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Abstract

Based on experimental results, this chapter describes
applications of SAR polarimetry to extract relevant infor-
mation on agriculture and wetland scenarios by exploiting
differences in the polarimetric signature of different

scatterers, crop types and their development stage
depending on their physical properties. Concerning agri-
culture, crop type mapping, soil moisture estimation and
phenology estimation are reviewed, as they are ones with a
clear benefit of full polarimetry over dual or single polar-
imetry. For crop type mapping, supervised or partially
unsupervised classification schemes are used. Phenology
estimation is treated as a classification problem as well, by
regarding the different stages as different classes. Soil
moisture estimation makes intensive use of scattering
models, in order to separate soil and vegetation scattering
and to invert for soil moisture from the isolated ground
component. Then, applications of SAR polarimetry to
wetland monitoring are considered that include the delin-
eation of their extent and their characterisation by means
of polarimetric decompositions. In the last section of the
chapter, the use of a SAR polarimetric decomposition is
shown for the assessment of the damages consequential to
earthquakes and tsunamis.

3.1 Introduction

There exists a wide variety of remote sensing applications in
the context of agriculture. A possible classification is
summarised in Table 3.1, including the end-users and their
motivation for such applications.

Most of these applications have made use of quad-pol
data, but recently several studies have been carried out
using compact polarimetry, where a single transmit (usually
circular) and dual linear coherent receive is used. These have
shown some promising advances in agriculture applications,
for instance, combining high classification accuracy from the
polarimetric information with wide swath coverage. Among
all these applications, the following ones demonstrate the role
of polarimetry and the benefits of quad-pol data over single-
pol or dual-pol approaches:
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• Crop type mapping: By means of supervised or partially
unsupervised classification schemes, different crop types
can be classified in PolSAR images provided that they
exhibit different polarimetric signatures as a result of
different physical properties.

• Soil moisture retrieval: Using target decomposition
approaches, the response from the vegetation and the
underlying ground can be separated, as well as the depen-
dence of the radar signal on soil roughness and moisture.

• Phenology monitoring: When plants change their physical
characteristics as they develop, different stages can be
regarded as different classes, hence being separated by
their polarimetric signatures.

Regarding PolInSAR, the rapid rate of growth and change
in most crops has undermined so far the development of
operational applications based on space-borne SAR systems,
since they only provide repeat-pass interferometry (with the
notable exception of the recently launched TanDEM-X sen-
sor, which has polarimetric modes available for future use)
and agriculture requires single-pass acquisitions. To date, the
only successful application based on PolInSAR data is the
retrieval of crop height, as an indicator of crop condition or
phenology, which has been demonstrated with airborne data.

Wetlands constitute an application scenario with increas-
ing interest in the remote sensing community, especially due
to their ecological importance and their clear role in biodi-
versity. The main applications of PolSAR in wetlands consist
in their delineation and characterisation (i.e. condition assess-
ment and vegetation-type classification), for which some
approaches have been successfully tested recently. In addi-
tion, PolInSAR has been employed to monitor changes in the
water level by exploiting the high coherence provided by the
double-bounce mechanism produced by the interaction
between the water layer and the plants.

Finally, PolSAR has been applied to assess the effect of
earthquakes and tsunamis, thanks to the detection of changes
in the physical properties of the scene when these events
happen.

3.2 Crop Type Mapping

3.2.1 Evaluation of C-Band Polarimetric SAR
for Crop Classification

3.2.1.1 Introduction, Motivation and Literature
Review

As the global population increases at a rate of about 80 mil-
lion per year (United Nations Population Fund 2011), the
agriculture and agri-food sector must continue to innovate if
it is to meet this demand with an ever-decreasing land base.
Recognising the importance of timely information to support
accurate national, regional and global agricultural production
forecasts, the G20 Group on Earth Observations Global
Agricultural Geo-Monitoring Initiative (GEO-GLAM) was
launched in 2011 (European Space Agency 2012). Under
this initiative, data from Earth observing satellites will be
fundamental to characterise crop types and estimate acreages
in order to monitor global food production. Yet as the sector
adapts to meet the needs of this growing population, society
will demand that food be grown in an environmentally sus-
tainable manner. Thus, monitoring how crops are being
grown and effects on the landscape and surrounding
ecosystems is also important.

Synthetic aperture radars (SARs) can contribute signifi-
cantly to this global monitoring effort. This is particularly
true given improved access in the last decade to satellites with
SARs which acquire data at multiple polarisations as well as
those that are fully polarimetric-capable. And when agricul-
ture monitoring agencies consider accessing data at multiple
frequencies by tasking satellites from various international
data providers, a radar-only solution to delivery of crop
inventories is possible. Yet research and development are
required to adapt existing classification methodologies to
use data from SARs. In addition, global cropping systems
vary significantly, and consequently, research is required to
determine the optimal SAR configuration for different mixes
of crops grown under diverse growth cycles.

Table 3.1 Remote sensing applications on agriculture

(End) users Application(s) Interest/motivation

National international
authorities/agencies

Crop type mapping or classification Justification of subsidies and fraud detection, acreage

Water resources consumption Control in regions suffering droughts or with scarce water
resources

Yield prediction Economic and market predictions, price regulations, etc.

Forest management Timely information about crop condition
and phenology

Planning and triggering of farming practices according to specific
phenological stages

Water requirements/soil moisture Irrigation optimisation: only when and where necessary

Final crop productivity Benefits
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In 2004, Agriculture and Agri-Food Canada (AAFC)
began developing a classification method to inventory
Canada’s crops. This research led to the implementation of
AAFC’s annual crop inventory with the first national inven-
tory available in 2011. Reliability in delivery of the AAFC
inventory has been facilitated by acquiring RADARSAT-
2 dual-polarisation (VV, VH) C-band data to fill gaps when
adequate optical data are unavailable (Fig. 3.1). Although the
proportion of SAR-to-optical data used in the inventory is
growing each year, optical data are still required to meet
individual crop accuracy targets. Thus AAFC research
continues to explore how multi-frequency and polarimetric
SAR data can help to move the inventory towards increased
reliance on SAR sensors and less dependence on optical
satellites.

SAR satellite data are attractive for mapping and monitor-
ing agriculture as microwave frequencies are unaffected by
cloud and haze, unlike their optical counterparts. Agricultural
targets (soils and crops) are very dynamic, and thus optical
sensors can miss crucial periods in the growing season when
information is critically required. Early studies examined the

use of single frequency-single polarisation SAR data and
reported that these data had to be integrated with optical
satellite images if adequate crop classification accuracies
were to be achieved. This included integration of C-HH
(Brisco and Brown 1995), C-VV (Ban 2003; Schotten et al.
1995) or C-HH and C-VV (Blaes et al. 2005) images with at
least one optical image. Even when ENVISAT-ASAR and
RADARSAT-1 were integrated to create a data set with all
three noncoherent linear polarisations (C-VV, C-VH and
C-HH), optical images were still needed to successfully clas-
sify individual crops in complex cropping systems (McNairn
et al. 2009a). Yet these studies also reported that optically
based classification accuracies benefited by the inclusion of
SAR data (Brisco and Brown 1995; Ban 2003; McNairn et al.
2009a).

Of all the linear polarisations, many studies have con-
firmed that the cross-polarisation (HV or VH) is the single
most important polarisation to identify the majority of crops
(McNairn et al. 2000, 2009a, b; Foody et al. 1994; Lee et al.
2001). This polarisation is responsive to the multiple scatter-
ing from within the vegetation volume, and because

Fig. 3.1 Example of product from Agriculture and Agri-Food Canada’s 2012 crop inventory which uses an integration of optical and RADARSAT-
2 data
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vegetation structure varies greatly among crops, cross-
polarised backscatter provides the best discrimination. Nev-
ertheless, classification accuracies are increased substantially
with the inclusion of additional polarisations. The greatest
incremental increase in accuracy is observed when adding a
second polarisation (Foody et al. 1994; McNairn et al. 2000;
Hoekman and Vissers 2003), yet a third polarisation will still
result in additional improvements to the classification for
some crops (McNairn et al. 2000, 2009a; Hoekman and
Vissers 2003).

Less research has been completed on the additional benefit
of coherent polarimetric parameters for crop classification.
Integrating all three linear polarisations and several polari-
metric parameters (the co- and cross-polarised pedestal and
variation coefficients, e.g.) (Foody et al. 1994) reported a
small increase in accuracies. This small incremental increase
in accuracy was confirmed in a study where parameters
generated from scattering decompositions provided slightly
higher accuracies (McNairn et al. 2009b). The HH-VV cor-
relation coefficient and the RR-RL ratio, integrated with HV,
have also proven useful in classifying crops (Quegan et al.
2003).

A multi-frequency multi-polarisation approach is the best
option for crop discrimination. Ground-based scatterometer
and airborne SAR research campaigns describe improvements
in vegetation discrimination using multi-frequency data.
Researchers reported that relative to single frequency data,
higher crop classification accuracies are achieved using X-
and C-band (Thomson et al. 1990); C- and L-band (Skriver
2012); X-, C- and L-band (Brisco and Protz 1980; Guindon
et al. 1984); as well as C- and L- and P-band (Chen et al. 1996;
Ferrazzoli et al. 1997, 1999; Hill et al. 2005; Hoekman et al.
2011) data. The advantage of a multi-frequency data set for
separating vegetation types has also been demonstrated using
data acquired from multiple satellite platforms, specifically
ERS (C-band) and JERS (L-band) (Bouman and Uenk 1992;
Dobson et al. 1996). Lower-frequency (i.e. L-band)
microwaves penetrate larger biomass crops, and the scattering
from within the canopy where structure is quite different aids
in separating these crops (McNairn et al. 2009b). Yet for
smaller biomass crops, lower frequencies can penetrate too
far into the canopy and result in significant soil contributions.
For these crops, discrimination is achieved using higher-
frequency microwaves where most interaction is limited to
within the canopy.

3.2.1.2 Methodology
The evaluation of C-band SAR for crop classification was
accomplished using RADARSAT-2 data acquired for three
study sites – two in Canada’s western Prairie region and a
third in eastern Canada. Field observations of crop type were
collected to train the supervised classification model and to
test the classification accuracy. Fields were randomly split

with half used for training and the remainder used to inde-
pendently evaluate the classification results. A 7 � 7 boxcar
speckle filter was applied to the single-look complex
RADARSAT-2 data for the eastern site. For the two western
sites, a 9 � 9 boxcar filter was selected due to the larger field
sizes typical of this region of Canada. The covariance matrix
was then converted to a symmetrised 3 by 3 covariance
matrix from which radar intensity backscatter (HH,
HV/VH, VV) was generated. In addition, the Cloude-Pottier
(Cloude and Pottier 1997) decomposition was applied
generating entropy (H ), anisotropy (A) and alpha angle (α)
parameters. With the Freeman-Durden decomposition, the
total power was partitioned into contributions from three
scattering mechanisms: single-bounce, double-bounce and
volume scattering (Freeman and Durden 1998). After
generating these radar parameters, the data were ortho-
rectified using platform ephemeris information and models
of the internal sensor distortion, a set of ground control points
(GCPs) and digital elevation models. Prior to classification an
enhanced Lee filter was applied with a window size of 5 � 5
for the eastern site and 9 � 9 for the western sites.

Fully polarimetric sensors are limited in terms of swath
coverage, making their use in large area monitoring a chal-
lenge. Specific to RADARSAT-2 the maximum swath for
quad-pol (QP) is approximately 50 km, achieved with the wide
QP mode. With compact polarimetric (CP) configurations, a
larger swath is maintained relative to fully polarimetric SAR
systems (Charbonneau et al. 2010), making CP an attractive
option to assist with the production of national crop
inventories. Although CP offers this operational advantage,
the information generated by CP configurations is not well
understood particularly as it relates to applications such as
crop classification. To investigate the potential of CP for this
application, a circular right transmitting-coherent linear receiv-
ing compact polarimetric mode (CL-pol) was simulated from
the RADARSAT-2 fully polarimetric data acquired for the
Casselman site. The simulated CL-pol data were stored in the
Stokes vector format, and the Stokes vector parameters were
subsequently used in the classification. A detailed description
of the CP simulation in provided in (Charbonneau et al. 2010).

Upon evaluation of several classification models
(McNairn et al. 2009a), AAFC chose a decision tree
(DT) supervised classifier as it provided the most consistent
and reliable classification accuracies particularly when SAR
data were used in the classification. Decision boundaries and
coefficients for the linear discriminate function used in the
classification were estimated empirically from the training
data. The DT was run using boosting over five trials to
force the classifier to focus on poorly classified cases. To
avoid over-fitting, the classifier used a global pruning of the
model of 25%. The DT classifier was implemented with the
software See5 (Rulequest Research 2008) and is currently the
basis of AAFC’s operational annual crop inventory.
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3.2.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for crop classification are summarised in Table 3.2
and further described in the Appendix.

When a multitemporal data set with all linear polarisations
(HH, VV, HV/VH) is available, high overall accuracies are
achievable. With the simple crop mix (corn, soybeans, wheat,
pasture) of the eastern site, accuracies of 90% are reached.
Slightly lower accuracies are found in more complex crop-
ping systems, such as those of Canada’s western region. Here
overall accuracies of 85.5% are reported for both the
Manitoba and Saskatchewan sites. Using either the Cloude-
Pottier (western sites) or Freeman-Durden (all three sites)
decomposition parameters resulted in higher accuracies
although gains were small. A classification using Cloude-
Pottier entropy, alpha and anisotropy inputs increased overall
accuracies by less than a percentage for the Manitoba site
(86.3%) and less than 2% for the Saskatchewan site (87.3%).
With the simple cropping mix in the eastern site, the linear
polarisations outperformed the accuracies achieved with
Cloude-Pottier (87.5%). The scattering parameters generated
by the Freeman-Durden decomposition provided the best
results for all three sites (Ontario, 91.3%; Manitoba, 87.1%;
Saskatchewan, 88.7%) although increases in accuracy were
limited to between 1 and 3%. For the Casselman site, the
CL-pol Stokes vector parameters produced an overall accu-
racy (91.1%) similar to that achieved with the Freeman-
Durden decomposition (91.3%).

Although high overall accuracies are an important indica-
tor of a successful classification, crops must also be well
classified individually in order to provide accurate production
estimates. Reaching these accuracies has been a challenge for
SAR-only classifications. For the Canadian inventory,
achieving these individual crop accuracies has required inte-
gration of optical data particularly where the cropping mix is
more complex. As presented in Fig. 3.2, when the three linear
polarisations achieve high crop-specific accuracies (greater
than 90%), little is gained in using fully polarimetric or CP
parameters. However, the Cloude-Pottier or Freeman-Durden
decompositions can improve accuracies when the linear
polarisations are unable to reach accuracies above 90%. The
results from the decompositions (QP) and the Stokes vector

parameters (CP) were comparable with differences of less
than one percent observed. The one exception was the pasture
class, where the Freeman-Durden outperformed the Stokes
vectors by about 3%. It should be noted that small incremen-
tal increases in accuracies are important as these improved
accuracies lead to more precise acreage estimates when con-
sidering the generation of national, regional or global produc-
tion assessments.

3.2.1.4 Comparison with Single-/
Dual-Polarisation Data

As expected, the use of a single polarisation does not achieve
satisfactory classification results. For the more complex crop-
ping mix found in Carman, single VV and VH polarisations
produced overall accuracies of 75.6% and 75.1%, respec-
tively. Slightly higher accuracies were reached in the eastern
site (77.9% for VV polarisation and 79.4% for VH). Only
62.5% (Casselman) and 68.1% (Carman) were attained with
the HH polarisation. For the western cropping mix, while the
VV polarisation provided better classification of pasture, corn
and cereal crops, the remaining crops (canola, flax and beans)
were best identified with the cross-polarisation. In Ontario,
VH outperformed VV for all crops except corn. For both sites,
HH always produced the lowest crop-specific accuracies.

As previously reported, the addition of a second
polarisation (in this case adding VV to VH) provided signifi-
cant improvements for many crops. For a more complex
cropping mix (Carman), with these two polarisations,
accuracies for corn, beans and cereals increased by 17.8%,
13.5% and 8.0%, respectively (Fig. 3.3). The addition of HH
to these first two polarisations increased accuracies by less
than 2%. In the eastern site, the integration of VV with VH
increased individual accuracies by 7–8% for all crops except
soybeans. For soybeans this increase was limited to less than
2%. For the Casselman site, there was value in adding the
third HH polarisation for pasture and wheat where accuracies
rose by a further 10–11% (Fig. 3.3).

In regions of Western Canada, approximately three-
quarters of the annual cropland is planted in cereals and
canola. In the eastern part of the country, this is true for
soybeans and corn. Early estimates of these specific crop
acreages are important for production and yield forecasting.

Table 3.2 Test sites and corresponding radar and validation data selected for the generation of showcases on crop classification

Application/product Test site – radar data Reference data

Crop classification Casselman, Ontario (2008) 274 fields surveyed for crop type

RADARSAT-2 FQ19 June 22, July 16, Aug. 9, Sept. 2

Carman, Manitoba (2009) 219 fields surveyed for crop type

RADARSAT-2 FQ15 June 22, July 16, Aug. 9, Sept. 2

Indian Head, Saskatchewan (‘09) 610 fields surveyed for crop type

RADARSAT-2 FQ2 June 8, July 2, July 26, Aug. 19, Sept. 12

RADARSAT-2 FQ19 June 4, July 22, Aug. 15, Sept. 8
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By mid-July, using only two RADARSAT-2 images (June
22 and July 16), accuracies above 70% (canola) and 80%
(cereals) could be reached if either the Cloude-Pottier or
Freeman-Durden decompositions were used in the classifica-
tion of the western site. This represents a significant improve-
ment in accuracies reached relative to those generated using
single (VH), dual (VV, VH) or multiple (HH, VV, VH)
polarisations (Fig. 3.4). For the eastern Ontario site,
mid-season estimates (as well as by July 16) were

significantly improved using the QP or CP configurations.
Using either the simulated CL-pol data or one of the
decompositions, accuracies close to 80% were achieved for
corn and 93% for wheat. The Stokes vector parameters were
far superior for mid-season identification of soybeans
(79.9%), about 10% better than accuracies reached with
either of the decompositions and 6% better than accuracies
produced using the three linear polarisations.
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3.2.1.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Accurate crop classification is the basis for generating pro-
duction estimates and yield forecasts. Regardless of the
source of satellite data, multitemporal acquisitions are neces-
sary. These map products have traditionally been generated
using optical satellite data. However, with improved access to
SAR satellites with greater polarisation diversity, and in
some cases polarimetric capabilities, the potential of this
technology for agriculture monitoring is evident. The use of
SAR for crop classification requires multitemporal
acquisitions of dual polarisations (at a minimum) to meet
acceptable overall classification accuracies. However, crop-
specific accuracies still require the integration of additional
data which has often come from optical sensors. Yet with
increased access to polarimetric satellites, results are
demonstrating that parameters generated from these complex
data, such as radar decompositions, can improve crop-
specific identification. In particular, fully and compact polar-
imetric data can assist in crop identification mid-season
which is important if production estimates are required before
end of season.

Repetition in results by many international researchers has
brought confidence to the idea of radar-assisted crop identifi-
cation. This has been put into practice by Agriculture and
Agri-Food Canada where RADARSAT-2 (VV, VH) data are
integrated with optical imagery to produce that country’s
annual inventory. Increasing the ratio of radar-to-optical
data in such an inventory is now limited primarily by access
to polarimetric swaths deemed to be operationally appropri-
ate for national mapping. Missions which include wide swath
compact polarimetry modes may provide a partial solution.
Further, researchers have repeatedly demonstrated that a
radar-only approach, with no optical data requirement, is
possible with the integration of multi-frequency SAR. The
primary impediment to implementing this approach is access
to multi-frequency data over swaths appropriate for large area
mapping. Without a single multi-frequency satellite,

coordinating access from multiple sensors (from multiple
agencies) is required. If this challenge can be met, monitoring
agencies would have the classification tools and data to
monitor national, regional and global agriculture production
exclusively with SAR sensors.

