
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101988, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.DOI

Siamese Visual Object Tracking: A
Survey
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ABSTRACT Object tracking belongs to active research areas in computer vision. We are interested in
matching-based trackers exploiting deep machine learning known as Siamese trackers. Their powerful
capabilities stem from similarity learning. This tracking paradigm is promising due to its inherent balance
between performance and efficiency, so trackers of this type are suitable for real-time generic object
tracking. There is an upsurge in research interest in Siamese trackers and the lack of available specialized
surveys in this category. In this survey, we aim to identify and elaborate on the most significant challenges
the Siamese trackers face. Our goal is to answer what design decisions the authors made and what problems
they attempted to solve in the first place. We thus perform an in-depth analysis of the core principles on
which Siamese trackers operate with a discussion of incentives behind them. Besides, we provide an up-to-
date qualitative and quantitative comparison of the prominent Siamese trackers on established benchmarks.
Among other things, we discuss current trends in developing Siamese trackers. Our survey could help absorb
the details about the underlying principles of Siamese trackers and the challenges they face.

INDEX TERMS visual object tracking, deep learning, Siamese neural networks, similarity learning, fully
convolutional networks

I. INTRODUCTION

OBJECT tracking is among very active research areas in
the field of computer vision [1]. Generally speaking,

object tracking is a fundamental task where some degree
of reasoning about a specific set of objects is required to
establish an object correspondence between frames [2]. In
this work, we consider the task of visual object tracking
(VOT) in a video. When evaluating the performance on
this task, the object of interest is identified solely using an
axis-aligned bounding box (BBOX) in the first frame. The
tracking algorithm should then preserve the assigned object’s
identity in future frames.

Despite the plethora of literature [3], [4], [5], the task re-
mains a challenge due to changes in object appearance caused
by scale and lighting variation, deformation, rotation, occlu-
sion, and background clutter [6]. The potential for real-world
application is vast, ranging from video surveillance [7] and
traffic analysis [8], through human-computer interaction [9]
to robotics [10] and even video compression standards [11].

During the process of VOT, a major challenge is to prop-
erly discriminate the target object from the background as
well as from the other objects. Because of this, we can

separate the existing appearance-based trackers into discrim-
inative and generative. Discriminative approaches treat VOT
as a binary classification problem. The aim is to separate the
foreground from the background. In generative models, can-
didates are searched to minimize reconstruction errors [5],
[12]. In the past, these models relied on low-level, hand-
crafted features. The primary limitations of those approaches
were incapability to capture semantic features and not being
robust to considerable appearance variations [13]. However,
deep machine learning is an excellent tool for powerful fea-
ture extraction [14]. Features learned by convolutional neu-
ral networks (CNNs) carry rich semantic information [15].
Models based on deep learning are strong at distinguishing
objects of different categories with good generalization ca-
pabilities [13]. With this in mind, the key is to find features
that simultaneously allow differentiating between an object
and a background and allow handling changes of the tracked
object, even when not known a priori [16]. In this work, we
deal with trackers that exploit the generative approach.

Currently, popular visual tracking methods revolve around
Siamese neural networks (section III). The Siamese-based
networks are considered the most promising architectures
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based on their balance between performance and effi-
ciency [17]. With this in mind, these architectures are the
primary focus of this survey.

Even though the Siamese models were first utilized for
signature verification [18], they can also be exploited for
VOT by formulating it as a target matching problem. Simply
put, a Siamese tracker accepts two input patches, an exemplar
image (what to look for), and a search image (where to look).
It is a Y-shaped network that joins two branches to produce
a single output [1], [19]. The tracker attempts to localize
the exemplar (target template) provided at the beginning in
the search regions contained in future frames. The goal,
therefore, is to learn a general similarity mapping between
the exemplar and the search region [20] (section III-A).

Many of the recent Siamese trackers are also fully convo-
lutional [12]. Among other things, this allows them to handle
variable dimensions of input images. We emphasize this
property because we mention it many times as it makes the
development of architectures with fewer hyper-parameters
and allows end-to-end training [21] (section III-B). Modern
approaches for object detection [21] and segmentation [22]
go in the fully convolutional direction, too. Among other
things, it is well-known within the tracking community that
the fully convolutional trackers can effectively capture trans-
lation, which is the main variation in the video [23].

Since the field of VOT is enormous, we had to narrow
our focus down to the specialized type of trackers. A nar-
row scope was crucial since we wanted to target individual
traits of specific frameworks. We do not deeply elaborate on
solutions that utilize information other than visual. Moreover,
we only address generic single object tracking. The literature
on deep learning-based VOT has been growing steadily since
2015, so it is hard to compose a broad survey about such
a vast body of publications. In this work, we strive for
deep analysis of a given tracking paradigm rather than to
provide a comprehensive, broad discussion covering the vast
population of approaches to object tracking. For this purpose,
other works complement our contribution (section II).

Siamese-based tracking is relatively new, and despite nu-
merous advantages, it still has limitations. The main purpose
of this survey is to convey the main properties of Siamese
trackers. Besides, it also provides a discussion about object
tracking in general. We aim at reflecting on ways by which
researchers have attempted to reinforce the pros and suppress
the cons (section IV). Therefore, our contribution is:

• This work provides a specialized discussion about in-
herent traits regarding Siamese trackers. We perform
an in-depth analysis of the core principles of Siamese
tracking.

• We dissect the current issues with the Siamese archi-
tectures and analyze the incentives behind the building
blocks the authors employed to address them.

• We offer an up-to-date quantitative and qualitative com-
parison of the surveyed trackers on the established
benchmarks.

This work provides a description of Siamese frameworks to
help spot their common strengths and weaknesses to address
them appropriately. Therefore, it may be helpful when utiliz-
ing existing or designing new Siamese trackers.

The rest of the paper is organized as follows. The upcom-
ing section II summarizes similar works related to survey-
ing object tracking, especially Siamese-based trackers. Sec-
tion III describes the problem of VOT using similarity learn-
ing. Additionally, we describe the fundamental components
of Siamese architecture. The subsequent section IV aims
at the current prominent traits and limitations of Siamese
tracking and summarizes how current works have attempted
to resolve them. In section V, we discuss experimental results
of the surveyed trackers on standard benchmarks together
with existing trends in their use. In the last section VI, we sum
up our findings and highlight potentially important directions
in future research.

II. RELATED WORK
Yilmaz et al. [4] in 2006 created one of the deepest and
very comprehensive surveys on object tracking. This work is
pertinent to our survey mainly due to the discussion regarding
object representation. They noted the importance of object
detection, which inherently faces similar problems as track-
ing itself. Other considered topics were motion prediction
and foreground segmentation, both of which are sometimes
exploited in tracking.

The most recent comprehensive survey is from 2021 by
Marvasti-Zadeh et al. [17]. This work broadly covers existing
approaches to object tracking in general. To the best of
our knowledge, this paper covers the greatest number of
deep learning-based trackers developed since 2013. Their
contributions were establishing a taxonomy of trackers, high-
lighting the current issues and proposed solutions, comparing
available datasets by various properties, and finally, extensive
experimental evaluations of trackers on numerous benchmark
datasets. They also discerned the chosen trackers according
to their core principles and architectural components. Among
other things, their work also includes Siamese trackers. This
survey is very extensive and a helpful guide to equip the
reader with current trends in VOT to understand the broad
picture. However, we do differ in our approaches. In our
case, we focus specifically on Siamese-based tracking, so
we provide more detailed descriptions of a specific subset of
trackers. Our goal was to go in-depth rather than breadth. We
strove to dissect the essential components of Siamese trackers
along with the problems that the designers were trying to
solve.

As we will point out later, Siamese trackers are better at
discerning foreground from the background than between
objects of similar appearance. A survey from [24] discusses
these possibilities. Furthermore, they also introduced similar-
ity measures. This aspect is necessary for similarity learning,
an important building block of Siamese networks. Another
comprehensive survey on Siamese tracking was done by
Pflugfelder [1]. His paper covers general challenges of VOT,
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tracker design, and representative Siamese architectures. He
also described details of Siamese trackers such as loss func-
tions, architectural components, design choices, and training
data. A relevant contribution of this work is the development
of a Lisp-like functional formalism to express Siamese ar-
chitectures for a general comparison of their structure. One
of his conclusions was that the evaluation methodology of
trackers back then had several flaws. Reproduction of results
and their comparison was difficult to achieve accurately. We
identify this survey as complementary to ours. However,
our perspective is different. We put general problems with
Siamese trackers at the core and then discuss how archi-
tectures address them. Other surveys, including [1], provide
an overview of “how” the trackers operate with respective
building blocks. Conversely, we elaborate on “what” obsta-
cles the trackers faced and what architectural decisions the
authors made to tackle them. Additionally, we also cover new
advancements since the year 2017.

Pflugfelder [1] also remarked that datasets are necessary
for successful VOT. The work of [25] contains a survey
of datasets for visual tracking. Another survey of datasets
is [26], where the authors also discuss challenging features
of established benchmark datasets. A recent, broad dissec-
tion of object tracking datasets is from Marvasti-Zadeh et
al. [17]. They thoroughly compared VOT benchmark datasets
on their fundamentals characteristics, such as the number
of frames, videos, and classes; various sequence attributes;
object classes; and overlaps with other datasets.

A survey by [27] provides a general description of visual
tracking together with its challenges. Apart from this, it also
provides a list of visual feature descriptors followed by a
discussion of trackers using deep learning. They partially
cover Siamese trackers, too. Nevertheless, they aimed to
propose a survey on the usability of tracking frameworks in
mobile robots. Since visual features and appearance models
are relevant to well-performing trackers, Li et. al [5] did an
extensive survey on appearance models in VOT. This work
focuses on traditional computer vision approaches not based
on machine learning. They discuss topics such as feature
extraction, optical flow, Gaussian mixture model (GMM), to
mention a few. We do consider their elaboration important
to our research. Various Siamese trackers utilize some of
those methods (e.g., optical flow in [28], GMM in [29]), apart
from deep learning. One of the leading causes of difficulties
for VOT is a variation of object appearance [6]. In this
regard, there is a survey on adaptive visual representations
in tracking [30].

Siamese trackers inherently exploit the capabilities of
deep machine learning. A short survey concerning deep
learning-based trackers is [31]. A recent, relevant survey
paper from [32] covers online learning methods for visual
tracking. They also cover general challenges of VOT, CNN-
based trackers, multiple perspectives on the classification of
trackers, evaluation metrics, and a broad review of Siamese
trackers. This survey is significant for the general understand-
ing of deep learning-based object tracking. Fiaz et al. [33]

compiled a thorough analysis of hand-crafted as well as
deep learning-based trackers, including the Siamese ones.
They experimentally evaluated the robustness of different
trackers. Our work also briefly mentions a taxonomy of
tracking algorithms. In the case of Siamese, inspired by [34],
they established three categories: early, intermediate, and late
merge concerning how they process input and the extracted
features.

III. SIAMESE TRACKING
Deep Siamese neural networks are non-linear models that
have provided a way to confront a broad range of problems
due to their capabilities to produce embeddings [35]. Track-
ing with Siamese networks seems to be a promising approach
to handle diverse VOT challenges at speeds far beyond real-
time [12]. Their primary aim to circumvent the obstacles
of pre-trained CNNs by exploiting end-to-end learning for
real-time applications [17]. In this section, we describe the
fundamental building blocks that are common to Siamese
trackers. There are two dominant visual tracking strategies.
The first represents models that exploit the classification and
updating pipeline. The second strategy focuses on matching-
based models [36]. Siamese trackers belong to the latter. This
branch of tracking algorithms also belongs to both correlation
and non-correlation filter-based ones [33].

The purpose of Siamese trackers is to learn a generic
similarity function that can accurately identify whether the
two provided image patches belong to the identical object
or not. This is the reason where the two input branches come
from. Siamese networks are suitable for studying deep neural
networks in the context of tracking because they are consid-
ered the simplest networks for matching problems [1]. How-
ever, viewing these trackers as pure “comparators” would not
be adequate. The general similarity function should appro-
priately handle various visual distortions to the target. We
emphasize here that there are no assumptions on similarity.
It is entirely described by the training samples. Moreover,
since VOT in general does not focus on specific classes of
objects, the learned similarity function should also generalize
well. Even Tao et al. [28] suitably remarked that they did not
attempt to do any offline training of the tracking targets in
their Siamese instance search (SINT) tracker because in that
case, they would essentially create an object detector instead.

