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ABSTRACT This paper presents a novel nonlinear estimator called the fuzzy finite memory (FFM) state
estimator for electro-hydraulic active suspension systems, based on fuzzy techniques and finite impulse
response. The Takagi-Sugeno fuzzy model is introduced to effectively describe highly nonlinear suspension
systems with electro-hydraulic actuator dynamics. Compared with the conventional state estimator, which
has an infinite memory structure and requires whole data from the initial to current time, the proposed
fuzzy state estimator with a finite memory structure guarantees robustness against external disturbances and
modeling uncertainty. The simulation results verify that the developed fuzzy finite memory state estimator
is more robust under external disturbances and modeling uncertainties than the existing infinite impulse
response nonlinear estimator.

INDEX TERMS Half-vehicle suspension system, state estimation, finite memory structure, electro-
hydraulic actuator, nonlinear systems, T-S fuzzy model

I. INTRODUCTION

Currently, automotive electronics technology is being de-
veloped for the safety and comfort of drivers and passengers.
Furthermore, the installation rates of vehicle control systems,
such as rollover protection systems, adaptive cruise control
systems, and electronic stability control (ESC) are increas-
ing worldwide [1]. Among them, active suspension systems
that can improve vehicle comfort and steering stability are
attracting significant interest from academia and the industry
[2], [3]. Vehicle suspensions are classified as passive, semi-
active, and active according to the installed elements [4]–
[6]. Active suspension is known to be effective in improving
ride comfort and driving performance and has significant
potential because the actuators that can add or dissipate
energy are arranged in parallel with passive components [7],
[8].

In practical applications of active suspension systems, the
actuator must provide the desired force for control and be
suitable for packaging space, power, and bandwidth require-
ments [9], [10]. Therefore, an appropriate actuator must be
selected. Electro-hydraulic actuators are known to be the

most suitable for active suspension systems owing to their
high power-to-weight ratio and low cost [11], [12]. As a
result, numerous studies have been conducted on electro-
hydraulic active suspensions in recent years [13]–[15]. How-
ever, the highly nonlinear characteristics of the actuators
complicate the control design. Most recently, adaptive con-
trol of the electro-hydraulic servomechanisms using the ex-
tended state observer (ESO) and the output feedback back-
stepping control of hydraulic actuators, compensating for a
delay using the ESO, was developed [39], [40]. Furthermore,
considering the interaction between the vehicle suspension
systems and the actuator, the implementation of the actuator
becomes more difficult in many practical applications [16].

Over the past decades, Takagi-Sugeno (T-S) fuzzy systems
have become a popular tools for describing nonlinear systems
[17]. The main concept of the T-S fuzzy technique is to ap-
proximate a nonlinear system using a fuzzy blending of local
dynamics [18], [19]. Therefore, a complex nonlinear system
can be expressed as a linear time-varying system through
fuzzy membership functions and IF-THEN rules, and the
existing linear technology can be successfully applied to
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stability analysis and control design [20], [21]. Owing to the
characteristics of the T–S fuzzy model, which approximates
nonlinear systems more accurately than the existing Taylor
approximation, several filter design results based on the T–S
fuzzy model have been presented. A fuzzy state/disturbance
observer for integral sliding mode control was designed in
[22]. An adaptive sliding-mode observer design was intro-
duced in [23]. Wang et al. presented a fuzzy observer for
estimating the vehicle roll angle and roll rate [24].

However, most studies on the control design of active
suspension systems are related to the state feedback structure.
Note that state feedback requires the assumption that all state
variables are measurable [25]. However, this is unrealistic
in many practical aspects. In terms of cost and complexity,
the online measurement of all state information is difficult
to implement. Estimating the state through available output
measurements is desirable for creating a suitable controller
for several applications. Therefore, the estimation of state
information is essential for achieving a suitable feedback
controller, and many studies have been conducted on the
estimation problem. For example, a Luenberger-type state
observer was introduced in [27] for nonlinear tracking con-
trol of suspension systems. An adaptive Kalman filter for
suspension state estimation was presented in [28]. Na et al.
proposed an active adaptive estimator for vehicle suspensions
[29]. In [30], a position tracking controller for a quadrotor
was proposed using an ESO technique. However, it should be
noted that all aforementioned studies have an infinite impulse
response (IIR) structure.

As mentioned before, most state estimators used in actual
applications have IIR structures that require all historical in-
put and output data to estimate the current state variable [31],
[32]. Owing to the structural characteristics of the IIR esti-
mator, performance degradation or divergence problems can
occur when incorrect information or modeling uncertainty
occurs [33], [37], [38]. Consequently, finite-memory-based
state estimators have received much interest as alternatives to
IIR-based state estimation. Many studies have demonstrated
that the state estimator based on the finite memory structure
is robust against incorrect information and modeling uncer-
tainty compared with the IIR-based state estimator [34]–[36].