3.2.2 Crop Classification Using Multitemporal
L- and C-Band Airborne Polarimetric SAR

3.2.2.1 Introduction, Motivation and Literature
Review

Remote sensing has the potential to provide estimates of
inputs for land process models, for instance, the land cover
type as well as quantitative geophysical parameters such as
soil moisture and leaf area index (LAI). Such models can
provide information that is crucial for a number of
applications such as flood and drought prediction, crop irri-
gation scheduling and meteorology (Moran et al. 2004).
Also, land cover maps provide fundamental information for
many aspects of land use planning and policy development
(Bocco et al. 2001), as a prerequisite for monitoring and
modelling land use and environmental change (Shalaby and
Tateishi 2007) and as a basis for land use statistics at all
levels. The European Environmental Agency (EEA) has pro-
duced the CORINE Land Cover, and the requirement is a
classification accuracy of 85% for the classification perfor-
mance of the so-called level 3 classes, which are relatively
broad classes (EEA 2007). An important part of land cover is
the distribution of agricultural crops, and it is well-known
that synthetic aperture radar (SAR) is able to perform such
classification. The main advantage of SAR compared with
optical and infrared sensors is its all-weather mapping capa-
bility. The discrimination potential of SAR data is based on
the sensitivity of the radar backscatter to dielectric properties
of the objects and to object structure (i.e. the size, shape and
orientation distribution of the scatterers) (Skriver et al. 1999).
The possibility of identifying individual classes is based on
the fact that the dielectric properties and structure of different
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Fig. 3.4 Mid-season classification accuracies for Casselman (left) and Carman (right)
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crop types vary. A distinct variation is also seen for these
properties through the growing season due to the develop-
ment of crops (Skriver et al. 1999). Therefore, the discrimi-
nation capabilities may vary through the year, and it may also
be improved by performing multitemporal classification
(Schotten et al. 1995; Skriver 2012; Skriver et al. 2011).
The radar backscatter is also sensitive to other parameters,
e.g. dielectric properties of the soil, surface roughness, terrain
slope and vegetation canopy structure (e.g. row direction and
spacing and cover fraction) (Moran et al. 2004). These
properties are not necessarily specific for the individual clas-
ses and may therefore cause variability of the backscatter and
other polarimetric observables within the classes. Also,
differences in the development stages at a specific point in
time due to, for instance, differences in sowing time may
cause such variability (Skriver et al. 1999).

Polarimetric SAR measures all polarimetric information
for a target in the form of the scattering matrix. Therefore,
such data may be used to assess the capabilities of SAR for
crop classification in various configurations, including
single-polarisation, dual-polarisation and fully polarimetric
modes. Various methods have been used for such
assessments: statistical methods based on the Wishart distri-
bution (Lee et al. 1994; 2001; Skriver 2012; Skriver et al.
2011) or covariance matrix elements transformed into back-
scatter coefficients (Lee et al. 2001; McNairn et al. 2009b;
Hoekman and Vissers 2003; Skriver 2012; Skriver et al.
2011; Foody 1988; Freeman et al. 1994), methods based on
scattering mechanisms (Lee et al. 1999, 2004) and
knowledge-based methods (Ferrazzoli et al. 1999; Pierce
et al. 1994; Skriver 2001). In the latter approaches, it is
possible to include scattering model results and common
knowledge about the targets. Hence, such methods are nor-
mally relatively robust and easy to adjust to different growing
conditions caused by, for instance, different sowing time, soil
and weather conditions. The number of different classes that
can be determined is normally relatively small using this type
of method. The statistically based methods, on the other
hand, will normally provide a larger number of classes, but
the classifiers will then normally be specifically adjusted to
the data set at hand, and it is difficult to adapt the classifier to
other environmental conditions and/or geographical
locations.

3.2.2.2 Methodology
The basis for our analysis and processing is the multi-look
covariance matrix, which is formed from the coherent scat-
tering vector made up of the backscatter responses at the
linear polarisations, HH, VV and cross-polarisation. The
diagonal backscatter elements in the covariance matrix are
then normalised so they correspond to the γ0 backscatter
coefficient in order to reduce the influence of the incidence
angle.

All acquisitions have been co-registered by identifying
ground control points in the images. The covariance matrix
data, corresponding to the original one-look scattering matrix
data, have been averaged to reduce the speckle by a cosine-
squared weighted 9 by 9 filter. After averaging the equivalent
number of looks is estimated to be 9–11 from homogenous
areas in the images in the Foulum data set and 10 in the
AgriSAR06 data set.

Three different SAR modes are simulated using the same
data set, i.e. single-polarisation, dual-polarisation and
fully polarimetric data. For the polarimetric results, the full
covariance matrix data has been used. For the single- and
dual-polarisation modes, subsets of the covariance matrix
data have been used, e.g. for the single-polarisation backscat-
ter coefficients, γ0hh and γ0vv, the corresponding elements from
the diagonal of the covariance matrix have been used, and for
the dual-polarisation backscatter coefficients, pairs of these
elements have been used, as well as the cross-polarised
backscatter, γ0xp . For the single- and dual-pol modes, the

backscatter intensities have been used, and hence not the
complex scattering matrix elements, in order to simulate
satellite systems, like ENVISAT, RADARSAT, ALOS and
Sentinel-1, where such modes are used to optimise the spatial
and temporal coverage. Hence, the possibility of a coherent
combination of the HH and VV polarisations has not been
considered for this application.

For the single- and dual-polarisation data, the backscatter
coefficients have been used in the classification. Backscatter
coefficients follow the Gamma pdf for a multi-look SAR
image. When the number of looks is large, the Gamma pdf
can, however, be approximated by the Gaussian pdf. The
number of looks in our case is at least 10. Hence, the Gauss-
ian pdf is a valid approximation, and the multivariate Gauss-
ian pdf is used for both single- and dual-polarisation data.
The classification method used in all cases is the standard
Bayesian maximum likelihood (ML) classifier for multivari-
ate Gaussian statistics.

For the fully polarimetric cases, two methods are used: the
standard Bayesian maximum likelihood Wishart classifier
originally proposed by Lee et al. (1994) and the method
introduced by Hoekman and Vissers using a reversible trans-
form of the covariance matrix into backscatter intensities
(Hoekman and Vissers 2003). The complexWishart classifier
is based on the classical Bayesian approach to classification,
and the distance measure is derived based on the pdf of the
covariance (or coherency) matrix for polarimetric SAR data,
i.e. the complex Wishart pdf (Lee et al. 1994). Hoekman and
Vissers (2003) introduced a reversible transform of the
covariance matrix into backscatter intensities. The advantage
is that the fully polarimetric information can be described by
backscatter intensities alone. This description will, for
instance, better than the Wishart distribution, describe the
statistics of a collection of homogeneous areas for the same
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class but with some variability of the mean parameters due to,
e.g. slightly different development stages for crops.

The methodology for the assessment of the classification
accuracy that has been used is the following: one relatively
large and representative field (more than 500 pixels) has been
picked for each of the crop classes, and these areas have been
used as training areas for the classifiers. A large number of
test areas for the classes have been selected, and the classifi-
cation accuracy has been estimated using these areas. The
classification errors estimated are based on the number of
pixels in all these test areas, and hence no results are shown
using the same data set for training and for testing.

3.2.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for crop classification are summarised in Table 3.3
and further described in the Appendix.

The results of classifying the crops for different modes of
the SAR acquisitions and for the multitemporal
configurations are shown in Figs. 3.5 and 3.6. For each
frequency and test site, all single-polarisation and incoherent
dual-polarisation configurations have been assessed, as well
as the two polarimetric classification methods when
fully polarimetric data were available. In the two figures,
only the configuration with the best performance, i.e. the
lowest classification error, within these groups of

configurations is shown. For the Foulum data set, it is seen
in Fig. 3.5 that the polarimetric data always provide the best
classification result, especially at L-band, where there is a
relatively large improvement compared to the incoherent
dual-polarisation results. At C-band, the difference between
polarimetric results and the dual-polarisation results is
smaller. At both frequencies, the Hoekman and Vissers clas-
sifier performs best, and the classification error is down to
approximately 20%. Also at both frequencies, a clear
improvement is seen using the multitemporal acquisitions.

At the AgriSAR06 test site, polarimetric data were avail-
able only at L-band, and in this case, as can be seen from
Fig. 3.6, there is a clear advantage when only a few temporal
acquisitions are available, whereas the performance is worse
than the incoherent dual polarisation for more acquisitions.
The best classification result is about 11%.

3.2.2.4 Comparison with Single-/
Dual-Polarisation Data

As mentioned above, also single- and incoherent dual-
polarisation results are shown in Figs. 3.5 and 3.6. For both
test sites at C-band, it is seen that the best single polarisation
is VV and the best dual polarisation is VVXP, whereas at
L-band the best single polarisation is HH and the best dual
polarisation is HHXP.

Table 3.3 Test sites and corresponding radar and validation data selected for the generation of showcases on crop classification

Application/product Test site – radar data Reference data

Crop classification Foulum Crop maps

C- and L-band fully polarimetric multitemporal data

AgriSAR06

C-band dual pol., multitemporal

L-band fully pol., multitemporal
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Fig. 3.5 Classification errors for Foulum at C-band (left) and L-band
(right) for the best modes for the three cases, single polarisation (red),
dual polarisation (blue) and full polarimetry (green), as a function of the

multitemporal acquisition mode, where 4, 5, 6 and 7 correspond to
April, May, June and July, respectively
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For the Foulum test site, the smallest classification error for
the C-band results is 41% for VV and 20% for VVXP, and for
the L-band results, it is 43% forHHand28% forHHXP (Skriver
2012). For the AgriSAR06 test site, the results are at C-band
19% for VV and 10% for VVXP, and at L-band 15% for HH
and 3% for HHXP (Skriver et al. 2011). It is observed that the
differences in performance between the C- and the L-band
configurations are relatively small. For the Foulum test site,
the C-band performs better than L-band, whereas it is the other
way around for the AgriSAR06 test site. This probably has to do
with the different set of crop types present at the two test sites.

In all cases, there is a large improvement from the single-
polarisation to the dual-polarisation results. It is clearly seen
that the multitemporal acquisitions are necessary for these
configurations in order to obtain a reasonable performance.
Especially, the dual-polarisation modes including the cross-
polarisation perform well, and at C-band they provide com-
parable results with the fully polarimetric data.

3.2.2.5 Discussion on the Role of Polarimetry
on the Maturity of the Application
and Conclusions

From the presented results, it is clear that polarimetry has a
role in crop classification from SAR. Especially, for L-band
an improvement is seen compared to the single and incoher-
ent dual polarisations. At C-band, the polarimetric SAR still
performs best, but the improvement compared to the simpler
modes is small. The classification results for C- and L-band
are relatively similar, and there is no clear preference for one
or the other, except that L-band probably requires the polari-
metric modes to obtain a sufficient classification perfor-
mance, whereas simpler modes may be sufficient at C-band.

The application of using multitemporal SAR for crop clas-
sification is considered to be relatively mature. Multitemporal
acquisitions are considered to be the most important require-
ment for this application, whether polarimetric or simpler
modes are available or not. For the polarimetric modes, it
may be less critical if a lot of multitemporal acquisitions are
not available, whereas it is essential with multitemporal
acquisitions for the single- and dual-polarisation modes.

In conclusion, the performance of the multitemporal SAR
data is seen to be very close and even better for some of the
modes, compared with the requirements on, e.g. the CORINE
land cover of 85% classification accuracy on level 3 classes.
Hence, it will be possible with future polarimetric and/or
short revisit systems to obtain a sufficient classification per-
formance. This could, for instance, be possible with the
future Sentinel-1 satellites, where single- and dual-
polarisation acquisitions at C-band will be available with
short revisit times for large parts of the continents, or with
future L-band polarimetric missions, such as ALOS-2.

3.3 Soil Moisture Estimation Under
Vegetation Using SAR Polarimetry

3.3.1 Introduction, Motivation and Literature
Review

Several hydrological processes, like surface runoff, infiltra-
tion, plant water uptake and groundwater drainage, are
affected by the spatial and temporal variations of soil mois-
ture within the pedosphere (Bronstert et al. 2012; Krajewski
et al. 2006). These moisture changes are still very difficult to

0

10

20

30

40

50

60

70

80

109 123 131 136 144 158 164 172 186 193 207

C
la

ss
if

ic
at

io
n

 e
rr

or

C-VV
C-VVXP

0

10

20

30

40

50

60

70

80

109 123 131 136 144 158 164 172 186 193 207

C
la

ss
if

ic
at

io
n

 e
rr

or

L-HH
L-HHXP
L-Lee

Fig. 3.6 Classification errors for AgriSAR06 at C-band (left) and
L-band (right) for the best modes for the three cases, single polarisation
(red), dual polarisation (blue) and full polarimetry (green) (only

L-band), as a function of the multitemporal series, where the day number
corresponds to a series of acquisitions up to and including that day
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simulate by environmental/hydrological models due to the
multiple and multi-dimensional dependencies of this highly
varying soil parameter. Therefore they require a continuous
and long-term monitoring (Meehl et al. 2007).

Monitoring of soil moisture content reveals, for instance,
the retention capabilities of the soil to store the infiltrated
precipitation for a delayed and uncritical release in the dis-
charge system (Bronstert and Bardossy 1999). In this way
hazard precautions, like flood forecasting and dam manage-
ment, can be supported to identify critical catchment states
before flooding events (Minet et al. 2011). Besides flood
prevention in humid regions, also agricultural management
practices in semi-arid regions, like irrigation, benefit from the
incorporation of soil moisture information leading to crop
yield optimisation in terms of precision farming (Robinson
et al. 2008).

In practice, information about the soil moisture status is
mostly acquired by single point measurements (Robinson
et al. 2003), which might be combined to wireless sensor
networks in order to enlarge the monitoring to field scale
(Cardell-Oliver et al. 2005). In addition, soil moisture sensing
on this scale can be also approached by geophysical methods,
like ground-penetrating radar (GPR) (Huisman et al. 2003) or
ground albedo neutron sensing (GANS) with cosmic ray
probes (Zreda et al. 2008). As the spatial upscaling from
point or field measurements to large scales is highly
non-linear (Merz and Plate 1997), remote sensing extends
soil information retrieval from local point or field studies to
spatial investigations on sub-catchment or entire catchment
areas, including also very isolated regions (Western et al.
2002).

Since optical remote sensing of soil properties (Katra et al.
2006) relies on daylight and clear weather conditions,
RADAR-based methods turn out to be weather- and
illumination-independent supporting a continuous soil moni-
toring strategy. Therefore passive microwave sensors
(radiometers) (Jackson 1993) as well as active microwave
sensors (scatterometers (Wagner et al. 2007), synthetic aper-
ture radars (SAR) (Ulaby et al. 1982)) are used on airborne or
space-borne platforms.

Space-borne radiometers and scatterometers, like MIRAS
on SMOS (Kerr et al. 2001) and AMI on ERS, operate with
low spatial resolution in the order of kilometres and high
temporal resolution in the range of one acquisition every
second or third day (in mid-latitudes), which is favourable
for global monitoring purposes.

In contrary, SAR sensors, like PALSAR on ALOS
(Rosenqvist et al. 2007) or ASAR on ENVISAT, acquired
data in the order of decametres with a temporal resolution in
the range of one acquisition every first to second week
(in mid-latitudes), which fits to regional imaging purposes
(Wagner et al. 2008). In order to combine both spatial scales
for a spatially enhanced soil moisture retrieval on a global

scale, an active-passive microwave sensor will be launched
for the SMAP mission (Entekabi et al. 2010).

However, only SAR remote sensing enables a monitoring
of the soil and its variability down to the local scale due to its
imaging capabilities in high spatial resolution compared to
the other microwave sensors. The sensitivity of SAR for soil
characteristics is based on the fact that the transmitted elec-
tromagnetic (EM) wave interacts with two key parameters of
the soil system: soil moisture and soil roughness. SAR
sensors, used for soil moisture retrieval, acquire in different
wavelengths (ranging from X-band (λ ¼ 3 cm, TerraSAR-X
(Anguela et al. 2010)), C-band (λ ¼ 5 cm, ENVISAT-ASAR
(Löw et al. 2006)), L-band (λ ¼ 23 cm, ALOS (Koyama and
Schneider 2011)) to P-band (λ ¼ 80 cm, E-SAR (Jagdhuber
et al. 2012a)).

Moreover, SAR remote sensing has the capability to pen-
etrate through natural media, like vegetation layers, espe-
cially with increasing wavelength (Cloude et al. 2004).
Hence, also agricultural regions, which are most of the year
covered by vegetation, can be investigated for their soil
moisture conditions. This enables a continuous soil monitor-
ing along the entire plant growth cycle, if the increasing
scattering contribution from the vegetation is considered
(Hajnsek et al. 2009).

Concerning SAR remote sensing approaches, the first soil
moisture analyses were carried out on single-polarisation
intensities over bare soils leading to ill-posed inversion
problems, because the soil moisture and roughness influences
are enclosed in one acquired signal (Bernard et al. 1982).
With the emerging establishment of fully polarimetric SAR
sensors, the observation space has been enlarged allowing to
separate soil roughness from soil moisture influence for an
unambiguous inversion of both soil parameters over bare
soils (Hajnsek et al. 2003).

For bare soils, three different categories of EM scattering
models, which relate the natural soil conditions with the
characteristics of the scattered RADAR signature, can be
distinguished: empirical models, semi-empirical models and
theoretical models. As remote sensing relies on the under-
standing of electromagnetic (EM) scattering on ground, only
theoretical models can be considered as test site independent
and form the basis of the analyses. Among these models, the
integral equation method (IEM) is widely applied for EM
scattering of bare soils because of its broad range of applica-
bility in terms of soil roughness classes (Fung 1994).

So far the investigation of soil parameters, like soil mois-
ture, with polarimetric SAR remote sensing was constrained
on bare soil areas due to the lack of retrieval algorithms
including the influence of a vegetation cover (Hajnsek et al.
2003). The dielectric discontinuities in vegetation volumes,
which can be, for example, stems, branches, twigs and leaves,
scatter the waves in a complex manner (Ulaby and Wilson
1985).
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In order to incorporate the influence of vegetation cover,
different EM models have been developed to describe vege-
tation scattering (Lang and Sidhu 1983), whereby the level of
detail varies from a simple layer of uniformly shaped spheres
(Attema and Ulaby 1978) until sophisticated three-
dimensional models of the vegetation volume, including
cylinders, dipoles and discs with their respective orientation
distributions to simulate stems, branches and leaves (Karam
et al. 1992). Especially for the latter models, the amount of
required input parameters exceeds by far the potential observ-
able space of SAR remote sensing for direct inversion.

Unlike traditional retrieval approaches evaluating the total
backscattered signature, an innovative soil information
retrieval under vegetation cover should focus on the separa-
tion of the individual scattering contributions from the soil
and the vegetation in order to extract only the soil properties
for inversion. Polarimetric decompositions represent an
established technique for separation of elementary scattering
processes and have quite a history in polarimetric SAR
remote sensing. Originally, these decomposition methods
were designed for forested environments including scattering
interactions with the ground, with the tree trunk and the
ground as well as with the tree canopy. Recently, the descrip-
tion of the polarimetric vegetation volume component was
considerably extended by Freeman (Freeman 2007),
Neumann (Neumann et al. 2010) and Arii (Arii et al. 2010)
using shape parameters for the scattering components
(leaves, twigs, branches) and different orientation
distributions within the tree canopy to characterise the polar-
imetric volume scattering of various tree species in a more
detailed way. Besides the polarimetric decomposition models
for forests, several (multi-angular) polarimetric decomposi-
tion methods for the more complex scattering scenario of
agriculture, including a depolarising surface component due
to soil roughness or an oriented vegetation component due to
plant structure, are under development and provide the
methodical foundation for this application showcase
(Hajnsek et al. 2009; Jagdhuber et al. 2012b, 2013a).

3.3.2 Methodology

The retrieval of soil characteristics by polarimetric SAR
remote sensing is investigated for agricultural areas using
C-band wavelength (λ ¼ 5 cm) to assess a continuous soil
parameter estimation with a growing vegetation cover along
the phenological cycle. Due to polarimetric decomposition
techniques, the separation of vegetation from soil/ground
information should allow a continuous monitoring of soil
moisture under vegetation cover. A modular polarimetric
decomposition for retrieval of soil moisture is introduced to

provide a profound basis for representation of different natu-
ral scattering conditions.

The received SAR signal of almost any natural media is a
mixed response of different scattering processes occurring
within the resolution cell. Therefore polarimetric decomposi-
tion techniques have been developed and used to separate the
different scattering contributions. Equation (3.1) describes a
generic example of an incoherent decomposition using the
coherency matrix notation (Cloude 2009). A simple and
generic case of model-based decompositions considers a
non-penetrable surface superimposed by a volume of
particles. This can be modelled with three components
defined as surface TS, dihedral TD and volume TV scattering.
The first component in Eq. (3.1) represents direct backscatter
from a smooth surface (ks < 0.3), which can be expressed by
the SPM or Bragg scattering model (Yamaguchi et al. 2006):

TS ¼ f S

1 β�S 0

βS βSj j2 0

0 0 0

2
64

3
75 with

f S ¼
m2

S

2
Rh þ Rvj j2 and βS ¼ Rh � Rv

Rh þ Rv
ð3:1Þ

where the coefficients Rh and Rv are the horizontal and
vertical Bragg scattering coefficients and mS represents the
soil roughness influence on the intensity component fS. Both
Bragg scattering coefficients depend only on the dielectric
constant of the soil εS and the local incidence angle θl.

