned 0. Let x be a variable
that is assigned 1. For exactly one clause player, choosing the edges vi − v0

i − v1
i is

cheaper (cost of 6) than the direct path vi −v1
i (cost of 7). However, the cheaper route

increases the social cost. Placing a single tollbooth on the {v0
i , v

1
i } edge with toll 2

resolves this problem. Figure 2 illustrates the scenario.
From the placement of the tollbooths, a minimum satisfying assignment A for

F can be constructed: If there is a tollbooth on {v0, v1}, set A (x) = 1. Other-
wise set A (x) = 0. This assignment exactly corresponds to the one encoded by the
clause players as mentioned in Lemma 4. The number of tollbooths coincides with
the weight of the encoded assignment.

If the formula is unsatisfiable, we can construct an assignment in the same way as
above, and in the end check whether the assignment satisfies the formula. If it does
not, F is unsatisfiable.

Given the solution to MINTB on ΓF it can be decided in time f (k) · |F |O(1)

whether F is a yes instance or not. ΓF can be constructed from F in polynomial

Theory of Computing Systems

time, independent of the parameter. In particular, F is a yes-instance iff ΓF is a yes-
instance. The parameter in both cases is the same. Therefore, the reduction is an
FPT-reduction.

This finalizes the reduction from weighted CNF SAT, leading to the stated result.

To know where to place the tollbooths and therefore the minimal satisfying assign-
ment of the original formula, it suffices to know the social optimum. A direct
consequence is that finding a social optimum must be hard, extending the existing
NP-hardness results [9, 24] to W[2]-hardness of the parameterized variant.

Corollary 1 Finding a social optimum of a game Γ isNP-hard. Additionally, finding
a social optimum that can be implemented in Γ with at most k tollbooths is W[2]-
hard, with k being the parameter.

4 Optimally Implementing a State in Polynomial Time

This section presents an algorithm that optimally implements a state S in an atomic
network congestion game based on a series-parallel graph in polynomial time. We
base the procedure on a similar approach from Basu, Lianeas, and Nikolova, who
show the same result in [4] for non-atomic games. Starting at the simple base case of
parallel-link networks, we inductively decide on the number of tolled edges for larger
components, based on the optimality of the smaller ones. We do so by exploiting the
recursive structure of series-parallel graphs.

Definition 7 A graph G with source s and sink t is called series-parallel, if

i) it consists of only a single edge.
ii) it is the result of combining two series-parallel graphs in series.

iii) it is the result of combining two series-parallel graphs in parallel.

A combination of graphs G1 and G2 in series means declaring the source of G1
as the new global source, and the sink of G2 as the new global sink. Additionally, the
sink of G1 and the source of G2 are identified as one node in the new graph.

Combining G1 and G2 in parallel means identifying both sources as one node and
setting it as the new global source, and respectively identifying both sinks as the new
global sink.

Figure 3 illustrates the combinations. The center and right graph demonstrate the
combination of two basic series parallel graphs in parallel and series, respectively.

A series-parallel parse tree of a series-parallel graph is the representation of the
graph as a tree, where every leaf stands for a single edge, and every inner node
represents either a combination of its two children in series or parallel. It can be con-
structed in linear time in the number of edges of the graph. For simplicity, in this
paper, the leaves will represent parallel-link networks, i.e., networks consisting of
two nodes connected by possibly several edges.

Given an atomic network congestion game on a series-parallel network, let T

be the parse tree representation of that network, and S a given state that is to be

Theory of Computing Systems

Fig. 3 Left: Basic series-parallel
graph; Center: combination in
parallel; Right: combination in
series

implemented in that game. We will call a cost λ enforceable with η tollbooths, if by
placing at most η tollbooths the costs can be adapted such that a newly joining player
has cost at least λ, assuming all other players follow there strategy from S. For each
node of T , we will create a list of tuples (η, λ) where λ is the highest cost enforceable
with η tollbooths in the network represented by the regarded node. The values for η

range from the minimum necessary to guarantee that all player follow their strategy
from S to the minimum necessary to toll all paths through the network. Additionally,
we will remember a single value λ0. This value indicates the lowest cost that has to
be enforced. It is the maximum of the highest cost of the player in S and the lowest
cost of a newly joining player. The number of tuples per node cannot grow too large,
as it is bounded by the number of edges.

