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ABSTRACT Visual simultaneous localization and mapping (vSLAM) are considered a fundamental
technology for augmented reality and intelligent mobile robots. However, rigid scene assumption is
common in vSLAM, which limits the wide usage in populated real-world environments. Recently, with
the widespread use of artificial neural networks, many solutions have tried to eliminate the influence of
dynamic objects using semantic information provided by object detection or semantic segmentation. Mask
R-CNN is popular in many applications, but is usually slow and limits the speed of vSLAM because it waits
for the semantic results before camera ego-motion estimation. We had previously introduced a real-time
vSLAM, RDS-SLAM, which isolates tracking and semantic segmentation by adding a semantic thread
and moving probability estimation. However, Mask R-CNN only supplies a small amount of semantic
information because only a few keyframes can be segmented within a short time. Therefore, in this study,
we propose a novel vSLAM, RDMO-SLAM, which can leverage more semantic information while ensuring
the real-time nature by adding semantic label prediction using dense optical flow. Besides, we also estimate
the velocity of each landmark and use them as constraints to reduce the influence of dynamic objects in
tracking. Demonstrations are presented, which compare the proposed method to comparable state-of-the-art
approaches using dynamic sequences. We improved the real-time performance from 15 Hz (RDS-SLAM)
to 30 Hz while keeping robust tracking in dynamic scenes.

INDEX TERMS Visual SLAM, Semantic Segmentation, Real-time, Dynamic Environments, RDS-SLAM

I. INTRODUCTION

V ISUAL simultaneous localization and mapping (vS-
LAM) has been a hot research topic in computer vision,

augmented reality (AR), unmanned autonomous vehicles,
and robotics. vSLAM [1] is a fundamental technology for
estimating the pose of sensors and reconstructing structures
in an unknown environment using onboard sensors, such as
mono, RGB-D, and stereo cameras. vSLAM can be classified
into feature based approaches, such as ORB-SLAM [2] and
RGB-D SLAM [3], and direct approaches, such as LSD-
SLAM [4] and DSO [5]. As we know, there is usually a
strong assumption in vSLAM, the rigid scene assumption.
vSLAM assumes that the camera is the only moving object.
However, the camera is not the only moving object in the
real environment, and this assumption may result in unstable
tracking or even tracking failure. For instance, humans are
dynamic objects in indoor environments. The motion of fea-
tures or points on the dynamic objects is unknown and cannot

be accurately estimated. Dynamic objects may influence
feature matching and BA (bundle adjustment) and eventually
resulting in non-robust pose estimation and map building. As
shown in Fig. 1, vSLAM by default cannot sense the motion
of dynamic objects or dynamic features, e.g., mj

t−1 moved to
mj

t . Unfortunately, it still use the old map point mj
t−1 and its

observed features xt−1,j and xt,j to estimate the pose using
BA by minimizing the reprojection error for every selected
features. The problem is that the newly observed feature,
xt,j , no longer matches mj

t−1 but matches a new landmark
mj

t that is unknown for vSLAM. This phenomenon can be
somehow detected and reduced using geometric algorithms
such as RANSAC (random sample consensus) [6] and BA if
dynamic features move very fast. However, outliers cannot
be efficiently detected if they move slowly or occupy a major
part of the scene. As shown in Fig. 2, one person is walking
slowly at the center of the image, and many features are
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FIGURE 1: Rigid scene problem in vSLAM. The j-th map
point mj

t−1 on a dynamic object matched with the feature
xt−1,j in the previous image. Assume that this map point
moved to a new position mj

t and is observed as xt,j in the
current image. x′t,j is the position if the feature is static. Ct−1

and Ct are the camera centers of previous (It−1) and current
(It) images.

FIGURE 2: Example of dynamic environments (TUM).

detected on his T-shirts. vSLAM may mistakenly trust these
features and result in non-robust pose estimation because
these features are unstable.

In recent years, vSLAM is useful in scene understanding,
semantic mapping, robot navigation, and decision making
with the aid of object detection, convolutional neural network
(CNN), deep learning, and machine learning. The benefits
between these semantic applications/systems [7] and vSLAM
are mutual. VSLAM can support pose estimation and map
building for these semantic applications (SLAM helps seman-
tic), whereas the semantic methods can be applied to improve

(a) Blocked model.

(b) Non-blocked model.

FIGURE 3: Blocked model vs non-blocked model. The op-
tical flow model is optional. The semantic model can be
Mask R-CNN, SegNet, SSD or others. Segmentation and
optical flow can run in parallel for frames or keyframes. The
feedback, motion information, is optional for the blocked
model.

tracking performance (semantic helps SLAM). Many studies
try to eliminate or reduce the influence of dynamic objects
using various segmentation methods. For example, Detect-
SLAM [8] uses the object detection (SSD [9]) approach to
improve tracking performance; similarly, DynaSLAM [10]
and DM-SLAM [11] use Mask R-CNN [12], DS-SLAM [13]
uses SegNet [14], and KMOP [15] uses Open-Pose [16] and
k-means [17].

To the best of our knowledge, the execution speeds of
these methods are limited by the semantic model used, e.g.,
Mask R-CNN, SSD, and OpenPose, because these methods
need to wait for the semantic result/information, e.g., label,
bounding box, before tracking. Such an architecture is called
a blocked model, as shown in Fig. 3 (a). In our previous study,
we proposed a novel real-time vSLAM architecture, RDS-
SLAM [18], validated using both Mask R-CNN and SegNet
using non-blocked model, as shown in Fig. 3 (b). RDS-
SLAM can guarantee the speed of tracking free from speed
limitation of semantic models using multi-thread and moving
probability estimation of each map point. However, it has
some shortcomings: a) Mask R-CNN is slow (approximately
200 ms) and cannot segment every keyframe to use more
semantic information in a limited time. It cannot run stably
at 30 Hz using the TUM [19] dataset because insufficient
semantic information obtained at 30 Hz for some of the
dynamic scenes of the TUM dataset, which are very short,
only about half a minute; b) only predefined objects trained
by Mask R-CNN are handled. In this study, we try to ensure
real-time performance (30 Hz) while keeping robust tracking
by exploiting optical flow.

One critical challenge of using semantic information is
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time complexity. Although there are some lightweight se-
mantic segmentation models, e.g., SegNet, the total time
of tracking one frame is still more than the original ORB-
SLAM3. Besides, sometimes a complex CNN architecture is
required for robots to perform high-level tasks, e.g., human-
robot interaction and semantic mapping. To acquire more
semantic information in a limited time, we use dense optical
flow for each pixel to predict the semantic label of Mask
R-CNN. Another challenge is that only predefined objects
trained by CNN are used to judged outliers. Optical flow can
estimate the pattern of motion for every feature, including
features on the undefined objects. The velocity of map points
can be estimated by optical flow and used as a constraint to
reduce the influence of outliers from the tracking process.

In this study, we propose a semantic label prediction
algorithm to generate more semantic information for the
keyframes that are not segmented. Real-time tracking un-
der dynamic environments is achieved while keeping robust
tracking using a heavy CNN architecture. Besides, the ve-
locity of landmarks is estimated with the aid of scene flow
and Kalman filter. These two constraints (the semantic label
and velocity) can reduce the influence of dynamic objects in
vSLAM.