The dihedral scattering component can be modelled as a
double Fresnel reflection on smooth dielectric media leading
to the following rank-1 coherency matrix (Yamaguchi et al.
2006) and including the dihedral scattering intensity fD and
the dihedral scattering mechanism ratio αD:

TD ¼ f D

αDj j2 αD 0

α�D 1 0

0 0 0

2
64

3
75, with

f D ¼ m2
D

2
RshRth þ RsvRtve

iφD
�� ��2 and,

αD ¼ RshRth � RsvRtveiφD

RshRth þ RsvRtveiφD
ð3:2Þ

where the horizontal and vertical Fresnel coefficients of the
soil plane (Rsh, Rsv) and of the trunk plane (Rth, Rth) depend
on the soil and trunk dielectric constant (εS and εt) and the
respective incidence angle θs ¼ θl and θt ¼ π/2 � θl. The
phase φD incorporates differential propagation in the case of
an orientated vegetation layer, while mD represents the scat-
tering loss on the intensity component fD.
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The most challenging component with respect to EM
modelling is the vegetation volume. A widely used approach
deals with the vegetation volume as a cloud of equally shaped
particles with a certain orientation distribution. In one of the
simplest ways, the volume component is modelled as ran-
domly oriented cloud of dipoles. The initial vertical dipole
can be expressed with the following scattering matrix Svdi:

Svdi ¼
0 0

0 1

� �
: ð3:3Þ

After expansion to the coherency matrix, the matrix is
rotated around the LoS by an angle of 2ψ to account for the
orientation of the scattering particles:

Trot ¼ R2TvdiψRT
2ψ ¼

1 0 0

0 cos 2ψ sin 2ψ

0 � sin 2ψ cos 2ψ

2
664

3
775

1=2 �1=2 0

�1=2 1=2 0

0 0 0

2
664

3
775

1 0 0

0 cos 2ψ � sin 2ψ

0 sin 2ψ cos 2ψ

2
664

3
775: ð3:4Þ

In order to respect all the different orientations occurring
within vegetation, the rotated coherency matrix Trot is
integrated together with the specific probability density func-
tion pψ(ψ) of orientations assuming a uniform angular distri-
bution pψ(ψ) ¼ 1/(2π) and a distribution width
Δψ ¼ ψ2�ψ1 ¼ 2π in the case of a randomly oriented
vegetation volume (Yamaguchi et al. 2006):

TV ¼ f V

Z ψ2

ψ1

pψ ψð ÞTrotdψ

¼ f V

1=2 0 0

0 1=4 0

0 0 1=4

2
64

3
75: ð3:5Þ

In a first step, the modelled vegetation volume component
TV with its volume intensity fV is subtracted from the
measured polarimetric SAR data T to separate the volume
TV and the ground TG components (TS + TD):

Th i � f VTV ¼ TG ¼ TS þ TD: ð3:6Þ

However, if the volume modelling is imperfect, Eq. (3.6)
leads to biased or even non-physical results for the ground
component TG. To avoid this effect, a mathematical method
using the positive semi-definiteness of the Hermitian ground
component was proposed by Van Zyl et al. to correct the
volume intensity fVcorr (Van Zyl et al. 2008). With this
corrected volume intensity, the linear system of Eq. (3.2) is
solved for the single ground components (αD, βS, fS, fD) of
the three scattering contributions obeying the dominance
criterion of Freeman et al. for the ground components (Free-
man and Durden 1998).

3.3.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for crop classification are summarised in Table 3.4.
The Indian Head test site is further described in the
Appendix.

The presented polarimetric methodology was employed
on the fine quad-polarimetric RADARSAT-2 data sets of
Flevoland and Indian Head in order to decompose the SAR
data into their respective scattering components (surface,
dihedral, volume) and afterwards to invert the volumetric
soil moisture from the ground components (surface,
dihedral).

Figure 3.7 displays exemplarily the RGB composite of the
normalised decomposed scattering power components from
the three-component model-based decomposition introduced
in Sect. 3.3.2 for the two test sites and two different acquisi-
tion dates (Flevoland, in the beginning of the observation
cycle, 11th of June 2009, towards the end of the observation
cycle, 29th of August 2009; Indian Head, 4th of August and
4th of September 2009). For the Flevoland scenes, the water
bodies in blue colour and the urban areas predominantly in
red colour are clearly visible in both scenes due to their
temporal scattering stability. However, the agricultural areas
are mostly indicated by the rectangular “patch work”
structures across the centre of the scenes, which change
significantly between the two acquisitions. For the Indian
Head scenes, the agricultural fields show two different
patterns for each date (August, September) due to the pheno-
logical plant development along the growing cycle. While the
strongly vegetated fields exhibit a strong volume scattering,
the low vegetated (catch crops) or bare fields (after harvest)
indicate predominantly surface scattering.
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In June, after the start of the crop cycle (Fig. 3.7 left), the
fields appear in all three colours, indicating a mixture of
surface (bare soil), dihedral (stalk/leave-ground) and volume
(complex vegetation) scattering due to the different
phenologies of the different crop types, but also the different
sowing dates on different fields.

In August, within the final stage of the crop cycle (Fig. 3.7
right), a part of the agricultural fields (mostly the winter
crops) are already harvested and appear in blue colour
indicating predominantly surface scattering, while the other
part of the agricultural fields (summer crops, like corn) still
exhibit green colours, indicating complex volume scattering
before harvesting.

Figure 3.8 exhibits the trends of the three normalised
scattering power components (red, dihedral; green, volume;
blue, surface) for Flevoland and Indian Head test sites. The
general trend is similar for both test sites at Flevoland, where
volume is dominant most of all times with values around
0.6–0.7 peaking in July/August during the maturity stage of
the vegetation. The ground components always stay below
0.4–0.5 except for the April dates in Flevoland.

Moreover, dihedral scattering is mostly present within the
June dates in Flevoland, when the vegetation is active and
fresh for a distinct double bounce and almost vanishes after-
wards, while surface scattering dominates over dihedral scat-
tering for Flevoland in July and August 2009. For the Indian
Head test site, the time series in Fig. 3.8 reveals a clear
dominance of volume scattering (level ¼ 0.8 along all
August) due to a strong agricultural vegetation cover of
canola crops (vegetation height > 1.0 m) on the test field,
where some minor ground scattering occurs as single-bounce
surface and/or as double-bounce dihedral scattering
(level < 0.2). Hence, the dry moisture regime (mean soil
moisture level lower than 8vol.%) together with the thick
vegetation layer of canola will be a big challenge for soil
moisture inversion under vegetation at C-band.

In conclusion, the decomposition led to a physically
meaningful separation of the scattering contributions within
the C-band RADARSAT-2 scenes, which reflects the

agricultural scattering scenario reasonably well. After the
model-based polarimetric decomposition into the single scat-
tering components, the surface and dihedral components
were inverted for soil moisture retrieval under vegetation
cover as described in Sect. 3.3.2. Only for Flevoland very
low inverted moisture ranges (soil moisture <5.6vol.%) com-
pared to the in situ measured moistures (~30–40vol.%) are
not representative and are filtered out in the end of the
inversion process.

Figure 3.9 presents exemplarily the combination of
inverted soil moisture values from both ground components
(surface, dihedral) for the Flevoland (11th of June 2009 and
29th of August 2009) and Indian Head (4th of August and 4th
of September 2009) test sites. The inversion rates for the
whole Flevoland scene are 33.12% for the June date and
32.70% for the August date, while the inversion rates for
both test sites and all scenes are displayed in Fig. 3.10. For
Flevoland the inversion rates vary between 22% and 33%
along time, whereby the minimum is reached in July, when
the agricultural vegetation is in its maturity stage. For Indian
Head the inversion rate varies between 11% and 25% grow-
ing slightly higher in the end of the vegetation growth period.
Hence, in all cases, the inversion exhibits gaps of
non-invertible points (white areas in Fig. 3.9). The inversion
mostly failed within the agricultural regions due to the variety
of scattering scenarios (typical field sizes at Flevoland:
10–15 ha), which are difficult to describe in detail with one
type of model-based polarimetric decompositions assuming
just a randomly oriented vegetation volume.

However, distinct field heterogeneities are visible within
the soil moisture results, which fit the expectations of a highly
varying soil moisture content on the agricultural fields. For
Indian Head, a higher inversion rate can be stated for the
scene acquired in September due to a diminished vegetation
cover caused by harvesting activities and senescence.

In general, the inversion result at Flevoland for the 11th of
June 2009 reveals a higher soil moisture level on the dihedral
dominant fields than on the fields with surface scattering. In
addition, the dominance of surface scattering for the 29th of

Table 3.4 Test sites and corresponding radar and validation data selected for the generation of showcases on soil moisture estimation under
vegetation

Application/product Test site – radar data Reference data

Soil moisture estimation
under vegetation

Flevoland, the Netherlands Two continuously recording soil moisture stations (volumetric soil moisture
content, hourly sampling from 26/05-06/10/2009)RADARSAT-2, C-band – fine quad-

polarimetric SLC data sets

Time series from April 2009 to
August 2009

Indian Head, Canada One continuously recording soil moisture station (volumetric soil moisture
content, hourly sampling from 17/07-13/09/2009)RADARSAT-2, C-band – fine quad-

polarimetric SLC data sets

Time series from July 2009 to
September 2009
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August 2009 seems to result in a lower moisture level on
most of the fields. In contrast to Flevoland, the Indian Head
test site exhibits generally a lower soil moisture level, but
also states relatively a higher moisture regime for fields with
dihedral compared to surface scattering.

Figure 3.11 presents the validation of the inverted soil
moisture from the ground scattering components (surface,
dihedral) with the in situ measurements of the 2 test sites
and all continuously recording moisture stations for 11 differ-
ent dates from 11th of June until the 29th of August 2009 at

Fig. 3.7 RGB composite of normalised decomposed scattering power
components from model-based polarimetric decomposition for the
beginning of the observation cycle at 11th of June 2009 (Top left) and
the end of the observation cycle at 29th of August 2009 (Top right) at the
Flevoland test site and for 4th of August in the main growth period

(Bottom left) and 4th of September 2009 in the end of the main growth
period (Bottom right) at the Indian Head test site (red, even bounce/
dihedral scatterers; green, volume scatterers; blue, odd bounce/surface
scatterers)
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Flevoland and for 9 dates from 4th of August until 4th of
September 2009 at Indian Head. A clear underestimation has
to be stated at Flevoland for all dates of the observation cycle.
In contrary, a distinct overestimation is reported by the com-
parison with in situ measurements at Indian Head. The
estimated soil moisture values for the two measurement
locations at Flevoland are underestimating the measured
soil moisture values by a RMSE of 13.32vol.% (r2 ¼ 0.12),
whereas the comparison with the field measurements for
Indian Head overestimates with a RMSE of 22.84vol.%
(r2 ¼ 0.02) including all analysed dates.

In the past, the soil moisture retrieval method was devel-
oped and implemented for L-band data (see Jagdhuber et al.
2012b, 2013a, b), and with the transfer to the C-band scatter-
ing scenario, the algorithm needs further adaptions especially
concerning the ground scattering models. First analyses on
the surface component inversion blame the low moisture
values at Flevoland on the low T12 correlation term, which

leads to small βS values and the underestimation of the soil
moisture level.

In addition, the measured soil moisture of the two in situ
stations at Flevoland ranges between 24vol% and 42vol%.
This represents a significantly high soil moisture level, which
is an additional challenge for the inversion algorithm,
because the sensitivity of the inversion models decreases
with increasing soil moisture level (Jagdhuber 2012).

For Indian Head, the distinct overestimation of the soil
moisture might be traced back to a very challenging scatter-
ing scenario of a large canola vegetation cover (>100 cm) and
a very dry soil underneath, which might be hardly detectable
at C-band (wavelength: 5 cm).

Moreover, it has to be stated that the validation could only
be conducted over time (continuously recording moisture
stations) and not over space (no soil moisture network or
spatial sampling), since only three measurement locations
were available for Flevoland and Indian Head in 2009.

Fig. 3.8 Normalised decomposed scattering power components (red,
dihedral; green, volume; blue, surface) from the model-based polarimet-
ric decomposition for the Flevoland test sites (site 1, Plus sign; site
2, Star sign from the beginning of the observation cycle at 11th of June

2009 until the end of the observation cycle at 29th of August 2009) and
for the Indian Head test site (site 3, Plus sign) (R, even bounce/dihedral
scatterers; G, volume scatterers; B, odd bounce/surface scatterers)
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Fig. 3.9 Inverted soil moisture [vol.%] from both ground scattering
components (surface, dihedral) for the Flevoland test site (at the begin-
ning of the observation cycle at 11th of June 2009 (Top left) and the end
of the observation cycle at 29th of August 2009 (Top right)) and for the

Indian Head test site (on the 4th of August (Bottom left) and the 4th of
September (Bottom right) 2009); non-invertible areas are masked white;
image smooth: 4 � 4
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3.3.4 Comparison with Single-/Dual-Pol Data

The developed algorithm is directly and solely based on the
fully polarimetric observation space and therefore directly
affected by the reduction to single- or dual-polarimetric
data. This means that only in the case of fully polarimetric
data, the vegetation- and/or soil roughness-induced
depolarisation can be assessed, quantified and removed in
the best way. A decomposition, separating the vegetation

volume and the soil ground scattering components, is
not/only partly feasible with single-/dual-polarimetric
approaches.

Hence, there is a trade-off between decomposing fully
polarimetric data and then solving a lower parameterised
inversion problem or using single-/dual-polarimetric data
and modelling the whole backscatter signal by solving an
ambiguous, highly parameterised inversion problem.

Fig. 3.10 Inversion rate [%] for soil moisture retrieval of both ground
scattering components (surface, dihedral) at Flevoland (left) from the
beginning of the observation cycle at 11th of June 2009 until the end of

the observation cycle at 29th of August 2009 and at Indian Head (right)
from 21st of July until 4th of September 2009

Fig. 3.11 Validation of inverted soil moisture [vol.%] from ground
scattering components (surface, dihedral) with in situ measurements of
soil moisture at the two continuously recording moisture stations (site
1, Plus sign; site 2, Star sign) at Flevoland (left) for 11 different dates

from 11th of June until the 29th of August 2009 (colours) and at Indian
head (right) for 12 dates from 4th of August until 4th of September
2009; validation box: 7 � 7 pixels
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Fig. 3.12 Multi-angular polarimetric decomposition for soil moisture
retrieval under vegetation cover at L-band applied to E-SAR data of the
OPAQUE 2008 campaign: (Top) Local incidence angle and soil mois-
ture inversion results for a single-, bi- and tri-angular model-based
decomposition and inversion are depicted. The inversion rate constantly

increases, when moving to a multi-angular decomposition and inver-
sion. (Bottom) Validation of the SAR-based moisture estimates with in
situ measurements from different crop types for each single measure-
ment location (left) and for the mean of field values (right) (Jagdhuber
et al. 2013a)
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3.3.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusion

Polarimetry and the acquisition of fully polarimetric SAR
data are essential for the retrieval of soil moisture under
vegetation. Only the polarimetric observation space with its

capability of polarimetric decompositions provides and
reveals the different properties (dielectric content, object
geometry) of the scatterers on ground in the most complete
way compared to backscatter intensity analyses or interfero-
metric techniques. Therefore SAR polarimetry plays an
essential role in this application.

Fig. 3.13 Hybrid polarimetric decomposition for soil moisture retrieval
under vegetation cover at L-band applied to E-SAR data of the AgriSAR
2006 campaign: (Top) Land use and soil moisture inversion results for a
time series covering the entire vegetation cycle (April–July 2006) are
depicted. Urban and forested areas are masked grey. (Bottom)

Validation of the SAR-based moisture estimates with in situ
measurements from different crop types for each single measurement
locations (left) and for the mean of field values (right). Symbology:
Diamond, 5th of July; Stars, 7th of June; Plus, 19th of April) (Jagdhuber
et al. 2013b, 2014)
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In the last years, the application of soil moisture retrieval
under vegetation advanced to a distinct level of maturity by
using longer wavelength SAR (L-band) (Jagdhuber et al.
2012b, 2013a, b). Compared to C-band, L-band provides a
deeper penetration into the vegetation canopy together with a
convenient signal-to-noise ratio (SNR) for reliable polarimet-
ric signal analyses (Jagdhuber 2012). Figures 3.12 and 3.13
show exemplarily two novel and innovative types of polari-
metric decompositions for soil moisture inversion under veg-
etation at longer wavelength (L-band): a multi-angular,
model-based decomposition and a hybrid (combined
model-/eigen-based) decomposition. The multi-angular
decomposition in Fig. 3.12 leads to the increase in inversion
rate from 40% to 71%, when moving from a single-angular to
a tri-angular model-based decomposition, which also reflects
in the quality of the inversion with an RMSE of 5.85vol.% in
contrast to the C-band results (in Fig. 3.11) (Jagdhuber et al.
2013a). In comparison to all presented inversion approaches,
Fig. 3.12 reveals the best inversion and validation results of
the novel hybrid decomposition technique using a model-
based decomposition for the volume removal and an eigen-
based decomposition to retrieve the single ground scattering
components for soil moisture inversion under vegetation
cover for an entire vegetation growth period sensed during
the AgriSAR 2006 campaign (Jagdhuber et al. 2013b). The
inversion rate is always higher than 95% including the entire
vegetation cycle. Moreover, the RMSE for all acquisition
dates (April–July 2006) lies in the favourable range of
4,6vol.% (mean of field values) to 6.5vol.% (single scattering
locations) for ecosystem applications.

Furthermore, first attempts were also made for retrieving
soil moisture under boreal forest using P-band in order to
enlarge the moisture retrieval to forested environments
(Jagdhuber et al. 2012a). In addition, also X-band fully
polarimetric data of TerraSAR-X are currently investigated
for soil moisture retrieval on bare and sparsely vegetated soils
for shorter wavelength SAR (Jagdhuber et al. 2013c, d). In
this way, the fully polarimetric soil moisture estimation using
decomposition techniques is approached covering the fre-
quency range from X- to P-band considering the
wavelength-dependent sensitivity for vegetation cover and
the soil below.

3.4 Crop Phenology Estimation Using SAR
Polarimetry

3.4.1 Introduction, Motivation and Literature
Review

All agricultural crops present a continuous development,
from sowing or transplanting to harvest, in which they grow
and evolve in accordance with their biophysical

characteristics and the farming practices applied to them.
Phenology denotes such a succession of stages during the
cultivation cycle and is commonly expressed using numerical
scales (Meier 2001).

Tracking phenology of agricultural fields by remote sens-
ing is useful for farmers with extensive fields because it
provides key information for planning and triggering cultiva-
tion practices, so the main application of this EO product is
precision farming. These cultivation practices (e.g. irrigation,
fertilisation, effective germination counting, harvest, etc.)
require timely inputs about the status of the plants and,
specifically, about their condition or situation along the
expected cultivation cycle.

Besides precision farming, timely information of phenol-
ogy can contribute to agencies and institutions involved in
market predictions, insurance policies, subsidies claims, etc.
since such information complements their own data sources
and provides a temporal schedule for the crop production and
yield calendar.

Most of the applications require phenology information at
parcel (field) level, but in some cases it may be necessary to
provide values at pixel (sub-parcel) level, especially when
dealing with detection of heterogeneities produced by culti-
vation problems (e.g. water salinity used of irrigation) and
plant diseases (e.g. pests and plagues). Unfortunately phenol-
ogy monitoring by satellite remote sensing has not attracted
much attention in the past due to both the lack of time series
of images and the cost of the ground campaigns. Neverthe-
less, this situation has changed in recent times, thanks to the
launch of satellites with shorter revisit times (e.g. 11 days for
TerraSAR-X) and reconfigurable acquisitions (different
beams can be operated for more frequent observation of a
particular area). Importantly for us these are also available in
multiple polarisation channels, which prompted this research
into phenology retrieval using polarimetric imaging radar
(PolSAR).

Algorithms for phenology monitoring have to be devised
individually for each crop type, based on the expected
response of each crop to the sensor at its different stages,
which can be extracted from the data themselves (training
sets) or from previous experiments, models and simulations.
In addition, approaches based on the availability of time series
of images can improve importantly the performance of these
algorithms, since phenology is intrinsically related to time.

The starting point of this application is the knowledge of
which crop type or plant species is cultivated at the monitored
fields, which is provided by the users or can be obtained from
a crop type map. Then, the general objective of this product
consists in estimating the current phenological stage of the
plants in the parcel by exploiting a single PolSAR
acquisition.

The topic of vegetation phenology monitoring by means
of remote sensing has been mostly addressed in the past by
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analysing temporal variations of vegetation indices acquired
by optical sensors. These vegetation indices are formed by
combining different spectral bands which exhibit different
sensitivities to biochemical plant constituents and canopy
biophysical parameters. These indices are then used as a
proxy for monitoring the plant growth stage by means of
empirical relationships with structural parameters. Among
all of them, the most important one is LAI (leaf area index)
which plays a key role in the design of crop models for crop
condition assessment and final yield prediction (Bach and
Mauser 2003).

