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A Fast ISAR Tomography Technique for Fully
Polarimetric 3-D Imaging of Man-Made Targets

Kejiang Wu and Xiaojian Xu

Abstract— The 3-D inverse synthetic aperture radar (ISAR)
tomography is an enabling technique for applications such as
the exact diagnosis of scattering mechanisms for complex targets.
Nevertheless, current ISAR tomography solutions still suffer from
problems such as the great computational complexity and optimal
utilization of the signatures acquired from limited baselines.
In this work, we propose a fast ISAR tomography technique
for fully polarimetric 3-D imaging of man-made targets. A stack
of 2-D complex-valued images with different baselines and polar-
izations is first obtained through a phase error calibration (PEC)
process and graphic processing unit accelerated polarimetric
filtered backprojection. A polarimetric state-space decomposition
(P-SSD) algorithm is then developed which could provide joint
3-D reconstruction results with low computational complexity.
Examples from both numerical multibaseline data for the Sandia
laboratories implementation of cylinders (SLICY) benchmark
model and the outdoor range dataset collected by the Georgia
Tech Research Institute (GTRI) are presented to demonstrate
the superior performance and the usefulness of the proposed
technique.

Index Terms— Fully polarimetric 3-D imaging, inverse
synthetic aperture radar (ISAR) tomography, polarimetric
state-space decomposition (P-SSD).

I. INTRODUCTION

IN RECENT years, there is an increasing concern in 3-D
synthetic aperture radar (SAR) or inverse SAR (ISAR)

imaging [1]–[4], which is considered to be an extension of the
traditional 2-D SAR or ISAR imaging techniques. By using
3-D imagery, scattering mechanisms on a complex radar target
can be clearly presented and studied in 3-D space for further
applications, such as exact scattering diagnosis and automatic
target recognition [5], [6]. In this way, problems in 2-D
SAR/ISAR images could be fundamentally overcome [7].

To achieve 3-D high-resolution imagery of radar targets,
different techniques, i.e., interferometric SAR/ISAR and multi-
baseline tomography, have been developed [8], [9]. The clas-
sical interferometric SAR/ISAR exploits the phase differences
between two 2-D radar images to derive the altitude infor-
mation of the target. However, interferometry does not enable
resolving among multiple scattering centers in the same down
and cross range resolution cells in elevation [10]. This problem
has motivated the development of tomographic SAR/ISAR that
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utilizes the coherence of 2-D complex-valued images acquired
from multiple baselines.

Typically, the formation of 3-D high-resolution images
using Fourier-based tomography requires the number of base-
line collections, which results in a much greater burden on
both data acquisition and processing. In order to improve the
elevation resolution with limited baseline collections, a variety
of super-resolution (SR) techniques has been developed for
the tomographic height/elevation inversion of target scattering
centers [11]–[18].

For instance, in [13]–[16], investigations of the spectral
estimation techniques, which include the multilook relaxation
(M-RELAX), the multilook amplitude and phase estimation
(M-APES), the multiple signal classification (MUSIC), and
the Capon algorithms, have been made for the tomographic
elevation inversion process. The experimental results and
the Cramer–Rao lower bounds calculation demonstrate the
SR ability in the elevation direction. Apart from the afore-
mentioned spectral estimation techniques, another important
kind is the algorithm based on compressed sensing (CS)
theory [3], [10]–[12]. In [10], a time-domain CS-based tomog-
raphy process is proposed, where the basis matrix constructed
by a sinc kernel function and basis pursuit denoising technique
are applied to the elevation estimation of scattering centers.
In [3], [11], [12], and [18], a series of frequency-domain
CS-based approaches have been introduced for the spaceborne
or airborne SAR tomography, which could achieve significant
resolution improvement with sparse baselines. Compared to
the spectral estimation techniques, the CS-based techniques
have advantages in processing the nonuniform baselines but
with a time-consuming iterative process [18]. Furthermore,
an overview of the SR-based tomography techniques can be
found in [11] and [13].

More recently, the use of SR-based tomography with fully
polarimetric data has been investigated in [5] and [7]. Com-
pared with the single polarization case, the fully polarimetric
tomography can not only provide 3-D scattering features of
targets but also the polarimetric information of each scattering
center [17]. However, there are still several issues that restrict
the practical use of SR-based fully polarimetric tomogra-
phy. First, since all the 2-D images of each baseline and
all the down range-cross range resolution cells are required
to process independently, the computational complexity of
each processing step should be considered especially for
the fully polarimetric large-scale practice [18]–[20]. Second,
as a joint processing framework to the fully polarimetric
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Fig. 1. Geometry of the ISAR tomography system.

and multibaseline data, it suffers from the errors caused by
outdoor measurements, zero-Doppler clutter (ZDC), and the
uncertainty of parameter estimation [3], [7], [21]–[23].