Despite being an important topic for feedback control, to
the best of our knowledge, only a few papers address the state
estimator design problem for active suspension systems. In
particular, results on finite-memory state estimators for active
suspension systems have not yet been studied in literature;
this was the motivation for our study. In this study, for the
first time, we investigate a new fuzzy finite-memory state-
estimation problem for active suspension systems, includ-
ing nonlinear electro-hydraulic actuator dynamics. The main
contributions and novelty of this study are as follows:
• The fuzzy finite memory state estimator design of active

suspension systems with electro-hydraulic actuator is
dealt with for the first time.

• By solving the minimum length solution of the cost
function, which contains the Frobenius-norm of the

fuzzy finite memory estimator gain, the design problem
of the proposed estimator for the nonlinear suspension
system has been effectively solved.

• The proposed fuzzy finite memory state estimator does
not require noise information and uses only recent mea-
surements. In other words, the proposed estimator is ro-
bust against uncertainty using a finite memory structure
without noise statistics.

• The robustness of the proposed finite memory state
estimator against disturbance and model uncertainty are
effectively verified under different road conditions via
numerical examples.

The remainder of this paper is organized as follows. In
section 2, we present the procedure for obtaining the T-
S fuzzy suspension model, including the electro-hydraulic
actuator dynamics. The design of the finite memory filter
for the T-S fuzzy model is presented in section 3. Section
4 presents the simulation results and discussion. Finally, the
conclusions are presented in section 5.

II. NONLINEAR HYDRAULIC SUSPENSION SYSTEM
AND ITS APPROXIMATION

The half-vehicle model, which is commonly used for sus-
pension control design, is shown in Figure 1. This 4-degree
of freedom(4-DOF) model, owing to the motion in the heave
and pitch directions of the sprung mass and the motion in the
vertical directions of the unsprung masses, captures more de-
tailed features than the quarter-vehicle model. In this figure,

FIGURE 1. 4-DOF suspension model.

zsf (t) and zsr(t) are the displacements at the front and rear
bodies, respectively; zuf (t) and zur(t) are the displacements
at the front and rear unsprung masses, respectively. Further-
more, zrf (t) and zrr(t) are the displacements at the front and
rear terrain heights, respectively; ϕ(t) represents the pitch
angle of inertia at the center of gravity(CG) points. The pitch
moment of inertia about the CG point is represented by Iϕ,
ms denotes the mass of the vehicle body, and zc(t) denotes
the displacement of the CG point. The unsprung masses on
the front and rear wheels are represented by muf and mur,
respectively; ksf and ksr represent the stiffness coefficients
at the front and rear tires, respectively. The damping coeffi-
cients at the front and rear wheels are represented by csf and
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csr, respectively. Finally, uf (t) and ur(t) denote the forces
at the front and rear actuators, respectively. Assuming that
(ϕ(t)) is negligibly small, we can easily obtain the following
equation:

zsf (t) = zc(t)− l1ϕ(t), (1)
zsr(t) = zc(t) + l2ϕ(t). (2)

Placing the origin for the displacement of the CG point and
the angular displacement of the vehicle body at static equi-
librium and applying Newton’s second law, we can express
the suspension equation as follows:

msz̈c(t) + ksf [zsf (t)− zuf (t)] + csf [żsf (t)− żuf (t)]

+ ksr[zsr(t)− zur(t)] + csr[żsr(t)− żur(t)]
= uf (t) + ur(t),

Iϕϕ̈(t)− l1ksf [zsf (t)− zuf (t)]− l1csf [żsf (t)− żuf (t)]

+ l2ksr[zsr(t)− zur(t)] + l2csr[żsr(t)− żur(t)]
= −l1uf (t) + l2ur(t), (3)
muf z̈uf (t)− ksf [zsf (t)− zuf (t)]− csf [żsf (t)− żuf (t)]

+ ktf [zuf (t)− zrf (t)] = −uf (t),

mur z̈ur(t)− ksr[zsr(t)− zur(t)]− csr[żsr(t)− żur(t)]
+ ktr[zur(t)− zrr(t)] = −ur(t),

From (1)–(3), the following can be easily obtained:

z̈sf (t) = z̈c(t)− l1ϕ̈(t)

= a1{uf (t− d(t))− ksf [zsf (t)− zuf (t)]

− csf [żsf (t)− żuf (t)]}+ a2{ur(t− d(t))

− ksr[zsr(t)− zur(t)]− csr[żsr(t)− żur(t)]},
z̈sr(t) = z̈c(t)− l2ϕ̈(t) (4)

= a2{uf (t− d(t))− ksf [zsf (t)− zuf (t)]

− csf [żsf (t)− żuf (t)]}+ a3{ur(t− d(t))

− ksr[zsr(t)− zur(t)]− csr[żsr(t)− żur(t)]},

where

a1 =
1

ms
+
l21
Iϕ
, a2 =

1

ms
− l1l2

Iϕ
, a3 =

1

ms
+
l22
Iϕ
.