In addition to different airborne sensors operating world-
wide (CASI, ROSIS, DAIS-7915), there are several operative
satellite missions which have been providing multispectral
data for large-scale Earth dynamics studies. Some of these
instruments are the MODerate-resolution Imaging Spectrora-
diometer (MODIS) by NASA, the Advanced Very High
Resolution Radiometer (AVHRR) by NOAA and the VEG-
ETATION sensor on board SPOT satellite by CNES. In
general, the main purpose of all these projects has been
primarily focused on crop yield prediction and crop
mapping/classification, being these tasks directly related to
the estimation of phenology (Nellis et al. 2009).

Early studies by Badhwar and Henderson in 1981
(Badhwar and Henderson 1981) made use of Landsat Multi-
spectral Scanners (MSS) in order to design a crop model able
to determine development stage of corn and soybean. Further
improvement was proposed by Tilton and Hollinger in 1982
(Tilton and Hollinger 1982) when they proposed an algo-
rithm to predict the development stages early in the growing
season by means of a principal component analysis of
Landsat images. In 1990, Lloyd exploited the approximately
linear relationship between solar energy absorption of plants
and NDVI measurements acquired by NOAA-AVHRR in
order to describe phenological events (Lloyd 1990). Like-
wise, in 1994 Reed et al. (1994) analysed time series of
NOAA-AVHRR acquisitions as well, and they found a high
correlation between NDVI temporal trends and phenological
variations in case of spring wheat at a continental scale.

The work by Tucker in 1979 (Tucker 1979) is considered
as one of the first contributions that proposed the systematic
use of NDVI for characterising vegetation. Since then, NDVI
has been the most widely used spectral index for vegetation
monitoring. It combines the reflectance values of plants in red
(low reflectance) and near-infrared (high reflectance) bands.
In general, temporal variations of NDVI exhibit a high corre-
lation with the main growth stages of plants, i.e. vegetative,
reproductive, maturity and senescence stages.

The combination of other spectral bands has led to the
development of refined optical indices that could yield dif-
ferent results depending upon the type and conditions of
vegetation. Studies conducted in (Haboudane et al. 2004)
demonstrated that LAI values for soybean, corn and wheat

can be consistently estimated from vegetation indices at
different phenological stages.

Further improvements have been proposed, such as the
enhanced vegetation index (EVI) which was designed in
order to increase the sensitivity to vegetation changes by
considering the canopy background contributions as well as
the atmosphere influences (Huete et al. 2006).

Contrary to the valuable and long experience acquired in
hyperspectral systems, the use of active microwave remote
sensing for agriculture monitoring activities is a relatively
new topic (Lopez-Sanchez and Ballester-Berman 2009), also
due to the scarcity of well-established and long-term research
programmes developing both air- and space-borne missions
capable of providing the required radar data sets. Fortunately,
this situation has entirely changed in recent years after the
initiation of a large number of radar remote sensing
campaigns promoted by different aerospace agencies and
institutions around the world such as ESA, CSA, NASA,
DLR and JAXA.

After some pioneer works on the potential of radar for
characterising natural targets (see, e.g. Ulaby et al. 1987), the
interest on the use of active microwave sensors was greatly
stimulated during the 1990s (Henderson and Lewis 1998) as
a consequence of the launch of three satellites operating at
C-band, i.e. ERS, ENVISAT-ASAR and RADARSAT-1.

Among other applications, vegetation phenology monitor-
ing has been also tackled, but the literature on this topic is still
very scarce. First contributions demonstrating the relation-
ship between radar backscatter and growth stages of rice were
presented by Le Toan et al. (1989), Kurosu et al. (1995) and
Le Toan et al. (1997) in 1989, 1995 and 1997, respectively.
Other follow-up works to this topic were also based on the
analysis of incoherent radar measurements and can be found
in (Inoue et al. 2002; Chen and McNairn 2006; Koay et al.
2007; Bouvet et al. 2009). These works have shown the
potential of C-band HH/VV ratio for rice field discrimination
and that a clear intensity signature appears as a consequence
of phenological development of rice plants. More recently in
(Lopez-Sanchez et al. 2012a), an algorithm to estimate the
phenological stages throughout the whole growing season
was designed on the basis of a coherent approach. However,
the phenology retrieval issue has not been explicitly studied
for other crops in the literature. Indeed, the only clear exam-
ple we have found on this topic is the work by Wegmüller
and Werner in 1997 (Wegmüller and Werner 1997) where
they described the sensitivity of interferometric coherence to
the fraction of vegetation cover and the potential for tracking
phenological events for corn, sugar beets, potatoes and
rapeseed.

Alternatively, the interest has been focused on estimating
parameters related to crop growth, such as biomass and LAI
(which in turn are intrinsically related to each other), as well
as crop condition and type assessment. Early contributions by
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Brown et al. (1992) and Bouman and Hoekman (1993) made
use of different frequency bands for separating crop types.
Also the estimation of biomass from olive groves, sunflower,
corn, sorghum, rape, wheat and alfalfa was studied in
(Ferrazzoli et al. 1997). Estimation of LAI with saturation
effect at 2–3 m2/m2 has been also reported in (Ferrazzoli et al.
1992) by means of radar backscatter at C-band. The use of
time series of backscattering coefficients, together with elec-
tromagnetic models and neural networks, for such a purpose
has been also addressed in the literature (Del Frate et al.
2004). Backscattering coefficients at different polarimetric
channels were also correlated with phenology and cultivation
practices (e.g. irrigation) for several crop types in (Moran
et al. 2012).

As an alternative way to retrieve information on the phe-
nology of crops, other works have been focused on crop
height estimation, given that plant height could be used as a
proxy for phenology at least for certain growth stages (mainly
during the vegetative phase). The applied retrieval strategy
has evolved from the design of empirical relationship
between coherence and height as shown in (Engdahl and
Borgeaud 1998; Engdahl et al. 2001) for sugar beet, potato
and winter wheat to more elaborated and robust approaches
consisting of electromagnetic modelling of PolInSAR
observables (Treuhaft et al. 1996; Treuhaft and Siqueira
2000; Cloude and Papathanassiou 2003) which have yielded
successful results in crops such as maize and rice in labora-
tory conditions (Ballester-Berman et al. 2005) and maize and
winter rape in the framework of an airborne campaign
(Lopez-Sanchez et al. 2012b).

In summary, it can be concluded that the topic of crop
phenology is an incipient research field which recently has
been stimulated by the potential positive socio-economic
impact that remote sensing tools offer in terms of monitoring
and management tasks on crop fields at large scale.

3.4.2 Methodology

As amatter of fact, the problem of identifying the phenological
stage of an agricultural crop can be regarded as a classification
problem, where each stage corresponds to a class, and hence
can be approached in a similar way to crop type mapping. This
application is better suited to algorithms based on hierarchical
trees or simple decision planes, since they can be tailored to
match specifically the different features of the plants that
change or appear as they develop. This type of rule-based
algorithms facilitates the physical interpretation of the phenol-
ogy retrieval procedure, since the criteria are based on scatter-
ing mechanisms (e.g. surface, dihedral, volume) and properties
(e.g. extinction, depolarisation, etc.) in correspondence to the
crop structure and features at each stage and in contrast with
other algorithms based on the full covariance statistics

(e.g. Wishart classifier). Hierarchical tree algorithms have
been widely used for classification purposes in the literature
and specifically for crop type mapping with PolSAR data, so
they can be considered as mature since they provide consistent
accuracies above 85% in crop type mapping. Therefore, hier-
archical tree algorithms will be implemented and tested for this
product.

The starting point is the multi-look processing or filtering
of the available PolSAR images, providing the covariance or
coherency matrix for each multi-looked pixel. A sliding
boxcar filter has been employed since the monitored parcels
are wide enough and homogeneous for applying such a
filtering type. Then, all images have been geocoded. If all
images were acquired with the same beam and pass, a
coregistration of the whole set to a common master image
could be used instead of geocoding. Once geocoded, all
available PolSAR images are studied for each crop type by
restricting the region of interest (ROI) to the interior of all
fields of each crop. In all cases, an analysis of a large number
of polarimetric observables is carried out in order to extract
the most meaningful set for the crop under study. The avail-
able observables are backscatter powers and correlations
(linear, Pauli and circular basis and for compact polarimetry
as well), backscattering ratios for different channels and for
various polarisation bases, eigenvector/eigenvalue decompo-
sition parameters, compact polarimetry decomposition
parameters and the Freeman-Durden and Touzi decomposi-
tion outputs.

This analysis is based on the representation of the
observables as a function of phenology, so the reference
data recorded at each acquisition date are used to define the
x-axis of their representation. For each observable, the mean
and standard deviation within the parcel at every radar acqui-
sition are obtained and plotted.

From the analysis of the evolution of all observables for
each crop type, a reduced set of them will be selected for the
retrieval algorithm by identifying the ones that define with
more distinction particular phenological stages. Specifically,
those with wider dynamic ranges and less presence of
ambiguities will be chosen. Moreover, observables with
easy physical interpretations will be preferred to those with
less clear explanations in terms of scattering physics. With
the selected set of observables, a hierarchical tree is defined
by setting manually thresholds based on the previous
analysis.

An important question to address for the definition of the
final product concerns the required spatial resolution since
phenology can be provided either at pixel level (one value per
multi-looked pixel) or at parcel level (one value per parcel).
In the first case, we could detect areas with different degrees
of development within the same parcel, hence being also
useful for localised farming practices such as irrigation and
fertilisation. In the second case, we would be interested in the
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global development of the crop field, which would be con-
sidered as homogeneous.

According to the available reference data (see Appendix),
we know the phenology at several ground points of each
field, but (1) they are mostly coincident for the same parcel;
and (2) available values are maximum and minimum values
of phenological stages, instead of single values. Therefore,
we have considered in the analysis that phenological data at
each field and each date are the same for the whole field,
being the mean the value adopted.

The inversion algorithm however has been applied at both
pixel and parcel levels. This option increases the usefulness
of the product for potential end-users since retrieved infor-
mation is provided at different scales, i.e. at pixel level any
possible heterogeneity within a field can be detected and, in
addition, at parcel level an overall conclusion on the status of
the field is obtained. For the estimation at parcel level, it will
be computed as the mode of the estimates within the parcel in
accordance with the available reference data.

3.4.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for crop phenology estimation are summarised in
Table 3.5 and further described in the Appendix.

3.4.3.1 Analysis
First we describe and justify the evolution as a function of
phenology of different parameters. To this end, all parameters
presenting similar evolutions are grouped. In general, from
the five crop types analysed (barley, oat, wheat, field peas and
canola), we have found only three main signatures, since all
three cereals (barley, oat and wheat) behave similarly.

Although in principle we expected clear differences in the
radar responses as a function of incidence angle (there are
images acquired with angles from 22� to 39�), such
differences are only evident in some parameters and espe-
cially for certain crop conditions (e.g. during the vegetative
phase in cereals, since ground dominates the radar response).
Consequently, a joint analysis of all angles has been carried
out. In some extreme situations, like two images acquired on
consecutive days with 22� and 39�, a discontinuity is
expected, so this will be commented when necessary.

Finally, and according to the discussion in the previous
sections, we have computed the evolutions of all parameters
at pixel level after a 9 � 9 multi-look. The plots of the

evolutions show the average and the standard deviation
computed over the whole field.

In this report, we will focus our analysis on the results on
cereals (which benefit most strongly from polarimetry), and
some additional short comments will be given on canola and
pea fields. Only observables with some trends or sensitivity
to phenology will be commented for each crop type.

Sample results are shown in Fig. 3.14.

3.4.3.1.1 Cereals
Parameters with high sensitivity:

• Linear cross-polar backscatter (Shv) presents an increase at
both the early stages (6–10 dB from stages 10 to 25–30)
and the late ones (4–5 dB from stage 75)*, being quite
constant in the middle. Similar parameters are Shh – Svv, Srr
and Sll backscatter and Pv of Freeman decomposition.
*Note that the increase in late stages is not present for
oat (but at one single acquisition at 22�).

• HHVV correlation decreases clearly during the vegetative
phase (stages 10–50) and then remains around 0.4 with
important differences between acquisitions. Similar
parameters:
– Average alpha increases from 0� to 45� only during the

vegetative phase.
– Srl/Srr and Slr/Sll ratios show a decrease of 10 dB during

the vegetative phase.
– Correlations RRRL and LLRL behave similarly, espe-

cially for wheat.
• Entropy shows a sudden increase from 0.2 at stage 10 to

0.7–0.8 at stages 20–30, and then it remains around 0.8 all
the time.

• Dominant alpha (α1) increases monotonically during the
whole cycle, but it is slightly saturated after the vegetative
phase (see Fig. 1.1).

• τ of Touzi decomposition is always close to zero, so the
corresponding dominant alpha is like α1 from the conven-
tional eigen-analysis.

3.4.3.1.2 Canola
The most remarkable result in this case is that the cross-polar
backscatter follows a clear monotonic increasing trend for the
whole growth period. This enables the phenology estimation
in a straightforward way by using one single channel,
HV. Indeed, coherent polarimetry does not contribute much
to this crop type.

Table 3.5 Test sites and corresponding radar and validation data selected for the generation of showcases on crop phenology estimation under
vegetation

Application/product Test site – radar data Reference data

Crop phenology
estimation

Indian Head Intensive campaign of
AgriSAR200957 quad-pol RADARSAT-2 images, from which 20 are used in this

showcase
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3.4.3.1.3 Field Pea
In general we found that many observables here are symmet-
rical with respect to stages 20–25, hence making it difficult to
break the ambiguity between early and late stages without
any auxiliary information (e.g. time coordinate). Plants are
always very short, so there is not much development or clear
changes in terms of structure.

3.4.3.2 Retrieval Algorithms
In the following, details on the retrieval algorithm for cereals
are given. After a close inspection of Fig. 3.14, a feasible
algorithm could be designed to distinguish four different
phenological intervals, i.e. early vegetative (stages 0–19),
advanced vegetative (stages 20–39 or 20–44), late vegetative,
reproductive and early maturation (stages from 40 or 45 to
79) and, finally, maturation (stages 80+).

The physical description of each interval is the following:

1. Surface scattering dominates the radar echo: very low
entropy, alpha and alpha1 close to zero, very low Shv
and high correlation between Shh and Svv.

2. Vegetation starts to be present in the radar response, hence
increasing entropy. Dominant alpha (α1) is low (less than
20�), but alpha has already reached 40�. Backscatter
power will remain quite constant at all channels during
this stage and the next one.

3. This corresponds to a moment of fast development in
terms of phenology (buds, flowers, etc.), but not much
change in terms of structure and, thus, radar response at
least at C-band. Backscatter powers remain constant and
both alpha and alpha1 too.

Fig. 3.14 Evolution of HV (t33), HH�VV (t22) and dominant alpha (α1) as a function of phenology for barley (top row), oat (middle row) and wheat
(bottom row)
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4. Finally, backscatter power increases at Shv and Shh – Svv
channels as a result of an increase of the randomness of the
structure of the plants (but for oat, which remains as in
previous stages since its morphology does not change).

A basic hierarchical tree algorithm can be defined in terms
of just two parameters: dominant alpha angle (α1) and back-
scatter power at Shv or Shh – Svv (t33 or t22 entries of the
coherency matrix). The proposed algorithm is depicted in
Fig. 3.15.

3.4.3.3 Results and Validation
The results obtained by applying the algorithm proposed in
the previous section are analysed here for each crop type
separately. As mentioned above, we will concentrate in
cereals where the benefits of polarimetry are well evident.
A figure showing the output of the retrieval algorithm applied
at pixel level for wheat fields and for the 20 images will be
presented. The statistics of the retrieved values and their
comparison against the reference data will be also shown in
form of a table. Results on oat and barley are just summarised
in the text.

3.4.3.3.1 Wheat
Figure 3.16 shows the retrieved results for wheat. We can
appreciate how the most frequent phenology value at each
data is in perfect agreement with the reference data at all dates
but for one image acquired on 2nd of July (with 22� inci-
dence). This acquisition corresponds to an extreme incidence
angle, so the proposed algorithm (common for all incidences)
is more likely to fail. Nevertheless, the first images provide a
100% of pixels with the right value. In later acquisitions, the
transitions between successive stages are, in general, quite
smooth in terms of the amount of pixels estimated to be at
each stage around the transitions.

For some images there is a non-negligible amount of
pixels (more than 25%) assigned to wrong stages. These
cases correspond to either dates of transition between succes-
sive stages or cases where the particular incidence angle
affects more clearly the radar response. Anyway, the overall
result demonstrates that the proposed algorithm is quite reli-
able despite its simplicity and it provides right estimates for
19 of the 20 images.

3.4.3.3.2 Oat
Results for oat (not shown here) are not as good as for wheat
after the early vegetative phase. In this case, the radar
response does not change significantly from the sixth acqui-
sition date onwards. Consequently, it is virtually impossible
to distinguish the two last intervals, from stage 45 to the end
of the season, and also separating the advance vegetative
(interval 2) from the later stages. With the proposed
approach, the most frequent value of retrieved phenology
from the sixth to the last image corresponds to interval
3 but in five of the images, hence demonstrating the lack of
sensitivity for this crop type. The overall validation provides
13 right estimates at parcel scale from the 20 cases.

Attending at the physical characteristics of oat, the vege-
tation volume, it is less dense and tall than other cereals
(e.g. wheat and barley), so the radar response does not exhibit
clear variations after the end of the vegetative phase, and,
moreover, the ground contribution is more present than for
other cereals.

3.4.3.3.3 Barley
The overall performance of the proposed algorithm for barley
(tables not shown here) is quite similar to that of wheat, so the
same comments apply. In this case the algorithm provides
right estimates in all 20 images.

3.4.4 Comparison with Single-/
Dual-Polarisation Data

The analysis of the evolutions of radar observables as a
function of phenology suggests that the dimensionality of
the polarimetric space influences the number of different
stages that could be identified for each crop type. As in the
previous lines, the following analysis is focused on cereals
since in this case polarimetry does play a substantial role for
monitoring purposes.

For single polarisation, HH and VV exhibit low sensitivity
to phenology and large dependence on incidence angle and
even on ascending/descending mode (probably due to row
orientation w.r.t. radar) in early stages. HV shows three
stages in its evolution as a function of phenology, i.e. initial
fast increase at early vegetative, slow decrease at central part

Fig. 3.15 Basic hierarchical tree
algorithm for cereals. t22 can be
equivalently substituted by t33
setting the threshold in �15 dB
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from 20 to 80 stages and late fast increase. Therefore, the
number of stages to be separated is smaller than with full-pol,
and there is more uncertainty between stages 10–20 and 20+.
Moreover, the same threshold would not fit equally all cereals
and should be adapted to each type.

In case of dual-pol, and provided the mentioned lack of
sensitivity of Shh and Svv, typical dual-pol systems gathering
[Shh, Svh] or [Svv, Shv] data do not show a clear improvement
with respect to Shv. Anyway, the joint use of Shv and any of
the Shv/Svv or Shv/Shh ratios provides enough information for
barley and wheat to classify correctly the phenology for the
three intervals mentioned in the previous paragraph
(i.e. stages below 20, from 20 to 80 and above 80). Interme-
diate stages, however, are not separable in this observation
space.

A [Shh, Svv] coherent measurement, instead, provides sim-
ilar performance to full-pol, since α1 is quite similar to the α1
gathered with full polarimetry and Shh – Svv is already used by
the proposed algorithm. Anyway, such acquisitions suffer the

same drawback of full polarimetry in terms of spatial cover-
age, due to the reduced swath required by doubling the PRF
of the radar system.

Compact polarimetry (Charbonneau et al. 2010; Ballester-
Berman and Lopez-Sanchez 2012; Cloude et al. 2012) is
expected to offer a slightly lower performance than full
polarimetry but with a wider swath capability may suffice
in some applications. Note that t33, t22 and α1, used for cereals
in this study, are mapped approximately in an equivalent way
by compact-pol using Pv, Pd and αs.

3.4.5 Discussion on Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Figure 3.17 summarises the useful parameters for each crop
type according to the retrieval results presented previously.
We confirm that the sensitivity of C-band polarimetry to crop

Fig. 3.16 Results obtained for wheat: Percentage of pixels assigned to each stage at each image and available reference data. The most frequent
value at each date is coloured according to the scale employed in the map
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phenology is defined by the presence of different
morphologies of plants and parcels as they develop along
the cultivation cycle. For cereals with distinct plant structures
at different stages, polarimetry enables the estimation of their
growth stage (from a set of 4 significant intervals) by
exploiting just a single radar acquisition, without any other
additional information. It is also pointed out that the use of
time coordinate, enabled by the availability of time series of
radar data from current SAR sensors, will definitely improve
the estimation accuracy even more.