As a side note we want to mention that this last value λ0 is not necessary in the
non-atomic setting, because there the cost functions are continuous. In non-atomic
games it is assumed that single players have an infinitesimally small effect on the
cost functions, so λ0 would simply coincide with the cost of a player already in the
game. Especially, in an equilibrium, all players would have the same cost.

Algorithm 1 creates the list for a leaf of the tree, which is a parallel-link network.
For simplicity, we denote by le = ce(ne(S)), and by l+e = ce(ne(S) + 1).

Theory of Computing Systems

Lemma 5 Algorithm 1 generates the correct list for a parallel link network.

Proof Lines 2 and 3 of Algorithm 1 ensure, that at least the minimum number of
edges necessary to implement the given state S in the parallel-link network is tolled.
Every edge that would decrease the cost of a player, were she to change her strategy
to it from the given state, has to be tolled. To find these edges, it is sufficient to
compare their cost l+e to the highest cost of any player (lmax), and check whether the
player would benefit from a defection.

Line 10 calculates the highest cost enforceable on a new player entering the net-
work. When tolling η edges, the highest cost we could force on a newly entering
player is reached when the η cheapest edges are tolled. The joining player then has at
least the cost of the η+1 cheapest edge. Only when all edges are tolled, we can guar-
antee an arbitrarily high cost, marked by the ∞ symbol. Thus, the tuple (ηmax, ∞)

forms the last element of the list.

From now on, since the lists are ordered with respect to the values of η, we will
address elements from a list by index, so, e.g., η1 refers to ηmin, and λi is the cost
enforceable by ηi edges. Whenever we refer to the last element of a list, we use max
as the index.

Following an inductive argument, we now show how to correctly form these lists
for the inner nodes of the parse tree, assuming that the lists for the children are already
correctly formed. To differentiate between the two children of the inner node r , we
address one of them by v, and the other one by w. Some values will be labeled with
r, v or w accordingly. A tuple for the list of r will originate from two tuples, one for
each child node. We add two pointers, idxv and idxw, to each new tuple, referencing
their origin.

Series Composition The series composition can be thought of as an upper graph and
a lower graph, joined in a common center node. Observe, that all paths pass through
this center node. This means in particular, that tollbooths placed in the upper graph
cannot have an effect on the lower graph and vice versa. The two graphs can be
handled separately and their lists joined together as follows:

The minimum number of edges that need to be tolled in the parent node r is the
sum of the minimum necessary number of edges from the children, so ηr

1 = ηv
1 +

ηw
1 . The maximum ηr

maxr can be calculated by ηr
maxr = min{ηw

maxw , ηv
maxv }. If the

enforceable cost in one of the graphs is ∞, the same holds for the whole graph, as
any player has to pass through both the upper and the lower graph. To complete the
list, we have to add a tuple for every ηr

i with 1 < i < maxr .
The corresponding costs can be calculated similarly. For a number of tolled edges

ηr
i , we distribute them in the upper and lower graph such that the enforceable cost is

maximized. It follows that λr
i = max{λv

a + λw
b | ηr

i = ηv
a + ηw

b }, for all i ∈ [maxr].
Accordingly, we set λr

0 = λv
0 + λw

0 .

Parallel Composition In the parallel composition a player from one component may
be able to reduce his cost by joining the other component, so there is more interaction
between the two graphs than in the series composition. Let cmax be the highest cost of

Theory of Computing Systems

a player in both v and w, if all players play according to the state S. Without loss of
generality, let it be a player from v that has this cost cmax. To determine the minimum
necessary number of tolled edges, it suffices to check how many edges in w have to
be tolled to force a joining player to have cost at least cmax. The enforceable cost is
then the minimum of the enforceable costs of the individual components.

Explicitly, the values of the tuples are ηr
1 = ηv

1 + min{ηw
i | λw

i ≥ cmax, i > 0},
and ηr

maxr = ηv
maxv + ηw

maxw . Again, we add a tuple for every ηr
i with 1 < i < maxr .

The corresponding enforceable costs are λr
i = max{min{λv

a, λ
w
b } | ηr

i = ηv
a + ηw

b },
for all i ∈ [maxr]. We set λr

0 = max{λv
0, λ

w
0 }. It must be the maximum (let w.l.o.g.