In this article, we focus on developing a new ISAR tomogra-
phy technique for fully polarimetric 3-D imaging of man-made
targets. In general, the main contributions of this article are
given as follows. First, a novel 3-D ISAR tomography frame-
work based on the polarimetric state-space decomposition
(P-SSD) is proposed, which has superior computational effi-
ciency, SR capability, and fully polarimetric imagery. Second,
a frequency-domain phase error calibration (PEC) process is
applied to eliminate the phase error caused by outdoor mea-
surements. Finally, the performance of the proposed technique
has been validated using both numerical and outdoor range
datasets. The results show that the proposed technique is useful
for 3-D tomographic reconstruction of the real-world complex
targets with limited baseline collections.

The remainder of the article is organized as follows. A brief
review of the signal model for ISAR tomography is first made
in Section II. Detailed mathematics and procedure for the
proposed framework are discussed in Section III. In Section IV,
3-D tomographic image examples are presented, where both
numerical multibaseline data for the Sandia laboratories imple-
mentation of cylinders (SLICY) benchmark model [24] and the
outdoor range dataset collected by the Georgia Tech Research
Institute (GTRI) [25] are used. The performances of different
elevation inversion techniques are compared to demonstrate
the usefulness of the currently proposed technique. We con-
clude the article in Section V.

II. SIGNAL MODEL

The geometry of the 3-D ISAR tomography (TomoISAR)
system is shown in Fig. 1. As can be seen, the target is placed
on a turntable and observed with a monostatic radar. The
monostatic radar is placed on an elevator platform, and thus,
the height of the antenna can be manually changed [26]. Con-
sequently, the multibaseline data can be obtained by repeating
the ISAR measurement with different elevation angles.

As previously stated, a whole TomoISAR procedure mainly
includes a 2-D imaging process followed by the parame-
ter estimation of the elevation direction. We first consider
the problem of 2-D ISAR imaging at the slant-range plane

(Xs OYs plane in Fig. 1). As a 2-D projection of the 3-D
scattering distribution function, the scattering function [8] in
the 2-D imaging plane can be expressed as

Ipol(xs, ys, θn) =
∫∫

f,ϕ
σpol( f, ϕ, θn)

· exp

[
− j

4π f

c
R(xs, ys, ϕ, θn)

]
d f dϕ (1)

where f is the step frequency, ϕ is the azimuth angle, and
θn = θ0 + n�θ is the elevation angle. σpol( f, ϕ, θn) represents
the radar signature acquired from different frequencies and
azimuth angles in the same elevation angle, R(xs, ys, ϕ, θn) is
the distance between radar antennas and target, and (xs, ys)
denotes the coordinate of the target in the slant-range plane.

Typically, each resolution cell of the 2-D image sequences
{Ipol(xs, ys, θn)}N

n=1 obtained from (1) can be accurately
approximated by using the undamped scattering center
model [3], [7], [18]. Considering that different scat-
tering geometries usually have different angle depen-
dences [27]–[29], we select the damped exponential (DE)
model to be the parametric model of the elevation direction.
The adopted DE model is based on the geometrical theory of
diffraction (GTD) and derived from the attributed scattering
center (ASC) model [28]. As described in [29] and [43],
if multiple transmit–receive polarization pairs are available,
the scattering centers of different polarizations share the same
angle dependence but with different amplitudes

Ipol(xs, ys, θn)=
K∑

k=1

αk,pol(xs, ys) exp

(
−βkθn − j4π fc

c
θnzk,s

)

+wpol (2)

where the parameter set {αk,pol(xs, ys), βk, zk,s } characterizes
these K discrete scattering centers, i.e., αk,pol(xs, ys) repre-
sents the complex amplitude, βk is the angle dependence
parameter, and zk,s denotes the relative height of scattering
center in the XsYs Zs coordinate system (see Fig. 1). fc

represents the center frequency, c is the propagation speed
of the electromagnetic signal, and wpol stands for the noise.

III. MODEL-BASED ISAR TOMOGRAPHY TECHNIQUE

The proposed model-based ISAR tomography technique
mainly includes the following three processing steps, i.e., PEC,
multibaseline 2-D imaging, and elevation inversion. Details are
as follows.