The conclusions from this study can be extrapolated to
other crop types by taking into account the physical rationale
employed to establish the retrieval algorithms. Hence, phe-
nology is likely to be retrieved for every crop with develop-
ment features analogous to those analysed here. In addition,
the wide range of incidence angles employed in this study,

despite their influence in the observables, demonstrates the
robustness of this application.

According to the most important observables found in this
study (t33, t22 and α1), a compact-pol sensor would be able to
provide most of the polarimetric sensitivity required for this
application and wide swath coverage. It is noted that only in
case of canola fields, because of its particular morphology,
dual-pol and single-pol systems would suffice.

It should be noted that all approaches validated in this
study make use of backscattering coefficients (echo power) at
some stages, which may limit its applicability in case of
radiometric fluctuations due to diverse causes. In this sense,
a phenology retrieval algorithm based on amplitude-
independent polarimetric observables has been demonstrated
for rice fields at X-band (Lopez-Sanchez et al. 2012a) and
C-band (Lopez-Sanchez et al. 2014).
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Crop type Useful observables

Barley
α1, Shh- Svv (t22), Shv (t33), Pv of Freeman decomp., Srr, Sll, Srl / Srr, Srl / Sll, cor-
relations: HHVV, RRRL and LLRROat 

Wheat 

Canola Shh- Svv (t22), Shv (t33), Pv of Freeman decomp., Srr, Sll

Pea
Shh- Svv (t22), Std.Dev.{Srr }, HHVV correlation, entropy, average alpha, Pv
of Freeman decomp., Srr, Sll, Srl / Srr, Srl / Sll

Fig. 3.17 Top: summary of useful parameters for each crop type. Bottom: overall performance
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3.5 Wetland Observation

3.5.1 C-Band Polarimetric Time Series
for Delineating and Monitoring Seasonal
Dynamics of Wetlands

3.5.1.1 Introduction, Motivation and Literature
Review

Land use changes, especially in agricultural landscapes, are
considered as the major cause of negative environmental
impacts, which can be aggravated by climate change. Drain-
age of wetlands for land reclamation and extraction of
groundwater to irrigate agricultural land have caused degra-
dation of soil and water quality and biodiversity loss in some
parts of the world. Wetlands are complex ecosystems, per-
manently or seasonally flooded that provide many ecological,
biological and hydrologic functions (Hubert-Moy 2006); this
natural resource plays an important role in the regulation of
water flow, in the protection of the water quality and in the
sustainable management of ecosystems (Maltby 2009). Dam-
aged in the past because considered as unsanitary and
unfarmable areas, this ecotone or transition area is a fragile
and threatened ecosystem. Preventing the wetland reduction
and degradation has now become a priority. Therefore, both
inventory and characterisation of wetlands constitute an
important stake from an environmental but also socio-
economical point of view. A recent study proposed a method
to inventory wetlands based on the functional analysis of
potential, existing and effective wetlands (Mérot et al.
2006). The authors have shown that it is important to localise
existing and potential wetlands because the area between
them can be considered as negotiation areas for restoration
purposes. It has also been demonstrated that the length of the
contact between existing wetlands and the dry land – includ-
ing potential wetlands – plays an important role in the deni-
trification process. For these reasons, a precise determination
of the limits of existing and potential wetlands is an important
environmental issue. Moreover, little attention has been
devoted to our knowledge to the evaluation of wetlands
functionalities (for hydrologic processes but also for
bio-geochemical and ecological functions) on large areas. In
these last years, intensive research efforts have focused on the
identification and broad delineation of wetlands (Technical
Report Y-87-1 1987). Remotely sensed data are currently
used to identify, delineate and characterise wetlands (Ozesmi
and Bauer 2002; Hubert-Moy et al. 2006). Optical data pro-
vide interesting information to inventory vegetation and agri-
cultural practices in wetlands but are limited to cloud-free
periods. For these reasons it is not possible to precisely
delineate saturated areas extent as well as water cycles and
water levels in these areas with passive remote sensing
techniques. Although radar is not sensitive to visibility

conditions and can be obtained day or night and through
smoke and cloud cover, the spatial resolution of radar imag-
ery that has been used until now was too low to investigate
wetlands with a sufficient level of precision. For this purpose,
quad-polarimetric and fine-resolution SAR data sets show
great potential for mapping wetlands. The objective of this
showcase is to address the issue of evaluating fully polari-
metric RADARSAT-2 time series data sets for monitoring
the seasonal dynamics of saturated areas extent in wetlands.
To that end, the development and validation of a general
PolSAR segmentation including multitemporal analysis of
wetland evolution and polarimetric decomposition are
presented.

One fundamental task in wetland monitoring is the regular
mapping of temporarily flooded areas. Monitoring and
mapping wetlands on a large scale is becoming increasingly
more important, and satellite remote sensing provides today a
practical approach. Remotely sensed data are widely used to
identify, delineate and characterise wetlands. Optical data
provide interesting information of improved spectral
characterisation of vegetation and soil types to inventory
vegetation and agricultural practices in wetlands but are
limited to cloud-free periods. For this reason it is not possible
to precisely delineate saturated areas extent as well as water
cycles and water levels in these areas with passive remote
sensing techniques. Due to the independence of weather and
illumination conditions, SAR sensors could provide a suit-
able data base and have been proved today to be an effective
tool offering great potential for quantitative monitoring and
mapping of wetlands.

The topic of wetland monitoring by means of SAR remote
sensing has been mostly addressed in the past by analysing
temporal variations of the backscattering coefficient. The use
of single-polarisation SAR data has been shown to be impor-
tant for wetland water extent characterisation. However,
single-polarisation SAR in vegetation-type discrimination
which is necessary for wetland mapping presents a limited
capability. A good overview of SAR wetland monitoring is
given in (Bourgeau-Chavez et al. 2009) and (Lang and
Kasischke 2008). A multi-polarised attempt is reported in
(Henderson and Lewis 2008) where the amplitudes in
horizontal and vertical polarisation, but no phase informa-
tion, are interpreted and correlated with certain wetland
characteristics.

Until today just a few publications are concerned with the
use of fully polarimetric SAR data sets for wetland monitor-
ing. The operational use of polarimetric SAR is not yet really
demonstrated and is still at a study level. The results shown in
different publications are always at a preliminary result stage
and had never been confirmed when applied on other test
sites or under different acquisition configurations (multi-
frequency or multi-angular). The most important publications
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in that topic are mainly based on a change detection analysis
or trying to show that there exist relationships between some
specific polarisation parameter and the related scattering
mechanism type.

In (Liao and Wang 2010), fully polarimetric
RADARSAT-2 data sets are investigated for wetland classi-
fication. The target decomposition is used for optimum
characterisation of wetland target scattering, and it is shown
that the polarimetric information permits the discrimination
of eight classes of land surface, based on the use of the
entropy and alpha parameters, and leads to an effective clas-
sification of two wetland classes: closed and open.

In (Park et al. 2010), an effective method of extracting
geophysical information of tidal wetlands (zone of interaction
between marine and terrestrial environments ) is proposed,
based on the use of fully polarimetric forward/inverse scat-
tering models for quantitative estimation of intertidal
mudflats including surface geometric characteristics such as
the roughness of the scattering surface.

In (Koch et al. 2012) multi-frequency (RADARSAT-
2 and ALOS-PALSAR) analysis is conducted for
characterising and mapping wetland conditions in a semi-
arid environment in Central Spain. The results suggest that
the fully polarimetric SAR data enables a better separation of
the vegetation structure and fragmentation than with the
optical data.

In (Brisco et al. 2011), (Schmitt et al. 2012) and (Schmitt
and Brisco 2013), three polarimetric decomposition
techniques (Cloude-Pottier, Freeman-Durden and normalised
Kennaugh elements) are compared to each other in terms of
identifying the wetland flooding extent as well as its temporal
change. The image comparison along the time series is
performed with the help of a novel curvelet-based change
detection method for the enhancement of polarimetric
decomposition channels, as well as temporal differences in
these channels. The results indicate that the decomposition
algorithm has a strong impact on the robustness and reliabil-
ity of the change detection.

In (Patel et al. 2009), scattering models based on physical
principles have been applied to characterise the wetland
targets like open water habitat and various types of aquatic
vegetation with or without standing water, along with various
species of forested areas. Entropy, alpha angle and anisotropy
have been derived, thus enabling to understand the
differences in wetland targets in terms of their scattering
behaviour at the L- and P-bands. A significant outcome of
this study is that it explores and demonstrates the potential of
the state-of-the-art technique of polarimetric SAR for
characterising scattering behaviour of various components
of a wetland ecosystem.

In (Yajima et al. 2008) is proposed an analysis of the
seasonal changes of a wetland by a modified polarimetric
four-component scattering power decomposition method. It

is shown by the modified scheme that the seasonal changes
and features of the vegetation of a lagoon can be clearly
detected and observed clearly.

At last, in (Touzi and Gosselin 2010), the TSVM decom-
position is investigated when applied for wetland monitoring.
Different polarimetric decompositions are studied and com-
pared, and some new polarimetric parameters are extracted
that characterise uniquely the scattering type with a complex
entity, whose both magnitude and phase have been shown
very promising for wetland class characterisation and
peatland characterisation. It has been shown, for example,
that the scattering type phase permits the detection of water
flow variations beneath the peat surface.

Until today no publications are concerned with the use of
fully polarimetric SAR series data sets to identify and locate
the seasonal dynamics of saturated areas in wetlands. To that
end, the development and validation of a supervised PolSAR
segmentation including multitemporal analysis of wetland
evolution and polarimetric decomposition method are
presented in this showcase. The proposed methodology is
based on the segmentation of a polarimetric descriptor, the
Shannon entropy, which has been shown to be a very sensi-
tive parameter to the temporal variability of flooded areas.

3.5.1.2 Methodology
The employed methodology is presented on Fig. 3.18. The
RADARSAT-2 quad-polarimetric SAR image pre-processing
and processing has been conducted using the PolSARpro
software. The first step consists in extracting the polarimetric
3 � 3 T3 coherency matrix which is independent of the
polarimetric absolute phase, in order to apply the geocoding
process directly on the elements of the T3 matrix. The
geocoding of the RADARSAT-2 quad-polarimetric slant-
range SAR images to the geographic ground range coordinate
system is performed using 46 precise ground control points,
uniformly distributed over the subset image, selected from the
ortho-rectified ALOS-PRISM and ALOS-AVNIR-2 images
used as reference images (Marechal et al. 2010). Due to the
fact that the topography of the investigated area is relatively
flat, the three inherent and specific geometrical distortion
sources in SAR images (foreshortening, layover and radar
shadow) do not occur in such a case, and one can conclude
that the polarimetric data quality is preserved after the
geocoding process (Toutin et al. 2013). To validate the rectifi-
cation procedure, corner reflectors have been set in the
investigated area during the RADARSAT-2 acquisitions. As
these corner reflectors have been precisely located with a
differential GPS, it has been possible to assess the geocoding
accuracy, thus leading to an RMSE error lower than 1 pixel
(Marechal et al. 2012).

Concerning the RADARSAT-2 quad-pol SAR image
processing, different polarimetric decomposition methods
(Huynen, Cloude, Barmes, Holm, Freeman, Van Zyl,
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Yamaguchi, Cloude-Pottier and Shannon entropy
decompositions) (Lee and Pottier 2009) or specific PolSAR
image analysis when applied on wetland characterisation and
interpretation (Yajima et al. 2008; Touzi and Gosselin 2010)
has been investigated in order to extract one polarimetric
descriptor that could be very sensitive to the temporal
variability of the marsh flooded areas. The temporal coeffi-
cient of variation along the 15 RADARSAT-2 quad-polari-
metric SAR images has been derived for each of the
polarimetric parameters extracted from the polarimetric
decompositions, and among all of them, the Shannon entropy
(SE) (Lee and Pottier 2009), defined in equation (1.171), has
shown the most pronounced contrast between the marsh
flooded areas and the surrounding, allowing a segmentation
of the data to extract only the water table.

Figure 3.19 shows the normalised Shannon entropy
(SE) parameter when applied on the Pleine-Fougères PolSAR
image. It is important to point out that the investigated area is a
permanent windy area and the open water area becomes a
slightly rough surface. Consequently and despite the quite
low intensity level, the backscattering mechanism corresponds
to a single-bounce scattering mechanism with an associated
Shannon entropy low value. Figure 3.20 shows the temporal

coefficient of variation CV xð Þ ¼
ffiffiffiffiffiffiffiffiffi
var xð Þ

p
E xf g of the Shannon

entropy parameter over the 1-year time series. It can then be
seen that this polarimetric descriptor is a very sensitive param-
eter to the temporal variability of the marsh flooded area.

The original concept proposed in this methodology is
based on the post-processing which is based on a segmenta-
tion of the Shannon entropy image in order to detect and

Fig. 3.19 The normalised Shannon entropy (SE) image

Fig. 3.18 Proposed methodology
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extract the limits of the open water area and its evolution
during the time period under study. Indeed, the extent of the
flooding area and its timing exert a strong influence on
ecological patterns such as the distribution and diversity as
well as the amount of plant community in the wetland
(Bourgeau-Chavez et al. 2009). The segmentation-based
image procedure that has been used is based on the following
steps: calculation of gradient values map, computation of
global statistics (cumulative relative histogram) and applica-
tion of watershed transform on the modified gradient map to
detect homogeneity sets of pixels. This segmentation-based

image processing system is implemented in ENVI software
(ITT Visual Information Solutions 2007, Boulder, USA), and
details on this patented application can be found in (Xiaoying
2009).

The Shannon entropy image has been segmented to iden-
tify open water and saturated areas. For this, segmentation
parameters, like Shannon entropy threshold values, pixel
population and neighbourhood limit, have been set up from
the first RADARSAT-2 quad-pol SAR image acquired on
22nd of February 2010. Due to both the pixel size (5 � 6 m2)
of the SAR image, versus the area of the investigated study
site, and the ground truth observations, a good compromise in
the setting method has been to fix the pixel population to
30 for open water to 40 for saturated area and to fix the
neighbourhood limit to 8 pixels in both cases. The threshold
used during the segmentation procedure has been set up from
a histogram analysis of the Shannon entropy value distribu-
tion and has been fixed to 0.4 to separate the open water case
to the saturated area case as shown in Fig. 3.21. Once trained
on this first image, the same resulting and fixed parameters
have been applied for the segmentation of all the 14 other
SAR images, without applying any new training on each
image.

3.5.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for wetland delineation and monitoring are
summarised in Table 3.6 and further described in the
Appendix.

The segmented image corresponding to the first
RADARSAT-2 quad-pol SAR image acquired on 22nd of
February 2010 is shown in Fig. 3.22. The validation of the
segmentation of the Shannon entropy (SE) image has been
conducted using the methodology presented in Sect. 3.5.1.2.
On Fig. 3.23 are displayed the results of the segmentations
corresponding to the maximum (2010/12/31) and minimum
(summer acquisitions from 2010/07/16 to 2010/09/26)

Fig. 3.20 Temporal coefficient of variation of the Shannon entropy
parameter

Fig. 3.21 Histogram analysis of
the Shannon entropy value
distribution and corresponding
thresholds
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extension of the water table. The segmentation result for the
acquisition of March (2010/03/18) is also shown as a classi-
cal example. The measurement stations, located along the
transect, are represented with the symbol , and the symbol

represents the reference fix point. The detected limits of
the water table for the three examples are represented with the
symbols (December), (March) and (summer). As it
can be seen, there exists a prefect correspondence between
the results of the segmentation and the limit of the water table
detected during the different ground truth campaigns.

More of that, to assess the results, the spatial distribution
of the open water, extracted from the segmented image, is
displayed over the lidar image. The analysis of the altimetric
profile, obtained from the digital elevation model, confirms
the shape of the limit of the open water according to the local

microtopography (presence of little canal with deposits or
presence of two holes, artificial depression on the ground,
etc.).

This 1-year time series of segmented Shannon entropy
images is merged in a geographic information system in
order to create a precise map of permanent and temporary
water. Figure 3.24 provides an overview of the variations of
the water table over the wetland site from February 2010 to
February 2011, in showing the minimum and maximum
water extent of the water table, including open water bodies
and inundated vegetation and soils, during one hydrological
year.

3.5.1.4 Comparison with Single-/
Dual-Polarisation Data

The fully polarimetric RADARSAT-2 data of wetlands are
used to simulate dual-polarimetric mode data from the
upcoming RADARSAT Constellation Mission (CSA) and
Sentinel-1 (ESA). The simulated dual-polarimetric SAR
data are then used to evaluate the Shannon entropy for wet-
land monitoring, and the results are compared with the fully
polarimetric data. In the dual-polarimetric case, the two terms
of the Shannon entropy are given by:

SEI ¼ 2 log
π e IT
2

� �
¼ 2 log

π e trace C2ð Þ
2

� 	

SEP ¼ log 1� p2T

 � ¼ log 4

C2j j
trace C2ð Þ2

 ! ð3:7Þ

where C2 stands for the 2� 2 covariance matrix of one of the
possible dual-polarimetric target vector: [Shh, Svh]

T, [Shv,
Svv]

T or [Shh, Svv]
T.

Figures 3.25 and 3.26 show the normalised Shannon
entropy (SE) parameter when derived from the dual-
polarimetric target vectors [Shh, Svh]

T and [Shv, Svv]
T.

As it can be seen, the results are consistent for both dual-
polarisation Shannon entropy and the fully polarimetric one
(Fig. 3.19). This result is very interesting and mainly
promising in the sense that the methodology developed for
the fully polarimetric case can be applied without any restric-
tion to the dual-polarimetric case as the input feature seems to
be the same. Delineating and monitoring the seasonal

Table 3.6 Test sites and corresponding radar and validation data selected for the generation of showcases on wetland delineation and monitoring

Application/product Test site – radar data Reference data

Wetland delineation
and monitoring

Pleine-Fougères, Brittany, France ALOS-PRISM
(16/03/2010)

16 RADARSAT-2 Fine Quad-Pol (FQ23) ALOS-AVNIR-
2 (16/03/2010)

22/02/2010, 16/03/2010, 11/04/2010, 05/05/2010, 29/05/2010, 22/06/2010, 16/07/2010, 09/08/
2010, 02/09/2010, 26/09/2010, 20/10/2010, 13/11/2010, 07/12/2010, 31/12/2010, 24/01/2011,
17/02/2011

Lidar (05/04/2009)

0.5 m DTM

Ground truth data

Fig. 3.22 The segmented Shannon entropy (SE) image with the open
water in blue

3 Agriculture and Wetland Applications 151



Fig. 3.23 Validation of the limits
of the water table extracted from
the segmented images with the
limits detected during the
corresponding ground truth
campaigns

Fig. 3.24 Variations of the water
table over the wetland site from
February 2010 to February 2011
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dynamics of wetlands can be seriously considered as a con-
crete application for the RADARSAT-RCM and Sentinel-1
missions.

3.5.1.5 Discussion on the Role of Polarisation,
on the Maturity of the Application
and Conclusions

The aim of this showcase is to determine the capabilities of
fully polarimetric SAR time series data sets to delineate and
monitor wetland ecosystems. This study was set from
February 2010 to February 2011 (15 images) over a wetland
area located in France (Brittany). Every 24 days, simulta-
neously with the image acquisition in a Fine Quad-Pol mode
(beam FQ23, 42.6�), a 1-year ground truth measurement
campaign to measure the distance between a reference fix
point and the limit of the water table has been conducted. It
has been established in this study that the Shannon entropy is
a parameter very sensitive to the temporal variability of
flooded areas. Maps of the fluctuated trend of the open
water from a 1-year RADARSAT-2 quad-pol time series
have been achieved, in an automatic procedure, from the
segmentation of this polarimetric descriptor. A lidar image
of the investigated area, providing very accurate elevation
and precise microtopography information, has corroborated
these results, leading to a very fine analysis of the obtained
results. The limits of the water bodies extracted from seg-
mented images highlight inundation extend oscillation,
which is a key environmental factor controlling ecological,
hydrological and chemical processes. This product, when
generated over several years, can provide useful information
to characterise the water cycle and identify variations that
may affect the overall ecosystem. The results presented here
show already the important potential of fully polarimetric
SAR data. However, a very promising result concerns the
very good correlation between the dual-polarimetric Shannon
entropy and the fully polarimetric one, which means that it
will also be possible to extract the open water and its spatial
distribution when this proposed methodology will be applied
on the future dual polarimetry RADARSAT-RCM and
Sentinel-1 time series data sets. At last, it is important to
note that this proposed methodology cannot be applied to
single-polarisation data. Indeed, single-pol data processing is
often and/or only based on the analysis of the backscattering
level, and in such a case, single-pol data become very ambig-
uous for the delineation of wetlands since the same backscat-
ter level can be reached at land and water, depending on the
wind conditions. Water bodies become a rougher surface and
so return a stronger signal in presence of wind.