A common pattern in single object tracking is to provide
just one exemplar of the tracked object in the initial frame.
Learning a visual model from a single example is an ill-posed
problem. To obtain a reasonable generalization capability of
the created embeddings, a sufficient dataset to learn an invari-
ant representation of generic object features is necessary [37].

The results of [12] demonstrated the expressive power
of properly learned similarity function with their Siamese
fully convolutional network (SiamFC) architecture. They
concluded that training on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset [38] alone was
sufficient to attain competitive results against other state-of-
the-art trackers on evaluation benchmarks with which their
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training data had no overlap. The embeddings created by
deep learning provide a rich source of features for trackers.
These features can handle appearance variations to such an
extent that even a front side of an unknown object can often
be associated with its backside successfully [23]. As far as
the training is concerned, these trackers are trainable end-to-
end on given videos using back-propagation, provided that
the entire model is differentiable [39]. Authors of [12] were
also the first to train a tracker on ILSVRC dataset. Many
newer trackers followed their path later on [16], [29], [40],
[41]. This dataset is suitable for pre-training, and it seems
like it has become a standard. We can say that the SiamFC
architecture opened a new branch of deep learning-based
trackers [27].

A. SIMILARITY LEARNING

VOT can be modeled as a similarity learning problem [16]. A
general similarity learning is addressed in the offline training
phase, and then the learned function is evaluated during
tracking [12]. Similarity learning is related to learning metric
embedding.

As [42] describes, the goal of learning metric embedding
is to learn a function (a transformation) ψθ (x) : RS → RD,
such that D < S, that maps semantically similar points from
the data manifold in RS onto metrically close points in RD.
Analogously, ψθ (·) should map semantically different points
in RS onto metrically distant points in RD. Learning such a
metric embedding is similar to dimensionality reduction, as it
involves mapping a set of high dimensional input points onto
a low dimensional manifold. The functionψθ (·) ideally maps
similar (a measure of similarity has to be defined) points in
the input space to nearby points on the manifold [43] (see
Figure 1).

Bertinetto et al. [12] proposed to learn a function f (z, x)
that would compare an exemplar image z with a candidate
image x of equal dimensions. Later on, they employed strate-
gies that allowed them to relax this constraint on dimensions.
Their design decisions incorporated fully convolutional net-
works. This aspect is important because a great deal of
Siamese trackers follow this trend nowadays. The function
f (z, x) would return a high score in case of equal objects,
and a low score otherwise. Siamese networks apply identical
transformation ϕ (·) to both inputs and then combine them
using a function g (·), such that f (z, x) = g (ϕ (z) , ϕ (x)).
If we assume the function g to be a distance or similarity
metric (e.g., l2 or cosine), then the function ϕ can be thought
of as an embedding. During inference, the nearest neighbor is
used to find the most similar object in the search region [40].

We review trackers that are built upon the idea of similarity
learning. Among other things, embedding trained this way
can be used to produce feature vectors for classification,
one-shot learning tasks [44], clustering [45], face recogni-
tion [46], and object re-identification [47].

Before training

Similarity learning

After training

FIGURE 1. A transformation achieved by similarity learning. The goal of the
training process is to find a mapping of the objects such that similar objects
are mapped closer together in the embedding space while different ones are
mapped further away. The criterion for similarity as well as its degree is usually
implicitly provided by the designer and the training data itself. The neural
networks are capable of discovering this latent structure.

B. SIAMESE ARCHITECTURE
In our paper, we discuss Siamese architectures. The pioneer-
ing work in this area of trackers is considered SINT [28]. To
be accurate in terminology, and for the sake of completeness,
Siamese networks come in the following types: two-stream,
two-channel, recurrent, pseudo, and pure (see [1] for more
details). Considering the papers we surveyed here, not all
of these types have equal occurrence. We show the basic
difference of the most important types in Figure 3. Unless
stated otherwise, we refer to all these types as “Siamese”.

We consider it important to describe the fundamental
building blocks of Siamese trackers to enhance understand-
ing. The goal is not to provide an exhaustive comparison of
every architectural detail. It can be found for 9 prominent
trackers in [1], with 7 of them in common with this paper.

A general pipeline of a majority of Siamese architectures
starts with a feature extraction part performed by CNNs.
From the standpoint of computer vision, these branches can
be thought of as a transformation of visual descriptions of
increasing spatial receptive fields. They produce feature maps
that are embedded in a measurable space. Later on, the
extracted features are merged to assess their similarity (see
Figure 4). Once the similarity is computed, then the loss
function is evaluated.

Robust visual feature extraction in VOT is of paramount
importance. Many architectures exploit pre-trained models
on ImageNet dataset [49] to extract features that are then
transformed for subsequent similarity learning. Since the
visual features for exemplar and search image are often
extracted by the same neural network backbone, their weights
are usually shared, as in the Generic object tracking using
regression networks (GOTURN) [50] framework (see Fig-
ure 3). In light of the Siamese networks terminology, we
denote ϕ (z) and ϕ (x) as features extracted for the exemplar
and search image, respectively. As long as no online model
updating is performed, the value of ϕ (z) is usually computed
only once during the initialization.

As [12] succinctly described, a function is fully convolu-
tional if it commutes with translation. Specifically, let Lτ de-
note the translation operator, such that (Lτx) [u] = x [u− τ ].
Then, a mapping of signals to signals given by the function h
is fully convolutional with integer stride k if
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CNN

CNN

Exemplar

Search region *
Response map

Input Feature
extraction

Similarity
computation

Locating
maximum score

Target
localization

FIGURE 2. An illustration of a fully convolutional Siamese architecture. Typically an exemplar image and a larger search region are fed into two branches of the
Siamese network. The extracted features are subsequently merged by cross-correlation operation which produces a response map. Individual cells of the output
response map correspond to individual patches from the search region. A location prediction corresponds to the patch with the maximum similarity score. More
concretely, assume the exemplar and search images are represented by 3D tensors described by [channels,width, height] of size [3, 127, 127] and [3, 255, 255],
respectively. The convolutional backbone (yellow part) produces their corresponding embeddings with sizes [256, 6, 6] and [256, 22, 22], if we assume that the
number of feature maps of the last convolutional layer in the backbone is 256. Then, the cross-correlation later (star) uses the [256, 6, 6] tensor as a kernel (weight)
and exhaustively convolves this kernel with a larger search region represented by the [256, 22, 22] tensor and produces the response map of size [1, 17, 17]. The
illustration, as well as the computational example, were inspired by [12].

First
image patch

Second
image patch

Two-channel 
network

Decision layer
Decision network

Shared weights
(Siamese)

Unshared weights
(Pseudo-Siamese)

First
image patch

Second
image patch

First branch 
network

Second branch 
network

FIGURE 3. Three basic Siamese network architectures: two-channel (left),
Siamese and Pseudo-Siamese (right). The Pseudo-Siamese architecture
does not use weight-sharing, apart from the basic Siamese architecture
(diagram inspired by [48]).

CNN feature extractor

Similarity score

First
image patch

Decision network

Second
image patch

FIGURE 4. An abstract overview of the Siamese architecture. The input
consists of two image patches (BBOXes). The core model extracts CNN
features and feeds them into the decision network the output of which is the
similarity score between the two images (diagram inspired by [48]).

h (Lkτx) = Lτh (x) , (1)

for any translation τ . This crucial property allows providing
a much greater search image to compute the similarity scores
across all translated sub-windows in just a single evaluation
(see Figure 2). From a mathematical perspective, the formula

above represents one of the fundamental traits that stand
behind the success of similarity learning applied in object
tracking; and that is the translation equivariance [23].

Fully convolutional architectures avoid using padding,
even though it is a common practice in CNNs. The reason is
that padding violates the property of equation (1) [12], [20].
Another thing to consider is that fully convolutional neural
networks also avoid fully connected layers. As a result, they
can handle a variable input image size. An efficient solution
is to replace fully connected layers with 1 × 1 convolutions
notably propagated in Network In Network [51] model. 1×1
filters were also used in the Inception architecture for di-
mensionality reduction and at the same time to increase the
dimensionality of feature maps [52]. Apart from tracking,
fully convolutional architectures can generally be applied
to other image processing tasks, e.g., segmentation [22] or
detection [21].

Bertinetto et al. [12] introduced the cross-correlation op-
eration. In SiamFC architecture, the cross-correlation was
part of a layer that merged the two inputs (exemplar and a
search image) to produce a response map. It is also called a
score or a correlation map. In this survey, we use these terms
interchangeably. This response map (practically visualized as
a heat map) represents the scores of the similarity between
the exemplar patch and the search region. The idea behind
producing this map is to generate a 2D feature map produced
by a standard 2D convolution operation in a neural network.
The distinction between the cross-correlation and the convo-
lution operation is not important here to convey the essence.
Originally, this map contained only one channel, but as we
will see later, upcoming works employed multiple channels.

The fully convolutional nature provided a way to compute
a similarity score for each translated sub-window of the
exemplar image within a larger search region. By exploiting
the embedding function ϕ (·), the produced feature maps can
be combined using a cross-correlation layer, thus
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f (z, x) = ϕ (z) ? ϕ (x) + b1, (2)

where b1 represents a bias term which has a value b ∈ R
in every location, i.e., an offset of the similarity values. The
cross-correlation is denoted by ?. Given this, the output is
not a single score, but a score map defined on a finite grid of
positionsP ⊂ Z2

+. See Figure 2 for illustration of the process
of computing the response map.

C. LOSS FUNCTION
Here we describe the two fundamental loss functions for
Siamese trackers. The purpose is to convey the essence of
how the evaluation works.

1) Margin contrastive loss
Loss functions used in similarity learning (section III-A)
should generate feature representations that are close in the
embedding space for positive pairs and far away by at least
a given margin for negative pairs. Thus, the contrastive
(pairwise) loss [53] for a pair consisting of samples xi and xj ,
their corresponding label yij ∈ {0, 1} (negative and positive
sample, respectively), and margin ε is given by

L =
1

2
yijD

2 +
1

2
(1− yij) max

(
0, ε−D2

)
. (3)

Usually D = ‖ϕ (xi)− ϕ (xj)‖2, that is the l2-norm of two
normalized latent representations. This loss was utilized by
SINT [28].

2) Logistic loss.
The cross-correlation operation produces a response map
that is not a vector but a spatial response map of similarity
scores. The logistic loss function from [12] is accommodated
to handle this. When training the network on positive and
negative pairs, the logistic loss function

l (y, s) = log
(
1 + e−ys

)
(4)

is used, where s ∈ R is a similarity score for a single
exemplar-candidate pair and y ∈ {−1, 1} is the ground-truth
label for negative and positive pair, respectively. Thanks to
the fully convolutional architecture a larger search region can
be used. This produces a map of scores. Let v : P → R be
a mapping from a set of positions in the response map to a
single similarity score. Then, the loss function is extended by
averaging individual losses as

L (y, v) =
1

|P|
∑
p∈P

l (y [p] , v [p]) , (5)

such that each position p ∈ P in the score map has a ground-
truth label y [p] ∈ {−1, 1}.

The logistic loss was adopted in trackers SiamFC [12],
Correlation filter network (CFNet) [54] and Dynamic
Siamese network (DSiam) [55]. This loss was a foundation
to many upcoming trackers, e.g., Siamese classification and

regression networks (SiamCAR) [20] or Foreground infor-
mation guidance for Siamese visual tracking (FIGSiam) [56],
where they extended this loss by adding more terms.

IV. MAIN CHALLENGES OF SIAMESE TRACKERS
Visual features not based on deep learning had undergone
the scrutiny of Li et al. [5]. The authors concluded that the
existing appearance models (not based on deep learning)
were incapable of simultaneously delivering tracking robust-
ness and tracking accuracy. We can say that these issues
are still present during times of deep learning. Marvasti-
Zadeh et al. [17] analyzed the existing challenges in VOT
in general and compiled a thorough discussion about current
approaches. Pflugfelder [1] pointed to the need of incorpo-
rating additional mechanisms (e.g., filtering or attention) to
rudimentary Siamese trackers to improve their performance.
Learning a powerful feature representation is vital to achiev-
ing a robust Siamese tracker [57]. For example, Bertinetto et
al. [12] also closed the evaluation of their SiamFC by saying
that they could achieve better results with model updating,
BBOX regression, fine-tuning, or memory. In this section,
which is the main contribution of this paper, we will describe
various traits of the Siamese frameworks, their corresponding
issues, and how existing approaches tackle them.