To express the state-space representation, we set up the states
as shown in follow the Table 1: The dynamics (3)-(4) can be

TABLE 1. Variable description

Suspension deflection(front body): zsf (t)− zuf (t)
Suspension deflection(rear body): zsr(t)− zur(t)

Tire deflection(front body): zuf (t)− zrf (t)
Tire deflection(rear body): zur(t)− zrr(t)

Vertical velocity(front body): żsf (t)
Vertical velocity(rear body): żsr(t)

Vertical velocity(front wheel): żuf (t)
Vertical velocity(rear wheel): żur(t)

rewritten in the following state-space model:

ẋ(t) = Ax(t) +Bu(t) +Gw(t), (5)

where

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

x5(t) x6(t) x7(t) x8(t)
]T
,

u(t) = [uf (t) ur(t)]
T ,

A =

[
04×4 a12
a21 a22

]
,

B =

[
0 0 0 0 a1 a2 − 1

muf
0

0 0 0 0 a2 a3 0 − 1
mur

]
,

G =

[
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

]
,

a12 =


1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

 , (6)

a21 =


−a1ksf −a2ksr 0 0
−a2ksf −a3ksr 0 0
ksf
muf

0 − ksf
muf

0

0 ksr
mur

0 − ksr
mur

 ,

a22 =


−a1csf −a2csr a1csf a2csr
−a2csf −a3csr a2csf a3csr
csf
muf

0 − csf
muf

0

0 csr
mur

0 − csr
mur

 ,
where w(t) = [żrf (t) żrr(t)]

T is the disturbance input, and
04×4 is a 4x4 zero matrix. For the performance requirements
of the suspension system, three important characteristics can
be set as the controlled output. These requirements can be
divided into two types: minimized and restricted. The first is
ride comfort, which is a performance index that must be min-
imized and is primarily measured using body acceleration.
The other performance indices must be limited: handling
performance and suspension structure limitation

|zsf (t)− zuf (t)| ≤ zf,max,
|zsr(t)− zur(t)| ≤ zr,max,

|ksf (zuf (t)− zrf (t))| ≤ Ff ,
|ksr(zur(t)− zrr(t))| ≤ Fr.

These can be expressed as tire and suspension deflections,
respectively. Considering the above performance indices, the
two control outputs can be defined as follows:

z1(t) =
[
z̈c(t) ϕ̈(t)

]T
,

z2(t) =
[
zsf (t)− zuf (t) zsr(t)− zur(t)

zuf (t)− zrf (t) zur(t)− zrr(t)
]T

(7)
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Thus, the entire space model of a half-vehicle suspension can
be expressed as

ẋ(t) = Ax(t) +Bu(t) +Gw(t),

z1(t) = C1x(t) +D1u(t),

z2(t) = C2x(t) +D2u(t),

y(t) = Cx(t) +Du(t),

(8)

where A,B, and B1 are denoted in (6), and

C1 =

[
−ksfms

−ksrms
0 0

l1ksf
Iϕ

− l2ksrIϕ
0 0

− csfms
− csrms

csf
ms

csr
ms

l1csf
Iϕ

− l2csrIϕ
− l1csfIϕ

l2csr
Iϕ

]
,

D1 =

[
1
ms

1
ms

− l1
Iϕ

l2
Iϕ

]
, (9)

C2 =


1

zf,max
0 0 0 0 0 0 0

0 1
zr,max

0 0 0 0 0 0

0 0
ksf
Ff

0 0 0 0 0

0 0 0 ksr
Fr

0 0 0 0

 .
Before constructing the entire model, including the actuator
dynamics, the dynamics of the subsystems (fluid dynamics,
servo valve, hydraulic cylinder, and load) that constitute
the actuator should be understood. According to [8], the
hydraulic actuator system includes a cylinder, servo valve,
and load attached to the piston. The actuator is responsible
for transmitting forces and motions to external loads or sys-
tems. The cylinder located between the sprung and unsprung
masses was connected in parallel to the passive spring and
damper. The dynamics of the actuator are as follows:

Ḟi(t) = −βFi(t)− αA2
s(żsi(t)− żui(t))

+ γaAs

√
Ps −

sgn(xvi(t))Fi(t)

As
xvi(t),

ẋvi(t) =
1

τ
(−xvi(t) +Kvui(t)),

(10)

where i is f or r; Ps and As represent the hydraulic supply
pressure and the actuator ram area, respectively. The dis-
placement of the spool valve is represented by xvi(t); ui(t)
is the control input voltage to the servo valve. Additionally,
α = 4βe/Vt, β = αCtm, and γa = αCdωa

√
1/ρa, where βe

is the effective bulk modulus. The total volume of actuator
is represented by Vt; Ctm represents the leakage coefficient
due to pressure. The discharge coefficient and the spool valve
area gradient are represented by Cd and ωa, respectively; ρa
is the hydraulic fluid density; τ is the time constant of the
spool valve dynamics, and Kv is the conversion gain. The
dynamics equation (10) of the actuator can be expressed in
the following time-varying state-space model:

ẋc(t) = Ac(t)xc(t) +Bcuc(t) + ξcx(t), (11)

where

xc(t) =
[
Ff (t) Fr(t) xvf (t) xvr(t)

]T
,

uc =
[
uf (t) ur(t)

]T
,

(12)

Ac(t) =


−β 0 γAsδf (t) 0
0 −β 0 γAsδr(t)
0 0 − 1

τ 0
0 0 0 − 1

τ

 ,

Bc =


0 0
0 0
Kc

τ 0
0 Kc

τ

 , (13)

ξc =


01×4 −αA2

s 0 αA2
s 0

01×4 0 −αA2
s 0 αA2

s

01×4 0 0 0 0
01×4 0 0 0 0


where δf (t) =

√
Ps − sgn(xvf (t))Ff (t)

As
, δr(t) =√

Ps − sgn(xvr(t))Fr(t)
As

. By incorporating the actuator dy-
namics (10) with the vehicle model (8), we can obtain the
entire suspension state-space model including the electro-
hydraulic actuator as follows:

ẋa(t) = Aa(t)xa(t) +Bau(t) +Gaw(t),

z1(t) = C1axa(t), z2(t) = C2axa(t),

y(t) = Caxa(t),

(14)

where

xa(t) =
[
x(t) xc(t)

]T
,

Aa(t) =

[
A B 08×2
ξc Ac(t)

]
,

Ba =

[
08×2
Bc

]
, Ga =

[
G

04×2

]
(15)

C1a =
[
C1 D1 02×2

]
,

C2a =
[
C2 D2 04×2

]
,

C =
[
C D 03×2

]
.

The above suspension model (14) not only effectively in-
corporates the electro-hydraulic actuator dynamics but also
includes nonlinear behaviors. Thus, the T–S fuzzy modeling
technique is introduced to design the state estimator of the
nonlinear suspension model. Here, the concept of “sector
nonlinearity” [16] is applied to describe the nonlinear sus-
pension system as a T–S fuzzy model. In real applications,
the forces Fi(t) (where i denotes f and r, respectively) are
bounded between [Fi,min, Fi,max]. Therefore, the nonlinear
terms (δi(t)) of the actuator forces are also limited between
[δi,min, δi,max]. Thus, δi(t) can be expressed as

δi = M1i(ϑi(t))δi,max +M2i(ϑi(t))δi,min, (16)

where ϑi(t) = δi(t) denotes a premise variable, and
M1i(ϑi(t)) and M2i(ϑi(t)) denote the membership func-
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tions that can be obtained as follows:

M1i(ϑi(t)) =
δi(t)− δi,min
δi,max − δi,min

,

M2i(ϑi(t)) =
δi,max − δi(t)
δi,max − δi,min

,

(17)

The membership functions M1i(ϑi(t)) and M2i(ϑi(t)) rep-
resent “high" and “low", respectively. Table 2 lists each
fuzzy rule and its corresponding weighting functions. For
notational simplicity, we denote h(ϑ(t)) as h(t). Based on
this, we consider approximating the nonlinear hydraulic sus-
pension systems (14) using the following T-S fuzzy models:

Plant RuleR1:
IF ϑf (t) is high, and ϑr(t) is high,

THEN ẋa(t) = A1
axa(t) +Bau(t) +Gaw(t),

where A1
a can be calculated by substituting δf with δf,max

and δr with δr,max, from Aa(t) in (14).

Plant RuleR2:
IF ϑf (t) is high, and ϑr(t) is low,

THEN ẋa(t) = A2
axa(t) +Bau(t) +Gaw(t),

where A2
a can be calculated by substituting δf with δf,max

and δr with δr,min, from Aa(t) in (14).