3.5.2 Tropical Wetland Characterisation
with Polarimetric SAR

3.5.2.1 Introduction, Motivation and Literature
Review

Tropical wetlands are very productive ecosystems located
mainly in the tropics, but can also be found in sub-tropical
regions, where temperatures sometimes drop below freezing

Fig. 3.25 The normalised Shannon entropy (SE) image in the case of
the target vector [Shh, Svh]

T

Fig. 3.26 The normalised Shannon entropy (SE) image in the case of
the target vector [Shv, Svv]

T
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point. They consist of both inland freshwater ecosystems and
coastal, mangrove systems. Both ecosystems serve as a criti-
cal habitat for a wide variety of plant and animal species.
Tropical wetlands also have a valuable economical impor-
tance, as they serve as a large carbon reservoir, filter nutrients
and pollutants and provide aquatic habitats for outdoor recre-
ation, tourism and fishing (Barbier 1994). Globally, many
tropical wetlands are under severe environmental stress,
mainly from agricultural and urban development, pollution
and rising sea level.

In order to generate an inventory of tropical wetlands and
assess their health, it is important to map, characterise and
monitor these fragile ecosystems. Such tasks are best
conducted using remote sensing observations, because of
the remoteness and large extent of many tropical wetlands.
Optical remote sensing observations are fairly limited in the
tropics, because of frequent cloud coverage. The all-weather
capability synthetic aperture radar (SAR) observations are
very useful for the characterisation and monitoring tasks,
especially quadruple-polarimetric (quad-pol) data that
contains more spatial information related to physical
characteristics than single- or dual-polarimetric data.

A common method for characterising landscapes with
polarimetric SAR (PolSAR) observations is decomposition
analysis, which maps the landscape according to the surface’s
scattering mechanisms. In this contribution we use four
decomposition types, Pauli, Freeman, Yamaguchi and Hong
and Wdowinski. The first three decompositions, Pauli, Free-
man and Yamaguchi, have been applied successfully to char-
acterise landscapes in various environments. The fourth
decomposition by Hong and Wdowinski (H&W) is a new
decomposition, which was developed in accordance with
new SAR phase observations (interferograms) in tropical
wetlands. The contribution includes a brief description of
the new decomposition and the application of all four
decompositions to the following four quad-pol data sets
acquired over the Everglades: three satellites, TerraSAR-X,
RADARSAT-2 and ALOS-PALSAR, and one airborne sen-
sor UAVSAR. The results of our decomposition analyses
indicate that quad-pol SAR data is very useful for tropical
wetland characterisation, in particular the X- and L-band
data sets.

Quad-pol SAR data have been used over the past two
decades to study and characterise tropical wetlands in various
locations worldwide. The early quad-pol PolSAR studies
relied on airborne C-, L- and P-band observations acquired
by NASA’s AIRSAR mission over tropical wetlands in
Belize, French Guiana, Australia and the USA. Most of
these studies focused on the interaction of the SAR signal
with mangrove vegetation and the possibility to retrieve
quantitative estimates of biophysical parameters such as tree
height and biomass (Pope et al. 1994; Proisy et al. 2000;
Lucas et al. 2007; Trisasongko 2009). The AIRSAR data was

also used to map sub-environments of coastal herbaceous
wetlands (Slatton et al. 1996). Another more advanced air-
borne sensor that acquired quad-pol data over tropical
wetlands is NASA’s UAVSAR, which operates at L-band.
Fatoyinbo and Simard (2011) used quad-pol UAVSAR com-
bined with ALOS polarimetric data to estimate biomass of
mangrove forests in various remote locations in the tropics.

The use of space-borne quad-pol data for tropical wetland
studies has been, so far, fairly limited due to the limited
amount of space-borne quad-pol data acquired over tropical
wetlands. The shuttle imaging radar-C (SIR-C) was the first
space-borne sensor to acquire quad-pol SAR data. The SIR-C
data were used to detect a seasonal flooding component in
Yucatan wetlands (Pope et al. 1997) and for land cover
classification in India (Turkar and Rao 2011). Insofar only
three satellites acquired quad-pol SAR data, two of them in
an experimental mode (TerraSAR-X and ALOS-PALSAR)
and one, RADARSAT-2, as part of its regular operation.
Ullmann et al. (2012) used quad-pol TerraSAR-X data
acquired over Indonesia and analysed them using Cloude
and Yamaguchi decompositions. Their analyses revealed
land classification in which wetlands and other flooded vege-
tation could easily be identified by the double-bounce scat-
tering component. Hong et al. (2010) and Hong and
Wdowinski (2011) used RADARSAT-2 quad-pol data
acquired over the Everglades wetlands in south Florida.
Interferometric processing of the data revealed a very similar
fringe pattern in all polarisation interferograms suggesting
that both co- and cross-pol signals sample the water surface
beneath the vegetation. Based on the phase observations,
Hong and Wdowinski (2013) developed a new PolSAR
decomposition analysis with a double-bounce component
from cross-polar channel.

Decomposition analyses are common methods for
characterising landscape with polarimetric SAR observations.
The widely used Pauli decomposition is a simple method that
represents the main three scattering mechanisms: single-
bounce, double-bounce and volume scattering (Cloude 2009;
Cloude and Pottier 1996; Lee and Pottier 2009). A three-
component scattering model proposed by Freeman and
Durden (1998) has been successfully applied to decompose
polarised SAR data into three components according to the
main scattering mechanisms under reflection symmetry
conditions. In order to account for non-reflection symmetry
conditions, Yamaguchi et al. (2005, 2006) added a fourth helix
component to their decomposition. Various methods were
proposed to estimate the volume scattering component consid-
ering non-reflection symmetry condition (Arii et al. 2010,
2011; Neumann et al. 2009). Recently an extended volume
scattering model was discussed using randomly orientated
diplane scatterers (Sato et al. 2012a). More recent decomposi-
tion studies also included mathematical operations on the
decomposed coherency matrix in order to resolve anomalous
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values generated by the previous three- and four-
decomposition methods (Yamaguchi et al. 2011; van Zyl
et al. 2011; Lee and Ainsworth 2011). Touzi et al. (2009)
proposed a phase of target scattering decomposition for wet-
land characterisation, and Hong and Wdowinski (2013) devel-
oped a new decomposition analysis with a double-bounce
component from cross-pol.

3.5.2.2 Methodology
Our methodology for characterising tropical wetlands with
quad-pol SAR data consists of four decomposition analyses,
Pauli, Freeman, Yamaguchi and H&W (Table 3.7). The first
decomposition we considered, Pauli, is a simple method that
represents the main three scattering mechanisms. The other
three decompositions are model-based, accounting for three
or four scattering mechanisms. The Freeman decomposition
accounts for three mechanisms (single bounce, double
bounce and volume), whereas the Yamaguchi decomposition
includes a fourth helix scattering component. The H&W
decomposes the cross-pol signal into volume and double-
bounce scattering components, which increases the double-
bounce scattering component on the account of volume scat-
tering. The inclusion of a cross-pol double-bounce scattering
is based on cross-pol SAR phase observations in wetlands
showing coherent interferometric signal backscattered from
the water surface beneath the vegetation. Touzi et al. (2009)
presented a non-model, roll-invariant target scattering
decomposition for the characterisation of temperate wetlands.
We did not include Touzi decomposition in this study,
because we focus on model-based decompositions.

The full description and mathematical formulation of the
four decompositions can be found in the references listed in
Table 3.7. The first three listed decompositions are well-
known and do not need much introduction. However, the
fourth decomposition, H&W, is fairly new. Hence we pro-
vide a brief description of the decomposition, including key
equations. Our decomposition is based on phase observations
from wetlands indicating that the cross-pol signal samples the
water surface beneath the vegetation. The simplest scattering
mechanism that accounts for scattering in the cross-pol signal
is a rotated dihedral, which we included in our formulation.
Following the formulation of Yamaguchi et al. (2005), we
utilise a 3 � 3 coherency matrix to derive each scattering
component mathematically as shown in Eq. (3.8):

Th iHV ¼
T11 T12 T13

T21 T22 T23

T31 T32 T33

2
664

3
775 ¼

¼ f sT
hv
single þ f dT

hv
double þ f vT

hv
volume þ f dT

hv
rotated diplane

ð3:8Þ

where hi denotes the ensemble average of a few pixels in the
data processing and fs, fd and fv are the coefficients related to
the powers of single-bounce, double-bounce and volume
scattering components, respectively.

Following Yamaguchi et al. (2005) four-component
decomposition formulation, we adopted the same scattering
coherency matrices for the single-bounce, double-bounce and
volume scattering as follows:

Th ihvsingle ¼
1 β� 0

β βj j2 0

0 0 0

2
664

3
775

Th ihvdouble ¼
αj j2 α 0

α� 1 0

0 0 0

2
664

3
775

Th ihvvolume ¼
1
4

2 0 0

0 1 0

0 0 1

2
664

3
775

ð3:9Þ

We introduce a double-bounce scattering model of a
rotated dihedral for the cross-pol signal, with the following
matrix which is integrated with the probability density func-
tion similar to formulations of Yamaguchi et al. (2005):

SHV ¼ 1 0

0 �1

� �
or SHV ¼ �1 0

0 1

� �

) Th ihvrotated diplane ¼
1
2

0 0 0

0 1 0

0 0 1

2
64

3
75 ð3:10Þ

Equation (3.10) allows us to estimate the double-
bounce component in the cross-pol signal. Thus, the

Table 3.7 List of decompositions used in this study and their main characteristics

Decomposition Characteristics References

Pauli 3 components: HH�VV, HH + VV, HV Cloude and Pottier (1996)

Freeman Model based, 3 components: single bounce, double bounce, volume Freeman and Durden (1998)

Yamaguchi Model based, 4 components: single bounce, double bounce, volume, helix Yamaguchi et al. (2005)

H&W Model based, 3 components: single bounce, double bounce (co- and cross-pol), volume Hong and Wdowinski (2013)
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coherency matrix in Eq. (3.8) can now be written as a
combination of single-bounce, double-bounce from both

co- and cross-pol and volume scattering components as
follows:

Th iHV ¼ f sT
hv
single þ f dT

hv
double þ f vT

hv
volume þ f dT

hv
rotated diplane ¼

¼ f s

1 β� 0

β βj j2 0

0 0 0

2
664

3
775þ f d

αj j2 α 0

α� 1 0

0 0 0

2
664

3
775þ f v

4

2 0 0

0 1 0

0 0 1

2
664

3
775þ f d

2

0 0 0

0 1 0

0 0 1

2
664

3
775 ð3:11Þ

We have four observables and five unknown parameters in
Eq. (3.11). We reduce the number of unknown parameters by
assuming α ¼ 0 in the areas dominated by surface scattering
and β� ¼ 0 in areas dominated by double-bounce scattering.
Further details of the decomposition are provided by (Hong
and Wdowinski 2013).

3.5.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for tropical wetland characterisation and monitoring
are summarised in Table 3.8 and further described in the
Appendix.

We applied the 4 decompositions listed in Table 3.7 to the
4 quad-pol data sets listed in Table 3.8 and obtained 16 dif-
ferent decompositions that characterise our study area in the
Everglades. In order to evaluate the decomposition results,
we first present the four decompositions applied to the
RADARSAT-2 data set and compare the results with Landsat
image and detailed vegetation map (Fig. 3.27). We then
compare three decomposition results applied to three data
sets that were acquired with three different SAR frequencies
(X-, C- and L-bands), covering the same area (Fig. 3.27). In
this comparison we applied the H&W decomposition to all
data sets. Again, we compare the decomposition results with
an optical Landsat image and a vegetation map.

The study of the RADARSAT-2 data set (Fig. 3.27) shows
that all four decompositions yield similar results indicating
double-bounce scattering (red) in the northeast corner of the
data set, combined volume and single-bounce scattering

(blue-green) in the southwest corner and mostly volume
scattering (green) in a wide area located between the two
corners. There are some variations in the decompositions.
The most noticeable difference is the high volume scattering
of the Freeman decomposition (Fig. 3.27b). The issue of high
volume scattering (too much green) in urban environments
led (Yamaguchi et al. 2005) to develop their four-component
decomposition with helix scattering, which indeed shows less
volume scattering. The H&W decomposition also shows less
volume scattering than the Freeman one, because some of the
cross-pol signal contributes to the double-bounce component.
We validate the decomposition results by comparing them to
an optical Landsat image (Fig. 3.27e) and vegetation map of
the study area (Fig. 3.27f). A visual comparison between the
decompositions and vegetation map indicates that all four
decompositions characterised well the mangrove forests in
the southwest corner and the sawgrass in the northeast corner,
as both areas contain fairly homogeneous vegetation. The
decompositions’ spotty patterns in the transition zone
between the saltwater mangroves and freshwater sawgrass
reflect the mixture of vegetation types in that transition zone.
Both prairies and scrub vegetation types consist of a variety
of grass, bushes and trees, which results in a spotty pattern in
the decomposition.

The multi-frequency decomposition study (Fig. 3.28)
yields very interesting results, as in each frequency the
radar signal interacts differently with the vegetation. In this
study we show results of the Hong and Wdowinski decom-
position; similar results were obtained by the other

Table 3.8 Test sites and corresponding radar and validation data selected for the generation of showcases on tropical wetland characterisation

Application/product Test site – radar data Reference data

Tropical wetland characterisation Shark River Slough Optical data, vegetation maps

TerraSAR-X, 16/04/2010

RADARSAT-2, 23/09/2008

ALOS-PALSAR, 19/04/2011

Coastal mangrove forests

UAVSAR, L-band, 22/06/2010
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decompositions. The decomposition of the TSX data set
shows large colour variability reflecting a high sensitivity
level of the X-band (3.1 cm) to distinguish between the
various vegetation types. The decomposition shows in great
details the distribution of mangroves along the tidal channels
as volume scattering, the sawgrass in the northeast corner as
double-bounce scattering and a mixture of all three scattering
mechanisms in this vegetation transition zone between fresh-
water (sawgrass) and saltwater (mangroves) ecosystems. The
decomposition of the RADARSAT-2 data set shows a domi-
nance of volume scattering (green) throughout the image and,
hence, low resolution to distinguish between the various
vegetation types in the transition zone. Nevertheless, the
decomposition still distinguishes well the sawgrass (red in
the northeast corner) from the rest of the vegetation types.
The L-band decomposition also shows high variability and
sensitivity to different vegetation types.

The most interesting difference between the ALOS and
the other two decompositions is the sawgrass characterisation
in northeast corner. The ALOS decomposition characterises
the sawgrass area as single-bounce scattering (blue), whereas

the other two decompositions as double bounce. The differ-
ent scattering mechanism reflects a different interaction of the
relatively thin sawgrass (a few cm wide) with the different
wavelengths of the radar signal. The sawgrass serves as good
scatterers for the X- and C-band signals (3.1 and 5.6 cm,
respectively), but is transparent to the longer wavelength
L-band signal (24.1 cm).

The validation of the three decompositions with the
Landsat image and vegetation maps indicates a very good
sensitivity of the TSX and ALOS decompositions to charac-
terise this vegetation transition zone. Furthermore, the two
decompositions show higher variability than the vegetation
map, which can be used for a better vegetation classification
of tropical wetlands. The lower performance of the
RADARSAT-2 decomposition is surprising, because the
C-band data corresponds to an intermediate frequency/wave-
length between the X- and L-band data, which both revealed
high sensitivity to tropical wetland vegetation. In order to
verify these results, we checked five different RADARSAT-
2 quad-pol data sets acquired over the same area at different
times with all four decompositions. The results of all

Fig. 3.27 Polarimetric decomposition results of the C-band
RADARSAT-2 data, acquired on 23rd of September 2008. (a) Pauli
decomposition presented as colour composite image with the following
decomposition components: HH�VV (red), HH+VV (blue) and HV
(green). (b) Freeman’s three-component decomposition with the follow-
ing components: blue, single bounce; red, double bounce; and green,

volume scattering. (c) Yamaguchi’s four-component decomposition
with same colour scheme as in (b). (d) Hong and Wdowinski’s three-
component decomposition with cross-pol double bounce. (e) Landsat-7
ETM+ optic colour composite image. (f) Vegetation map of the study
area (Florida Coastal Everglades, Long Term Ecological Research (FCE
LTER, http://fcelter.fiu.edu)). Legend is shown in Fig. 3.28
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decompositions are very similar to those presented here in
Fig. 3.28b. A possible explanation for the lower performance
of the C-band data is the vegetation wavelength that promotes
Bragg scattering in C-band, as suggested by Atwood
et al. (2013).

The analysis of the UAVSAR data set with four
decompositions is presented in Fig. 3.29. The data covers a
long swath of mainly mangrove forest located along the
western coast of south Florida. The decompositions yielded

similar results to that presented in Fig. 3.27, in which the
Yamaguchi and H&W decompositions show a better fit to the
vegetation map.

3.5.2.4 Comparison with Single-/
Dual-Polarisation Data

The use of single- or dual-polarimetric data to characterise
tropical wetlands yielded variable quality results, depending
the radar frequency, image resolution, hydrological

Fig. 3.28 Decomposition colour composite image of the Shark River
Slough site in the Everglades using Hong-Wdowinski’s approach (blue,
single bounce; red, double bounce (both from the co- and the cross-pol);
and green, volume scattering) of the quad-pol data sets: (a) X-band

TerraSAR-X, (b) C-band RADARSAT-2 and (c) L-band ALOS-
PALSAR. (d) Landsat-7 ETM+ optic colour composite image and (e)
vegetation maps (Florida Coastal Everglades, Long Term Ecological
Research (FCE LTER), http://fcelter.fiu.edu)
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conditions and vegetation type (e.g. Bourgeau-Chavez et al.
2005). Single- and dual-pol can distinguish fairly well
between woody and herbaceous vegetation and was success-
fully used to map mangrove forest distribution (e.g. Lucas
et al. 2007). However, single- and dual-pol data are often not
sufficient to distinguish between non-homogeneous vegeta-
tion distributions. Thus recent studies suggest the use of
single- and dual-pol data combined with optical data for
wetland characterisation (Bourgeau-Chavez et al. 2009;
Evans and Costa 2013). Because quad-pol data contains
twice or quadruple amount of data than dual- or single-pol
data, the usage of quad-pol data might be sufficient for
characterising tropical wetlands.

The examples presented in this study support the idea that
quad-pol data can be sufficient for precise wetland
characterisation, as the examples indicate high sensitivity of
the various decomposition results to the different vegetation
types. To illustrate the strength of the quad-pol
characterisation, we compared our decomposition results
with single- and dual-pol representations of the same wetland

area (Fig. 3.30). The comparison shows that the single- and
dual-pol images have limited ability to distinguish between
the different vegetation types. The grey scale of single-pol
image allows us to distinguish between 3 and 4 shades of
grey corresponding to different vegetation types. The dual-
pol image that combines two ranges of colours (red and
green) can distinguish 6–7 areas of different scattering
characteristics. The quad-pol decomposition uses three
ranges of colours (red, blue and green), which provide suffi-
cient sensitivity to distinguish ten or more areas of different
scattering characteristics, which are sufficient to characterise
the main vegetation types in tropical wetlands.

3.5.2.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Decomposition analyses have been used for more than a
decade to characterise landscapes according to scattering
mechanisms. In that sense, it is a mature application for
most landscape characterisation. However, the use of

Fig. 3.29 Polarimetric decomposition results of the L-band UAVSAR
data, acquired on 19th of April 2011. (a) Pauli decomposition presented
as colour composite image with the following decomposition
components: HH�VV (red), HH+VV (blue), and HV (green). (b)
Freeman’s three-component decomposition with the following
components: blue, single bounce; red, double bounce; and green,

volume scattering. (c) Yamaguchi’s four-component decomposition
with same colour scheme as in (b). (d) Hong and Wdowinski’s three-
component decomposition with cross-pol double bounce. (e) Landsat-7
ETM+ optic colour composite image. (f) Vegetation map of the study
area. Legend is shown in Fig. 3.29

3 Agriculture and Wetland Applications 159



decompositions for characterising tropical wetlands was
rather limited due to the limited available quad-pol data
acquired over these wetlands. In this study we demonstrated
that quad-pol decompositions are very useful methods for the
characterisation of tropical wetlands. We analysed four quad-
pol data sets using four decomposition types. All
decompositions were able to distinguish well between the
main vegetation types, which include saltwater mangrove
forests, freshwater sawgrass swamp and a transition zone
with a mixture of vegetation types. Our analyses indicate
that the TSX and ALOS quad-pol decompositions are more
sensitive to vegetation variation in the transition zone than
the RADARSAT-2 decomposition. Both TSX and ALOS
decompositions show more details of vegetation distribution
that the available vegetation cover map.

3.5.3 Subarctic Peatland Characterisation
and Monitoring

3.5.3.1 Introduction, Motivation and Literature
Review

Wetlands play a key role in regional and global environments
and are critically linked to major issues such as climate
change, water quality, the hydrological and carbon cycles
and wildlife habitat and biodiversity. Wetlands with at least
30–40 centimetres of peat accumulated on the surface repre-
sent an important class of wetland named peatland. Although
peatlands globally only cover 3% of the land, they store 30%
of the terrestrial carbon (Gorham 1995). Therefore, it is
important to maintain and protect peatlands to reduce green-
house gases.