A. BACKBONE SELECTION AND PRE-TRAINING
CNN-based trackers have reaped great success thanks to
powerful feature-extraction capabilities. However, most of
these trackers exploit backbones originally trained for image
classification. As a result, this leads to sensitivity to distrac-
tors (more in section IV-C) because CNN models pre-trained
for classification tasks emphasize inter-class differences [58].
This may weaken the power of CNNs since there is a signif-
icant difference between classifying an object and predicting
its location in the image [19]. The objective of the classifier
is not coupled to the objective of the tracker [59]. The
trackers may then suffer from inconsistency problems caused
by task differences. Moreover, pre-trained networks are sub-
optimal and the performance can be considerably improved
by training the backbone network for visual tracking from
scratch [17].

He et al. [60] performed an extensive study of the Ima-
geNet pre-training paradigm. They claimed that ImageNet
pre-training did yield an observable improvement, neverthe-
less, for object detection, the improvement was small and
scaled poorly with the pre-training dataset size. We consider
object detection a task a lot more similar to object tracking
than object classification, so we think the same may be
true for object tracking. Furthermore, they also showed that
ImageNet pre-training brought no benefit in situations when
the metric measured the accuracy of predicting the target lo-
cation. In such cases, random initialization and training from
scratch produced evident improvements for BBOX overlaps
for high thresholds. So the model reached an improved target
localization on the pixel level. Besides, they noticed a faster
convergence.
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The Siamese region proposal network (SiamRPN) [61]
belongs to state-of-the-art trackers. It builds on the idea
from [62] concerning region proposal network (RPN). There
is also an improved Siamese region proposal network++
(SiamRPN++) version [63] that uses ResNet [64] as a back-
bone. A known fact is that deep architectures give better
tracking performance than shallow ones [20]. Deeper and
wider networks produce features that aid in distinguishing
the target from its background. However, it is still difficult to
have a Siamese architecture that generalizes well, is accurate,
and fast while being very deep [65].

A simple glance on the “backbone” column in Table 2 on
page 24 indicates a prevalence of AlexNet-like backbone ar-
chitectures, especially in years 2016-2018. These backbones
are relatively shallow since only the first 5 convolutional
layers are often used. The reason for this trend is partially
due to a preference of successors of SiamFC tracker to use
the same backbone for objective comparison. But there is
another, more important reason. Remember the embedding
matching function defined in equation (2) on page 6. This
function inherently implies two restrictions that a Siamese
tracker should obey [63]:
• The feature extractor part, as well as the contracting part

(cross-correlation) of the network, must follow the strict
translation invariance property, specifically

f (z, x [∆τj ]) = f (z, x) [∆τj ] , (6)

where ∆τj is the translation shift operator for the sub-
window. As a consequence, this design choice makes
the training and inference significantly more efficient.

• The contracting part poses an intrinsic restriction for
structure symmetry given by

f (z, x′) = f (x′, z) , (7)

which is a natural requirement for similarity learning.
A detailed analysis of Li et al. [63] showed that the two re-
quirements above prevent Siamese trackers from using deep
neural networks as their backbones. The main reason is that
using padding in convolutional layers as part of deep neural
networks breaks the strict translation invariance defined in
equation (6). This property only exists in architectures with
no padding, e.g., the modified AlexNet architecture that is so
common in the Siamese community. To satisfy this restric-
tion, the backbones of Siamese trackers were purposefully
designed to be shallow. For instance, if the backbone were
replaced by ResNet [64] or MobileNet [66], the padding
would be inevitable to make the network deeper, hence,
breaking the strict invariance restriction. Directly training the
tracker using a deeper network does not yield the expected
performance gain. To circumvent this, the very same authors
did another analysis in their paper and showed that once
they eliminated the center bias, then any off-the-shelf deep
neural networks could be adopted as a backbone. Thus,
to exploit deep neural networks for feature extraction that

involve padding, translation has to be a part of data augmen-
tation. Such sampling strategy effectively alleviates breaking
the strict translation invariance property that networks with
padding by their very nature do not conform to. This discus-
sion will also continue in section IV-C3, where we will tackle
the center bias of Siamese trackers.

This analysis opened up the possibility to use a broader set
of backbones, and successive works (e.g., [56]) also adopted
the spatial-aware sampling strategy to counterbalance the
breaking of strict translation invariance. An analysis by Han
et al. [67] also confirmed that using padding in Siamese back-
bones had a huge negative impact on tracking performance.
They also followed the recommendations above and adopted
the same strategies to evade the problem of breaking the
strict translation invariance caused by the use of padding.
To demonstrate the effectiveness, they proposed Fully convo-
lutional anchor-free Siamese network (FCAF) tracker. Their
additional contribution was to avoid anchors in the RPN. This
approach utilized pixel-level classification and regression,
too.

The reasoning above concerned only the strict translation
invariance requirement. Most of the trackers, by their very
nature, obey the second requirement regarding structure sym-
metry (equation (7)). But the SiamRPN framework broke
the structure symmetry by design, too. This was another
motive for the authors of the SiamRPN++ framework to
perform their theoretical as well as experimental analysis.
They remarked that the bounding box prediction and anchor-
based classification were both asymmetrical. Moreover, con-
volutional layers in the exemplar and search branch were
not shared, and that also produced asymmetrical features,
making the training less stable (more in section IV-B). We
may digress a little, but one interesting fact is that the
asymmetrical structure of RPN-based trackers makes them
more vulnerable to adversarial attacks. They can be effec-
tively misled to classify the target as background by directly
attacking their classification branch in all anchors [68].

Authors of [63] claim they also benefited from the ResNet
architecture by a layer-wise feature aggregation for the cross-
correlation operation. This enabled the tracker to predict the
similarity map based on features learned at multiple differ-
ent levels. Speaking of feature aggregation across multiple
levels, there is another extension of the SiamRPN architec-
ture developed by Rao et al. [69] under the name Feature
pyramid Siamese region proposal network (FPSiamRPN). As
the name suggests, the main contribution of this work is the
adoption of feature pyramid network (FPN). The core idea of
the FPN is to harness features across multiple levels. Let us
provide an example. Assume a usual pipeline of a convolu-
tional neural network. At every level, this network decreases
the spatial resolution of feature maps, increases the effective
receptive field as well as the number of channels. Low-level
features are captured at the beginning of the network, whilst
high-level features at the end. FPN is a general extension to
CNNs for concatenating features across the bottom-up and
top-down direction. The bottom-up direction is a standard
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processing pipeline described above. The top-down direction
consists of up-scaling and adjusting the number of channels.
Later on, feature maps with matching dimensions (those on
the same level) can be added together. Each concatenation
then serves as a basis for a unique prediction. This modi-
fication also brought an outstanding performance to object
tracking.

A substantial performance improvement can be attributed
to the different backbone itself. The work of Li et al. [70]
also supported the claim that just a different backbone may
be responsible for the improvement of a Siamese tracker.
They showed it with the performance of their Siamese with
VGG network (SiamVGG) using a customized VGG-16 [71].
They remarked that the often-used AlexNet backbone had
limited feature-extraction capabilities. Nevertheless, it is im-
portant to emphasize that not all networks are suitable for
the Siamese structure because of the two aforementioned
requirements.

Using pre-trained backbones seems to be a general issue
even with trackers that are not Siamese. For instance, Wang
et. al [13] also commented on their results for Fully convolu-
tional neural network-based tracker (FCNT) that the primary
failure cases were related to handling situations with low
resolution. They conjectured that a possible reason was the
VGG [71] backbone trained on ImageNet dataset [49] using
high-resolution training images.

Besides all this, there is a risk of dataset bias itself [72].
The data bias of ImageNet is different from that of the data
observed during tracking [37].

B. RESPONSE MAP DESIGN
1) Number of channels
One of the drawbacks of the basic cross-correlation layer
from [12] is that it only generates a single-channel re-
sponse map, which lacks relevant features [20]. SiamCAR
tracker [20] exploited depth-wise correlation layer to gen-
erate a multi-channel response map. Building on top of the
established principle of creating a response map with a single
channel in Figure 2, a multi-channel response map contains
multiple single-channel response maps stacked along the
channel dimension. It provides more information (produces
richer embeddings) and opens up the possibility to dynam-
ically choose which channels are important in certain situa-
tions. This idea is at the core of attention mechanisms which
we will discuss in section IV-E2.

Li et al. [63] commented that different feature channels
extracted different semantic information. In SiamRPN [61],
the feature extraction was extended by introducing another
convolutional layer to scale the channels. Due to this ex-
tension, the cross-correlation operation could embed even
more information, such as anchors. An undesirable conse-
quence was a parameter imbalance that made the training
more difficult. Li et al. [63] analyzed the Siamese network
structure and found out that its two network branches were
highly imbalanced in terms of the number of parameters.
The exemplar and the search image branches passed through

two non-shared convolutional layers. Therefore, this follow-
up work brought a lightweight, depth-wise cross-correlation
layer, instead. This modification not only vastly reduced the
number of parameters, but it stabilized the training, too. The
cross-correlation can also be extended by multi-layer fusion
described in DSiam paper [55]. They computed the final
scores of the response map as an element-wise weighted
sum of scores obtained from different depths of the feature
hierarchy.

Siamese network with segmentation mask (SiamMask) [2]
architecture also exploited depth-wise cross-correlation [73]
to encode richer information about the target object. More-
over, this tracker relied on multiple response maps indi-
vidually, dubbed as a response of a candidate window. It
represented a similarity between the exemplar z and n-th
candidate window in the search image x. This architecture
also exploited the availability of more information in a multi-
channel response map to generate a binary segmentation
mask of the target during the tracking process. It helped to
predict a rotated BBOX, not just axis-aligned. A follow-up
work of Siamese network with segmentation mask and ellipse
fitting (SiamMask-E) [74] improved the BBOX prediction by
ellipse fitting. However, VOT datasets usually only consist of
axis-aligned BBOXes, so they had to employ special datasets
even for the tracking part, not just the segmentation.

2) Spatial granularity
Li et al. [29] pointed out that the size of the response map in
the SiamFC architecture was relatively small (just 17 × 17).
As a result, it is not suitable for precise positioning. To
this end, their Siamese network with re-detection mechanism
(SiamRM) utilized fewer strides (4 in total, instead of 8) to
obtain a larger feature map. Since they exploited re-detection
mechanisms, a more granular feature map was beneficial to
pinpoint the object location with higher precision. To main-
tain real-time speed, they reduced the number of channels
in the last layer from 128 to 32. Likewise, Tao et. al [28]
commented that the tracking problem is practically a local-
ization task, thus being susceptive to rough discretization. To
achieve precise localization, they employed very few max-
pooling layers in their SINT tracker. They also argued that
the max pooling operation served the purpose of suppress-
ing local deformations that were pertinent for classification
tasks. However, in tracking, the object changes its appearance
over time, thus the tracker should follow minor appearance
changes between frames.

3) Score values
For completeness, we will also mention the probability map.
One of the works in tracking where the authors considered
generating a probability map instead of producing a class
label spatial map was [37]. The probability map, as op-
posed to the response map we mostly refer to, is bounded
between zero and one, such that values of particular pixels
close to one indicate the object’s presence. This approach
was employed in Two-flow convolutional neural network
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(YCNN) [19] architecture. However, the majority of the
Siamese trackers nowadays use response maps that are un-
bounded. It was argued that the optimization is then insuffi-
ciently bounded [1]. To address this, Discriminant correlation
filter network (DCFNet) [75] tracker used weight decay as a
regularization in their l2 loss function. But the use of cross-
entropy loss (as in SiamFC [12] or CFNet [54]) resolved
this issue, too. The YCNN tracker also used just the l2
loss. Nevertheless, they adopted a probability map rather
than a response map, and this made the optimization well
constrained by itself [1].