Plant RuleR3:
IF ϑf (t) is low, and ϑr(t) is high,

THEN ẋa(t) = A3
axa(t) +Bau(t) +Gaw(t),

where A3
a can be calculated by substituting δf with δf,min

and δr with δr,max, from Aa(t) in (14).

Plant RuleR4:
IF ϑf (t) is low, and ϑr(t) is low,

THEN ẋa(t) = A4
axa(t) +Bau(t) +Gaw(t),

where A4
a can be calculated by substituting δf with δf,min

and δr with δr,min, from Aa(t) in (14) .

TABLE 2. Fuzzy rules and corresponding weight functions

Rule ϑf (t) ϑr(t) Fuzzy weight
1 high high h1(t) = M1f (t)×M1r(t)
2 high low h2(t) = M1f (t)×M2r(t)
3 low high h3(t) = M2f (t)×M1r(t)
4 low low h4(t) = M2f (t)×M2r(t)

Thus, under the limit conditions δf (t) ∈ [δf,min, δf,max]
and δr(t) ∈ [δr,min, δr,max] for the front and rear actuator
forces, respectively, a suitable T-S fuzzy model, including the

electro-hydraulic actuator dynamics, can be represented as

ẋa(t) =
4∑
i=1

hi(t)A
i
axa(t) +Bau(t) +Gaw(t),

z1(t) = C1ax̄(t), z2(t) = C2axa(t),

y(t) = Caxa(t),

(18)

where hi(ϑ(t)) satisfies hi(ϑ(t)) ≥ 0 and
∑4
i=1 hi(ϑ(t)) =

1. We employ hi(ϑ(t)) = hi for the convenience of notation.
In practice, Fi(t) and the spool valve position (xvi(t)) are
measurable values; thus, the proposed fuzzy system (18) can
be implemented in practice.

In most control engineering problems, controllers or state
estimators are implemented using digital computers. Because
the continuous time measurements captured by the sensor are
sampled and quantized to be converted into a discrete signal,
a discrete time state estimation technique must be considered.
If Ts is the sampling time of the micro control unit (MCU),
we can easily convert a discrete-time system to a continuous-
time system (18) using the zero-order hold (ZOH) method as
follows:

Āid Ḡd B̄d
C̄d 03×2 03×2
C̄1d 04×2 04×2
C̄2d 02×2 02×2

 =


Āi Ḡ B̄
C̄ 03×2 03×2
C̄1 04×2 04×2
C̄2 02×2 02×2

 .

(19)

The newly obtained discrete-time counterparts of the T-S
fuzzy models are represented as follows:

xk+1 = Akxk +Bkuk +Gkwk, (20)
yk = Ckxk + vk,

z1k = C1kxk,

z2k = C2kxk,

where Ak, Bk, Ck, and Gk are defined as

Ak
4
=

4∑
i=1

hi(ϑk)Aid, Bk
4
=

4∑
i=1

hi(ϑk)Bid,

Ck
4
=

4∑
i=1

hi(ϑk)Cid, Gk
4
=

4∑
i=1

hi(ϑk)Gid. (21)

where k denotes the samples of time kTs with a sampling
period of Ts.

III. FUZZY FINITE MEMORY(FFM) ESTIMATOR FOR
ACTIVE SUSPENSION SYSTEMS

From the discrete-time T-S fuzzy model (20), the stacked
input and measurement Uk−1 and Yk−1 can be represented
by

Uk−1 = [uTk−N , u
T
k−N+1, · · · , uTk−1]T ,

Yk−1 = [yTk−N , y
T
k−N+1, · · · , yTk−1]T ,

= C̄N (k)xk−N + B̄N (k)Uk−1

+ ḠN (k)Wk−1 + Vk−1, (22)
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where N denotes the horizon size, which is the number
of most recently used inputs and measurements, and the
matrices and stacked noise vectors C̄N (k), B̄N (k), ḠN (k),
Wk−1, and Vk−1 are expressed as follows:

C̄N (k) =


Ck−N

Ck−N+1Ak−Nk−N
Ck−N+2Ak−Nk−N+1

...
Ck−1Ak−Nk−2



B̄N (k) =


0 0

Ck−N+1Bk−N 0

Ck−N+2Ak−N+1
k−N+1Bk−N Ck−N+2Bk−N+1,
...

...
Ck−1Ak−N−1k−2 Bk−N Ck−1Ak−N+2

k−2 Bk−N+1

· · · 0 0
· · · 0 0
· · · 0 0

· · ·
. . .