The main contributions of this paper are as follows.
(1) We propose a novel semantic-based real-time vSLAM

algorithm using Mask R-CNN and PWC-Net for dynamic
environments, RDMO-SLAM, an extension of RDS-SLAM,
which can achieve both good tracking performance and the
real-time nature.

(2) We predict the semantic result of Mask R-CNN using
optical flow to obtain more semantic information so that
the tracking thread uses as much semantic information as
possible.

(3) We demonstrate the real-time performance (30 Hz)
under dynamic environments using the TUM dataset and an
AR demo in the case of using a heavy CNN architecture,
Mask R-CNN.

The rest of this article is structured as follows. Section
II presents related work. Sections III - VIII detail the im-
plementation of the proposed method. Section IX shows the
experiment results. Finally, Section X presents conclusions
and discusses future work.

II. RELATED WORK
In this section, we explore related works on vSLAM and
state-of-the-art solutions to the rigid scene assumption in vS-
LAM under dynamic environments. We classify the methods
into purely geometric, reconstruction, and semantic-based
approaches. The semantic-based approaches leverage seman-
tic information to detect and segment objects and remove
outliers from tracking. Notably, these approaches may share
some common ideas, such as the use of geometric checking.

A. VISUAL SLAM
Feature-based methods rely on salient point matching and
can only perform a sparse reconstruction. Parallel tracking

and mapping (PTAM) [20] that implements a keyframe-based
monocular SLAM system on a cell phone is a promising
platform for hand-held AR. ORB-SLAM [2], a monocular
vSLAM that estimates camera ego-motion by matching ORB
[21] features extends the versatility of PTAM to environ-
ments that are intractable for PTAM. Based on ORB-SLAM,
ORB-SLAM2 [22], a complete SLAM system for monocular,
stereo, and RGB-D camera was presented, which can work
in real-time in various environments. Carlos et al. proposed
the latest version of ORB-SLAM, ORB-SLAM3 [23], which
tightly integrates visual and inertial information and adds
a multiple map system (ATLAS [24]). Our previous work,
a real-time dynamic SLAM using semantic segmentation
methods (RDS-SLAM) [18], is implemented based on ORB-
SLAM3. It adds a novel semantic tracking thread that lever-
ages semantic information to improve tracking accuracy and
retain the real-time property in dynamic environments. This
study extends RDS-SLAM by adding two more threads (op-
tical flow and velocity estimation) to generate more semantic
information.

Apart from feature-based methods, many direct vSLAM
approaches [4], [5], [25], [26], which can estimate, in prin-
ciple, a completely dense reconstruction by the direct mini-
mizing of the photometric error, have also been proposed. For
example, Kerl et al. proposed a dense visual SLAM method,
DVO (Dense Visual SLAM ) [26], using an RGB-D camera,
which minimizes both photometric and depth error over all
pixels.

However, rigid scene assumption is a common problem
for both the feature-based and the direct methods. Detecting
and handling outliers in real-time is challenging in vSLAM.
Although there are some strategies, such as selecting relative
good features and RANSAC-based checking, in some vS-
LAMs, e.g., ORB-SLAM3. However, they are still not well
suitable for dynamic environments.

B. GEOMETRIC-BASED APPROACHES
Li et al. [27] proposed a depth edge-based RGB-D SLAM
system for dynamic environments based on the frame-to-
keyframe registration, which only uses weighted depth edge
points. Sun et al. [28] proposed a novel online RGB-D data-
based motion removal approach that uses optical flow. It is
integrated with the front end of an RGB-D SLAM system,
acting as a preprocessing stage to filter data associated with
dynamic objects. They also proposed a monocular vSLAM
algorithm [29] that uses optical flow to improve tracking
performance with a monocular camera in dynamic environ-
ments. Also, they integrated their method into ORB-SLAM.
However, their methods have some limitations. For example,
the threshold used to distinguish dynamic points is set to a
fixed value, which may not be an optimal value for some
sequences. Kim et al. [30] proposed an IMU-based solution.
They classified the features into dynamic and static using the
IMU rotation component between two consecutive images.
However, for many use cases, it is desirable to improve
the accuracy of pose tracking and map building using only
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a single camera. Besides, IMU has drift and accumulated
errors over time. Sun et al. [31] classified pixels using the
segmentation of quantized depth images and calculated the
difference in intensity between consecutive RGB images. Tan
et al. [32] proposed a novel online keyframe representation
and updating method to adaptively model the dynamic envi-
ronments, where an appearance or a structure change could
be effectively detected and handled. Although geometric-
based methods can eliminate outliers to some extent, there is
room for further optimization of tracking performance using
semantic information.

C. RECONSTRUCTION-BASED APPROACHES

Visual odometry and scene flow (VO-SF) [33], an odometry-
based method designed for dynamic scenes proposed by
Jaimez et al., combines visual odometry, k-means, and scene
flow and reconstructs a 3D model of the rigid scene. Co-
Fusion [34] proposed an approach to track and reconstruct
multiple moving objects using SharpMask [35]. BaMVO [36]
proposed a background model-based visual odometry. Stat-
icFusion [37], a method for dense RGB-D SLAM proposed
by Raluca et al., tried to address the rigid scene assumption
by jointly estimating the motion of an RGB-D camera and
segmenting the scene into static and dynamic parts. Static-
Fusion is conceptually related to BaMVO but uses a frame-
model alignment instead of a multi-frame strategy. Similar to
ElasticFusion [38], camera tracking is performed by aligning
incoming frames with a dense surfel-based model of the
environment. A background model that fuses only the static
elements by decoupling the static and dynamic parts is built.
K-means is used to segment geometric clusters in StaticFu-
sion, and it is difficult to find the optimal K value for a spe-
cific scene. This problem also exists in other k-means-based
algorithms, such as KMOP-vSLAM [15]. Also, StaticFusion
assumes each cluster is a rigid body to reduce the overall
computational complexity, and then solves the static/dynamic
segmentation problem cluster-wise as opposed to pixel-wise.
Moving people are not rigid bodies in many cases. We do
not use such an assumption because we focus on improving
the tracking accuracy by eliminating outliers both on rigid
objects and dynamic objects in real-time rather than focusing
on building a conservative reconstruction of the static struc-
tures of the scene.

In this study, the camera pose is estimated using sparse
ORB features because it is usually more lightweight than the
dense RGB-D SLAM, and we do not build the dense surfel-
based model.

D. SEMANTIC-BASED APPROACHES

We classify the semantic-based methods into the blocked
and non-blocked models. As shown in Fig. 3, in the blocked
model, the semantic information needs to be obtained before
the tracking, which limits the real-time performance. We
have proposed a non-blocked model in RDS-SLAM [18],
where the tracking is not blocked to wait for semantic in-

formation, and the camera pose is optimized after obtaining
semantic information.