A. Phase Error Calibration

The basic premise on which TomoISAR relies is that the
same scattering centers in the 2-D images obtained from differ-
ent baselines can appear in the same resolution cell [21], [22].
To satisfy this requirement, a PEC process is needed to
eliminate the phase error caused by the measurement. In [7],
the influence of the platform disturbance is considered and
an image-domain-based PEC algorithm is presented. In [9],
the phase sensitivity in the airborne HoloSAR is studied, and
the reference-target (RT) setups are demonstrated to be useful
for the PEC procedure. In this section, a PEC algorithm from
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the frequency domain is introduced for the case of TomoISAR
imaging.

The basic idea of the proposed PEC algorithm is to com-
pensate for the phase differences between the selected primary
baseline data and the rest. To this end, a reference center and
primary baseline should be specified previously. Generally,
they are chosen to be the turntable center and the intermediate
baseline data σ( f, ϕ, θc = θN/2). Thus, the phase error of the
nth baseline can be compensated by

σca( f, ϕ, θn) = σ( f, ϕ, θn) · exp

{
j4π f

c
(Rn − Rc)

}
(3)

where σ( f, ϕ, θn) denotes the radar signatures obtained from
the nth baseline, the parameter f is the frequency, and ϕ and
θ denote the target azimuth angle and the elevation angle. Rn

denotes the distance from the antenna phase center of the nth
baseline to the reference center, and Rc is the distance from
the primary baseline to the reference center

Rn = D/ cos θn. (4)

Note that (3) gives accurate calibration results when para-
meters {D, θn} are measured accurately. In the case of the
platform perturbations or measurement error in practical use,
the phase error of the nth baseline needs to be further com-
pensated by using the RTs (fixed strong scattering geometries
in imaging area) [9]

σca( f, ϕ, θn) = σ( f, ϕ, θn) · exp

{
j4π f

c

(
R′

n − R′′
c +�Rn

)}

(5)

where R′
n is the measurement result and �Rn represents the

phase error caused by distance measurement. Let R′′
n denote

the actual result and δD denote the measurement error of D;
thus, �Rn is given by

�Rn = (
R′′

n − R′′
c

) − (
R′

n − R′
c

)
= δD(1/ cos θn − 1/ cos θc). (6)

In the practical measurement, the RT is fixed somewhere
outside the turntable, and the position of the corresponding
scattering center does not change with the turntable rotation.
Then, δD can be estimated by utilizing this additional infor-
mation

δD ≈ s1,n/ cos θn − s1,c/ cos θc (7)

where s1,n denotes the position of the RT1 in the corresponding
1-D high-resolution range profile (HRRP), which is obtained
by the fast Fourier transform (FFT).

Note that the measurement phase error can be estimated by
using (6) and (7) if the influence of the measurement angle
error is not considered. To further estimate the measurement
angle error δθn , one possible solution is to use more RTs (see
Fig. 1) [9]

δθn ≈ cos−1
[
(s1,n − s2,n)/D1,2

] − θ ′
n (8)

where D1,2 is the distance between these two reference targets
and θ ′

n is the measurement result.

B. Multibaseline 2-D Imaging

In this section, the calibrated data from each baseline
is performed independently by the 2-D imaging process.
As described in [9] and [23], there are several efficient 2-D
SAR/ISAR imaging algorithms for this purpose, including the
polar format algorithm (PFA) [30], the time-domain direct
backprojection (DBP) [31], and fast-factorized backprojection
(FFBP) [23]. For the parallel implementation consideration,
we adopt a graphic processing unit (GPU) accelerated polari-
metric filtered backprojection (G-PFBP) algorithm that could
be applied to both far-field and near-field conditions. The
process mainly consists of the following four steps.

First, the imaging plane should be identified and divided
into the Nx × Ny equispaced grid, which is corresponding to
the Cartesian coordinates {(xk,s , yk,s)}Nx ×Ny

k=1 , where the x-axis
represents the cross range direction and the y-axis is the
down range direction. Note that the imaging plane is set to
be the slant-range plane for the narrow azimuth range case.
For the wide azimuth range case (over 180◦), it is suggested to
be divided into several subapertures and then processed with
incoherent addition (for further details, see [9], [31]).

Second, the 1-D HRRP Pϕ,pol(l) from different azimuth
angles and polarizations can be obtained by the FFT process.