...
· · · Ck−1Bk−2 0

,



ḠN (k) =


0 0

Ck−N+1Gk−N 0

Ck−N+2Ak−N+1
k−N+1Gk−N Ck−N+2Gk−N+1,
...

...
Ck−1Ak−N−1k−2 Gk−N Ck−1Ak−N+2

k−2 Gk−N+1

· · · 0 0
· · · 0 0
· · · 0 0

· · ·
. . .

...
· · · Ck−1Gk−2 0

,


Wk−1 = [wTk−N , w

T
k−N+1, · · · , wTk−1]T ,

Vk−1 = [vTk−N , v
T
k−N+1, · · · , vTk−1]T .

The fuzzy finite memory (FFM) estimator can be expressed
as follows:

x̂k = Hk−1Yk−1 + Lk−1Uk−1, (23)

where x̂k is the estimated state in the time sequence k
and Hk−1 and Lk−1 denote the gain matrices of the FFM
estimator. The estimated state x̂k can be expressed using the
stacked measurement vector (22) as follows:

x̂k = Hk−1(C̄N (k)xk−N + B̄N (k)Uk−1 + ḠN (k)Wk−1

+ Vk−1) + Lk−1Uk−1. (24)

Introduce the relation between xk and xk−N as follows:

xk = Ak−Nk−1 xk−N + Fu(k)Uk−1 + Fw(k)Wk−1, (25)

where

Fu(k) =
[
Ak−Nk−1 Ak−N+1

k−1 Bk−N

· · · Ak−1k−1Bk−2 Bk−1
]
, (26)

Fw(k) =
[
Ak−Nk−1 Ak−N+1

k−1 Gk−N

· · · Ak−1k−1Gk−2 Gk−1
]
, (27)

Aba =
b∏
i=a

Ai,

Aaa = Aa. (28)

Adding the zero term (25) into the right-hand sides of (24)
and taking the expectation on both sides yield:

x̂k = E[{Hk−1C̄N −Ak−Nk−1 }xk−N ] + E[xk]

+ E[{Lk−1 +Hk−1B̄N (k)− Fu(k)}Uk−1]. (29)

The unbiased condition E[xk] = E[x̂k], should be satisfied.
Thus, the following constraint must be ensured:

Hk−1C̄N = Ak−Nk−1 , (30)

Lk−1 = −Hk−1B̄N (k) + Fu(k), . (31)

In this study, we focus on the gain matrix Hk−1 because
Lk−1 can be obtained if Hk−1 is determined. With an ac-
curate state estimate for the FFM estimator, the following
theorem determines the FFM estimator gain Hk−1:

Theorem 1. The FFM estimator gain should satisfy the
unbiased condition (30), and the gain is given by

Hk−1 = Ak−Nk−1 (C̄N (k)TΩ−2N C̄N (k))−1C̄N (k)TΩ−2N .
(32)

where ΩN = diag(ωNI, ωN−1I, · · · , ωI) denotes the
weight matrix with the weight parameter 0 ≤ ω ≤ 1, which
gives more weight to recent data but less weight to old data.

Proof. Let J = ‖Hk−1‖2F be a cost function, where ‖ · ‖F
denotes the Frobenius norm, then the minimum length solu-
tion in (30) can be obtained. We introduce the Lagrangian
multiplier method with the Lagrange multiplier Γ to derive
the minimum length solution of the FFM estimator gain H
as follows:

L = J + Γ(Hk−1C̄N (k)−Ak−Nk−1 ), (33)

To minimize (33), a partial derivative with respect toHk−1 is
given as follows:

∂L

∂Hk−1
= 2Hk−1Ω2

N + ΓC̄N (k)T = 0 (34)

yields

Hk−1 = −0.5ΓC̄N (k)TΩ−2N (35)

Substituting (35) into (30) yields

−0.5ΓC̃N (k)TΩ−2N C̄N (k) = Ak−Nk−1 (36)
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which provides

Γ = −2Ak−Nk−1 (C̄N (k)TΩ−2N C̄N (k))−1 (37)

Finally, the estimator gain Hk−1 can be obtained by substi-
tuting (37) into (35) as follows:

Hk−1 = Ak−Nk−1 (C̄N (k)TΩ−2N C̄N (k))−1C̄N (k)TΩ−2N ,
(38)

which completes the proof.

The FFM estimator can be summarized with the following
remark.