1) Blocked model-based approaches
DynaSLAM [10], based on ORB-SLAM2 and Mask R-CNN
has capabilities of dynamic object detection and background
inpainting, which can detect dynamic objects either by mul-
tiview geometry, deep learning, or both and then reconstructs
frame backgrounds occluded by dynamic objects using a
rigid scene map. DP-SLAM [39] combines the results of
geometry constraints and Mask R-CNN to track the dynamic
key points in a Bayesian probability estimation framework.
DP-SLAM was integrated into the front-end of the ORB-
SLAM2 to inpaint frame background occluded by the de-
tected dynamic objects. KMOP-vSLAM [15], also imple-
mented on ORB-SLAM2, has capabilities of unsupervised
learning segmentation (k-means [17]) and human detection
(OpenPose [16]) for robust tracking in dynamic environ-
ments. Outliers belonging to dynamic objects are detected
and eliminated from tracking. One problem is that the num-
ber of clusters of k-means is given manually and it may
not be optimal for the current environment. DS-SLAM [13],
based on ORB-SLAM2 and SegNet [14], uses a moving
consistency check to reduce the impact of dynamic objects
by assuming that feature points on people are most likely to
be outliers. Detect-SLAM [8], based on ORB-SLAM2 and
SSD [9], classifies keypoints into four states: low-confidence
static, high-confidence static, low-confidence dynamic, and
high-confidence dynamic. It only detects keyframes to save
time and then insert the keyframes into the local map and
update the moving probability into the local map. DM-SLAM
[11], also based on ORB-SLAM2, employs Mask R-CNN,
optical flow, and epipolar constraints to judge outliers. It
uses features in dynamic objects if they are not moving very
fast to reduce the feature-scarce cases that may happen by
eliminating the features on dynamic objects. Fan et al. [40]
proposed a novel semantic SLAM system with a more accu-
rate point cloud map in dynamic environments by exploiting
ORB-SLAM2 and BlizNet [41].

Most existing algorithms operating in complex dynamic
environments simplify problems by eliminating dynamic ob-
jects from tracking or tracking them separately. However,
VDO-SLAM [42] presented a novel formulation to model
dynamic scenes in a unified estimation framework over robot
poses, static and dynamic 3D points, and object motions.
DynaSLAM II [43] is a similar work with VOD-SLAM
that tracks multiple rigid objects such as cars and bicycles.
According to the data provided in their papers, DynaSLAM
II is a little faster and more robust than DVO-SLAM if not
considering the time complexity of semantic segmentation.
However, these methods only work for rigid objects and
neither of them is suitable for indoor dynamic environments
where people are the major dynamic objects. For example, In
the dynamic scene of the TUM [19] dataset, people change
their shape sometimes by standing or sitting. Besides, these
methods are not real-time because the semantic segmentation
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and optical flow information need to be prepared beforehand.
All the methods that use the blocked model wait for the

semantic results of each frame or keyframe before estimating
the camera pose, thereby resulting in their processing speed
being limited by the segmentation method used. To further
clarify this, we compared the tracking performance and time
complexity with state-of-the-art works.

2) Non-blocked model-based approaches
Our previous work, RDS-SLAM [18] implemented based on
ORB-SLAM3, adds a novel semantic tracking thread that
segments objects with the aid of Mask R-CNN or SegNet,
and then uses the semantic information to update and propa-
gate the moving probability of map points in ATLAS [24].
We follow the ideas of RDS-SLAM and mainly solve the
insufficient semantic information problem when using Mask
R-CNN. In this study, the concepts of frames, keyframes, BA,
and global maps are derived from RDS-SLAM and ORB-
SLAM3.

III. RIGID SCENE ASSUMPTION PROBLEM
As shown in Fig. 1, given a 3D point in world coordinate
mj

t−1 = (x, y, z)T ∈ R3 at time t− 1, the reprojection error
of the predicted and the observed pixels at time t is defined
as follows:

et,j(ξ) = xt,j − π(Tw
t (ξ),mj

t−1), (1)

where, xt,j ∈ R2 is the observed feature point; Ttw(ξ) =
exp(ξˆ) ∈ SE(3) is the pose of camera t under the world
coordinate with exp(.) as a mapping from se(3) to SE(3);
ξ ∈ R6 is a 6D vector (3 for position and 3 for rotation),
which is the target variable to be solved and optimized; π is a
project function that projects a map point from the 3D space
to the 2D image plane. In a static scene, xt,j should be in
the position of x′t,j or very near position (influenced by the
noise). vSLAM performs camera ego-motion estimation by
minimizing the reprojection error using the matched feature
and landmark pairs. In practice, usually, BA is used to find
an optimal solution using the error term Eq. (1) and the
following cost function:

C =
∑
t,j

ρh(et,j(ξ)
T Ω−1

t,j et,j(ξ)), (2)

where a robust Huber kernel ρh is used to reduce the influ-
ence of spurious matching. For example, in ORB-SLAM3,
g2o [44] is used to solve this BA problem. However, in
dynamic environments, the observed and predicted positions
may be different due to the movement of dynamic objects.
For example, the old map point mj

t−1 moves to a new
position/point mj

t . By default, the traditional vSLAM cannot
detect the motion and still use the old map point mj

t−1

to estimate the camera motion. If the motion of objects is
considered, the error term should be defined as follows:

et,j(ξ) = xt,j − π(Tw
t (ξ),mj

t ) (3)

= xt,j − π(Tw
t (ξ), Ht

t−1m
j
t−1), (4)

where, Ht
t−1 is the motion of the landmark mj

t−1 from the
previous time t − 1 to the current time. BA cannot optimize
the camera pose correctly in dynamic environments due
to the unknown motion Ht

t−1 of landmarks. Usually, this
operation will cause a non-robust camera pose estimation or
tracking failure due to the large reprojection error.

To the best of our knowledge, there are two kinds of so-
lutions. One solution [42], [43] jointly optimizes the motion
H of the object and the camera pose T (ξ) using multi-object
tracking by assuming the object is rigid and the points on
it have the same or consistent motion. It has been reported
that this assumption works in outdoor where the distances
of objects are relatively large. However, this assumption
does not hold for non-rigid objects, e.g., people in indoor
environments. Besides, such methods are offline or not real-
time because they use the blocked model.

Another solution is to detect outliers and remove them
from tracking, which is widely employed in the geometric
and semantic-based approaches. In this case, the cost func-
tion is defined as follows:

C =
∑
t,j

Wjρh(et,j(ξ)
T Ω−1

t,j et,j(ξ)). (5)

In some studies, Wj is assigned to 0 and 1 for dynamic and
static points, respectively. In RDS-SLAM, we set Wj to the
static probability (1 - moving probability) of each matched
landmark in BA. We do not delete the dynamic map points
because they are useful to reduce the situation that too few
matches are left by directly deleting the outliers from the
map. We keep updating the moving probability of each map
point over time and reduce the influence of dynamic objects
in tracking. Usually, semantic-based approaches can achieve
more robust tracking performance using high-level semantic
information. In this study, we also use this idea and focus on
the indoor environment where people are the main dynamic
objects.

IV. SYSTEM OVERVIEW
Fig. 4 shows the architecture of RDMO-SLAM, which is im-
plemented based on ORB-SLAM3 and RDS-SLAM. There
are four threads in ORB-SLAM3: tracking, local mapping,
loop closing, and full BA. In RDS-SLAM, we add a semantic
thread to request the semantic information and update the
moving probability of map points into ATLAS. We classify
these landmarks into three subsets, unknown, static, and
dynamic according to their moving probability, and then use
as many static ones as possible in the tracking thread. In this
study, we follow the basic idea of RDS-SLAM, add two new
threads, optical flow, and velocity estimation threads, and
modify some modules of RDS-SLAM and ORB-SLAM3.