C. SIMILAR INTERFERENCE
1) Distractor awareness
The term similar interference describes a situation where a
tracker faces the problem of discerning between multiple
similar-looking objects. The tracking process is thus inter-
fered with by similarity. Siamese networks have drawn great
attention due to their balanced accuracy and speed. On the
other hand, these networks extract features that are useful
for the discrimination of foreground from a non-semantic
background. Semantic background, a.k.a. distractors, pose a
risk to the robustness of Siamese trackers [40].

Siamese tracking is essentially a template matching prob-
lem, and most template-based trackers generally fail to
track an object that undergoes significant changes in ap-
pearance [29]. This flaw is primarily caused by a misalign-
ment between the general domain and the specific target
domain [40]. Besides, Siamese architectures usually process
one local neighborhood at a time. This property makes them
non-robust to abrupt appearance changes of the object [65].
Li et al. [70] also highlighted weak discrimination capa-
bility as a major drawback of the current Siamese track-
ers. Historically speaking, SINT [28] is considered the first
Siamese tracker. In light of the template matching process,
they approached tracking as a verification problem. Authors
commented in their evaluation that when similar objects
appeared at the same time, the tracker sometimes jumped
from the correct target to the distractor.

Even the region proposal-based SiamRPN [61] tracker,
despite multiple enhancements, still had difficulties with dis-
tractors for the tracked object [20]. A follow-up work of [40]
under the named Distractor-aware Siamese region proposal
network (DaSiamRPN) increased the hard negative mining
in the training phase. This data enhancement step led to im-
provement in discrimination and produced more robust per-
formance. Additionally, this tracker had a special distractor-
aware module. This module adopted the non-maximum sup-
pression (NMS) [76] algorithm to select potential distractors
in each frame. This tracker with distractor-awareness could
achieve adaptation of the existing general similarity metric to
a domain-specific similarity metric. A new distractor-aware
objective re-ranked the candidates for distractors according
to similarity with the exemplar. These techniques practically
built an online trained classifier. Last but not least, this
tracker was capable of long-term visual tracking thanks to

its ability to reason not only about similar-looking objects
but also whether the target was present or not. Even though
long-term tracking bears the greatest transfer to real-world
applications, very few trackers have been proposed for this
task to date [17].

Li et al. [29] proposed the SiamRM architecture. The goal
was to boost the SiamFC in complex scenes with fast motion
and the presence of distractors. In situations when the re-
sponse map contained multiple peaks, a special re-detection
mechanism based on SINT [16] is executed. Moreover, they
employed GMM to dynamically update the template instead
of using a fixed template from the first frame. But, they did
not update the template in every frame or a fixed interval.
Instead, they updated only templates with high confidence
to enhance the quality. Template updating provides benefits
to model adaptation, but online tracking may become very
inefficient (discussed more in section IV-E). Still, it does not
solve the tracking drift problem caused by similar interfer-
ence completely [20].

Voigtlaender et al. [77] pushed the idea of re-detection
even further. Their Siamese Faster R-CNN re-detector
(SiamR-CNN) framework unleashed the full potential of
two-stage object detection, specifically of Faster R-CNN [62]
architecture. This tracker was capable of object re-detection
after long-term occlusion. However, a tracking-by-detection
approach is inherently required to manage the detections
that could potentially belong to distractors. To this end,
the authors developed a novel algorithm based on dynamic
programming to take the advantage of re-detections of the
exemplar from previous frames to model the full history
of the tracked object. Besides, they also proposed a novel
hard example mining strategy to promote better robustness
to distractors.

2) Feature extraction
This section elaborates on a prevailing trend in the exploita-
tion of features from multiple layers of the backbone. Most
Siamese trackers nowadays learn the high-level appearance
features of the entire object. This trait increases their ten-
dencies to suffer from drift problems caused primarily by
non-rigid appearance deformation or partial occlusion [57].
The drift problem is also a target of researchers because once
the tracker loses track of the object, it is difficult to recover
from such a state without additional coping mechanisms.
We consider feature extraction pertinent when dealing with
distractors. We think that robust feature extraction is the
minimum requirement for a tracker to reliably delineate the
boundary between a foreground and a background. Besides,
powerful features may serve for discerning between similar-
looking objects, too. We thus believe that the exploitation of
features extracted from multiple levels is becoming more of
a rule than an exception.

The work of Abdelpakey et al. [65] extensively relied
on the combination of features from multiple levels. Moti-
vated by densely connected CNNs [78] as well as attention
mechanism from [79], there is the Densely-Siamese network
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with self-attention model (DensSiam) [65]. This framework
tackled the problematic nature of too deep Siamese networks
together with their focus on the local neighborhood. This
tracker employed the concept of dense blocks. A dense
block consists of multiple fully connected layers where
each layer is connected to all subsequent layers in a feed-
forward fashion. It is simple in construction yet effective
in performance. The architecture consisted of two identical
branches, except that the branch responsible for processing
the search image (dubbed as “target branch” in the article)
contained an additional attention module at the end. Each
branch started with a convolutional block and then continued
with several alternating dense blocks and transition blocks to
align the tensor dimensions. The standard cross-correlation
layer from SiamFC fused the two outputs to produce the
response map to learn the similarity function. DensSiam
enhanced the generalization ability by producing a response
map based on non-local features (the ones that capture the
object neighborhood, too) that were robust to appearance
changes. This model allowed both low-level and high-level
features to flow through the network while avoiding vanish-
ing gradients (thanks to dense connections) which improved
the generalization capability.

Another recent work from Luo et al. [80] dubbed as
Siamese network with information fusion and rectangular
window filtering (SiamFF) employed very effective and intu-
itive multi-level feature fusion in their backbone with 5 con-
volutional feature levels, following the “standard” AlexNet-
like pattern [12]. But still, they modified the architecture
by removing padding in layers and altering the number of
network channels. They fused features from levels 2 with
4 for both exemplar and search images and produced a
temporary response map. Analogically, they fused features
from levels 3 with 5 and obtained another response map.
Subsequently, after adjusting tensor shapes, these response
maps were merged to produce the final response map. Their
other contribution, a score map filtering strategy, will be
discussed in section IV-C3.

The SiamCAR [20] architecture used a modified ResNet-
50 [64] as a backbone. They combined multiple features
extracted from the last three residual blocks and fed them
into an improved depth-wise cross-correlation (section IV-B).
They attributed the improved recognition and discrimination
of their tracker to this design decision. A very similar archi-
tecture to SiamCAR that we introduced in section IV-A is
FCAF [67]. Authors adopted feature fusion from a ResNet
backbone, too. The introduced trivial, yet effective feature
fusion module consisted of aligning the extracted feature ten-
sor dimensions using 3×3 convolutions and then performing
element-wise addition. Their analysis and comments on the
use of low-level as well as high-level features conform with
the existing trend we have encountered.

Liang et al. [57], who developed the Local semantic
Siamese network (LSSiam), showed that learning not only
high-level appearance features but also local semantic fea-
tures (more robust to non-rigid object deformations) that

contain more fine-grained information about the object are
essential for attacking the drift problem. Their approach
consisted of forcing the model to pay attention to fine-grained
details about object appearance by adopting a classification
branch to learn semantic features as part of the offline
training. Additionally, they extended the classical Siamese
framework by a generalized focal logistic loss [81] to mine
hard negative samples. To preserve high computational speed
during inference, the newly introduced classification branch
was removed and replaced by an effective template updating
strategy. They argued that even successful approaches like
SiamFC [12], DSiam [55], Semantic-appearance Siamese
network (SA-Siam) [16], and Residual attentional Siamese
network (RASNet) [41] ignored the local or semantic in-
formation of targets during offline training and focused on
global features instead.

Besides the standard VOT, there is also thermal infrared
(TIR) object tracking, for which powerful feature selection
is crucial. TIR tracking has to deal with similar objects in
the infrared spectrum that may be otherwise unambiguous
in RGB. Thus, similarity interference is just reinforced. For
enhanced feature fusion, Li et al. [59] proposed their Hier-
archical spatial-aware Siamese convolutional neural network
(HSSNet) for TIR object tracking. Their method is based
on coalescing multiple hierarchical convolutional layers in
conjunction with a spatial-aware network. The incentive was
to combine spatial information of the shallow layers for
precise object localization with deep semantic features to
distinguish between objects. The feature coalescing exploited
max-pooling layers for tensor alignment and batch normal-
ization to balance the influence of individual feature maps.
However, the concatenated features were not robust to spatial
variation (rotation, translation, and scaling). To address this
problem, they employed spatial transformer network (STN)
to learn a 6 degrees of freedom (DoF) affine transformation
that was then applied to the feature map.

Another effective strategy is to employ entire subnetworks
to process low-level and high-level features before fusion.
Liu et al. [82] proposed Multi-level similarity Siamese net-
work (MLSSNet) tracker to better handle distractors as part
of the TIR tracking task. In their work, the low-level and
high-level features extracted from the backbone were treated
by structural and semantic correlation similarity networks,
respectively. Low-level features were first processed by two
convolutional layers followed by two deconvolutional layers
to map the feature location back to the original image. The
final layer of sigmoid nonlinearity produced a 2D weight map
representing the importance of individual local structures.
At the same time, semantic features were squeezed into two
1D vectors using global average and max-pooling layers. To
establish a relationship between the two produced vectors,
they used fully connected layers followed by a sum opera-
tion. Outputs of both of these two networks were processed
by a correlation filter in isolation to produce two response
maps. The resulting response maps were fed into the relative
entropy-based adaptive ensemble network to obtain optimal
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similarity simultaneously encompassing structural and se-
mantic features. The goal of this module was to generate the
final response map which had a minimum distance between
the structural and semantic similarities, practically making a
compromise.

Following on the TIR tracking task, Liu et al. [83] de-
veloped a Multi-task matching network (MMNet) tracker,
in which they processed backbone features in three different
branches. Their complex mechanism involved a classification
branch to obtain TIR-specific discriminative features. The
classification was supposed to drive the model into learning
to discern between different objects. Then, these features
were fed into the discriminative matching branch, which
exploited the CFNet [54] tracker in a role of a general
matching architecture. They showed how an existing Siamese
tracker can be utilized within a larger domain-specific track-
ing pipeline. Their solution for producing robust features also
encompassed a third branch focused on fine-grained feature
matching.

The fully convolutional approach of FCNT [13] also ex-
ploited various useful features from the backbone. These
features were fed into general and specific network branches.
The general branch aimed to capture the category informa-
tion. This branch relied on feature maps placed further in the
network model, i.e., the high-level features. Conversely, the
purpose of the specific branch was foreground/background
discrimination. Here, the low-level feature maps produced
closer to the beginning of the model were important. These
two branches were then hooked on the chosen features to
process them further. Later on, their output was combined
and served for score map regression for target localization.
They also adopted multiple online update strategies. We
consider this work important since they comprehensively
discuss feature properties of CNNs under the viewpoint of
visual tracking.

3) Object location
The assumption is that the highest value in the response map
corresponds to the location of the object. But this is not al-
ways true, especially in scenes involving similar interference
(distractors). In such a case, the object location may corre-
spond to the non-maximum response value. The solution with
cosine window from SiamFC [12] effectively suppressed the
responses at the boundaries. The original SiamFC as well as
some other successors such as SiamRPN [61] used cosine
window in endeavor to suppress distractors (see Figure 5).
However, when the object moved too fast, the track was often
lost [29]. This problem is common to algorithms based on
correlation filters. The use of the cosine window contributes
to their weak ability to distinguish distant objects from the
center. Remember that thanks to the fully convolutional
property we can center and crop the search window to the
previous object position. This means that, ideally, the peak
value in the response map should emerge in the center,
regardless of where the object is present in the image. The
cosine window builds on this assumption and weights the
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FIGURE 5. A visualization of 1D (top) and 2D (bottom) cosine window if we
assume a response map of size 17× 17. The 2D version can be simply
created as an outer product of the two vectors corresponding to the 1D
version. This mask is very similar to Gaussian probability distribution and
conveys the idea of putting the highest weight to the center with nonlinear,
even reduction when moving away from the center. However, in this case, the
cosine function is used instead.

response in the center a lot more than on the edge. Simply
put, the closer the peak value is to the center of the response
map, the higher the weight is. This strategy improves the
stability of the algorithm, but it is risky. During inference,
the crop is centered on the last predicted location, which
is assumed to be the tracked object. Thus, the target will
almost always be affected negatively by this penalty due to
its movement [68]. A small search window may mitigate
similar interference, but on the contrary, fast-moving objects
may become suppressed. Hence, the track may easily drift
to the background. Besides, it was demonstrated that thanks
to the use of a cosine window, an adversarial attack on
Siamese trackers can be easily performed [68]. But simply
removing the cosine window would not be sufficient, because
then the tracker would not be robust to distractors or sharp
noises. With this in mind, we suggest paying extra attention
to accurate object centering and location prediction. All in all,
this technique, in its original form, works reasonably well, as
demonstrated by a plethora of successive works, e.g., [57],
[61], [23].