Remark 1. The FFM estimation can be represented by
substituting (31) into (23) as follows:

x̂k = Hk−1Yk−1 − [Hk−1B̄N (k) + Fu(k)]Uk−1, (39)

where the estimator gain Hk−1 is represented in (38).
The proposed FFM estimator approximates a complex

nonlinear half-vehicle suspension model through T-S fuzzy
modeling and is designed based on a finite memory structure,
which uses only recent N inputs and measurements. Infinite
memory structures, such as the Kalman filter, accumulate
errors because they use past estimates, whereas the FFM
estimator has a finite memory structure, and thus, errors do
not accumulate.

Remark 2. The minimum length solution to obtain the gain
matrix Hk−1 enhances the robustness by reducing the effects
of uncertainties [36]. The stacked measurement (22) can
be represented by Yk−1 = Y rk−1 + Y uk−1, where Y rk−1 and
Y uk−1 are real and uncertain measurements, respectively. The
estimated state (23) can be represented as:

x̂k = Hk−1Yk−1 + Lk−1Uk−1

= Hk−1Y
r
k−1 +Hk−1Y

u
k−1 + Lk−1Uk−1, (40)

where Hk−1Y
r
k−1 and Hk−1Y

u
k−1 denote the real estimated

state and uncertain estimate, respectively. Taking a Frobenius
norm on both sides of (40) yields:

‖x̂k‖F = ‖Hk−1Y
r
k−1 +Hk−1Y

u
k−1 + Lk−1Uk−1‖F

≤ ‖Hk−1Y
r
k−1‖F + ‖Hk−1Y

u
k−1‖F + ‖Lk−1Uk−1‖F .

(41)

The uncertain estimates Hk−1Y
u
k−1 can be reduced when

Hk−1 is the minimum length solution.

Remark 3. For state estimation, the extended state observer
(ESO) is widely used owing to its advantage in that both the
states and model uncertainties can be estimated [39], [40].
Although the extended state observer also has the limitation
of having an IIR structure; therefore, a comparison with the
finite memory state estimator would be an interesting topic
for our future research.

IV. SIMULATION RESULTS
In this section, we present the simulation results for the

state estimation performance of the proposed FFM estimator

for a nonlinear hydraulic suspension system. The parameters
for the half-vehicle suspension are listed in Table 3, and the
parameters for each actuator are listed in Table 4. To effec-
tively evaluate the suspension performance, it is necessary to
consider the variability of the road profile in the context of
comfortable riding, steering, and physical specifications. In
this simulation, two different road profiles were considered
to evaluate the performance of the proposed state estimator.

TABLE 3. Parameters for the half-vehicle

Parameter ms muf mur Iϕt
Unit kg kg kg kgm2

Value 690 40 45 1222

Parameter ksf ksr ktf ktr
Unit N/m N/m N/m N/m

Value 18000 22000 200000 200000

Parameter csf csr l1 l2
Unit Ns/m Ns/m m m

Value 1000 1000 1.3 1.5

TABLE 4. Parameters for the hydraulic actuator

Parameter Ps As
Unit Pa m2

Value 10343500 3.35× 10−4

Parameter τ Kv

Unit s m/V
Value 0.003 0.001

Parameter α β

Unit N/m5 s−1

Value 4.515× 1013 1

Parameter γ

Unit N/m5/2/kg1/2

Value 1.545× 109

A. BUMP RESPONSE
First, we considered the time responses for the isolated

bump road profiles. The corresponding disturbance can be
expressed as:

zr(t) =

{
H
2

(
1− cos

(
2πV
L t
))
, if 0 ≤ t ≤ L

V ,
0, if t > L

V ,
(42)

In this case, we set the height of the bump to H = 50 mm,
the length of the bump as L = 6 m, and the vehicle forward
velocity as V = 35 km/h. In addition, it was assumed
that the road profile of the rear wheel zrr(t) has a time
delay of approximately (l1 + l2)/V compared to that of the
front wheel. The initial state of the estimator is set as the
zero-initial condition. The noise covariances of the external
disturbance wk are taken as Qk = (H/2)((2πV )/L))2I .
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The sensor noise vk is assumed to be a normal distribu-
tionN (0.012, 0.012, 0.0012, 0.0012). The length of the finite
memory horizon, which is a design parameter, was taken as
N = 50. Figure 2 shows the true states (x1(t) ∼ x4(t)) and
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FIGURE 2. True state and its estimation using the fuzzy KF and FFN
estimator.
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FIGURE 3. Estimator errors of two estimators concerning the front/rear
suspension deflection and tire deflection.