Fig. 3.30 Comparison between single-, dual- and quad-pol
characterisation of tropical wetland area. (a) Amplitude image of
single-polarimetric data of TerraSAR-X. (b) Colour composite image
of dual-polarimetric data: HH (red), HV (green) and HH-HV (blue). (c)

Pauli decomposition colour composite image: HH�VV (red), HH+VV
(blue) and HV (green). (d) Hong and Wdowinski’s three-component
decomposition: double bounce (red), surface bounce (blue) and volume
scattering (green)
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Unfortunately, major peatland transformations have been
detected in the boreal and subarctic peatland regions. While it
is well established that fens change naturally into bogs over
time and that bogs can revert to fens, the observations over
the last 50 years indicate that the rate of these changes has
been significantly altered by various sources of stress (cli-
mate change, isostatic uplift, fire and anthropogenic
activities) and this could have important implications
(Gorham 1995; Brook and Kenkel 2002; Brook 2006; Jano
et al. 1998). This has been noted in the Hudson Bay
Lowlands of Manitoba, Canada, which contain the most
extensive wetlands and thickest peat deposits in Canada
(Brook and Kenkel 2002; Brook 2006; Jano et al. 1998).
This region is home to unique concentrations of wildlife,
most notably polar bears and caribous. Bears rely on inland
denning habitat in the peatlands, and caribous are tied to
peatland vegetation (bogs in winter and fens in summer).
The loss of bogs will have important implications for polar
bear denning habitat which is entirely within bogs with thick
peat deposits (Brook and Kenkel 2002; Brook 2006; Jano
et al. 1998). This is in addition to the impact on global
warming that would occur due to the release of the carbon
stored by peatlands. Therefore, there is an immediate need for
cost-effective tools that permit accurate classification and
mapping of peatlands, as well as long-term monitoring of
their (bog-fen) transformations.

Cost-effective wetland characterisation and monitoring
are now possible due to advances in the technology of earth
observation satellites that provide the possibility of efficient
monitoring of wetland status over large and remote areas
(Fournier et al. 2007; Grenier et al. 2007). Recently, the
visible near-infrared (VNIR) satellites (and Landsat in partic-
ular) have become the most popular source of information for
wetland mapping. In Canada, Landsat 7 data combined with
RADARSAT1 HH-polarisation SAR data have been used as
the basis source of information for building the Canadian
Wetland Inventory (Fournier et al. 2007; Grenier et al.
2007). The use of the additional all-weather single
polarisation (HH) RADARSAT1 information permits better
delineation and monitoring of wetland water extent (Touzi
et al. 2009; Grenier et al. 2007). Unfortunately, the combina-
tion with VNIR optical and SAR satellite information cannot
clearly discriminate bogs from poor (shrubs and sedges) fens
(Fournier et al. 2007; Grenier et al. 2007; Touzi et al. 2007).
As a result, bogs are generally confused with fens in the
North, and the bog to fen transformations related to climate
change or anthropogenic activities may not be detected.

Since bog and fen vegetation can hardly be discriminated
by optic and conventional SAR sensors, it might be interest-
ing to use their different hydrological properties to discrimi-
nate these two peatland classes. In fact, fens and bogs differ
in the way that they receive water and therefore receive
nutrients differently. A bog is a peat-forming ecosystem

that lacks any significant groundwater inflow and is therefore
ombrotrophic. The bog soils are not affected by the mineral-
enriched ground waters from surrounding soils, since precip-
itation, fog and snow are the primary water sources. In
contrast to the ombrotrophic bogs, the minerotrophic fens
are connected to small streams and may also receive water
from surrounding uplands (Ingram 1982; Zoltai and Vitt
1995). In this study, we will show that earth observation
satellites equipped with L-band polarimetric SAR could pro-
vide the required information for cost-effective peatland
mapping and monitoring in the boreal and subarctic
peatlands. The unique capability of polarimetric SAR for
the detection of peatland subsurface water flow, first
demonstrated in (Touzi et al. 2007), could permit an
enhanced discrimination of bog from fen, which will result
in better monitoring of bog-fen transformations related to the
various (natural and anthropogenic) sources of stress. This
will be confirmed herein using polarimetric L-band ALOS
collected over a boreal peatland, La Baie des Mines, and
subarctic peatlands in the Wapusk National Park in Canada.

Several studies have been published on the investigation
of polarimetric SAR for wetland classification (Pope et al.
1994, 1997; Hess et al. 1995; Sokol et al. 2004). Pope et al.
(1994, 1997) have shown that the phase difference between
the HH and VV polarisations, ϕHH � ϕVV, was the most
useful parameter for flooded wetland classification and detec-
tion of seasonal flooding wetland changes. ϕHH � ϕVV,
which characterises wetland scattering in terms of odd and
even bounce interactions (Van Zyl 1989), permits an
enhanced identification of marsh classes generally dominated
by double-bounce interactions. However, they raised the
point that the high variability of ϕHH � ϕVV might limit its
efficiency in wetland classification (Pope et al. 1994, 1997;
Hess et al. 1995).

In the 1990s, ϕHH � ϕVV was among the most used
polarimetric parameters for natural target characterisation
(Ulaby and Elachi 1990; Touzi et al. 2004). Currently, target
scattering decomposition has become the standard method
for the extraction of natural target geophysical parameters
from polarimetric SAR data (Touzi et al. 2004; Boerner et al.
1998). The objective of incoherent target scattering decom-
position (ICTD) theory is to express natural target average
scattering as the sum of independent elements in order to
associate a physical mechanism with each component
(Cloude 1988; Van Zyl 1992). Several techniques have
been proposed during the past two decades to decompose
the scattering average covariance matrix. The first class (Van
Zyl 1992; Touzi 2007a; Touzi and Shimada 2009) is based on
the eigenvector-based decomposition (Cloude 1988)
introduced by Cloude in the context of radar imaging. The
latter (Cloude 1988) was an extension of Wiener’s character-
istic decomposition of wave coherence matrix to target coher-
ency matrix (Touzi and Shimada 2009; Wiener 1930). The
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characteristic decomposition of the averaged target coher-
ency matrix (Cloude 1988) permits the characterisation of
global target scattering with two parameters, the Cloude-
Pottier “averaged” scattering type (α) and the entropy (H ).
This served as the basis of the very popular Cloude-Pottier α/
H classification (Cloude and Pottier 1997). The second class
corresponds to model-based decompositions (Freeman and
Durden 1998; Yamaguchi et al. 2005; van Zyl et al. 2011),
which are based on Freeman’s basic idea (Freeman and
Durden 1998), supposing that target observed scattering can
be modelled as the linear sum of scattering that can be
represented by models of the physical scattering process.
Freeman’s decomposition assumes that target scattering can
be modelled as the linear sum of surface, double-bounce and
volume scattering (Freeman and Durden 1998).

In this study, the Touzi decomposition (Touzi 2007a;
Touzi et al. 2007) will be assessed for peatland
characterisation using L-band polarimetric ALOS data. This
method, which exploits Cloude’s eigenvector-based decom-
position (Freeman and Durden 1998), permits a high-
resolution decomposition of target scattering in terms of
roll-invariant and unique target characteristics (Touzi
2007a; Touzi et al. 2009). In contrast to Cloude-Pottier
ICTD (Cloude and Pottier 1997), the new decomposition
uses a complex entity, (αs, ϕαs) for an unambiguous descrip-
tion of target scattering type (Touzi et al. 2009; Touzi 2007a).
The information provided by both the scattering type magni-
tude αs and phase ϕαs has been shown to be important for
wetland classification (Touzi et al. 2007, 2009). The analysis
of C-band SAR data collected with the Convair-580 over the
RAMSAR Mer Bleue peatland, near Ottawa, Canada,
permits the demonstration of the unique potential of the
scattering type phase, ϕαs, for bog-fen discrimination
(Touzi et al. 2007, 2009). These two classes could not be
separated using the multi-polarisation (HH, HV, VV) inten-
sity or the HH�VV phase difference information (Touzi et al.
2007, 2009). These very promising results obtained with the
scattering type phase are confirmed in the following using
polarimetric L-band ALOS data collected over boreal and
subarctic peatlands (Touzi and Gosselin 2010). We will show
in the following that the phase of the dominant scattering type
ϕαs is sensitive to peatland subsurface water flow variations,
and this permits an efficient discrimination of bog from poor
fens. The use of the additional information provided by the

scattering type magnitude αs is also required for effective
wetland classification.

3.5.3.2 Experimental Results
Test sites and corresponding radar and validation data sets
selected for subarctic peatland characterisation and monitor-
ing are summarised in Table 3.9 and further described in the
Appendix.

3.5.3.2.1 La Baie des Mines

Peatland Hydrology Characteristics for Bog-Fen
Discrimination
Open (sedge and shrub) bogs and poor (sedge) fens are
regrouped in the peatland class of Fig. 9.1a. Traditional
definitions of peatlands denote that a minimum peat layer of
30–40 cm is needed for an ecosystem to be considered as a
peatland (Ingram 1982; Zoltai and Vitt 1995). Both bogs and
fens in the peatland study site satisfy this criterion with peat
thickness varying from 1 m to 3 m according to the field data.
Shrub bog, which is the dominant class, has a complete
ground cover of sphagnum moss with a shrub canopy
dominated by ericaceous shrubs (such as Labrador tea).
Poor fen areas contain vegetation that is composed primarily
of sedges and an understory of sphagnum mosses. Since bog
and fen vegetation can hardly be discriminated by optic and
SAR sensors, their different hydrological properties can be
used to discriminate them, as demonstrated in the following.
In particular, the depth of peatland subsurface water will be
shown to be a key parameter for bog-fen discrimination. A
bog consists of two layers: one is the upper thin layer about
45 cm deep, known as acrotelm, through which rain sinks
rapidly. Below the acrotelm, there is a much thicker layer of
peat, the catotelm, of dramatically reduced hydraulic conduc-
tivity and through which water movement is very slow,
which is typically less than 1 m/day (Ingram 1982; Zoltai
and Vitt 1995; Fraser et al. 2001). Unlike bogs, a poor fen
peat has a higher capacity of water retention, and water
moves slowly through the fen. The field measurements in
La Baie des Mines site reveal a water table 20 cm below the
poor fen peat surface, whereas the bog subsurface water lies
on the bottom of the acrotelm at about 40 cm below the peat
surface. This is in agreement with other studies, which show
that bog water remains generally 30–40 cm below the peat

Table 3.9 Test sites and corresponding radar and validation data selected for the generation of showcases on subarctic peatland characterisation

Application/product Test site – radar data Reference data

Subarctic peatland characterisation La Baie des Mines Peatland, Quebec, Canada Classification based on Ikonos images and forest inventory

ALOS-PALSAR, 10/11/2006, 13/05/2007 Fieldwork data

Wapusk National Park, Manitoba, Canada Brook’s classification (Brook and Kenkel 2002)

ALOS-PALSAR, 08/06/2010, 24/07/2010 Landsat-5 images, 18/07/2010, 04/09/2010

162 J. M. Lopez-Sanchez et al.



surface (at the catotelm layer) (Ingram 1982; Touzi et al.
2007; Fraser et al. 2001)).

Application of the Touzi Decomposition to Polarimetric
ALOS Data: Required Processing Window Size
for Unbiased ICTD
As mentioned above, our decomposition may be considered
as an extension of Kennaugh-Huynen decomposition, which
solves for con-eigenvalue phase ambiguities and can be
applied for the decomposition of both coherent (presented
in terms of the [S] matrix) and partially coherent (presented in
terms of the coherency [T] matrix) target scattering. Since
bog scattering might be highly coherent, the application of
the decomposition under coherent conditions (1-look image)
should preserve the spatial resolution. In that case, the
parameters provided by the Touzi decomposition would be
equivalent to the ones obtained with the Kennaugh-Huynen
CTD after phase ambiguities removal. Under the assumption
of coherent scattering, the decomposition is applied with
1 � 1 processing window on the May acquisition.
Figure 3.31a presents the 1-look scattering type ϕαs. As can
be noted, the phase is random because of the presence of
speckle, and no useful information can be extracted. The fact
that each resolution cell is not dominated by a single coherent
scatterer does not permit the generation of a meaningful
scattering decomposition using the CTD. We have previously
shown that a processing window with a minimum of

60 independent samples is required for unbiased estimation
of the ICTD parameters (Touzi 2007b). A 3-look image is
firstly generated in Mueller matrix with a square pixel by
replacing each pixel’s Mueller matrix with the Mueller
matrix averaged over the 3 pixel azimuth segment centred
on the pixel. The ICTD is then applied to the 3-look image
using a 7 � 7 processing window. The decomposition is
applied under the target reciprocity assumption, and the
cross-polarisation magnitude is taken as the average of HV
and VH magnitude to increase the signal-to-noise ratio of
3 dB HV ¼ e jϕHV HVj j þ VHj jð Þ=2 (where ϕHV is the phase
of HV).

Analysis of the ALOS Acquisitions
The May acquisition, in dry conditions, provides the most
suitable data set for wetland classification. The dominant
scattering parameters are generated with a processing win-
dow that includes more than 60 independent samples. A
colour wheel with equally spaced bins between �π/2 and π/
2 is used to represent the scattering type phase ϕαs1 of the
dominant scattering. ϕαs1 image of the May acquisition is
presented in Fig. 3.31c, and the scattering type magnitude αs1
image is presented in Fig. 3.32a. The classification and the
field data are used to compute the statistics of the scattering
type parameters and σ0 for the HH, VV and VV polarisation,
for the various wetland classes: (poor) fen, open (sedge and
shrub) bog, treed bog, swamp and upland forests. Table 3.10

Fig. 3.31 La Baie des Mines Peatland. (a) 1-look scattering type phase
(May). (b) Multi-polarisation images for May and November
acquisitions (HH in red, HV in green and VV in blue). Wetland samples

are delineated: swamp (red), upland forest (green), treed bog (brown),
open peatland (black). (c) Scattering type phase images
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presents for each class the average and variation of each
parameter for each class using the samples outlined in
Fig. 3.31b. Analysis of Figs. 3.31c and 3.32a and the domi-
nant scattering type statistics of Table 3.10 lead to the fol-
lowing conclusions:

1. ϕαs permits a clear separation of poor fen (ϕαs about�60�)
from open bog (about�18�). ϕαs has similar values (about
30�) for the various treed areas: swamp, treed bog and
upland forests.

2. Even though the scattering magnitude αs1 cannot separate
poor fen from bogs, αs1 discriminates well the swamp
class from the upland forest and treed bog. αs1 is very
efficient in detecting the quasi-dipole scattering (αs1¼ 40

�
)

due to the wave interactions of water and trees in the
swamp. The fact that the contribution of the trihedral and
dihedral scattering is not added in phase (ϕαs ¼ 31

�
) leads

to a quasi-dipole scattering instead of the perfect-dipole
scattering (with αs1 ¼ 45

�
and ϕαs ¼ 0

�
) (Touzi et al.

2007).
3. It is worth noting that the swamp quasi-dipole scattering

can also be detected with HH (much larger than VV and
HV) as can be expected.

Therefore, we can conclude that the information provided
by both the scattering type magnitude and phase is required
for wetland characterisation. To validate the unique potential
of the scattering type phase for discrimination of poor fens
from bogs, in situ field measurements were collected. The
areas that appear in pink (ϕαs1 about �60�) on Fig. 3.31c
were effectively identified as fens. They are dominated by
herbs, and the water level lies between 10 and 20 cm under
the peat surface. The sites that look dark blue on Fig. 3.31c
were identified as bogs. They are dominated by Labrador tea
and a very thick peat (from 1.6 m to 3 m deep). The water
table is much deeper (40–50 cm under the peat surface) in the
bog samples, as expected according to hydrologic properties
of bogs (Fraser et al. 2001).

Peatland Subsurface Water Flow Monitoring Using
Polarimetric May and November ALOS Acquisitions:
Multi-polarisation Versus Polarimetric Information

The spring acquisition took place under dry conditions; no
rain for 14 days and warm weather with a temperature
between 10� and 20�. The fall image was collected under
cool weather (with a temperature below 5�) and wet

Table 3.10 Scattering type parameters estimates and HH, HV and VV for May acquisition

Class ϕαs1Z (deg) αs1Z (deg) HH (dB) VV (dB) HV (dB)

Open bog �18� � 3� 6� � 3� �6.8 � 1 �7.1 � 1 �17.5 � 1

Poor fen �60� � 3� 6� � 3� �6.8 � 1 �7.2 � 1 �17 � 1

Treed bog 30� � 3� 15� � 3� �5 � 1 �6.5 � 1 �12 � 1

Swamp 31� � 3� 40� � 3� �2.5 � 1 �5.6 � 1 �11 � 1

Forest 30� � 3� 25� � 3� �5 � 1 �6.5 � 1 �12 � 1

Fig. 3.32 May and November images: (a) αs1; (b) m1; (c) λ1

164 J. M. Lopez-Sanchez et al.



conditions; about 10 mm rain accumulated during the 2 days
that precede the acquisition. Since the L-band ALOS
penetrating wave is sensitive to wetland groundwater
conditions, we should expect a significant change in radar
backscattering at HH, HV and VV polarisations.
Figure 3.31b presents the composite colour of HH, HV and
VV for both acquisitions. Water-level change can be noted in
the swamps outlined in Fig. 3.31b. However, no change can
be detected in the open peatland. The multi-polarisation
information looks similar for the two acquisitions even
though we might expect significant changes in the peatland
subsurface water flow between the dry and wet acquisitions.
These changes cannot also be detected using the dominant
scattering type parameters αs1, m1 and λ1 as can be noted in
Fig. 3.32. Analysis of all the other intensity parameters
(span,λi, mi, i ¼ 1, . . ., 3) and Cloude-Pottier’s parameters
(α, entropy and anisotropy) leads to similar conclusions.
None of them are sensitive to water flow changes beneath
the peat surface.

Like in (Touzi 2007a), the scattering type phase ϕαs1

seems to be the only polarimetric parameter that can detect
peatland subsurface water flow changes, as can be noted in
Fig. 3.31c. Major changes (pink to dark blue) in ϕαs can be
noted when the phase images of May and November are
compared. These significant variations (larger than 40�) rep-
resent the significant variations of the water flow beneath the

peat surface between the dry and wet (May–November)
peatland conditions. The pink colour, which indicates the
presence of subsurface water, is dominant in the November
acquisition. The latter acquisition took place shortly after the
rain stopped, and this does not give enough time for the rain
water to sink deeply into the acrotelm. This makes fen-bog
discrimination difficult since the L-band wave reaches the
subsurface water in both fens and bogs. Bog-fen discrimina-
tion is easier with the May data set collected under dry
conditions, as discussed previously.

It is worth noting that similar observations regarding the
higher sensitivity of the radar signal phase to subsurface
features in comparison with the detected intensity were
brought out by Lasne et al. (2004). Using the airborne
L-band RAMSES SAR, they showed that the phase differ-
ence ϕHH � ϕVV permits the detection of pale soils buried in
a bare sandy area near Bordeaux (France), at a depth greater
than 5.2 m. These pale soils cannot be detected with the radar
signal intensity at HH, HV or VV polarisation, which is only
sensitive to the presence of pale soil that is not deeper than
3.5 m (Lasne et al. 2004). One might expect that the phase
difference ϕHH � ϕVV of the like-polarisations is also sensi-
tive to the peatland subsurface water flow. The phase
ϕHH � ϕVV and the Pauli phase difference, i.e. phase of
(HH � VV)/(HH + VV), are presented in Fig. 3.33a, b,
respectively. As can be seen, both HH-VV phase difference

Fig. 3.33 Phase and orientation images: (a) ϕHH � ϕVV; (b) Pauli phase difference
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and the Pauli phase are not able to detect peatland subsurface
water flow changes. This is in agreement with the results of a
previous study on the Mer Bleue wetland (Touzi 2007a). The
optimum phase ϕαs1, which is sensitive to peatland subsur-
face water flow, is generated with a non-zero orientation
angle in a polarisation basis different from the conventional
(H�V) linear-polarisation basis. The Kennaugh-Huynen
diagonalisation of the coherent dominant scattering matrix
leads to the generation of the maximum polarisation, whose
phase ϕαs1 permits the detection of peatland subsurface water
flow. It is worth noting that such promising results obtained
with ϕαs1 could only be derived, thanks to the excellent
quality of ALOS HV measurement in terms of calibration
and high signal-to-noise HV measurement (Touzi and
Shimada 2009). An accurate measurement of HV is required
to generate the optimum polarisation whose scattering type
phase ϕαs1 is sensitive to the water beneath the peat surface.
This makes this unique application suitable with only fully
polarimetric SAR. The reconstruction of HV from dual-
polarisation RH-RV Compact (Souyris et al. 2005; Raney
2007) SAR measurements (using Souyris’s method (Souyris
et al. 2005)) does not permit the generation of the optimum
ϕαs required for peatland subsurface water flow monitoring,
as demonstrated in (Touzi 2013).