Third, the complex amplitude Pϕ,pol(Le) is calculated
by using the GPU-supported linear interpolation. Moreover,
the signatures with different polarizations can share the same
integral path. Le denotes the integral path of each pixel,
expressed as

Le = √
(xra − xk,s)2 + (yra − yk,s )2 + (zra)2 − R0 (9)

where (xra, yra, zra) gives the coordinate of antenna phase
center in the slant-range coordinate system (XsYs Zs in Fig. 1).

Finally, the 2-D image �pol(xs, ys) of each polariza-
tion is achieved by the integral process of the obtained
Pϕ,pol(Le) [32]. According to the preset dynamic range thresh-
old TdB, the location of the strong scattering area is then
determined by

Ipol(xs, ys) : {
xs, ys, |�pol(xs, ys)|

> max(|�pol(xs, ys)|) · 10TdB/20
}
. (10)

C. Elevation Inversion

In the previous section, a group of 2-D complex images
with multibaseline and multipolarization have been obtained
by using the G-PFBP algorithm. A joint parameter estimation
technique, which is named P-SSD, is introduced for the
elevation inversion process in this section.

In matrix notation, the signatures in (10) can be written as

G =

⎡
⎢⎢⎣

IHH(xs, ys)
IHV(xs, ys)
IVH(xs, ys)
IVV(xs, ys)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

IHH(θ1) IHH(θ2) . . . IHH(θN )
IHV(θ1) IHV(θ2) . . . IHV(θN )
IVH(θ1) IVH(θ2) . . . IVH(θN )
IVV(θ1) IVV(θ2) . . . IVV(θN )

⎤
⎥⎥⎦. (11)
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Based on the model defined in (2), we set pk =
exp(−βk�θ − j4π fc�θzk,s/c). Thus, the matrix element
Ipol(xs, ys , θn) can be represented as

Ipol(xs, ys, θn) =
K∑

k=1

α̃k,pol(xs, ys)pn
k + wpol (12)

where α̃k,pol(xs, ys) is the corresponding amplitude.
Using (12), the column vector G(θn) can be decomposed as

the matrix form

G(θn) = APn−1T + Wn (13)

where Wn is the noise component, and the matrices
{A, P, T} are

A =

⎡
⎢⎢⎣

α̃1,HH α̃2,HH . . . α̃K ,HH

α̃1,HV α̃2,HV . . . α̃K ,HV

α̃1,VH α̃2,VH . . . α̃K ,VH

α̃1,VV α̃2,VV . . . α̃K ,VV

⎤
⎥⎥⎦D (14)

P = DT

⎡
⎢⎢⎢⎣

p1

p2

. . .

pK

⎤
⎥⎥⎥⎦D (15)

T = DTlK (16)

where the matrix D represents a K × K unitary matrix and
lK = [ 1 1 . . . 1 ]T.

As a result, the matrix G can be rewritten as

G = [
AT APT . . . APN−1T

] + W. (17)

As described in [33] and [34], the derived expression in
(17) can be solved by the state-space decomposition (SSD)
estimator. It should be noted that there are two restrictions
when applying the SSD estimator to the elevation inversion
process. One is that the requirement of equal interval sampling
may not be satisfied in outdoor measurement cases. The
current solution is to obtain the equal spaced samples by using
the nonuniform FFT [35]. The other one is that the number of
scattering centers per resolution cell is limited to the rank of
the constructed Hankel matrix Hθ [in (18)], whereas the com-
plex targets may have more scattering centers with different
heights. To alleviate this problem, more samples G(θn) can be
acquired by using the Burg extrapolation algorithm [36]

Hθ =

⎡
⎢⎢⎢⎣

Gext(θ1) Gext(θ2) . . . Gext(θL)
Gext(θ2) Gext(θ3) . . . Gext(θL+1)

...
...

...
...

Gext(θN−L+1) Gext(θN−L+2) . . . Gext(θN )

⎤
⎥⎥⎥⎦
(18)

where L denotes the length of the sliding window, it is set
to be within the interval [N /2, 2N /3], and Gext(θn) is the
extrapolated matrix

Gext(θn) = [
Gforwardext(θn) G(θn) Gbackwardext(θn)

]
(19)

where Gforwardext and Gbackwardext denote the forward and back-
ward extrapolated signatures by using the Burg algorithm.
Typically, the extrapolated sample number is suggested to be
within the interval [0, N /2].