In light of the possibly “faulty” weighting of the regions by
the cosine window, some works employed additional motion
estimation strategies to better delineate the region where to
search for the object. To this end, Luo et al. [80] proposed
their SiamFF architecture. They exploited the continuity and
stationarity of the movement of objects in reality and devel-
oped a score map filtering strategy. Their approach consisted
of using a rectangle representing a region where the object
could be present based on inter-frame information, hence the
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“rectangular filtering” in the tracker name. This bypassed
the limitation of a spherical cosine window and adjusted the
“shape” (rectangle instead of a circle) of the response map
suppression based on the current context.

The re-detection mechanism from SiamRM [29] brought
an improvement. SiamRM removed the cosine window com-
pletely and simply re-detected the object from scratch if there
were multiple peaks in the response map. They executed the
re-detection when the value of the secondary peak in the
response map was 0.75 times the primary peak. The authors
also devised a way to measure the quality of the response map
using average peak-to-correlation energy. This measure could
indicate the presence of occlusion or similar interference.

Another important problem to mention is the center bias in
Siamese trackers. Bertinetto et al. [12] remarked that the fully
convolutional property made the model invariant to transla-
tion, hence there was no need to do translation during the data
augmentation (they only applied a negligible random transla-
tion by 4 pixels). Moreover, they believed that it was effective
to consider search images centered on the target since the
sub-windows with the greatest influence on the performance
were the ones adjacent to the current target. Nevertheless, the
authors of SiamRPN++ [63] tracker observed a center bias in
Siamese frameworks. They performed an extensive analysis
of this phenomenon and developed appropriate measures
to address this issue. More specifically, they studied three
different scenarios where the object was uniformly translated
as part of data augmentation by either 0, 16, or 32 pixels.
After convergence, they aggregated the resulting response
maps and normalized them to easily represent probability dis-
tributions using heatmaps. The subsequent analysis showed
that in the case of the 0-shift scenario, the probability values
at the edges of the heatmaps degraded to zero. This indicated
that the model settled for this biased solution regardless of
the appearance of the test target during the inference phase.
The other two scenarios demonstrated a tendency of the
model to avoid this trivial solution. Their quantitative results
indicated that the resulting heatmaps produced by a shift of
32 pixels were closer to the ground-truth location distribution
of test objects. To further avoid placing a strong center bias
on objects, they devised a spatial aware sampling strategy
that essentially sampled the target from the search image
by a uniform distribution. They attributed the success of
their SiamRPN++ framework to randomly shifting the object
location in the training phase, among other things. Another
argument against the inherent translation invariance came
from Pflugfelder [1] who remarked that this property impedes
the exploitation of spatiotemporal information. Trackers like
these may be more prone to drifting to the background or
different objects, which is an existing and serious issue.

Contextual information seems to be another thing to con-
sider. The authors of SiamFC [12] employed another design
choice to incorporate additional context information to the
crop of the image region. The context was introduced into
the model as a simple enlargement of the cropped region
for the exemplar (smaller patch, e.g., 127 × 127) and the

search instance (larger patch, e.g., 255 × 255). The fully
convolutional property of their network allowed seamless
use of input with variable dimensions. These regions were
computed such that the object of interest was not distorted
and fit the entire view. Contextual information was also
explicitly processed using recurrent neural networks (RNNs)
in the work of [84]. Their recurrent Siamese architecture
enhanced the similarity matching by leveraging contextual
information. The RNN was adopted to memorize long-range
contextual dependencies of the tracked object to learn the
self-structure information. They implemented a 4-directional
RNN to compute the context features that described the
tracked object locally as well as globally. As we can see,
joining both local and global features has appeared multiple
times in our survey.

The context itself may pollute the response map if similar
interference is present. In such a case, Li et al. [56] proposed
a foreground information guidance module for their FIGSiam
tracker. The core idea was based on a padding image (derived
from the search image) that contained the target object but the
remaining context (outside the BBOX region) was filled with
a mean color computed independently for all three channels.
This image thus served as a “guidance” for the network to
focus on a “proper” foreground. A result of the forward
pass through the guidance module was then incorporated
into the loss function using a convex combination with the
standard logistic loss function for Siamese trackers. Authors
visualized response maps as heatmaps and showed that the
response values for similar objects were suppressed.

4) Object occlusion
Even though object occlusion deserves a section on its own,
we do think that it is closely related to similar interference.
Once the object becomes occluded or goes out of view
completely, there is an increased risk for the tracker to drift
to the background, whether semantic or not.

One obvious approach to simulate occlusion is to cover a
specific part of the object region in the image. For example,
Li et al. [56] added occlusion as part of data augmentation
for training their FIGSiam architecture. Let w and h be the
width and height of the ground-truth BBOX denoting the
location of the target object. Then, they generated a black
rectangle of size w/2 × h/2 and partially covered the object
region by randomly selecting one from 11 different but fixed
positions. Besides this, they also included rotation and shear
transformations to further expand the possibilities of the
dataset.

The problem of occlusion is prevailing in all Siamese
architectures. Gupta et al. [85] proposed to simulate the effect
of occlusion on the level of embeddings (latent space repre-
sentation). They employed structured dropouts and showed
that this extension could be incorporated into existing ar-
chitectures such as SiamFC [12] and SiamRPN++ [63] and
could boost their performance by 3%. Unlike the common
forms of dropouts, the structured dropouts were intended
to mimic the effect of occlusion in the latent space. Since
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the occlusion can present itself in an unlimited number of
variations, the authors of [85] argued that their proposal was
the only known feasible approach for occlusion handling.

The robust performance of the SiamRPN architecture in-
spired multiple subsequent works. One of them was pro-
posed by Wu et al. [86]. The authors developed a modi-
fied SiamRPN architecture with an anti-occlusion mecha-
nism based on Kalman filter [87] dubbed as Anti-occlusion
Siamese region proposal network (AO-SiamRPN). Their in-
centive was that SiamRPN treated tracking as a local one-shot
detection task, so it could not adequately handle occlusion,
fast motion, or out-of-view situations. The decision was to
exploit the spatio-temporal information about the object to
address the mentioned problems. The processing pipeline
first extracted object features through a deep CNN and then
used an adaptive Kalman filter to predict the target trajectory.
This introduced an online updating into the framework. In
addition to this, a new hard example discrimination method
(HEDM) was proposed to estimate whether the occlusion oc-
curred and if it did, then how serious it was. Such information
was also crucial for the Kalman filter updating phase. The
Kalman Filter was adopted for capturing the object motion
trajectory to make full use of the temporal information to
cope with occlusion. The introduced HEDM was employed
to supervise the credibility of the Kalman filter. This module
not only judged the severity of occlusion it also made the
Kalman filtering mechanism adaptive and more robust than
the original formulation. As a result, this framework had
a different search mechanism from the traditional Siamese
trackers. Instead of using the center of the predicted object
position in the previous frame, this method utilized the object
position predicted by the adaptive Kalman filter for cropping.

D. SPATIAL OBJECT TRANSFORMATIONS
1) Multiscale inference
A single response/similarity map does not contain enough
spatial information [20]. A common approach to deal with
this is to run matching on multiple scales to determine the
object scale variation. For example, SiamFC [12] ran the
search at 5 different scales, 1.035{−2,−1,0,1,2}, and then
linearly interpolated the object scale with a factor of 0.35
for smooth transition. The authors also introduced a version
that searched only 3 different scales. It resulted in con-
siderably higher speed (from 58 to 86 frames per second
(FPS)) together with slightly higher accuracy (from 0.524
to 0.534). It seems that there is a reasonable number of
scales to search for before the returns start to diminish, but
we are not aware of any consensus. SINT [16] used only
3 different scales for an acceptable balance between speed
and performance. Nevertheless, this approach still delivered
an additional computational burden regardless of its speed.
The current trend seems to diverge away from the multi-scale
search.

The SiamRPN [61] avoided multi-scale search by use of
region proposals, that introduced anchors and a lot of ad-
ditional hyper-parameters. For this tracker, hyper-parameter

tuning was crucial for successful tracking. On the other hand,
the SiamCAR [20] architecture is known for its simplic-
ity. While avoiding multiscale search, anchors, and region
proposals, it still delivered a state-of-the-art performance
with very few hyper-parameters. Their contribution was the
formulation of tracking as a regression and classification task.
Another trait of their tracker was that the BBOX regression
and object classification were performed on the pixel level.
Their paper also covered the notion of “centerness”, which,
on the pixel level, indicated how far away the current pixel
was from the object center. The model was trained in a
supervised fashion to estimate this value. This quantity was
then exploited to improve the BBOX prediction based on the
assumption that predictions closest to the object center were
the most accurate. Among other things, they also showed that
a multi-channel response map produced satisfactory features
for both mentioned tasks. Speaking of predictions on the
level of pixels, even [37] anticipated in 2015 that pixel-wise
approach could help with irregular object shapes. We think
this supports the claim that pixel-wise approaches deliver
precise object localization, too.

Another very similar architecture to SiamCAR is Siamese
box adaptive network (SiamBAN) proposed by Chen et
al. [88]. They also treated tracking as a simultaneous classi-
fication and regression task and avoided anchor-boxes com-
pletely. The motivation behind their work was to exploit the
expressive power of fully convolutional networks to avoid
the heuristic configurations of target scales and aspect ratios.
Their design was easy to use without excessive hyperpa-
rameter selection before training, as is the case in RPN-
based trackers. The developed box adaptive head consisted of
classification and regression modules. Each of these modules
received a fusion of features belonging to exemplar and
search branches. Due to different tensor shapes, they make
predictions at different levels of the backbone. That is one
prediction for the i-th convolution layer from search and
exemplar branch, another for (i+ 1)-th, and so on. Sub-
sequently, these partial predictions coalesced into the final
response. One notable approach in their solution was the use
of dilated (atrous) convolutions [89].

2) Transformation equivariance
Real-life scenarios often demonstrate how objects undergo
different transformations besides pure translation, for exam-
ple, rotation and scaling. Sosnovik et al. [23] remarked that
unless the model is equipped with an explicit mechanism to
cope with such visual distortions, then the similarity could
be severely degraded. To this end, there are emerging works
that deal with models equivariant to a specific operation, e.g.,
scaling or rotation.

Regarding the change in scale, Sosnovik et al. [23] pro-
posed an extension to a standard Siamese architecture that
learned to handle scale variations offline. They augmented
the standard SiamFC [12] architecture and dubbed it as
Scale-equivariant Siamese fully-convolutional network (SE-
SiamFC). Their contribution was based on scale-equivariant
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steerable networks [90]. The tracker was capable of capturing
natural variations in the target scale a priori. Also, they devel-
oped a theory by use of which even already existing trackers
could be made scale-equivariant. The proposed recipe briefly
goes as follows: 1.) perform a domain-specific estimation
of a possible change in object size; 2.) derive the necessary
scale-related parameters; 3.) replace all convolutional layers
with scale-convolutional layers; 4.) optionally include scale-
pooling to capture additional inter-scale correlations between
all scales; 5.) replace the cross-correlation operation with a
non-parametric scale-convolution.

There is also a counterpart work aimed at rotation equivari-
ance. In the paper by Gupta et al. [91], they demonstrated that
the performance of existing trackers was severely affected in
presence of rotation instances. To circumvent this obstacle,
they proposed a Rotation-equivariant Siamese network (RE-
SiamNet). This architecture, similar to SE-SiamFC, exploited
steerable filters. They adopted group-equivariant convolu-
tional layers. Such trackers were capable of estimating the
change in orientation of the object as well as 2D pose esti-
mation as a by-product. This information could thus be used
to establish motion constraints. They showed the efficacy of
this approach by outperforming other trackers on custom-
curated datasets involving excessive rotation variation. How-
ever, they also included evaluations on standard benchmarks
and showed a 2% decrease in performance. The reason for
this minor drop could be caused that the trackers used a
fewer number of channels for the same number of parameters
as the original counterparts, thereby exhibited slightly lower
discriminative power. Authors experimented with extending
the SiamFC [12] and SiamRPN++ [63] architectures.