3.5.3.2.2 Wapusk National Park
The area of study is dominated mainly by a sedge bulrush
poor fen (dark orange) in an area that includes lichen melt
pond bog, peat plateau bog, spruce bog and sedge-rich fens.
During the spring and summer active layer melting season,

we should expect important changes in the peat subsurface
water flow in the fen class. A thermistor cable was installed in
a pond bog (Dyke and Wendy 2010). The active layer thick-
ness was 13 cm in June at the start of the melting season,
27 cm in July and more than 80 cm in September. Figure 3.34
presents the colour composite of HH (red), HV (green) and
VV (blue) for the June and July acquisitions, respectively. As
can be noted, the radiometric information provided by the
multi-polarisation information cannot detect any change in
the peatland hydrology between the June start of the melting
season and the late part of July.

Our ICTD is applied to the ALOS images as described in
Sect. 9.5.1.3, and the various ICTD parameters are analysed.
Again, the scattering type phase ϕαs1 of Fig. 3.35 is the only
target scattering decomposition parameter that has revealed
peatland subsurface flow variations. Major changes in ϕαs can
be noted when the phase images of early June and late July
are compared. The bulrush sedge poor fen area, in particular,
outlined in Fig. 3.35a (and denoted (2)) shows significant
changes. This area is dominated in the June image by the pink
colour, as might be expected. ϕαs is sensitive to the fen
shallow subsurface water lying on the permafrost surface
(about 13 cm deep). In July, the fen is still irrigated by
shallow subsurface water that can be detected (in pink) by
the L-band wave, whereas a large part of the fen subsurface
water either has been evaporated or was too deep (more than
25 cm) to be detected by ϕαs1. No change can be noted on the
bogs (in dark blue) between June and July acquisition, and
the recent field trip allowed us to explain the phase
behaviours in these bog areas, as discussed in the following.

Fig. 3.34 Multi-polarisation (HH, HV, VV) images for the bog-fen peatland in Wapusk National Park (June and July 2010)
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In the first week of July 2012, additional in situ field
measurements were collected in the Wapusk National Park
peatland for further validation of the results above. Helicopter
was used to visit various samples in the areas 1 and 2 outlined
in Fig. 3.35a. These areas were assigned to the sedge bulrush
fen and lichen melt pond bog classes, respectively, according
to Brook’s classification. Water-level measurements, vegeta-
tion species characterisation, active layer and peat thickness
were collected in the various sites. The average of active layer
thickness in the bogs and fens visited during the field trip in
July is deeper than 25 cm. Areas in pink were identified as
fens with herb vegetation and water level 10 to 20 cm beneath
the peat surface. Samples in dark blue were identified as
bogs. No water was detected under the peat surface or at
the frozen ground about 25 cm under the peat surface. The
water coming to bogs from precipitations has evaporated,
while the fens are continuously irrigated by subsurface and
runoff water. The absence of subsurface water in bogs should
explain the stability of the phase (dark blue) between the June
and July acquisitions, in particular in the area (1) on the
bottom of in Fig. 3.35. This area (1) outlines a fen site A
(pink in the phase image) and a bog site B (dark blue in the
phase image) that were visited. Pictures of the corresponding
peat samples are shown in Fig. 3.36. While no water can be
seen under the bog peat surface (at the frozen ground inter-
face), the water level at the shrub fen was about 15 cm under
the peat surface, as can be seen on the peat sample pictures of
Fig. 3.36c, d. These observations confirm the promising
potential of ϕαs for bog-fen discrimination. Since no water
lies beneath bog peat surface, ϕαs can easily identify poor
fens of shallow subsurface water. The sensitivity of polari-
metric L-band scattering phase to peatland subsurface water

should provide an efficient tool for monitoring bog-fen
transformations.

3.5.3.3 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

This study confirms that the scattering type phase
ϕαs extracted from fully polarimetric L-band ALOS data
can reveal the seasonal changes in poor fen subsurface
water flow and permits the separation of poor fen from
shrub bogs. Such information cannot be obtained with the
multi-polarisation HH, HV and VV intensities nor with the
conventional polarimetric decomposition parameters such as
the Cloude-Pottier α, the entropy and the extrema of the
intensities provided by the coherency eigenvalues. ϕαs,
which cannot detect deep (45 cm below the peat surface)
water in a boreal bog, seems to be more sensitive to the
shallower water (10–20 cm) beneath the surface in fen, and
this makes possible the separation of poor fens from shrub
bogs. These results have recently been confirmed in a boreal
peatland in the Athabasca region in the context of an investi-
gation on the long-term monitoring of oil sand exploration on
surrounding peatland. The use of polarimetric L-band SAR
and ϕαs could also be very promising for the detection of new
fens in subarctic bogs. Recent field work in the Wapusk
National Park peatlands revealed the absence of water
(on the surface of the permafrost) beneath the peat bog
surface. Fens, which are continuously irrigated by subsurface
water 10–20 cm deep, could be clearly identified with ϕαs.
Even though we are convinced that further experiments are
needed to validate these results with other peatland sites, the
results obtained so far look very promising for the operational

Fig. 3.35 Scattering type phase image for the bog-fen peatland in Wapusk National Park: (a) June; (b) July
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use of the upcoming polarimetric L-band SAR satellite
missions, and ALOS2 in particular, as an essential source of
information for mapping peatlands and monitoring bog to fen
transformations. Operational windows of polarimetric
L-band SAR acquisitions are required from the spring runoff
water to the fall season, and over a long period of time, for
efficient peatland monitoring.

3.5.3.4 Acknowledgement
The authors would like to thank S. Kowalchuk, M. Gibbons,
J. Larkin and H. Stewart from the Wapusk National Park for
their help in organising and carrying out field data
collection. S. Nedelcu and K. Omari from CCRS are thanked
for their help in data processing. We would also like to thank
JAXA for having provided the ALOS-PALSAR data under
the ALOS-PI project and the Canadian Space Agency for
having partially funded the present study under the Govern-
ment Related Initiative Program.

3.6 Monitoring Change Detection Produced
by Tsunamis and Earthquakes by Using
a Fully Polarimetric Model-Based
Decomposition

3.6.1 Introduction, Motivation and Literature
Review

Natural disasters occur frequently, causing significant loss of
life and leading to major geo-/bio-environmental and socio-
economic costs. Therefore, the monitoring of the disaster
damages over the globe is an urgent need. It is quite difficult
to obtain an immediate response of large-scale earthquakes
and tsunami disaster areas by ground survey methods.
Although the ground survey is accurate, it is also highly
time-consuming and manpower extensive, and, conse-
quently, this causes delays in assessment responses to rescue

Fig. 3.36 Field data collection. (a) Sedge fen A. (c) Water-level picture in sedge fen A. (b) Open bog B. (d) Water-level picture in bog B; no water
at the frozen ground interface
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teams. Satellite remote sensing has great potential in the
monitoring of disaster damages because of its repetitive
capability and synoptic coverage. The aim of this work is to
present a methodology to generate information from high-
resolution polarimetric SAR images to identify directly the
differences or damages between pre- and post-tsunami and
earthquake conditions on the affected regions. This method-
ology is based on scattering decomposition techniques for
polarimetric data. We take the advantage of the excellent
quad-polarisation data sets acquired with the Japanese
Advanced Land Observing Satellite-Phase Array type
L-band Synthetic Aperture Radar (ALOS-PALSAR) imaging
system using its high-resolution PolSAR mode to produce
colour-coded images for easily interpreting earth surface
features and monitoring the earthquake and tsunami damage
along the Miyagi coast affected by the 11th of March 2011
tsunami.

Assessment of earthquake and tsunami disaster damages
in urban areas has been investigated based on visual interpre-
tation or change detection methods using remotely sensed
imagery. Hitherto, several methods are available to monitor
earthquake and tsunami damages by using multispectral and
monochromatic optical images as well as mono/dual-
polarisation SAR images (Matsuoka and Koshimura 2010;
Chini et al. 2009). High-resolution multispectral optical
images enable direct visual interpretation of the damages
and are rather straightforward and simple to interpret by
users. However, optical remote sensing fails under cloudy,
foggy and hazy as well as severe rainy conditions for moni-
toring near-real-time damage. Single-wavelength SAR
images obtained from fixed single- and/or dual-polarisation
sensors are independent of meteorological conditions, but are
difficult to be interpreted and require tedious computational
analyses for assessments. Most recently, the potential and
advantages of fully polarimetric SAR data to monitor the
natural disasters, including tsunami and earthquake, were
demonstrated in (Yamaguchi 2012) and (Sato et al. 2012b).

Scattering power decompositions have been a research
topic in radar polarimetry for the analysis of fully polarimet-
ric synthetic aperture radar data (Freeman and Durden 1998;
Yajima et al. 2008; Yamaguchi et al. 2005; 2011; Arii et al.
2011; Sato et al. 2012a; van Zyl et al. 2011; Lee and
Ainsworth 2011; Touzi 2007a; Singh et al. 2012). There
exist nine real independent observation parameters in the
3 � 3 coherency or covariance matrix with respect to the
second-order statistics of polarimetric information (Freeman
and Durden 1998; Yajima et al. 2008; Yamaguchi et al. 2005;
Touzi 2007a). There are several decomposition methods to
retrieve information from the coherency matrix. Physical
scattering model-based decompositions are straightforward
to interpret the final imaging result because the experimental
evidence is incorporated in the model-based approach. The
pioneering work of the model-based decomposition was

presented by Freeman and Durden (Freeman and Durden
1998) by introducing the three-component decomposition.
To date, a significant amount of research has been carried
out on the model-based decomposition techniques (Arii et al.
2011; Sato et al. 2012a; Yamaguchi et al. 2011; van Zyl et al.
2011; Lee and Ainsworth 2011; Singh et al. 2012).

The original three-component decomposition was pro-
posed by Freeman and Durden (1998) under the reflection
symmetry condition, i.e. the cross-correlation between the
co- and cross-polarised scattering elements are close to zero
for natural distributed objects. This method decomposes the
observation matrix into the surface, double bounce and vol-
ume scattering terms based on the physical scattering models
and accounts for five terms out of nine independent
parameters. Then, Yamaguchi et al. (2005) added a helix
scattering term and proposed the four-component decompo-
sition. Then, by using the rotation of coherency matrix,
Yamaguchi et al. (2011) reduced the number of polarimetric
parameters from 9 to 8. The Yamaguchi et al. (2011) method
yielded better decomposition results by accounting for six
parameters out of eight. The un-accounted parameters are the
real and imaginary part of T13 in the coherency matrix, and
they still remained un-accounted in any of the known physi-
cal scattering model-based decompositions. Finally, a general
four-component decomposition (G4U) method has been pro-
posed recently by Singh et al. (2012) using a special unitary
transformation to the rotated coherency matrix, which has
been used in the existing four-component decomposition.
Since unitary transformations do not change any information
included in the coherency matrix, the rotated coherency
matrix is transformed to eliminate the T23 element. This
four-component decomposition finally accounts for seven
terms out of seven polarimetric parameters.

3.6.2 Methodology

Figure 3.37 shows the general four-component scattering
power decomposition procedure (G4U). The number of inde-
pendent parameters in the coherency matrix is reduced from
9 to 7 by the rotation and the special unitary transformations.
This decomposition scheme describes the total scattering
power into surface scattering power Ps, double-bounce scat-
tering power Pd, volume scattering power Pv from dipole
and/or oriented dihedral and helix scattering power Pc. This
recently developed four-component scattering power decom-
position scheme also includes the complete fully polarimetric
relative phase information and the extended volume scatter-
ing model for oriented dihedral structures (Singh et al. 2012)
(which are the most convenient in urban areas to estimate the
appropriate volume scattering as compared to three-
component decomposition (Freeman and Durden 1998)).
The decomposition starts by retrieving the helix scattering
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power. The branch condition for C1 is used to retrieve
double-bounce scattering caused by oriented dihedrals. The
second branch condition for C0 is to select dominant scatter-
ing mechanism. The outputs of the G4U are used to examine
the disaster areas.

Colour composite images of Fig. 3.38 were generated with
multi-look factors of 18 times in azimuth direction and
3 times in range direction for the PALSAR data sets in
Table 3.9. After the decomposition of ALOS-PALSAR data
over the earthquake/tsunami disaster site, the four scattering

Fig. 3.37 General four-component scattering power decomposition algorithm (G4U) (Singh et al. 2012)
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components (Ps, Pd, Pv and Pc) were normalised by total
power (TP) for further analysis. A mean filter with 3 � 3
window size is applied on these normalised scattering power
component images before analysing the images in more
detail (Singh et al. 2013).

3.6.3 Experimental Results

We have selected parts of the coastal areas within the Miyagi
Prefecture affected by the 11th of March 2011 magnitude 9.0
Honshu, Japan, earthquakes (38.322 N, 142.369 E, depth
32 km) that struck off Japan’s northeastern coast and trig-
gered a historical super-tsunami. We used the ALOS-
PALSAR fully polarimetric, single-look complex (SLC),
level 1.1 (ascending orbit) images acquired over study areas
before (2nd of April 2009) and after the earthquake/tsunami
(8th of April 2011) struck; see Table 3.11.

Two (pre- and post-disaster) images are processed by
implementing the G4U scheme (Singh et al. 2012) to the
data sets in Table 3.11. These decomposition RGB colour-
coded images of 20090402 and 20110408 are presented in
Fig. 3.39. Since man-made structures such as building and

bridges orthogonal to radar illumination are categorised into
double-bounce scatterer types in the G4U scheme, the
double-bounce (Pd) scattering component in urban area is
caused by right angle scattering between building block
walls and road surfaces. The volume scattering (Pv) and
surface scattering (Ps) components are small for orthogonally
illuminated man-made structures. However, damaged or col-
lapsed urban blocks or man-made structures resulting from
the earthquake/tsunami impact that do not appear to be
orthogonal to radar direction, and which corresponding
main scattering centre is at an oblique direction with respect
to radar illumination, generate no double-bounce type
response in the G4U images after the tsunami struck. Due
to multiple scattering, these red areas (pre-tsunami image)
turn into green (volume scattering) in post-tsunami images.
In cases of buildings washed out and/or eliminated by the
tsunami, these areas appear as blue (i.e. surface scattering
types of the G4U scheme) in the post-tsunami images. These
effects in post-tsunami images, compared to pre-tsunami
images, provide a simple straightforward tool for interpreting
collapsed buildings in tsunami-affected areas (Singh et al.
2013).

Fig. 3.38 (a) Pre- and (b) post-earthquake/tsunami G4U colour-coded
images for PALSAR data. (c) Ground truth information, (d) pre- and (e)
post-earthquake/tsunami HH-pol intensity images for PALSAR data and
(f) pre- and (g) post-earthquake/tsunami dual-pol RGB images of

PALSAR data. In all images, the flight direction of ALOS-PALSAR is
from left to right, and PALSAR illumination direction is from top to
bottom

Table 3.11 Test sites and corresponding radar and validation data selected for the generation of showcases on monitoring of post-disaster effects in
urban areas

Application/product Test site – radar data Reference data

Monitoring of post-disaster
effects in the urban areas

Ishinomaki, Miyagi
Prefecture, Japan

Ground truth information provided by the Association of Japanese Geographers
and Geospatial Information Authority of Japan

ALOS-PALSAR data
set #20090402

ALOS-PALSAR data
set #20110408
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The changes produced by the disaster are shown in
Fig. 3.39 using the difference in the normalised scattering
powers ps (¼ Ps/TP), pv(¼ Pv/TP) and pd (¼ Pd//TP).
Table 3.12 shows the quantitative mean statistics of the
normalised difference scattering parameters Δps, Δpv, Δpd
and Δpc corresponding to surface, volume, double bounce
and helix scattering powers, for patch A (vegetated area,
Fig. 3.39), patch B (agricultural area/wiped-out houses
debris-deposited area, Fig. 3.39) and patch C (urban region,

Fig. 3.39). The mean statistics including� standard deviation
of the pixel distributions over all patches were analysed, and
the basic behaviours of scattering parameters ps, pv and pd
were observed as follows: (1) the surface scattering is
increased in tsunami-affected areas (vegetation-damaged
area and wiped-out/collapsed urban block area), but it can
be decreased in the areas with deposition of wiped-out houses
by the retreating tsunami and for the floating houses on bay
areas; (2) the volume scattering is decreased in tsunami-

Fig. 3.39 The difference images in between pre-earthquake/tsunami
(20090402) and post-earthquake/tsunami (20110408) for decomposi-
tion parameters (a) Δps, (b) Δpv and (c) Δpd are superimposed on TP

image of 20090402. Patch A shows the vegetation area on relatively flat
surface areas, patch B represents the agricultural area over a relatively
flat ground, and patch C illustrates urban areas of Ishinomaki city

Table 3.12 Statistics of the difference values of pixels for patches A, B and C in between pre- earthquake/tsunami (20090402) and post-
earthquake/tsunami (20110408) decomposition parameters

Scattering component Mean Std. Dev. Number of pixels

Patch A Δps 0.107 0.070 100

Δpv �0.154 0.066

Δpd 0.047 0.054

Δpc �0.000 0.015

Patch B Δps �0.222 0.050 75

Δpv 0.145 0.046

Δpd 0.061 0.031

Δpc 0.016 0.008

Patch C Δps 0.136 0.132 112

Δpv 0.150 0.093

Δpd �0.280 0.075

Δpc �0.006 0.018
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affected or damaged vegetation areas and increased in dam-
aged or collapsed, deposited and/or floating (on bays water
surface) urban blocks or man-made structures by the earth-
quake/tsunami; and (3) the double-bounce scattering is
decreased in earthquake/tsunami collapsed or damaged
urban areas and increased in areas with deposited
(in agricultural fields or other type scattering dominated
areas) wiped-out urban blocks or man-made structures,
mainly caused by the force of tsunami. More detailed analy-
sis and discussion are given in (Singh et al. 2013).

3.6.4 Comparison with Single-/
Dual-Polarisation Data

SAR images obtained from fixed single- and/or dual-
polarisation sensors are independent of meteorological
conditions, but are difficult to interpret and require tedious
computational analyses for at most incomplete assessments
only. A single observation using conventional SAR images
makes it difficult to generate desirable images ready for direct
visual interpretation. The features that can be identified in the
fully polarimetric case cannot be distinguished in single and
dual-pol images (see Fig. 3.38). However, high-resolution
fully polarimetric SAR images are straightforward to identify
the differences or damages between pre- and post-tsunami
conditions of the affected regions.

3.6.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Since microwave radar remote sensing is a suitable tool for
monitoring the near-real-time earthquake and tsunami dam-
age at large scales, at anytime of day or night, its implemen-
tation becomes of vital relevance to governmental and other
agencies for initiating swift and well-orchestrated rescue
operations. In this showcase, we have explored the role of
polarimetry in tsunami and earthquake disaster monitoring.
Fully polarimetric high-resolution L-band image data sets
with the implementation of the G4U scheme provide a
straightforward simple tool for interpreting as well as
identifying collapsed buildings caused by earthquake/tsu-
nami disasters. This method also holds other types of natural
(typhoon or tornado) and man-made disaster assessment
application. It is found that the double-bounce scattering
power is the most promising parameters to detect automated
disaster-affected urban areas at pixel level. It is also observed
that the very-high-resolution PolSAR images are required for
superior urban area monitoring over the oriented urban
blocks with respect to the illumination of radar.

3.7 Summary (Table 3.13)

Table 3.13 Summary of presented application, methods and preferred system configurations for monitoring and characterisation of agriculture and
wetland scenarios

Application Methods and used frequency (P/L/C/X)
Radar data preference/requirements/
comments

Crop type mapping Decision tree supervised classification applied to PolSAR
observables from incoherent decompositions, multitemporal data (C)

Preferred frequency: C – simpler
polarimetric modes could suffice

Statistical classification applied to PolSAR backscattering,
multitemporal data (L/C)

Need of multitemporal data: short revisit
time needed

Radiometric stability in time may be
needed

Soil moisture retrieval under
vegetation

PolSAR decomposition and inversion of scattering models (L/C) Preferred frequency: L

Phenology monitoring Hierarchical classification based on PolSAR observables (C) Short revisit time

Radiometric stability in time

High-resolution and/or wide swath
desirable – compact-pol is a good trade-
off

Wetland and peatland
delineation and
characterisation

Segmentation of the Shannon entropy image (C) Dual-pol could suffice (e.g. for
RADARSAT-2 and Sentinel-1)

PolSAR model-based decompositions (L/C/X) Preferred frequencies: L/X

Touzi decomposition (L) Preferred frequency: L

Good SNR in HV needed

Effect of tsunami and
earthquakes (change
detection)

Four-component decomposition (L) High resolution needed
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