Then, the singular value decomposition (SVD) technique
followed by a model order selection process is used to split
the Hankel matrix Hθ into the signal and noise component

Hθ = UsRsV∗
s + UnRnV∗

n (20)

where {Us , Rs , Vs} belong to the signal component and
{Un, Rn, Vn} belong to the noise component. Alternatively,
there are several model order selection criteria that can be
used, which are mainly based on the distribution of singular
values [33], [37]. Here, we use an eigenvalue sequences’
transform criterion that has a relatively low computational
complexity [38].

On the basis of the derived expression in (17) and linear
systems theory [33], the noiseless Hankel matrix can be further
factorized as

H̃ =

⎡
⎢⎢⎢⎣

A
AP
...

APN−L

⎤
⎥⎥⎥⎦

[
T PT . . . PLT

] = �̃�̃ (21)

where �̃ = Usn(Rsn)
1/2 denotes the observability matrix and

�̃ = (Rsn)
1/2V∗

sn is the controllability matrix.
From (21), it can be derived that

�̃−rl A = �̃−r f (22)

where �̃−rl denotes the first 4(N−L) rows of the observability
matrix and �̃−r f is the last 4(N − L) rows.

Thus, a least-squares solution based on QR decomposition
can be found from (22)

P = R
−1

−rl Q
∗
−rl�̃−r f (23)

where Q−rl and R−rl denote the QR matrices of �̃−rl .
In a similar fashion, the matrix P can also be estimated by

P = �̃−c f R
−1

−cl Q
∗
−cl (24)

where Q−cl and R−cl are the QR matrices of the first (L-1)
columns of the controllability matrix �̃ and �̃−c f is the last
(L − 1) columns.

According to the derived expression in (15), the parameter
vector

[
p1 p2 . . . pK

]
can be acquired by the eigenvalue

decomposition of P. Consequently, we can construct the
Vandermonde matrix

S =

⎡
⎢⎢⎢⎣

p1 p2
1 . . . pN

1
p2 p2

2 . . . pN
2

...
... . . .

...
pK p2

K . . . pN
K

⎤
⎥⎥⎥⎦. (25)

Thus, the amplitude vector Apol = [
α̃1,pol α̃2,pol . . . α̃K ,pol

]
of each polarization is found by the least-squares solution[

AHH AHV

AVH AVV

]
=

[
IHHS∗(SS∗)−1 IHVS∗(SS∗)−1

IVHS∗(SS∗)−1 IVVS∗(SS∗)−1

]
. (26)

From (2) and (12), the height of the scattering center is
given by

zk,s = − arg(pk)c

4π fc�θ
. (27)
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Fig. 2. Radar path of the experimental datasets. (a) Radar path of the numerical dataset collected from the SLICY model. (b) Equivalent radar path of the
GTRI dataset. The continuously distributed red points denote the radar positions.

The corresponding parameter of angle dependence is
obtained by

βk = − ln(|pk|)
�θ

. (28)

Note that the estimated 3-D scattering points should be
rotated back to the horizontal coordinate system since the 2-D
imaging plane in Section III-B is set to be the slant-range
plane ⎡

⎣ xk

yk

zk

⎤
⎦ =

⎡
⎣ 1 0 0

0 cos θc sin θc

0 − sin θc cos θc

⎤
⎦
⎡
⎣ xk,s

yk,s

zk,s

⎤
⎦ (29)

where θc is the elevation angle of the slant-range plane.

IV. EXPERIMENTAL RESULT

To validate the feasibility of the proposed technique, this
section presents some 3-D reconstruction results from both
numerical and measurement datasets. The following algo-
rithms, i.e., the superfast line spectral estimation (Superfast
LSE) [39] and the polarimetric UMUSIC (P-UMUSIC) [19],
are used for comparison. Notice that all the reference algo-
rithms are only applied for the elevation inversion process
since all experimental datasets need to be preprocessed by
the steps described in Section III-A and III-B.

A. Numerical Data of the SLICY Model

The numerical multibaseline ISAR data are calculated for
the Sandia laboratories implementation of cylinders (SLICY)
model [6], [24] using the method of shooting and bounc-
ing rays (SBRs). The size of the model in meters is
3.04(length) × 2.7(width) × 1.8(height), and the simulation
condition is set as follows. The calculation frequency band
is over 9–10 GHz with a frequency step of 10 MHz, full
polarization. The target azimuth angle is from −2◦ to 2◦ in
0.1◦ increments, and the elevation angle is from 30◦ to 29◦
with an increment of 0.1◦.