The tracking thread aims to estimate the initial camera
pose via feature matching and select keyframes used by the
local mapping thread to update the map and further optimize
the pose estimation via BA. In the semantic thread, first, we
request semantic labels of selected keyframes, then generate
mask images of predefined dynamic objects, and finally cal-
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FIGURE 4: System architecture. Models with orange color are the ones that are modified from RDS-SLAM or new blocks.
Models with magenta color are derived from RDS-SLAM but different from ORB-SLAM3. Blocks in blue are important data
structures.

culate as well as update the moving probability of map points
in the global map using semantic information. Different from
RDS-SLAM, we add a new module called Label Prediction,
which is designed to predict semantic labels using optical
flow while waiting for the semantic result. In the optical
flow thread, we estimate the dense optical flow for each
keyframe and use the optical flow to predict the semantic
label and estimate the scene flow of landmarks. The velocity
estimation thread aims to calculate and update the velocity of
map points using the scene flow of map points. The velocity
of landmarks is used as another constraint to filter bad data
associations from tracking. Finally, this semantic information
expressed by the moving probability and the velocity of
landmarks is used to filter the outliers.

V. OPTICAL FLOW THREAD
Optical flow estimation is a basic computer vision problem
and has many applications, such as autonomous driving,
multi-object tracking, and vSLAM. PWC-Net [45] is a com-
pact but effective CNN model for optical flow estimations. It
adopts a fast, scalable, and end-to-end trainable CNN frame-

work [46]. It is designed using well-established principles,
pyramidal processing, warping, and the use of a cost volume.
It warps the CNN features of the second image toward the
first image. Then uses the warped features and the features of
the first image to construct a cost volume, which is processed
by a CNN to estimate the optical flow. PWC-Net is more
lightweight and easier to train than the recent FlowNet2
[47] model and can run at about 35 fps [45] on Sintel [48]
resolution (1024 x 436).

Each pixel of optical flow result stores two float values
F = (fx, fy) ∈ R2, which indicate the displacement of each
pixel between a previous and current image. Formally, for
each pixel (x1, y1) in the previous image, the corresponding
pixel in the current image is given by:

(x2, y2)T = (x1 + fx, y1 + fy)T . (6)

A ROS version of PWC-Net1 (Caffe models2) is used
to predict the optical flow for each pixel of consecutive

1https://github.com/ActiveIntelligentSystemsLab/pwc_net_ros
2https://github.com/NVlabs/PWC-Net/blob/master/Caffe/model/pwc_

net.caffemodel
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(a) Previous RGB image (10) (b) Current RGB image (11)

(c) Optical flow pattern

FIGURE 5: Optical flow estimation example using the TUM
dataset. (a) and (b) are images from consecutive keyframes,
and (c) is their optical flow visualized using HSV color
constructed by flow direction and flow magnitude.

keyframes. The input is the consecutive two RGB images,
and the output is the optical flow, as shown in Fig. 5. Optical
flow can only detect the motion part of the body, e.g., hand
and leg. However, the unstable features on the static parts
of the body cannot be detected. This problem can be solved
together using semantic segmentation.

Later, we use the result of optical flow to predict the se-
mantic label of keyframes in the semantic thread to increase
the speed of semantic information generation. Besides, the
result is also used by velocity thread to calculate the velocity
of map points.

VI. SEMANTIC THREAD
This thread aims to provide semantic information and use
them to update the moving probability of map points. Fig.
4 (semantic modules) shows the general flow. First, we select
one keyframe to request a semantic label using Mask R-
CNN. However, it requires a very long time (about 200ms)
to obtain the semantic result/label. To obtain more semantic
information, we propose an algorithm to predict the semantic
label of the keyframes using the previous obtained semantic
label and optical flow patterns of the reference keyframes,
while waiting for the result of the current semantic request.
After obtaining the semantic label, we generate a mask of
dynamic objects, which will be used to update the moving

FIGURE 6: Semantic timeline. The left side is the contents
inside the keyframe queue KF , and the right side is the
timeline of requesting semantic labels. S(.) is the semantic
label returned from the semantic server. The keyframes in
yellow are the ones that need to predict. The keyframes in
pink are the ones that request the semantic label from the
semantic server, and those in green are the ones that have
obtained semantic results in the previous rounds.

FIGURE 7: Semantic segmentation result.

probability. We will explain in detail in the following sub-
sections.

A. SEMANTIC KEYFRAME SELECTION
The semantic delay [18] between the semantic and tracking
threads will increase over time if all keyframes are segmented
sequentially. The tracking thread cannot obtain the latest and
enough semantic information in real-time. To decrease the
semantic delay, only the keyframes from the front and back
of the keyframe queue KF are selected to request seman-
tic labels in RDS-SLAM. However, this will cause many
keyframes not able to obtain semantic results. In other words,
not all the keyframes can have the chance to get a semantic
result. This may result in non-robust or unstable tracking
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(a) Keyframe (78) (b) Keyframe (79) (c) Keyframe (80) (d) Keyframe (81)

(e) Optical Flow (78) (f) Optical Flow (79) (g) Optical Flow (80) (h) Optical Flow (81)

(i) mask (78) (j) Predicted mask (79) (k) Predicted mask (80) (l) Predicted mask (81)

(m) Dilated mask (78) (n) Dilated mask (79) (o) Dilated mask (80) (p) Dilated mask (81)

FIGURE 8: Predicted mask. (a) is the reference keyframe, and (b)-(d) are the keyframes that need to predict.

under complex environments. RDS-SLAM has been only
evaluated at 15 Hz rather than 30 Hz in TUM dataset because
adequate semantic information cannot be obtained within a
short time using Mask R-CNN. To handle this drawback, in
this study, we try to ensure that almost all keyframes can
obtain semantic labels. We always select the latest keyframe
from the back of the KF queue to request semantic results.

Fig. 6 shows an example of keyframe selection policy.
In round 1, we select the first keyframe KF0 to request a
semantic label from a semantic server (Mask R-CNN). In
round 2, we select the latest keyframe (KF3) in the queue
to request semantic labels. We predict the semantic label for
others (KF1 − KF2). Similarly, in the next round, we take
the element KF7 from the back of the queue to request and
predict the others sequentially (KF4 - KF6).

B. SEMANTIC SEGMENTATION
We use Mask R-CNN3 trained with the MS COCO [49]
dataset as the semantic server. Fig. 7 shows an example
of a semantic segmentation result. However, the semantic
segmentation result is not always correct, and the edge of the
object is difficult to classify. Besides, only pretrained objects
can be segmented. Therefore, we dilate the mask to cover the
features on the boundary and use the velocity of map points
as another constraint to remedy this insufficiency.

C. SEMANTIC LABEL PREDICTION
To ensure that more keyframes can obtain the semantic
label, we predict the semantic labels for not-yet-segmented
keyframes using optical flow. As shown in Fig. 6 (round
2), KF0 is the reference keyframe that has already been

3https://github.com/matterport/Mask_RCNN
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segmented, KF3 the current request, and KF1 − KF2 are
the predicted ones using the reference keyframe. Given a
reference keyframe label Ir(xr, yr) and the corresponding
optical flow vector (fx, fy), the predicted label Ip(xp, yp) is
calculated as follows:

Ip(xp, yp) = Ip(xr + fx, yr + fy) = Ir(xr, yr). (7)

Fig. 8 shows an example of semantic label prediction. From
the label of the reference keyframe (a) and the optical flow
(f-h), we predict semantic labels of the subsequent keyframes
and generate their mask images, as shown in (j-l).