E. ONLINE MODEL UPDATING
1) Online adaptation
Model updating is often accompanied by a dilemma. On one
hand, if the tracker does not update frequently enough, it may
not catch the appearance changes appropriately. On the other
hand, if the tracker updates the internal object representa-
tion too frequently, the risk of encountering the problem of
drifting either to the background or a similar-looking object
increases [37]. Nowadays, the two most common ways to
achieve template updating are either linear interpolation or
multi-template updating [92]. As for Siamese trackers, the
constant template strategy (i.e., the template is initialized in
the first frame and never changed) that is used in this type
of trackers exacerbates their ability to adapt to the drastic
appearance changes [56]. Trackers that exploit classification
and online model updating perform among the best in terms
of accuracy, but they are the slowest ones (even 1-2 FPS).
Conversely, trackers based on matching (e.g., Siamese) are
the fastest, but not the most accurate [36]. Their accuracy-
to-speed ratio is probably the best so far. But this claim is
not easy to generalize. Besides the comments above, Kristan
et al. [36] also introduced their DSiam architecture. This
tracker enabled effective online appearance adaptation as
well as background suppression. They extended the original

SiamFC architecture by further processing the output feature
maps from the two branches. Feature maps belonging to the
exemplar image were fed into a target appearance variation
transformation. Conversely, feature maps of the search image
were fed into a background suppression transformation. Only
then the cross-correlation operation was executed. These
transformations were learned using regularized linear re-
gression. Appearance variation was modeled by regressing
an affine transformation between the initial and the current
patch. The goal was to find an affine transformation that as
closely as possible transformed the current object appear-
ance to the initial appearance. Background suppression was
achieved by further regressing the affine transformation to
suppress features in the current search region that did not
belong to the target patch. In other words, they aimed at
filtering features that interfered with the identification of the
tracked object by explicitly teaching the model to suppress
features that belonged to the background.

Among other things, occlusion poses a major challenge to
VOT in general. As long as the tracker does not employ a
robust template updating strategy, the occluder may be easily
mistaken for the occluded (target) object. So, either the up-
dating mechanism is accurate, or it should rather be avoided.
As a result, the tracker may drift to the background [29].
Thus, when it comes to using templates, often more sophis-
ticated strategies are necessary. Siamese trackers extract an
appearance template from the initial frame and then use it
to localize the target in future frames. Template updating
is not often used in Siamese trackers. A simple approach
would be to linearly combine the current template with the
accumulated templates from the previous frames. But this
strategy results in an exponential decay of information over
time [93]. Most of the time, the current Siamese tracking
methods use the target in the first frame as a template during
the whole tracking period. This leads to failures caused by
target deformation.

To this end, Xu et al. [94] proposed a new template
updating method. Specifically, they based their adaptive tem-
plate updating module on two different networks, namely
a neural contour-detection network, and a target-detection
network. The purpose for the introduction of the contour-
detection network was to exploit a contour-based proposal
template initialized in the first frame instead of a fixed
BBOX. As far as the target-detection network was concerned,
they adopted a single-stage YOLOv3-like [95] approach with
dilated convolutions to expand the receptive fields for more
granular object detection. The developed template updating
strategy was governed by the maximum value in the response
map. If the highest response value fell below a specific
threshold, then either the object was deformed or occluded.
Their strategy was supposed to differentiate between these
two scenarios and decide whether to update the template or
not. In case of occlusion, the template should not be updated
to prevent pollution. This decision was made based on the re-
sults of the contour-detection and target-detection networks.
The contour-detection network provided a shape-adaptive
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template approach that could handle partial occlusion very
well. In such a case, the two mentioned networks should be
consistent in their predictions. On the other hand, extreme oc-
clusion or even out-of-view situations caused these networks
to not get consistent results most of the time. To increase the
robustness of their tracker, another part of their approach was
to still remember the initial template as a backup.

Zhang et al. [93] proposed to replace the handcrafted,
deterministic update strategies. They used an entire neural
network dedicated to learning the optimal template for the
next frame given the current and historical observations of
the tracked object. The template updating based on GMM in
SiamRM together with re-detection mechanism could handle
long-term object tracking in presence of occlusion [29], too.
This tracker was capable of identifying that the object was
not present or that there was some distractor present (as
discussed in section IV-C). Once that happened, they adopted
the SINT [28] tracker to perform re-detection. Speaking of
the SINT framework, this tracker, as reported by the paper,
also allowed for an accurate target re-identification even after
it was absent for a complete shot. The authors achieved this
by utilizing a window sampling over the entire image using
edge boxes [96].

A similar approach was adopted by Li et al. [56] in the
template updating module as part of their FIGSiam tracker.
They decided to combine multiple templates exponentially.
This is a common practice that we have observed in multiple
works. They used a pool with a capacity for n templates.
Each template had a corresponding embedding associated
with it. Its similarity score reflected the mean similarity com-
puted as a dot product between the embedding vectors of the
current and previous templates. When a new frame emerged
(for which the template embedding vector was produced),
then there were two situations. In the first scenario, when the
pool was not full, and if the similarity score for the current
template was above a certain threshold, then this template
was added to the pool. Otherwise, it was discarded. In the
second scenario, when the pool was full, the similarity score
was computed among all the templates stored in the pool and
the new template replaced the one with the lowest similarity
score. The embedding vector itself was derived from the
feature tensor that is usually used as a kernel for the cross-
correlation operation in the majority of the works discussed
so far. Specifically, if the extracted features had dimensions
of 8 × 8 × 256, then they applied global average pooling to
produce a vector of size 1 × 1 × 256. In the end, this vector
was l2-normalized.

2) Attention
Offline training offers a reasonable balance between tracking
accuracy and speed. However, it is still difficult to adapt a
model trained offline to a target tracked online. Online model
updating is usually avoided as there is a tendency of deep
feature extractors to overfit the target, besides the additional
computational overhead [41], [50].

To tackle this, a tracker developed by [41] under the name

RASNet reformulated the correlation filter in the Siamese
framework and introduced attention mechanisms [79] to
adapt the model without online updating. They developed
three diverse attention approaches. General attention that
was honed by the dataset during the offline training phase;
residual attention to aid in adapting an offline model to online
tracking (reaping the benefits of offline training and live
tracking); and channel attention that reflected the channel-
wise quality of features (to improve feature selection). The
use of residual learning helped with adaptive representation.
The cross-correlation layer was enhanced by a weighing
mechanism, thus the problem was reformulated from a re-
gression perspective. The reason was that not all features
contributed equally. This work did not employ the stan-
dard cross-correlation map that produced a single-channel
response map (see Figure 2). Instead, they built on top of
the extended response map containing multiple channels,
but the underlying principle remained the same. Their idea
was to weigh these channels adaptively as they were not
equally relevant for each tracked object. An advantage was
that this enhanced layer could be used with other Siamese
architectures, too. The backbone of the RASNet architecture
was an Hourglass-like CNN model [97].

Li et al. [59] also remarked that different feature channels
should not contribute equally to the tracking. However, the
multi-level feature fusion procedure developed for their HSS-
Net tracker (described in section IV-C2) made them to do
so. To resolve this, their framework also utilized a simple
channel attention network to adaptively assign weights to
different feature channels. Its components were the global
pooling layer followed by two fully connected layers. To
achieve (0, 1) interval for the output weighting coefficients,
they added sigmoid non-linearity at the end of the network.

V. EXPERIMENTAL COMPARISON

In this chapter, we will compare the trackers in terms of their
performance and design decisions in the training phase. So
far, we have discussed their strengths and contributions to
various problems concerning Siamese architectures. How-
ever, we do consider it important to provide results of var-
ious quantitative evaluations for overall comparison. Some
surveys complement our discussion, e.g., [1], [17], [98],
that contain rich quantitative comparisons of these tracking
algorithms. Despite this, we provide a comparison to show
the performance of the methods relevant to this survey and to
make an overview of their main characteristics. Furthermore,
we compare some of the important recent methods. The
majority of these methods have been published in the last 4
years. This comparison is shown in two tables. Table 1 con-
tains results of evaluation on standard visual tracking bench-
marks. Table 2 summarizes contributions of each tracker and
basic aspects of their training. At the end of this section, we
provide a discussion about the obtained results.
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A. METHODOLOGY

One of the conclusions of the [1] survey was that tracking
algorithms were difficult to compare. In retrospect, we fully
agree with this statement. Siamese trackers are difficult to
compare with each other, even though many of them are sim-
ilar in general principles. There are various benchmarks and
researchers are interested in pursuing intriguing challenges,
so they often evaluate their algorithms on diverse and newly
published benchmarks rather than the already established
ones [1]. On the other hand, even if they use the standards
benchmarks, they may dive into different versions.

Table 1 shows only the results of the benchmarks we
identified as the most prevailing. Even though there are more
metrics available in the given benchmarks, we decided only
on the listed ones because the authors used them most often.
Several research papers evaluated their trackers on specific
benchmarks but used different metrics. Since we wanted to
make Table 1 as rich as possible, we also searched for evalua-
tions of trackers in different papers, not just the original ones.
Sometimes the search was successful and we marked the
corresponding values obtained from different sources with a
superscript. We do have to note that the values occasionally
varied and the ordering of trackers could be different even
on the same benchmark. In the case of multiple sources with
different scores, we chose the most recent ones. Nevertheless,
we prioritized the results published in the original paper.

For the VOT challenges (years 2015-2018 [99], [100],
[101], [102]) we collected the accuracy (A), robustness (R),
and expected average overlap (EAO) scores. A and R are
defined as two measures for probing the tracking perfor-
mance, with EAO being an overall representative of both, and
is proposed as the primary measure that combines the two
aspects of tracking performance [103]. As far as the Object
Tracking Benchmark (OTB) (both 2013 [6] and 2015 [104]
versions) is concerned, we only collected the area under
curve (AUC) of success plots, even though these benchmarks
provide precision plots, too. In the precision plot, a frame
is marked as successful if the distance between the centers
of the predicted and the ground truth BBOXes is under a
given threshold [6]. However, the success plot is generally
considered to be more accurate, even though both metrics
measure the percentage of successfully tracked frames. Each
of these plots is generated by varying the threshold values.
For our purposes, we consider the sole AUC of the success
plot score sufficient. During the official evaluation, tracking
algorithms are ranked based on the AUC score for the success
plot and precision at a threshold equal to 20 [28]. Concerning
the GOT-10k [105] benchmark, we only provide the average
overlap (AO) score for the same reason why we just report a
success plot instead of a precision plot for OTB benchmarks.

Here is a brief explanation of how the metrics that are
crucial to our discussion are computed:

• Intersection-over-union (IoU). A measure of a relative
overlap between two image regions, i.e., if b1 and b2

are two BBOXes, then their IoU is computed as

IoU (b1,b2) =
area (b1 ∩ b2)

area (b1 ∪ b2)
. (8)

• Success plot. A frame is successfully tracked if the
predicted BBOX and the ground truth BBOX have an
IoU score larger than a given threshold [6].

• Area under curve (AUC). The area delineated by the
curve of a specific plot (e.g., success or precision plot),
measured on the 〈0, 1〉 interval in this case.

• Accuracy (A). The average IoU score between the
predicted and ground truth BBOXes during successful
tracking periods [103].

• Robustness (R). Measures how many times the tracker
loses the target (fails) during tracking [103].