λv
0≥ λw

0), because otherwise a player from v may benefit from diverting to w if only
λw

0 is enforced.
Once the lists for all nodes are created, the value λ0 of the root node tells us the

cost that has to be enforced. Using the lists, we can decide the minimum number of
tollbooths necessary for this, namely the ηi with the smallest index i s.t. λi ≥ λ0. We
can then retrace the creation of the tuple (ηi, λi) to the leaf nodes of the tree, where
we can decide which edges are to be tolled with which value. The recursive algorithm
2 tolls the edges accordingly. For simplicity, we assume the lists of each node to be
globally accessible. The algorithm is initially called with r being the root node of the
parse tree and cin = λr

0 which is the smallest cost that has to be enforced.

Theory of Computing Systems

Theorem 2 Optimally implementing a state S in an atomic network congestion game
based on a series-parallel graph with m edges is possible in runtime O(m3).

Proof We demonstrate that with the lists in each node of the parse tree as described
above, Algorithm 2 optimally implements the given state S. The input cin is the
minimum cost that has to be enforced in the network represented by node r . The
goal is to use as few tollbooths as possible for this task. The number of tollbooths
necessary is the smallest ηr

i , s.t., λr
i ≥ cin

If r represents a parallel composition, we have to make sure that at least cin is
enforced in both parallel components. In some components it can occur that λ0 is
above cin. In these cases we can instead continue with λ0. This does not create a
conflict, because this property was already considered in the calculation of cin while
generating the lists and no further tollbooths are required.

Secondly, if we consider a series composition, cin must be appropriately split up
into cin = cv

out + cw
out . Several of these decompositions are possible, however we

cannot guarantee that all of them lead to a consistent placement of the tollbooths.
To resolve this issue, we first determine which tuple of r is appropriate to enforce
cin. Its index is arg mini{λr

i ≤ cin|i > 0}, which requires the lowest number of
tollbooths to enforce cin. For this index, we have remembered which combination of
list elements of the child nodes have lead to the desired tuple. We then choose cv

out

and cw
out such that the remembered indices are the appropriate list elements under the

same argument in v and w respectively.
Note that, for both compositions, the new cout are chosen such that for the

appropriate list elements, ηr
in = ηv

out + ηw
out .

Lastly, r can be a leaf node, representing a parallel link network. This is the base
case of the recursive algorithm. All edges e with l+e < cin have to be tolled.

Runtime Let m be the number of edges in the original network. The parse tree can
be created in O(m) time, and also has size O(m). Creating the list at a leaf node is
possible in O(m) time. For an inner node, we have to check at most O(m2) com-
binations of elements from the children’s lists. Therefore, creating the list for every
node is possible in O(m3) time. The computation time on each node in Algorithm 2
is bounded by O(m). The algorithm visits every node of the parse tree exactly once,
leading to a runtime of O(m2). In total, the runtime of the algorithm is O(m3).

5 Conclusion

This work analyses the complexity of the minimum tollbooth problem in atomic
network congestion games with unsplittable flows.

By a reduction from the weighted CNF SAT problem, we show both the
NP-hardness of the problem and, more importantly, the W[2]-hardness of a parame-
terized version. The parameter in the latter case is the number of necessary tollbooths
to turn a social optimum of the untolled game into a pure Nash equilibrium of the
tolled one.

Theory of Computing Systems

A restriction to networks that are series-parallel graphs yields a polynomial time
algorithm. The algorithm gives tolls, such that a given state is a pure Nash equilibrium
of the tolled game while using the minimum number of toll booths. This algo-
rithm is based on a similar method presented by Basu, Lianeas, and Nikolova in [4],
who consider non-atomic games, exploiting the recursive structure of series-parallel
graphs.

We assume that the last result holds due to the locally restricted effect of tollbooths
in series-parallel graphs. The strong structure allows us to represent the necessary
information of a whole component through a comparably small list. This would not
be possible if slight changes in one part of the graph could have a big impact on some
other distant part of the graph. Research on network classes with strong properties
in locality may be fruitful to find further cases of polynomial time algorithms for
MINTB.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Bai, L., Hearn, D.W., Lawphongpanich, S.: A heuristic method for the minimum toll booth problem.
J. Glob. Optim. 48(4), 533–548 (2010)

2. Bai, L., Rubin, P.A.: Combinatorial benders cuts for the minimum tollbooth problem. Oper. Res.
57(6), 1510–1522 (2009)