D. SEMANTIC MASK GENERATION
We generate mask images of predefined dynamic objects
such as persons and animals by applying dilation operation
to the predicted semantic labels to fill the holes and expand
object boundaries. As shown in Fig. 9, since the features
around the boundary of dynamic objects can also be the
outliers, they will be covered after dilating the mask. The
noise or holes on the predicted labels can also be smoothened,
as shown in Figs. 8 (n-p).

E. MOVING PROBABILITY UPDATE
We define the moving probability p(mj

t ), mj
t ∈ M where

M = {static (s), dynamic (d))}, for a map point j that
matches with features in the keyframe, as shown in Fig. 10
[18] . We omit the superscript j in the following derivation.
We update the moving probability in the semantic thread
using Bayesian filter [50] as follows:

bel(mt) = p(mt|z1:t,m0) (8)

= ηp(zt|mt)

∫
p(mt|mt−1)bel(mt−1)dmt−1,

where η = 1/(bel(mt = d)+bel(mt = s)) and p(m0) = 0.5
is the initial probability and p(zt|mt) is the observation
likelihood, which is set according to the semantic label. It
is reasonable to assume that the current observation is inde-
pendent of the previous ones. Thus, we define the observation
model as follows:

p(zt = d|mt = d) = α, (9)
p(zt = s|mt = s) = β, (10)

where α is given a fixed value in RDS-SLAM. Usually, the
segmentation accuracy is influenced by the camera rotation
around the optical axis, as shown in Fig. 11, if CNN is not
trained using enough data for such cases.

The rotation of the camera is presented as follows:

R(r) = rot(T (ξ)) = exp(rˆ), (11)

where, r is the Euler angle (roll, pitch, yaw) and rˆ ∈ so(3).
We heuristically adjust the reliability of semantic segmenta-
tion (α) according to the roll component and set α to a small

(a) original mask (b) dilated mask

(c) before dilation

(d) after dilation

FIGURE 9: Dilation example. Features in red are outliers
after dilation operation, and in blue are the observed static
features.

FIGURE 10: Moving probability. θs and θd are threshold
values.

value when the rotation is huge. We set α according to the
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(a) (735) w/rpy (b) (766) w/rpy

FIGURE 11: Segmentation accuracy is not correct in the case
of a large camera rotation. (a) the right person is not seg-
mented, and the head of the left person is wrongly segmented.
(b) the head of the left person is wrongly segmented.

FIGURE 12: Semantic Prediction Algorithm. The workId
is the current working pointer that walks through every
keyframe sequentially. The refId is the id of the reference
keyframe, and reqId is the id of the last semantic request.
lstestId is the id of the latest keyframe by now.

roll component when it is greater than a threshold γ.

α =

{
max{min{0.9, 1

exp(||roll(r)||−2) }, 0.1} ||roll(r)|| > γ

0.9 others.
(12)

In our experiment, γ is set to 1.5 to omit the relatively small
camera rotation and β to 0.9 by assuming the observation is
fairly robust for static objects.

F. ALGORITHM IMPLEMENTATION
Alg. 1 shows the detailed implementation of semantic thread.
To maintain the information exchange of optical flow and
semantic segmentation threads, checking functions "IsOpti-
calFlowReady()" and "IsSemanticReady()" are used respec-
tively to sync the data flow. To handle each keyframe in-
crementally, we designed some indicators/pointers to con-
trol the flow of the algorithm, as shown in Fig. 12. The
keyframes in yellow that need to predict are located between
the reference keyframe (refId) and the last semantic request
keyframe (reqId). First, we take out the current keyframe
(line 5) and the latest keyframe (lines 6-7) from the back of
the KF queue. Then, we segment the first few keyframes
(initNum), as shown in Alg. 1 (lines 8-17) considering some
datasets are short. The tracking is blocked to wait for the se-
mantic results for these keyframes. Besides, it will consume
more time (>300ms in our experiment) to segment the first
image due to the GPU initialization. Therefore, we suggest
waiting for the segmentation result of the first few keyframes.
In the experiment, initNum is set to 1 when evaluating

Algorithm 1 Semantic Thread

Require: vector<Keyframe*> KF
Keyframe *requestKF, *workKF, *latestKF
int workId, latestId, refId, reqId = 0
int initNum = 1
thread* segmentThread

1: while notRequestFinish() do
2: if KF.size() < 1 + workId then
3: continue
4: end if
5: workKF = KF[workId]
6: latestKF = KF.back()
7: latestId = latestKF->id
8: if workId < initNum then
9: reqKF = workKF

10: reqId = workId
11: segment(reqKF)
12: updateSemantic(reqKF)
13: refKF = reqKF
14: refId = reqId
15: workId++
16: continue
17: end if
18: if (refId >= reqId) || (latestId == reqId) ||

(workId>=reqId) then
19: segmentThread->join()
20: end if
21: if reqKF->isSemanticReady() && (workId > reqId)

&& (latestId > reqId) then
22: reqKF = latestKF
23: reqId = latestId
24: segmentThread = new thread(&segment, reqKF)
25: end if
26: if workKF->isSemanticReady() then
27: refKF = workKF
28: refId = workId
29: else
30: if (refId<reqId) && (workId>refId) && (workId-

refId==1) then
31: while !workKF->IsOpticalFlowReady() do
32: sleep(1)
33: end while
34: end if
35: workKF->label = predictLabel(refKF)
36: updateSemantic(workKF)
37: refKF = workKF
38: refId = workId
39: end if
40: workId++
41: end while

the TUM dataset and 0 for a real camera. Lines 21-25 are
to select the latest keyframe to request the semantic label
non-blocked when 1) the last request reqKF has already
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This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3100426, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 2 Update Semantic

Require: Keyframe* pKF
1: pKF->mask = generateMask(pKF->label)
2: pKF->informSemanticReady()
3: pKF->updateMovingProbability()

FIGURE 13: Optical and scene flows. The blue vector is the
original optical flow vector, orange is the rigid flow, and red
is the non-rigid flow. The purple vector is a scene flow vector.

obtained the semantic label and 2) there are new elements in
the KF queue waiting to segment. Lines 26-39 are to predict
the semantic labels using the selected reference keyframe
that have already obtained the semantic result (lines 26-28),
and the keyframes that need to predict have already got the
optical flow (lines 31-33). The keyframe is predicted when
the semantic segmentation processing speed is slower than
the new keyframe enqueuing speed. This algorithm predicts
semantic labels while waiting for the semantic label. We wait
for the segmentation result (lines 18-20) when 1) no new
enqueued keyframe exist, or 2) all the keyframes before the
last request reqId are already handled.

We update the semantic information after the semantic la-
bel is obtained either by semantic segmentation or prediction,
as shown in Alg. 2. Similarly to RDS-SLAM, we generate
the mask images of dynamic objects and update the moving
probability of map points using the generated mask.

VII. VELOCITY ESTIMATION THREAD
Semantic segmentation can only handle predefined dynamic
objects, and the segmentation is not always accurate. In
this study, we add velocity constraints for objects to further
reduce the influence of outliers.