• Expected average overlap (EAO). This measure com-
bines the raw values of per-frame accuracies and fail-
ures. Consider a tracking sequence of Ns frames in
length. A tracker is initialized at the beginning and left
to track until the end of the sequence. The performance
for the given sequence (including zero-overlaps after
failure) is computed as

ΦNs
=

1

Ns

Ns∑
i=1

Φi, (9)

where Φi is the per-frame overlap. To obtain the ex-
pected average overlap Φ̂Ns

, we average multiple ΦNs

values over a large set of Ns-long sequences, such as

Φ̂Ns
= 〈ΦNs

〉 . (10)

These computed measures are evaluated over all se-
quence lengths, i.e., for Ns = 1, . . . , Nmax, which pro-
duces an expected average overlap curve. To estimate
the final EAO score Φ̂, the sequence length probability
density function (PDF) is needed to establish a range
of typical sequence lengths for the entire benchmark.
This interval, bounded by sequence lengths Nl and Nh,
delineates the region for evaluation, thus

Φ̂ =
1

Nh −Nl

h∑
Ns=l

Φ̂Ns
. (11)

The boundaries are found as the closest points on the
left and right side of the mode, such that

p (Nl) ≈ p (Nh) , (12)

for which the integral of the PDF is equal to 0.5 [99].
• Average overlap (AO). Measures an average of overlap

rates between tracking results and the ground truth
BBOXes over all frames [105]. It is similar to A metric
defined above.

B. DISCUSSION
In this section, we elaborate on two main aspects of our anal-
ysis. First, we analyze the quantitative results on established
benchmarks collected of the surveyed trackers collected from
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TABLE 1. Tracker evaluation scores on different benchmarks. We chose the most common benchmarks shared among the given trackers. Concerning the Object
Tracking Benchmark (OTB) datasets (2013 and 2015 version), we collected area under curve (AUC) scores of success plots. For visual object tracking (VOT)
challenges (years 2015-2018), we provide accuracy (A), robustness (R) and expected average overlap (EAO) scores (abbreviated as E due to space limitations).
GOT-10k [105] (shortened as G10k) is represented by the average overlap (AO) quantities. First, second and third scores in each category are marked in red, blue
and bold, respectively. Values marked with a superscript number were obtained from other than the original paper. Alternative sources of data were: a [55], b [41],
c [16], d [98], e [63], f [40], g [57], h [86], i [56], j [69], k [20], l [106].

Tracker
OTB13 OTB15 VOT15 VOT16 VOT17 VOT18 G10k

↑AUC ↑A ↓R ↑E ↑A ↓R ↑E ↑A ↓R ↑E ↑A ↓R ↑E ↑AO

AO-SiamRPN 0.676 0.679 - - - 0.620 0.233 0.404 - - - 0.581 0.286 0.364 -
CFNet 0.611c - 0.560d 2.520d - - - - - - - - - - 0.293k

DaSiamRPN - 0.658 0.630 0.660 - 0.610 0.220 0.411 0.560 0.340 0.326 0.586h 0.276h 0.383h 0.444l

DensSiam - - 0.619 1.240 0.340 0.560 1.080 0.331 0.540 0.350 0.250 0.456i - 0.173i -
DSiam 0.642 - 0.541 - 0.280 - - - - - - 0.506i - 0.195i -
FCAF - 0.649 - - - 0.581 1.020 0.356 - - - - - - -
FIGSiam 0.679 - - - - 0.580 - 0.340 - - - 0.501 - 0.339 -
FPSiamRPN - 0.662 - - - 0.609 0.670 0.354 - - - 0.596 0.302 0.363 -
GOTURN 0.447a 0.410b 0.512a - 0.204a - - - - - - - - - 0.347l

LSSiam 0.663 - - - - 0.530 1.020 0.294 - - 0.229 - - - -
RASNet 0.670 0.642 - - 0.327 - - - - - 0.281 - - - -
SA-Siam 0.677 - 0.590 1.260 0.310 0.540 1.080 0.291 0.500 0.459 0.236 - - - -
SE-SiamFC 0.680 0.660 - - - 0.590 0.240 0.360 0.540 0.380 0.270 - - - -
SiamBAN - - - - - - - - - - - 0.597 0.178 0.452 -
SiamCAR - - - - - - - - - - - - - - 0.569
SiamFC 0.608a 0.582b 0.550c 1.580c 0.290c 0.530j 0.870j 0.289j 0.502c 0.585c 0.188c 0.498i - 0.188i 0.374k

SiamFF - 0.655 - - - 0.512 - 0.390 - - - - - - -
SiamMask - - - - - 0.639 0.214 0.433 - - - 0.609 0.276 0.380 -
SiamMask-E - - - - - 0.645 0.210 0.452 - - - 0.627 0.248 0.427 -
SiamR-CNN - - - - - - - - - - - 0.609 0.220 0.408 0.649
SiamRM 0.638 - - - - - - - - - - - - - -
SiamRPN 0.658g 0.636e 0.580 1.130f 0.349f 0.560 0.260f 0.344f 0.490f 0.460f 0.244f 0.586j 0.276j 0.383j 0.367l

SiamRPN++ 0.650h 0.696 - - - 0.642 0.196 - - - - 0.576h 0.290h 0.352h 0.517k

SiamVGG 0.665 - 0.601 - 0.373 0.564 - 0.351 0.525 - 0.286 0.527i - 0.287i -
SINT 0.655 0.592b - - - - - - - - - - - - -
YCNN 0.601 - - - - - - - - - - - - - -

various papers and provide our observations. Second, we
discuss the primary contributions of each tracker, its back-
bone architecture, the presence or absence of pretraining, and
training datasets.

Nevertheless, before discussing our analysis, we have to
emphasize that Siamese trackers are a research direction in
VOT with great potential. This branch of trackers belongs
to the fastest with the accuracy-to-speed ratio being their
strength. Even though we do not provide explicit values for
the FPS specifically for each tracker (since they depend on
hardware), we will just briefly comment on this aspect. We
can generally claim that Siamese trackers operate at real-time
speed, often at speeds far exceeding real-time, for instance
SiamFC [12] with 94 FPS, SiamRPN [61] with 165 FPS, or
LSSiam [57] with 100 FPS, to name a few. Nevertheless,
there are exceptions to the rule, for example SINT [16]
tracker with 4 FPS or SiamRM [29] with 21 FPS. Given this
vast difference between the real-time threshold and the actual
processing time, we see this as a potential to make the tracker

even more accurate and robust at the cost of slightly reducing
FPS while still being above the real-time threshold. But we
noticed that fast trackers are also among the accurate ones
(again, with existing exceptions). High processing speed is
simply an inherent property of Siamese architectures.

The presence of distractors is in this paper often referred
to as one of the leading causes of problems for the Siamese
trackers. Considering the evaluation scores in Table 1, we
conclude that this might be the case. The scores indicate
that trackers where the presence of semantic background
is explicitly treated often yield the top performance. Or, if
the candidates for possible object locations are deliberately
chosen, e.g., using RPNs. We encourage the reader to also
use the Table 2 when assessing the results to remind the
distinctive features of each tracker.

Considering the OTB 2013 scores, we see that the best
performing tracker is SE-SiamFC. However, we also have to
emphasize very similar performance of FIGSiam [56], SA-
Siam [16], and AO-SiamRPN [86]. There are two reasons.
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First, the runner-up in terms of the AUC score is behind by
0.001. Second, authors of SE-SiamFC [23] provided their
score rounded to 2 decimal places, so the results could be
slightly different. But, as will be shown later, we lack eval-
uations for different trackers that could potentially change
the relative order. The FIGSiam and SA-Siam focused ex-
plicitly on appearance features. The AO-SiamRPN employed
Kalman filtering [87] to address motion prediction and thus
delineated a better region in the future frame to search for
the exemplar. The FIGSiam directly aimed at the foreground
and semantic background discrimination by positive pairs
sampling strategy and also adopted a template updating
mechanism. The SA-Siam model contained two branches,
semantic and appearance branches. SE-SiamFC is practically
a scale-equivariant extension to any Siamese architecture.
This, again, is related to appearance features.

On the OTB 2015 benchmark, SiamRPN++ is the best
performing tracker. We venture to claim that from architec-
tural standpoint, the RPN empowers the tracker with great
accuracy. A holistic glance on the highlighted cells in Table 1
shows that many top-performing trackers have RPN in their
name.

When it comes to VOT challenges, the 2015 version has
one outstanding result, specifically the DaSiamRPN [40].
Looking back at the definition of the R metric, the initial
hypothesis may be that the robustness of this tracker is a
consequence of the proposed distractor-aware module. Sim-
ply put, if the objective is not to lose track of the object,
whether as a result of occlusion or the presence of similar-
looking objects, the tracker needs to explicitly deal with such
situations. Siamese metric learning is powerful enough to en-
compass numerous visual variations [107], but in case there
are distractors present, then additional steps conditionally
executed seem to contribute positively.

However, we should not attribute all the credit for ro-
bustness to the distractor-awareness itself. Looking at the
VOT 2016 and 2018 scores we see that SiamRPN [61] and
SiamMask [2], especially their derived successors, achieve
even better performance. The robustness category for the
VOT 2017 version is also won by the DaSiamRPN tracker,
but there are missing many scores for trackers that could
influence the ranking. By and large, region proposal [108]
strategy is the common ground for these trackers and thus we
conjecture that they have their share of the resulting leading
performance. The goal of this strategy is to train the model
to regress the possible locations of the exemplar in the im-
age in advance, which may, among other things, effectively
omit semantic background, thus increasing the robustness by
directly addressing the drift problem. However, the RPN-
based trackers come with the cost of difficult hyperparameter
setup and unstable training. There is the SiamBAN tracker
the authors of which explicitly avoided the use of RPN for the
reasons stated above. The results of their work indicate that
a tracker may perform well even without region proposals. It
was also demonstrated by a very similar SiamCAR tracker.
But we have to stress the lack of benchmark evaluations

of these two trackers. Both works provide only one bench-
mark evaluation that suits our requirements. Based on the
presented results, we still consider RPN-based trackers very
robust and currently one of the best performing approaches.
Nevertheless, these results should be taken only as a rough
overview, not an accurate comparison.

One of the newest benchmarks is the GOT-10k dataset. We
can see a sound performance of SiamR-CNN. We attribute
the success of this tracker to a combination of the RPN-
based two-stage detection with the optimal assignment of
object re-detections using dynamic programming. Last but
not least, the authors also utilized hard negative mining dur-
ing the training to suppress similar interference. Due to the
novelty of this benchmark, there are still many evaluations of
previous works absent for better comparison.

The standard trend is to train the tracker on datasets that
cover different domains yet try to be as general as possible to
achieve good generalization ability. General object trackers
should be applicable across various domains, so they are
evaluated in that regard. Since Siamese trackers may be
practically considered as “template matchers”, then object
detection datasets are also suitable for training. A common
strategy is to extract these patches from various parts of the
frame sequence belonging to a specific object. The aim is to
extract patches from the scenes where the object is subjected
to various visual disruptions, such as lightning, scale, and
rotation variations, and occlusion [12]. We emphasize that the
classes in the training dataset and testing dataset should never
be overlapped. Before training, it is always a good practice
to reach out for the benchmark documentation and exclude
appropriate sequences from popular training datasets.

A prominent dataset for training Siamese models is
ILSVRC 2015 [38]. This dataset contains various video se-
quences of general objects (a subset of the objects contained
in the ImageNet dataset [49] itself). It contains approximately
4 500 videos for a total of approximately one million annota-
tions. The included scenarios are different from other track-
ing benchmarks. It evaluates algorithms for object detection
and image classification at a large scale. Some sequences
may contain multiple objects, but this dataset is primarily
used for single object tracking. Most of the time, only pairs
of image patches are required in each iteration. Another
new dataset is Youtube-BB [109]. It is a large-scale dataset
containing video URLs with densely sampled single-object
BBOXes. It consists of approximately 380 000 videos lasting
for about 15-20 seconds. The videos were automatically
selected to feature objects in natural settings without any edit-
ing or post-processing. Their quality is often akin to that of
a hand-held cell phone camera. One more important dataset
for training and evaluation of generic object tracking is GOT-
10k [105]. It contains more than 10 000 video segments of
real-world moving objects, covers a majority of 560+ classes
of real-world moving objects, and 80+ classes of motion
patterns. This dataset comes with its train, validation as well
as the test set.