As can be seen in Fig. 2(a), the simulated radar path is in
an ideal sphere with a radius of 3000 m (far-field) so that the
phase error is considered to be zero since the distances {Rn}11

n=1
defined in (2) are the same. In the 2-D imaging processing
step, the imaging area is divided into a 501(x) × 501(y)
uniform rectangle grid, and the imaging plane is set to be the

slant-range plane with an elevation angle of 29.5◦. The max-
imum magnitude of the HH polarized 2-D image is used for
magnitude normalization, and the strong scattering threshold is
TdB = 45. Thus, 11(baseline) × 4 (polarization) 2-D images
can be obtained by using the proposed G-PFBP algorithm.
Fig. 3 gives 2-D images of the SLICY model using the data
of different polarizations (primary baseline). As shown in the
figure, the scattering centers of different scattering structures
perform significant differences in the amplitudes and shapes.
Compared with the copolarization result, there are only several
weak scattering centers in the cross-polarization result.

After a joint elevation inversion process to the obtained
44 2-D images, 3-D reconstruction results with different
polarizations are shown in Fig. 4. As can be seen in the
figure, the reconstructed 3-D scattering points are accurately
matched with the SLICY model. For example, there are seven
marked strong scattering centers in the HH polarization result.
According to the matched result, we can see that the scattering
centers 1 and 3 are caused by the scattering of dihedral
reflectors, and the scattering centers 4 and 5 are generated by
the scattering of the tophat structures. The scattering center 2
is caused by the specular reflection of the cylinder structure,
and the scattering center 6 is generated by multiple reflections
of the trihedral structure. The scattering center 7 is generated
by the combined effect of the odd and even scattering of the
drum structure. Table I also lists the locations and polarimetric
scattering matrices (PSMs) of the marked seven scattering
centers. From the relative phase of the PSM, it can be seen
that the marked scattering centers 1, 3, 4, 5, and 6 have phase
differences close to 180◦ in the copolarization components,
whereas the scattering center 2 has a phase difference close to
0◦. From the relative magnitude of the PSM, we can see that
the marked scattering centers 1, 2, 3, 4, 5, and 6 have weak
magnitudes in the cross-polarization components, whereas
the scattering center 7 has obvious different magnitudes in
the cross-polarization components. According to the obtained
characteristics of the PSM, we can conclude that the scattering
center 6 is caused by an even reflection of the nonstandard
trihedral corner reflector, which is in agreement with the
ray-tracing result (4-bounce). These results demonstrate that
the relative phase differences and magnitudes in copolarization
components tend to be a useful feature to distinguish the odd
and even scatterings [40], [41]. Besides, it is seen that there are
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Fig. 3. 2-D image of the SLICY model with different polarizations (primary baseline). (a) HH polarization. (b) HV polarization. (c) VH polarization.
(d) VV polarization.

some weak scattering centers spread out of the target surface
(the red boxes in Fig. 4). These scattering centers are caused
by multireflection of the upside of the SLICY model and can
also be observed in the airborne SAR image of the SLICY
target [44].

Height estimation errors of the marked scattering centers
are given in Table II. The test signatures are added with white
Gaussian noise, and the signal-to-noise ratio (SNR) is set to
be 30–0 dB (200 Monte Carlo trials for each SNR). The root
mean square error (RMSE) [15] is used for evaluating the
accuracy. The results show that the proposed P-SSD performs
robustly in height estimation for low SNR.

B. Outdoor Measurement Data

The measurement data of a full-size T72 tank are used in
the imaging example presented here. These data belong to the
moving and stationary target acquisition recognition (MSTAR)
dataset and are collected by GTRI [25]. The measurement
scenario is the same as that shown in Fig. 1. The radar is
placed on the elevator platform of a fixed high tower. The
platform has a 1-ton bearing capacity, and its height can be
adjusted between 0.91 and 27.43 m. The turntable is 45.72 m
away from the launch tower, with a radius of 6.858 meters and
a bearing capacity of 100 tons. Large man-made targets (such

TABLE I

ESTIMATED RESULTS OF THE MARKED SCATTERING CENTERS

as T72 tank) can be placed on it. When the radar collects data,
the turntable can rotate 1–10 revolutions per hour to form the
virtual aperture along the azimuth dimension.
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Fig. 4. 3-D high-resolution image of the SLICY model with different polarizations using the proposed technique. (a) HH polarization. (b) HV polarization.
(c) VH polarization. (d) VV polarization.