As shown in Fig. 13, given a pixel xt,j in the previous
image, we can estimate the corresponding pixel in the next
image using

xt,j = xt−1,j + Fxt,j
, (13)

where Fxt,j
is a optical flow vector shown in Fig. 13 (blue

vector) and x′t,j is the estimated point using the camera
motion assuming the camera is the only moving object. The

motion of the camera needs to be subtracted from the optical
flow. Then, the sparse scene flow of landmarks is calculated
by

s = mt −mt−1 (14)

= π−1(xt,j , D(xt,j), T
w
t (ξ)) (15)

− π−1(xt−1,j , D(xt−1,j), T
w
t−1(ξ)),

where π−1 is a function that back project one 2D point in the
image to the 3D world space using the camera pose and depth
image.

The velocity of each map point is calculated by:

zt =
‖s‖
∆t

, (16)

where ∆t is the time difference between consecutive
keyframes.

Some velocities are very large due to inaccurate camera
pose estimation, inaccurate depth data, and wrongly matched
feature points. Besides, the features are extracted from dif-
ferent pyramid layers of the image. This also results in inac-
curate or wrong velocity estimation. We update the velocity
using Kalman Filter [50] by:

v̄t = vt−1, (17)
vt = v̄t +Kt(zt − v̄t), (18)

where Kt is the Kalman gain and zt is the newly calculated
velocity. We assume the map points move at a constant speed.
The predicted velocity v̄t is equal to the previous speed.
Ideally, the speed of static map points should be nearly zero.

We use the velocity of map points as another constraint to
further filter outliers. As we knew, it is difficult to find an
optimal threshold to judge outliers. Not enough features may
be left if the threshold is set too small. In our view, there is
no close form to decide the optimal value for all the frames
or scenes. In our experiment, we set a large value to remove
only obvious outliers with very large velocity.

VIII. TRACKING
To let vSLAM run in real-time, we separated the semantic
thread and the velocity estimation thread from the tracking
thread, so as not to block the tracking. The moving proba-
bility and the velocity of landmarks are stored in the map.
We use them as constraints to filter outliers from camera ego-
motion estimation.

As shown in Fig. 10, we judge the status of objects using

Status(mt) =

 dynamic bel(mt) > θd
static bel(mt) < θs
unknown others

. (19)

This is used as a constraint to select relatively good data
associations (see robust data association algorithm in [18])
and reduce the influence of dynamic objects in tracking for
every frame. In the experiment, θd is set to 0.6 and θs to 0.4.

This module is to estimate the initial camera pose by
matching the features between the previous frame and the

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3100426, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

current frame. Similar to RDS-SLAM, we use the moving
probability as the constraint as defined in Eq. (19). First, we
use features in the static subset. If the matched feature pairs
are not enough, we use the features in the unknown subset. If
they are still not enough, the features in the dynamic feature
subset can also be used such as the ones of a person who is
sitting. In the experiment, the dynamic feature subset was not
used when evaluating the TUM dataset. The estimated initial
pose may not be very reliable; however, it is further optimized
via tracking local map and BA.

BA is used in the local mapping thread (local BA), the
loop closing thread, and the full BA thread. We use moving
probability and velocity constraints to filter outliers from
them.

IX. EXPERIMENTAL RESULTS
We demonstrated the real-time performance and the tracking
accuracy by comparing with state-of-the-art vSLAMs using
the indoor dynamic scenes of the TUM dataset.

Our system was evaluated using GeForce RTX 2080Ti
GPU, Cuda 11.1, and an RGB-D camera (Kinect V2). We
also showed a demo of AR using a Kinect v2 camera in the
real environment.

A. TRACKING ACCURACY EVALUATION
There are both high and low dynamic office sequences in
the TUM RGB-D dataset [19] recorded with a Microsoft
Kinect sensor at full frame rate (30 Hz). RGB (640x480),
depth images, together with ground-truth trajectory, recorded
by a high-accuracy motion capture system. There is a low
degree of motion in the sequence named fr3/sitting_* (s/*),
where two people are sitting in front of a desk while speaking
speaking with gestures. Two people are walking both in the
background and foreground, and they sometimes sit down
in front of the desk in the sequences named fr3/walking_*
(w/*). There are four types of camera motions, 1) half-
sphere (half): moved on a small half-sphere of approximately
one-meter diameter, 2) xyz: manually moved along three
directions (xyz) while keeping the same orientation, 3) rpy:
rotated along the principle axes (roll-pitch-yaw) at the same
position, 4) static: kept in a place manually.

In this stdudy, we compared the trajectories of our proposal
with state-of-the-art vSLAM algorithms, as shown in Fig.
14, using their source codes when possible, ORB-SLAM34,
DS-SLAM5, Dyna-SLAM6, KMOP-vSLAM [15], and RDS-
SLAM7 using only an RGB-D camera (no IMU).

We evaluated the tracking performance using absolute
trajectory error (ATE) and relative pose error (RPE) [19].
The root means squared error (RMSE) and standard deviation
(S.D) are used as the error metrics. Given the estimated
trajectory: P1, ..., Pn ∈ SE(3), ground truth trajectory

4https://github.com/UZ-SLAMLab/ORB_SLAM3.git
5https://github.com/ivipsourcecode/DS-SLAM.git
6https://github.com/BertaBescos/DynaSLAM
7https://github.com/yubaoliu/RDS-SLAM

Q1, ..., Qn ∈ SE(3), and a fixed time interval ∆. The RPE
at time i is defined as follows:

Ri = (Q−1Qi+∆)−1(P−1
i Pi+∆). (20)

The RMSE of RPE over all time is defined as follows:

RMSE(R1:n) =
1

n

n∑
∆=1

(
1

m

m∑
i=1

‖trans(Ri)‖2)
1
2 . (21)

The ATE error is defined as follows:

Ai = Q−1
i SPi, (22)

where S ∈ Sim(3), which corresponds to the least squares
solution that maps the estimated trajectory onto the ground
truth trajectory. The RMSE of ATE over all time indices is
defined as follows:

RMSE(Ai:n,∆) = (
1

n

n∑
i=1

‖trans(Ai)‖2)
1
2 . (23)

We compared the tracing performance with counterpart
state-of-the-art vSLAMs: ORB-SLAM3 [23], KMOP [15],
Detect-SLAM [8], VO-SF [33], Elastic Fusion [38], CO-
Fusion [34], Static Fusion [37], DP-SLAM [39], DynaSLAM
[10], SLAM-PCD [40], DM-SLAM [11], and RDS-SLAM
[18], using, when possible, results published in the original
papers, as shown in Tab. 1, Tab. 2 and Tab. 3. We achieved a
similar tracking performance with state-of-the-art semantic-
based methods in dynamic environments using a heavy seg-
mentation method, Mask R-CNN.

We achieved similar tracking performance compared with
the methods that use the blocked model. However, these
methods cannot achieve good real-time performance. The
proposed method can run the Mask R-CNN version vSLAM
in real-time while keeping the robust tracking. We will
demonstrate the real-time performance later.

B. OUTLIERS REMOVING USING TUM DATASET
We qualitatively checked the feature classification perfor-
mance by evaluating the TUM dataset. The features can be
classified into three subsets according to the moving proba-
bility (Eq. (19)), as shown in Fig. 15. The static features are
mostly distributed on static objects, and the unstable features
(green and red) are mostly on the moving people. In the
tracking thread, we try to use as static features as we can.
An example is shown in Fig. 16, wherein only selected good
static features are used in the initial camera pose estimation
stage in the tracking.