Table 2 shows that trackers were usually inherited from
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AlexNet [15] or ResNet [64] architectures. Authors some-
times experimented with VGGNet [71] in their ablation stud-
ies, too. It is important to mention that the discussed frame-
works did not usually utilize the entire AlexNet architecture.
Most of the time it was just the first few layers. For instance,
GOTURN [64] used all the layers from the AlexNet up to
pool-5. SiamFC [12] was inherited from AlexNet with the
first five convolutional layers. Likewise, DSiam [55] adopted
the branches either from AlexNet or VGG up to pool-5. Ad-
ditionally, authors often tweaked the architecture to suit their
needs, for example reducing the number of pooling layers for
better resolution of the response maps [29]. Currently, the use
of ResNet backbones (residual learning) has become popular
in the deep learning community, even in other areas apart
from object tracking. Table 2 shows that custom backbone
architectures trained from scratch are not so prevalent.

Speaking of training, having pre-trained models saves a
considerable amount of time during the training. It is a known
fact that the convolutional layers that are closer to the input of
the model capture local low-level features such as edges and
blobs. These features can be reused across different tasks in
a process called transfer learning. Only the last layers of the
model capture task-specific, high-level features [13]. Visual
tracking is no exception. However, as we also emphasized
in section IV-A, models pre-trained on ImageNet are trained
for the classification task, and tracking is more about pre-
diction rather than pure classification [58]. Notwithstanding
the objections, our analysis shows that this trend does not
seem to change. Authors rather develop strategies to mitigate
the potential negative consequences of adopting already pre-
trained models.

VI. CONCLUSION AND FUTURE WORK
Our survey covered a specific subset of deep learning-based
visual object trackers called Siamese trackers. This branch
of tracking approaches is built upon principles of similarity
learning. Overall, Siamese trackers aim to learn a metric em-
bedding in a specific n-dimensional space where the distance
between the embedded objects of interest reflects properties
defined within the dataset during the training. We covered
various aspects of Siamese trackers, and the main goal was to
tackle the core traits and challenges of Siamese frameworks
and to provide an overview of how existing research ad-
dresses them. We did our best to identify crucial components
of Siamese models that the research either focuses on or
could in the future. Nevertheless, we affirmatively highlight
the comment of [1] from 2017 that objective reproducibility
and comparability of results is of paramount importance, yet
with current VOT methods and evaluation standards, it is
difficult.

The branch of Siamese tracking brought new design prin-
ciples to tracking algorithms. We primarily focused on track-
ers that employed the cross-correlation operation, introduced
in [12]. We explored its properties and discussed that recent
research does not adopt the original single-channel version
of the response map. It was argued that a single channel

did not encompass enough information [20], thus multi-
channel cross-correlation layers were used [63]. Once mul-
tiple channels are present, we see an emerging trend in using
attention mechanisms of various kinds for better feature
selection [41]. The utilization of cross-correlation has a great
share of the leading performance in terms of their speed-to-
accuracy ratio.

Table 2 highlights the general trend that AlexNet-like
architectures [15] are slowly subsiding, and the community
has started to exploit deeper and wider backbones (e.g.,
ResNet [64]) that include padding in their convolutional
layers (section IV-A). As far as backbones are concerned,
various feature extraction approaches have been developed.
Numerous works have demonstrated that multi-level feature
fusion is essential for coping with similar interference. One
drawback of pioneering Siamese trackers was the use of the
high-level features in cross-correlation operation. However,
the high-level features are satisfactory for inter-class discrim-
ination, but not for handling minor yet relevant differences
between intra-class distractors. The notion of coalescing
features from multiple levels using diverse approaches has
become a standard (section IV-C2).

Because of the obtained results and knowledge from the
reviewed literature, we see distractors (similar interfer-
ence) and severe occlusion as the primary cause of problems
with Siamese architectures. The majority of the discussed
trackers attempted to tackle these issues in various ways,
from the adoption of region proposals [108] through explicit
distractor-awareness [40] to conditional re-detection [29],
[77]. After all, these problems are still not completely solved
and pose a challenge to Siamese trackers as they are prone to
drift to the semantic background.

Numerous works have commented that including memory
or template updating strategies could improve the perfor-
mance [12], [57]. It seems that relying purely on the initial
frame may cause the tracker to fail when the object undergoes
severe visual deformations. If template updating (which may
be time-consuming) is not employed, then, we think, other
mechanisms such as robust region proposals seem to have
a significantly positive impact on performance, as demon-
strated by trackers [61], [63], [40], [69].

In Table 1, we provided a recent quantitative comparison
of surveyed trackers on established benchmarks. We can see
that the top-performing trackers are based on region pro-
posals [61], [63], [69], [86]. The comprehensive survey from
Marvasti-Zadeh et al. [17] also reached a similar conclusion.
We can also see in Table 2 that approaches that explicitly
deal with semantic background or adopt multi-level feature
fusion are among the top-performing trackers, too. One-shot
learning is also similar in principle [73]. The idea of having
the object BBOX provided only once during the initialization
phase and then having to identify it again as it undergoes
various transformations is tantamount to one-shot learning.
To support this, the SiamRPN tracker was directly formulated
as one-shot learning [61]. We believe that this line of research
may provide useful insights into tracking itself. Nonetheless,
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learning the visual object model from a single appearance is
an ill-posed problem and requires adequate data preparation
to achieve reasonable generalization ability [13].

Despite the appreciation of RPN above, they come with
several obstacles that forced the community to circumvent
them. One disadvantage is that it is very sensitive to hyper-
parameter setup, e.g., object scale or aspect ratio. Several
modern trackers deliberately avoided anchor boxes that stand
at the core of region proposals. Specifically, tracking was
framed as pixel-wise classification and regression, making
it an anchor-free solution that has become popular [20], [88].

Siamese networks often come in a form of a “Y-shaped”
network. Similarity learning started as signature verifica-
tion [18], and nowadays it is also largely used in the area
of object re-identification (ReID). Face ReID is a well-
researched topic [45], [42], but also vehicle ReID has re-
cently become a target for researchers [47], [110]. Tracking
and object ReID face similar challenges and benefit from
learning metric spaces that handle various appearance distor-
tions of the object of interest [111]. In this area, researchers
have started to employ not only contrastive (pairwise) loss
but triplet loss [42], too. Even quadruple loss [112]. Some
works focused on Siamese trackers and attempted to use the
triplet loss, such as [113]. Moreover, pair or triplet mining
strategies to support training the model on incrementally
harder samples as the training advances were also adopted
in ReID [42]. We did not frequently encounter this method in
tracking literature, but there were few exceptions, e.g., [81].

The use of recurrent neural network (RNN) may help
by incorporating more contextual information about the ob-
ject [84] or to model its appearance better which leads to
improved performance in situations with similar interfer-
ence [58]. This module may be used to incorporate temporal
information [114], too. We believe that Siamese trackers,
due to the way they are trained, are stripped away of temporal
information, and the computation of the similarity score is
then performed independently of how many frames apart
the two embeddings were produced. Some trackers attempt
to model the appearance of the targets in the long term
by applying RNN, but the decay of the object’s features
exacerbates the tracking performance [115]. Even though
RNNs may be useful for capturing temporal information
between video frames, they are limited in their stability
as well as learning long-term dependencies [17]. But still,
Zhao et al. [115] proposed a special anti-decay long short-
term memory module for Siamese trackers. Nevertheless, the
use of RNNs seems to be more dominant in multi-object
tracking [116].

Reinforcement learning (RL) is a large area rich with
potential for broad applications. In the context of Siamese
tracking, the work of [117] introduced RL to tackle online
model updating because a fixed template was not effective
enough to capture target appearance variations. They col-
lected a series of templates and then used the actor-critic
framework to learn how to maintain them. Another dynamic
aspect of visual tracking is trajectory prediction. Abdelpakey

et al. [118] utilized a RL approach based on dynamic policy
gradient to produce a continuous action that predicted the
optimal object location.

Even though our work focused on single object track-
ing, there are emerging papers where Siamese architectures
such as SiamFC [12] were integrated into a multi-object
tracking pipeline. Shuai et al. [119] proposed one of such
frameworks that are capable of handling tracking, detection,
and ReID at the same time while allowing the utilization
of any Siamese tracker. Another simple and very effective
extension of SiamFC tracker was to use n exemplars to
produce n response maps and thus perform tracking of n
objects simultaneously [120]. We believe this paradigm of
tracking is yet to uncover its full potential.

Siamese networks have yet to be fully understood [107],
[1], [35]. It is important to consider their inherent properties
and exploit them, as many of the discussed papers have
demonstrated. In this work, we attempted to underline the
current state-of-the-art solutions of the Siamese-based visual
object trackers and the challenges they face.
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TABLE 2. General information about surveyed trackers that we considered important. This table aims to highlight the contributions of each tracker. However, some
works experimented with various settings. In such cases, we separated the possible settings within the same cell. The supplementary information about backbone
and training serves for more granular comparison and emphasizes existing design trends. Trackers marked with symbol “*” deal with a specific task of TIR tracking
and not standard VOT.

Tracker Year Characteristic Backbone Pre-training Training data

AO-SiamRPN 2020 anti-occlusion Kalman filtering ResNet ImageNet COCO, ILSVRC15,
Youtube-BB

CFNet 2017 correlation filters AlexNet ImageNet ILSVRC15
DaSiamRPN 2018 distractor awareness, sample mining strategies AlexNet ImageNet ILSVRC15, Youtube-BB,

COCO
DensSiam 2018 densely-connected layers, attention custom no ILSVRC15
DSiam 2017 transformations: appearance variation, back-

ground suppression
AlexNet, VGG no ILSVRC15

FCAF 2019 anchor-free region proposal network, center-
ness

ResNet ImageNet ILSVRC15

FIGSiam 2020 positive pair sampling strategy, background
padding, template updating

ResNet no ILSVRC15, COCO

FPSiamRPN 2020 feature pyramids, region proposal network ResNet ImageNet ILSVRC15, COCO
GOTURN 2016 BBOX regression, Laplace distribution custom ImageNet ImageNet14, ALOV
HSSNet * 2019 multi-level features, STN, spatial-aware net-

work, correlation filter
AlexNet no ILSVRC15

LSSiam 2019 local semantic features, classification, template
updating

AlexNet ImageNet ILSVRC15

MLSSNet * 2020 multi-level similarity, structural and semantic
correlation similarity networks, adaptive en-
semble module

AlexNet no TIR-specific

MMNet * 2019 classification, fine-grained and discriminative
matching branches, CFNet utilization

AlexNet no TIR-specific

RASNet 2018 attention (general, residual, channel), weighted
cross-correlation

custom no ILSVRC15

RE-SiamNet 2020 rotation-equivariance ResNet, AlexNet ImageNet, no ILSVRC15, GOT-10k,
Youtube-BB

SA-Siam 2016 semantic and appearance branch AlexNet no ILSVRC15
SE-SiamFC 2021 scale-equivariance AlexNet ImageNet ILSVRC15, GOT-10k
SiamBAN 2020 box adaptive head, classification and regression ResNet ImageNet COCO, ILSVRC15,

Youtube-BB, GOT-10k,
LaSOT

SiamCAR 2020 pixel-wise classification and BBOX regression,
centerness

ResNet ImageNet COCO, ILSVRC15,
Youtube-BB

SiamFC 2016 fully convolutional, cross-correlation, logistic
loss

AlexNet no ILSVRC15

SiamFF 2020 shallow-deep feature fusion, rectangular filter-
ing

AlexNet no ILSVRC15, GOT-10k

SiamMask 2019 BBOX regression, binary segmentation, rotated
BBOX

ResNet ImageNet COCO, ILSVRC15,
Youtube-VOS

SiamR-CNN 2020 Re-detection with Faster R-CNN, dynamic pro-
gramming for tracking history resolution

ResNet COCO ILSVRC15, Youtube-
VOS, LaSOT, GOT-10k

SiamRM 2019 distractor detection, re-detection AlexNet ImageNet ILSVRC15
SiamRPN 2018 region proposals, tracking as one-shot detection AlexNet ImageNet ILSVRC15, Youtube-BB
SiamRPN++ 2019 region proposals, depth-wise cross-correlation ResNet ImageNet COCO, ILSVRC15,

Youtube-BB
SiamVGG 2019 modified VGG backbone VGG no ILSVRC15, Youtube-BB
SINT 2016 margin contrastive loss AlexNet, VGG ImageNet ImageNet12, ALOV
YCNN 2017 probability map, BBOX regression custom no ImageNet12, ALOV,

VOT15
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