TABLE II

HEIGHT ESTIMATION ERROR OF THE MARKED SCATTERING CENTERS

The photograph of the T72 tank from the GTRI dataset is
shown in Fig. 5. Measurement parameters of the public dataset
are listed in Table III. In addition, the following three facts
need to be known when using this public dataset: 1) as can
be seen in Fig. 5, there is a complex background environment
(e.g., the grassland and forest) around the target area, which
means that the received radar echo may contain complex
ZDC [41]; 2) the public dataset has a 0.3◦ periodic data
gap in the azimuth dimension, which means that about 0.3◦
data are missing in every 4.2◦ azimuth range; and 3) apart
from the T72 tank, there are three corner reflectors in the
measurement [26], [45]. Two of them were placed on the two

Fig. 5. Photograph of the T72 tank from the GTRI dataset.

sides of the tank, and the third one was placed outside the
turntable for calibration purposes.

Fig. 6(a) shows the 2-D image of the narrow azimuth
range (3.03◦–6.93◦) obtained from the primary baseline. It can
be seen that the 2-D image is contaminated by the ZDC,
which is inherent to the measurement turntable ISAR imagery.
To remove this contamination, we apply the mean sliding
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Fig. 6. 2-D image of the primary baseline using narrow azimuth angle (Azimuth range from 3.03◦–6.93◦, HH polarization). (a) ZDC contaminated 2-D
image. (b) ZDC suppressed 2-D image.

Fig. 7. 2-D projection images of the 3-D reconstruction results using different elevation inversion algorithms (T72 tank, HH polarization). (a) 2-D projection
image using FFT. (b) 2-D projection image using Superfast LSE. (c) 2-D projection image using P-UMUSIC. (d) 2-D projection image using P-SSD.

TABLE III

MEASUREMENT PARAMETERS OF THE PUBLIC DATASET

window [42] to the frequency domain data, and the ZDC
suppressed result is displayed in Fig. 6(b).

As shown in Fig. 2(b), the measurement radar path is on
a cylindrical surface with a radius of 45.72 m. We use the
PEC process described in Section II-A to calibrate the phase
error, and then, 11 (baseline) × 4 (polarization) 2-D images

are obtained by using G-PFBP to the calibrated data. The
imaging plane is chosen to be the slant-range plane, and the
strong scattering threshold is set to be TdB = 30. The 2-D
projection image using FFT [see Fig. 7(a)] proves that the
proposed PEC process could be useful for phase calibration
of the measurement data.

Fig. 7(b)–(d) gives 2-D projection results of the down
range-elevation plane using different elevation inversion algo-
rithms. As can be seen in the figure, the parameter estima-
tion algorithms perform significant resolution improvement
in the elevation direction. As displayed in the marked white
box, the scattering points produced by the superfast LSE
tend to be more dispersed, whereas the P-UMUSIC and
P-SSD give a more compact result. Some sidelobe artifacts
are misclassified as the scattering points by the P-UMUSIC
(the yellow box). In contrast with the reference algorithms,
P-SSD performs more robust in the elevation inversion
process.
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Fig. 8. 3-D high-resolution image of T72 tank with different polarizations using narrow azimuth range data. (a) HH polarization. (b) HV polarization.
(c) VH polarization. (d) VV polarization.

Fig. 8 shows the 3-D reconstruction results of the T72 tank
using the narrow azimuth range data. The top 30-dB dynamic
ranges of each polarization and the corresponding geometry
model are displayed. It is noteworthy to point out that the
acquired GTRI data have not been processed by the polariza-
tion calibration process, and thus, the absolute magnitude of
each polarization may not be accurate. As illustrated in this
figure, the main backscattering has occurred in the upper sur-
face of the tank, which is consistent with the current coverage
of the radar beam. According to the reconstructed scattering
features that are matched with the geometry components,
we can analyze the scattering mechanism of each scattering
center. For instance, there are four marked scattering centers in
Fig. 8(a). From the 3-D point cloud in Fig. 8 and the scattering
matrix decomposition [5], [41] result in Fig. 9, we can know
that the first scattering center is generated by the combined
effect of the single- and double-bounces of the gun barrel joint.
The second scattering center is produced by the scattering of
the track baffle and even-bounce from the track baffle and
ground, and the third one is generated by the scattering of

the structure composed of the cube and turret. The fourth
one is generated by the dihedral-like reflector composed of
the plate armor and the oil barrel. In addition, from the HV
and VH polarization results in Figs. 8(b) and (c) and 9(c),
we can see that the cross-polarization results are relatively
weak in the amplitudes, and the scattering mechanisms are
different from those in the copolarization results. For example,
the diffractions of the edge corner between the plate armor
and oil barrel [the orange box in Fig. 8(b)] are clearly visible,
whereas the copolarization results focus on all discontinuities
between these two components. This scattering characteristic
can also be observed in Fig. 4 (scattering centers 1 and 3).