C. AR DEMO
We qualitatively evaluated our system using an AR demo,
as shown in Fig. 17, where a virtual cube is put on the
desk. One person is sometimes sitting down and standing
up, and sometimes the person occupies half of the camera
view. The tracking is very unstable or even tracking lost in
the situation such as Figs. 17 (b-d) when using the original
ORB-SLAM. In this demo, the position of the virtual object
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(a) ORB-SLAM3: w/half (b) ORB-SLAM3: w/rpy (c) ORB-SLAM3: w/static (d) ORB-SLAM3: w/xyz

(e) DS-SLAM (S): w/half (f) DS-SLAM (S): w/rpy (g) DS-SLAM (S): w/static (h) DS-SLAM (S): w/xyz

(i) KMOP: w/half (j) KMOP: w/rpy (k) KMOP: w/static (l) KMOP: w/xyz

(m) DynaSLAM (M): w/half (n) DynaSLAM (M): w/rpy (o) DynaSLAM (M): w/static (p) DynaSLAM (M): w/xyz

(q) RDS-SLAM (M): w/half (r) RDS-SLAM (M): w/rpy (s) RDS-SLAM (M): w/static (t) RDS-SLAM (M): w/xyz

(u) Ours(M): w/half (v) Ours (M): w/rpy (w) Ours (M): w/static (x) Ours (M): w/xyz

FIGURE 14: Trajectory comparing frame by brame. "M" stands for "Mask R-CNN" and "S" for "SegNet". RDS-SLAM is
executed in 15 Hz and Ours in 30 Hz.
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TABLE 1: Evaluation of absolute trajectory error (ATE) of TUM (m). k-means (K), SegNet (S), Mask R-CNN (M), SharpMask
(SM), OpnePose (O) are segmentation or detection methods. RDS-SLAM is evaluated in 15 Hz and ours is evaluated in 30 Hz.

Seq.
ORB

SLAM3
KMOP
(K+O)

Detect-
SLAM
(SSD)

VO-SF
(K)

Elastic
Fusion

CO-
Fusion
(SM)

Static
Fusion

(K)

DP-SLAM
(M)

DS-SLAM
(S)

DynaSLAM
(M)

SLAM-PCD
(CNN)

DM-SLAM
(M)

RDS-SLAM
(M)

Ours
(M)

RMSE S.D. RMSE RMSE RMSE RMSE RMSE RMSE RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
w/half 0.6572 0.3124 0.176 0.0514 0.739 0.638 0.803 0.391 0.0254 0.0129 0.0303 0.0159 0.0296 0.0157 0.0241 0.0122 0.0274 0.0137 0.0259 0.0141 0.0304 0.0141
w/rpy 1.0197 0.5122 0.049 0.2959 - - - - 0.0356 0.0218 0.4442 0.2350 0.0354 0.019 0.0453 0.0316 0.0328 0.0194 0.1468 0.1051 0.1283 0.1047
w/static 0.3614 0.1522 0.032 - 0.327 0.293 0.551 0.014 0.0079 0.0037 0.0081 0.0033 0.0068 0.0032 0.0077 0.0039 0.0079 0.0040 0.0815 0.0224 0.0126 0.0071
w/xyz 0.9178 0.4859 0.019 0.0241 0.874 0.906 0.696 0.127 0.0141 0.0073 0.0247 0.0161 0.0164 0.0086 0.0157 0.0084 0.0148 0.0072 0.0213 0.0127 0.0226 0.0137
s/static 0.0090 0.0043 - - 0.029 0.008 0.011 0.013 0.0059 0.0029 0.0065 0.0033 0.0108 0.0056 0.0080 0.0037 0.0063 0.0032 0.0088 0.0043 0.0066 0.0033

TABLE 2: Evaluation of translational relative pose error (RPE) (m) of TUM.

Seq.
ORB

SLAM3
KMOP
(K+O)

VO-SF
(K)

Elastic
Fusion

CO-
Fusion BaMVO

Static
Fusion

(K)

DP-SLAM
(M)

DS-SLAM
(S)

DynaSLAM
(M)

SLAM-PCD
(CNN)

RDS-SLAM
(M)

Ours
(M)

RMSE S.D. RMSE RMSE RMSE RMSE RMSE RMSE RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
w/half 0.3262 0.2625 0.07 0.335 0.205 0.40 0.173 0.207 0.0142 0.0082 0.0297 0.0152 0.0284 0.0149 0.0274 0.0140 0.0282 0.0155 0.0294 0.013
w/rpy 0.4368 0.3197 0.065 - - - - - 0.0225 0.0150 0.1503 0.1168 0.0448 0.0262 0.0616 0.0357 0.1114 0.092 0.1396 0.1176
w/static 0.7800 0.7563 0.033 0.101 0.26 0.224 0.133 0.013 0.0066 0.0038 0.0102 0.0038 0.0089 0.0044 0.0102 0.0049 0.0419 0.0348 0.016 0.009
w/xyz 0.4258 0.3063 0.026 0.277 0.24 0.329 0.232 0.121 0.0114 0.0063 0.0333 0.0229 0.0217 0.0119 0.0204 0.0107 0.0281 0.0167 0.0299 0.0188
s/static 0.0102 0.0049 - 0.024 0.009 0.0011 0.024 0.011 0.0054 0.0027 0.0078 0.0038 0.0126 0.0067 0.0087 0.0038 0.0107 0.005 0.009 0.004

TABLE 3: Evaluation of rotational pose error (RPE) (m) of TUM.

Seq.
ORB

SLAM3
KMOP
(O+K)

VO-SF
(K)

Elastic
Fusion

CO-
Fusion
(SM)

BaMVO
Static
Fusion

(K)

DP-SLAM
(M)

DS-SLAM
(S)

DynaSLAM
(M)

SLAM-PCD
(CNN)

RDS-SLAM
(M)

Ours
(M)

RMSE S.D. RMSE RMSE RMSE RMSE RMSE RMSE RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
w/half 7.2352 5.9487 1.595 0.0669 0.0641 0.1302 0.0428 0.0504 0.0106 0.0059 0.8142 0.4101 0.7842 0.4012 0.7440 0.3459 0.8216 0.4347 0.7915 0.3782
w/rpy 8.7683 6.4583 1.105 - - - - - 0.0128 0.0082 3.0042 2.3065 0.9894 0.5701 1.3831 0.8318 9.3192 8.572 2.5472 2.0607
w/static 6.0054 5.5995 0.627 0.0168 0.0477 0.0401 0.0208 0.0038 0.0044 0.0023 0.2690 0.1215 0.2612 0.1259 0.2631 0.1119 1.1686 0.9917 0.3385 0.1612
w/xyz 7.8974 5.5917 0.689 0.0511 0.0479 0.0555 0.0439 0.0266 0.0093 0.0065 0.8266 0.2826 0.6284 0.3848 0.6227 0.3807 0.7236 0.4435 0.799 0.5502
s/static 0.3007 0.1300 - 0.0071 0.003 0.0044 0.0069 0.0043 0.0040 0.0021 0.2735 0.1215 0.3416 0.1642 0.2782 0.1210 0.3091 0.1325 0.291 0.133

(a) Frame 2 (b) Frame 50 (c) Frame 100 (d) Frame 205

FIGURE 15: Classify objects according to the moving probability (w/half). Green features are unknown and red ones are
dynamic, and blue ones are static.