3. Bai, L., Stamps, M.T., Harwood, R.C., Kollmann, C.J.: An evolutionary method for the minimum
toll booth problem: The methodology Journal of Management Information and Decision Sciences
(2008)

4. Basu, S., Lianeas, T., Nikolova, E.: New complexity results and algorithms for the minimum toll-
booth problem. In: International Conference on Web and Internet Economics, pp. 89–103. Springer
(2015)

5. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale
University Press, London (1956)

6. Bilò, V., Vinci, C.: Dynamic taxes for polynomial congestion games. In: Proceedings of the 2016
ACM Conference on Economics and Computation, pp. 839–856. ACM (2016)

7. Bonifaci, V., Salek, M., Schäfer, G.: Efficiency of restricted tolls in non-atomic network routing
games. In: International Symposium on Algorithmic Game Theory, pp. 302–313. Springer (2011)

8. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Taxes for linear atomic congestion games. In:
ESA, pp. 184–195. Springer (2006)

9. Chakrabarty, D., Mehta, A., Nagarajan, V.: Fairness and optimality in congestion games. In:
Proceedings of the 6th ACM Conference on Electronic Commerce, pp. 52–57. ACM (2005)

10. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings
of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 67–73. ACM (2005)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Theory of Computing Systems

11. Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: Pro-
ceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 521–530. ACM
(2003)

12. Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing? J. Comput. Syst. Sci.
72(3), 444–467 (2006)

13. Colini-Baldeschi, R., Klimm, M., Scarsini, M.: Demand-independent optimal tolls (2018)
14. Cominetti, R., Correa, J.R., Stier-Moses, N.E.: The impact of oligopolistic competition in networks.

Oper. Res. 57(6), 1421–1437 (2009)
15. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,

Saurabh, S.: Parameterized Algorithms, vol. 3. Springer, Berlin (2015)
16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
17. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity

networks and generalized congestion games. In: Proceedings of the Fourty-Fifth Annual IEEE
Symposium on Foundations of Computer Science, pp. 277–285. IEEE (2004)

18. Fotakis, D., Karakostas, G., Kolliopoulos, S.G.: On the existence of optimal taxes for network con-
gestion games with heterogeneous users. In: International Symposium on Algorithmic Game Theory,
pp. 162–173. Springer (2010)

19. Fotakis, D., Spirakis, P.G.: Cost-balancing tolls for atomic network congestion games. Internet Math.
5(4), 343–363 (2008)

20. Harks, T., Kleinert, I., Klimm, M., Möhring, R.H.: Computing network tolls with support constraints.
Networks 65(3), 262–285 (2015)

21. Harwood, R.C., Kollmann, C.J., Stamps, M.T.: A genetic algorithm for the minimum tollbooth
problem (2005)

22. Hearn, D.W., Ramana, M.V.: Solving congestion toll pricing models. In: Equilibrium and Advanced
Transportation Modelling, pp. 109–124. Springer (1998)

23. Marx, D.: W[1]-hardness. Recent advances in parameterized complexity (2017)
24. Meyers, C.A., Schulz, A.S.: The complexity of congestion games. Massachusetts Institute of

Technology, Cambridge: 1–16 (2008)
25. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multiuser communication networks.

IEEE/ACM Transactions on Networking (ToN) 1(5), 510–521 (1993)
26. Pigou, A.C.: The Economics of Welfare. McMillan&Co., London (1920)
27. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. J. Game Theory 2(1),

65–67 (1973)
28. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2), 236–259 (2002)
29. Stefanello, F., Buriol, L.S., Hirsch, M.J., Pardalos, P.M., Querido, T., Resende, M.G., Ritt, M.: On the

minimization of traffic congestion in road networks with tolls. Ann. Oper. Res. 249(1-2), 119–139
(2015)

30. Swamy, C.: The effectiveness of stackelberg strategies and tolls for network congestion games. In:
Proceedings of the Eighteenth Annual ACM-SIAM symposium on Discrete Algorithms, pp 1133–
1142. Society for Industrial and Applied Mathematics (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	MINTB in Atomic Network Congestion Games with Unsplittable Flows
	Abstract
	Introduction
	Contribution

	Preliminaries
	Atomic MINTB is Hard
	Optimally Implementing a State in Polynomial Time
	Series Composition
	Parallel Composition
	Runtime

	Conclusion
	References