The 3-D reconstruction result (VV polarization) of the
T72 tank with full aperture data is presented in Fig. 10. From
the multiview of the 3-D reconstruction result, we can see
that the outlines of the T72 tank are clearly visible. Strong
scatterings are mainly concentrated in the cannon barrel, turret,
tracks, oil barrel, and the connection between them. However,
due to the accumulation of the measurement error and the
periodic data gap, the reconstruction result could not be as



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE IV

RUNNING TIME OF THE NUMERICAL DATA AND THE MEASUREMENT DATA

Fig. 9. Scattering matrix decomposition of the 3-D point cloud using the Pauli
basis. (a)

√
2/2|AHH + AVV|. (b)

√
2/2|AHH − AVV|. (c)

√
2/2|AHV + AVH|.

Fig. 10. 3-D reconstruction result of the T72 tank processed by the proposed
technique (full aperture data, VV polarization).

smooth as the numerical example. Furthermore, there are two
scattering centers located on the two sides of the tank (the
yellow box in Fig. 10). According to the locations of these two
scattering centers, we can conclude that they are caused by the
scattering of the aforementioned corner reflectors [26], [45].

The running time of all data processing is shown in
Table IV. All algorithms are implemented in the same

Fig. 11. Running time of the elevation inversion process versus the total pixel
number. The baseline number Nϕ is set to be 11, and values are averaged over
20 Monte Carlo runs (using the GTRI dataset).

hardware platform: Intel Core i5-9300H 2.40 GHz and
NVIDIA GTX 1650. The GTX 1650 has 896 multiprocessors,
and the max thread block size is [1024 1024 64]. Notice that
all reference algorithms need to use the proposed G-PFBP
for multibaseline 2-D imaging, and thus, all the running
times of 2-D imaging are the same. Compared to the central
processing unit (CPU) only mode, the running time of G-PFBP
is reduced by 6.5 times, and the improvement could be further
increased when the imaging grid number is increasing. As can
be seen in the table, the superfast LSE takes much time in
the elevation inversion process since the scattering parameters
of each polarization are estimated separately, which means
that several processing steps need to be repeated four times.
The P-UMUSIC provides a joint estimation, which could
save much time for the full polarization data. Nevertheless,
the cyclic peak searching process is still considered to be
an expensive way for the elevation inversion process because
there are thousands of resolution cells to be processed. Without
time-consuming peak searching or multiple iteration process,
P-SSD uses the matrix decomposition process to obtain the
parameters of scattering centers and performs more than ten
times faster than the other two algorithms in the elevation
inversion process.

In addition, the computational complexity of G-PFBP is
O(Nϕ Nθ (N x Ny)

5/4) [32], where Nθ is the azimuth sample
number and Nϕ is the baseline number. The computational
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complexity of P-SSD in elevation inversion is given as
O(h(Nϕ − L)L2) since the most time-consuming process is
the SVD, where h denotes the total pixel number of strong
scattering area in a 2-D image and L is the length of the
sliding window [see (18)]. The running time scales with
the pixel number h are shown in Fig. 11. It can be seen
that P-SSD shows stable computational advantages over the
other two algorithms. Note that all the results are based
on the condition that the baseline number is limited in the
practical measurement, whereas some algorithms tend to be
more efficient when the baseline number is a large value [39].

V. CONCLUSION

In this work, a complete ISAR tomography framework is
proposed for fully polarimetric 3-D high-resolution imaging.
The frequency-domain PEC followed by a GPU accelerated
polarimetric filtered backprojection process is developed to
obtain the 2-D complex-valued images necessary for 3-D
imagery with different baselines and polarization combina-
tions. The 3-D fully polarimetric ISAR images are then
reconstructed by extending the SSD to polarimetric signature
data. Two examples of real-world complex targets with specific
polarimetric scattering mechanisms for both numerical data
and outdoor range datasets are processed with high-quality
3-D polarimetric images, demonstrating that the proposed
technique is useful for 3-D tomographic reconstruction of
outdoor range signature data for real-world complex targets
with superior computational efficiency.
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