their estimations x̂1(t) ∼ x̂4(t) using a fuzzy KF and an FFM
estimator for the front/rear suspension deflection and tire
deflection, respectively. Figure 3 shows the estimation errors
of two estimators for the state values. As shown in Figures
2 and 3, the fuzzy KF exhibited a large estimation error
in the external disturbance period. However, the proposed
FFM estimator exhibited a smaller estimation error than the
fuzzy KF owing to its characteristic finite memory structure.
These results verified that the proposed FFM estimator is
more robust against external disturbance than the fuzzy KF
is. To further demonstrate the performance of the proposed
estimator, we evaluated the estimator performance in the
presence of modeling uncertainties. A modeling uncertainty
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FIGURE 4. True state and its estimation using the fuzzy KF and FFN
estimator.
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FIGURE 5. Estimator errors of the two estimators for the front/rear
suspension deflection and tire deflection.

matrix, denoted as ∆Ak was set as:

∆Ak =

{
0.01I 5(L/V ) ≤ k ≤ 7(L/V ),
0, otherwise, (43)

Figure 4 shows the true states (x1(t) ∼ x4(t)) and their
estimations (x̂1(t) ∼ x̂4(t)) using the fuzzy KF and FFN
estimators for the front/rear suspension deflection and tire
deflection, respectively. Figure 5 shows the estimator errors
of the two estimators for the state values. As shown in the
above simulations, a significant increase in the estimation
error occurred when modeling uncertainties are present. The
fuzzy KF exhibited dramatic increases in the estimation er-
rors in the presence of modeling uncertainties. However, the
estimation error of the proposed FFM is much smaller than
that of the fuzzy KF. These results show that the proposed
FFM estimator have more robust performance against the
modeling uncertainty than the fuzzy KF. Similar results were
also demonstrated in the following rough road profile.
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B. ROUGH ROAD RESPONSE
In this simulation, we considered the following rough road

condition:

zr(t) = 0.0254sin(2πt) + 0.005sin(10.5πt)

+ 0.001sin(21.5πt)(m). (44)

According to [16], Equation (25) effectively describes rough
road surfaces. It is assumed that the road disturbance is
similar to the vehicle body resonance frequency (1 Hz) with
a high-frequency disturbance. Figure 6 shows the responses
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FIGURE 6. True state and its estimation using the fuzzy KF and FFN
estimators.
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FIGURE 7. Estimator errors of the two estimators for the front/rear
suspension deflection and tire deflection.

of the true states (x1(t) ∼ x4(t)) and their estimations
(x̂1(t) ∼ x̂4(t)). Figure 7 shows the estimation errors of the
two estimators for the front/rear suspension deflection and
tire deflection, respectively. As shown in Figures 6 and 7, the
proposed FFM estimator has significantly fewer estimation
errors than the IIR structure (fuzzy KF) in the external
disturbances period. These results verify that the proposed
FFM estimator is more robust against external disturbances
than the fuzzy KF. All the results shown above are due to

the characteristic finite memory structure of the proposed
estimator. As with the bump disturbances, we also evaluated
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FIGURE 8. True state and its estimation using the fuzzy KF and FFN
estimator.
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FIGURE 9. Estimator errors of the two estimators for the front/rear
suspension deflection and tire deflection.

the estimate performance when modeling uncertainties in the
rough road conditions. Figure 8 represents the responses of
true states (x1(t) ∼ x4(t)) and their estimations (x̂1(t) ∼
x̂4(t)). Figure 9 represents the estimation errors of the two
estimators for the fron/rear suspension deflection and tire de-
flection, respectively. In case of the Kalman filter, a dramatic
increase in the estimation error occurs where modeling errors
exist. However, the FFM estimator produces much smaller
estimation errors than the fuzzy KF estimator. These results
also show that the performance of the proposed estimator is
robust under temporary modeling uncertainty owing to its
finite memory structure.

V. CONCLUSION
In this paper, we present a new nonlinear state estimator

with a finite memory structure for active suspension sys-
tems. By using the concept of “sector nonlinearity,” a half-
vehicle with two electro-hydraulic actuators was effectively
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expressed using a T–S fuzzy model. A batch-form FFM esti-
mator for a linear discrete time-varying system was designed
and applied to a nonlinear suspension system described as a
fuzzy model. Compared with the conventional state estima-
tor, which is known to have an infinite memory structure and
requires whole data from the initial time to the current time
to operate, the proposed state estimator has a finite memory
structure and guarantees robustness to unknown initial data.
Simulation results are presented to illustrate the estimation
performance and robustness of the finite memory estimator
for highly nonlinear suspension systems. Compared with the
conventional IIR-based state estimator, the presented FFM
estimator exhibits excellent robustness performance when
external disturbances and temporary model uncertainty exist.
Therefore, estimators with finite memory structures are ex-
pected to be good alternatives for several control engineering
applications.
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