(a) Frame 2 (b) Frame 50 (c) Frame 100 (d) Frame 205

FIGURE 16: Use robust features in tracking (w/half).

is somehow influenced by the person due to the occlusion
(e.g., Figs. 17 (b) and (d)); however, it recovers to its original
position after the person leaves (Fig. 17 (e)). We also try to
disturb the tracking by moving the keyboard (Fig. 17 (f)) and
moving the hand (Figs. 17 (g) and (h)). Tracking in Figs. 17
(f-h) is not influenced by the hands because features on the
hands are detected and removed using semantic and motion
information.

D. VELOCITY CONSTRAINT VS SEMANTIC
INFORMATION
We have evaluated the ATE of TUM only using velocity
constraint or semantic information, as shown in Tab. 4.
The tracking performance is much better than that of ORB-
SLAM3 with the velocity constraint. This constraint can filter
the landmarks (matched with features) that have large veloc-
ities on the objects, and it is a little faster than Mask R-CNN
segmentation. We also evaluated the tracking performance
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(a) Put a virtual cube (b) Before sitting down (c) After sitting down (d) After sitting down

(e) Person left (f) Move the keyboard (g) Disturb the cube (far) (h) Disturb the cube (near)

FIGURE 17: AR demo

TABLE 4: Evaluation of absolute trajectory error (ATE) of
TUM (m) with or without velocity and semantic mask. "V"
means only use velocity and "M" only use the semantic mask.

Seq. ORB-SLAM3 Ours
(V)

Ours
(M)

Ours
(V+M)

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
w/half 7.2352 5.9487 0.6314 0.3518 0.1204 0.0952 0.0304 0.0141
w/rpy 8.7683 6.4583 1.0978 0.5768 0.2708 0.2039 0.1283 0.1047
w/static 6.0054 5.5995 0.3867 0.1756 0.0124 0.0077 0.0126 0.0071
w/xyz 7.8974 5.5917 0.6479 0.3363 0.0164 0.0085 0.0226 0.0137
s/static 0.3007 0.1300 0.0089 0.004 0.0064 0.003 0.0066 0.0033

that only uses segmentation. The performance may be not
good if the camera rotates and translates rapidly because it
does not have enough time to obtain semantic information.
That is why the tracking performance is a little lower in
w/rpy and w/half. This problem can be solved by combining
velocity constraints and semantic information. The tracking
performances for other scenarios are very similar in the case
of only using semantic and using both, especially in the
standard deviation.

(a) Keyframe 3 (b) Keyframe 20

FIGURE 18: Landmark distribution according to the velocity
range (w/xyz).

E. VELOCITY CONSTRAINT THRESHOLD
It is challenging to decide the threshold of the velocity to
support robust tracking. We analyzed the landmark distri-
bution that matched with features on the keyframes in the
terms of the velocity. As shown in Fig. 18, the velocity of
about a half of landmarks is less than 2.0 in TUM w/xyz.
We use the landmarks that have a relatively small velocity

FIGURE 19: The number of landmarks in the different ve-
locity ranges (w/xyz).

to optimize the camera pose in BA. A very small number of
landmarks will be left when setting the threshold too small,
and too much noise data are used when setting it too large.
We suggest setting the velocity threshold to 1.0-2.0 (see Fig.
19 (orange, red, and green lines)) because the number of
landmarks used is reasonable in the optimization. To avoid
the tracking loss due to the few landmarks, we do not use
this constraint in the "track last frame" and "track local map"
models in the tracking thread. We only use this constraint in
the local BA where many landmarks are used together for
optimization.

F. TIMING ANALYSIS
Tab. 5 shows the comparison result of the real-time per-
formance. We compared the time required for the original
ORB-SLAM3 (RGB-D camera only), blocked model-based
solutions (e.g., DP-SLAM, Detect-SLAM, DS-SLAM, Dy-
naSLAM, DM-SLAM), and non-blocked model-based solu-
tions (e.g., RDS-SLAM). The time required for the blocked
model is limited by the time-consuming semantic segmenta-
tion, which significantly lowers their real-time performance.

VOLUME 4, 2016 15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3100426, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5: The execution time comparison of the TUM Dataset. We use the data in their original paper as possible. If not
provided, we approximate the processing time.

Method Model GPU Semantic Segmentation/Detection
Time (ms)

Time of Other Models Related to Tracking
(ms)

Total Time for Each Frame
(ms)

ORB-SLAM3 - - - - - - 22 - 30

KMOP-vSLAM blocked GeForce GTX 1080 Ti
Open Pose 45.89 Geometric Constraints

221.636 257.819k-means 95.29 Moving Detection
Camera Ego-motion

DP-SLAM blocked GeForce MX150 Mask R-CNN 200
Geometric Constraints -

>200Background Inpainting -
Moving probability Updating -

Detect-SLAM blocked GTX960M SSD 310 Progation 20 >310Updating 10

DS-SLAM blocked P4000 SegNet 37.57330 ORB feature extraction 9.375046 >65Moving consistency check 29.50869

DynaSLAM blocked Tesla M40 GPU Mask R-CNN 195 Multi-view Geometry 235.98 (w/rpy) >300Background Inpainting 183.56 (w/rpy)

DM-SLAM blocked GeForce GTX 1080 Ti Mask R-CNN 201.02 Ego-motion 3.16 >201Dynamic Point Detection 40.64

RDS-SLAM
(TUM) non-blocked GeForce RTX 2080Ti Mask R-CNN 200

Mask Generation 5.42
50 - 65 (15 Hz)Update Moving Probability 0.17

Semantic-based Optimization 0.54

Ours non-blocked GeForce RTX 2080Ti Mask R-CNN 200

Optical flow estimation 54

22-35 (30 Hz)
Update Moving Probability 0.14
Mask Generation 6.04
Velocity Estimation 2.54
Label Prediction 1.56

Our previous study, RDS-SLAM only can evaluate the TUM
dataset at 15 Hz because the TUM dataset is usually short
(about half a minute) and Mask R-CNN only can segment
very few keyframes, which results in inadequate semantic in-
formation when running at 30 Hz. We mitigate this limitation
via predicting the semantic label, which enables almost all
the keyframes to obtain semantic results even when executing
at 30 Hz.

The tracking performance may be influenced by the hard-
ware configuration because the speed of Mask R-CNN and
PWC-Net rely on the GPU. However, the time required for
tracking each frame is not influenced due to the non-blocked
architecture.

X. CONCLUSIONS

We proposed RDMO-SLAM, a novel real-time vSLAM for
the real environment exploiting RDS-SLAM, Mask R-CNN,
and dense optical flow. To overcome the problem of inade-
quate semantic information obtained within a short time due
to the slow speed of Mask R-CNN segmentation, we predict
semantic labels using optical flow so that almost all the
keyframes can acquire the semantic information. To reduce
the influence of dynamic objects untrained by semantic seg-
mentation models, we add a velocity constraint by estimating
the velocity of landmarks using optical flow. The tracking
and real-time performances are evaluated using the dynamic
scenes of the TUM RGB-D dataset and compared with
counterpart state-of-the-art vSLAMs with similar motivation.
As a result, our proposal that uses a non-blocked model can
maintain real-time nature (30 Hz) even with a very heavy
segmentation method. In future works, we will 1) consider
the outdoor environment and 2) build a static dense map
without dynamic objects.
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