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Abstract

Sleep is definitely an essential cerebral state for all living beings. The occurrence

of sleep passed through the evolutionary sieve and is widespread in animal species.

Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic

sleep deprivation is detrimental. Indeed, young humans spend most of their time

sleeping and, at the same time, they are the subjects that learn at faster rates.

In adults, sleep deprivation is detrimental for cognition and it is one of the worst

tortures that can be inflicted. Despite the importance of the phenomenon in relation

with the cognitive effects, a complete understanding of its functions and underlying

mechanisms is still lacking.

Recent studies focused the attention on a specific phase of sleep in relation

to cognition and learning: the deepest of physiological non-REM sleep stage in

which specific phenomena like Slow Oscillations (SO) are the default emergent

activity of the cortical network and are observed as an alternation between Down

states (characterized by nearly silent neurons) and Up states (with intense neuronal

activity), occurring at a frequency in the range [0.5, 4] Hz (delta band).

Among the contribution of this work, there is the building of fundamental

instruments for the study of this phenomenon and of its interplay with learning,

also thanks to the experimental context in which I am involved: the European

Human Brain Project (HBP) and The Motor Control and Cognition Lab (MCC_lab)

directed by Prof. Stefano Ferraina at Sapienza University. Basically, we developed

an analysis tool for the extraction of salient feature (velocity, direction, planarity of

the slow waves and other specific features) from the experimental recordings in vivo

acquired with different methodologies (electrophysiology, calcium imaging, etc.), and

simulations tools able to reproduce the behaviour of large portion of the cerebral

cortex.

To complement this activity, we built theoretical models and simulation tools

able to reproduce the slow wave activity and their effect on learning, demonstrating
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that such a cerebral state has a fundamental role in memory consolidation. The

simulated outputs of these theoretical models are then analyzed with the same

instruments used to analyze in vivo recorded data, allowing a faster and simpler

comparison between experimental and synthetic data.

In the end, I also had the chance to analyze signals recorded in vivo on monkeys

during learning tasks, more specifically during the countermanding and the transitive

inference tasks. I had not the possibility to verify the effect of sleep on these tasks,

due to the impossibility of setting-up new experiments on animals in the last period,

but the activity done, besides reporting interesting results, was preparatory to the

study of the role of sleep on learning process and memory consolidation. Moreover,

it gave me the possibility to work on data directly acquired in an experimental lab,

that I consider a complementary activity essential for my scientific background.
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Chapter 1

Scientific question: the
cognitive effects of sleep

1.1 Introduction

This work inserts in a larger research plan that aims to the creation of data-driven

models able to express the cognitive effects of deep-sleep, its interplay with awake

learning and the details of the spatio-temporal features of cortical NREM, at large

scale and high-resolution. In the future, we plan to extend the current study to the

activity and effects of REM sleep, to reproduce the specific effects and characteristics

over a larger set of accessible brain-states. To reach this goal, several aspects must

be faced in different directions, in order to reach a "whole system" that empowers

the study of interest.

One of the first objectives to be afforded was the creation of an environment

allowing for large-scale simulations of cortical activity (e.g. the whole mouse hemi-

sphere), able to reproduce different states of such a complex system. In particular,

the large-scale model, made up of millions of neurons and billions of synapses, must

be able to reproduce the behaviour of the cortex both during sleep (more specifically

the deep-sleep phase of slow waves considered as the major responsible for memory

consolidation) and during awake-like states.

On the other hand, the study of the interplay between deep-sleep and learning

also requires the use of models able to learn. These models must be provided of
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synaptic plasticity, that is quite expensive in terms of computational resources, about

four times more expensive and above all with a requirement in terms of simulation

length that approach millions of seconds. Due to this, plasticity was not used in the

setup of the large-scale model previously described. In addition, a simplified small

model, made up of a very limited number of neurons, allows for a deeper control of

the learning process. These were the main reasons that drove the choice to study

this aspect on a simplified thalamo-cortical model. The further step will be that

to use the knowledge acquired in creating large-scale simulations to increase the

computational power of the learning model itself.

On top of this, tools are required to verify the results of simulations and their

relevance in comparison with experiments: with the mean of an iterative process

of simulation and results comparison, parameter refinement of the used models

will convey toward a final refined system able to accurately reproduce physical

phenomena.

The models above described have been calibrated using data collected in rodents

under anesthesia, a proxy for NREM sleep that could however introduce significant

difference compared to physiological sleep in humans.

To overcome this limit, the work should have included, according to the original

plan, a thorough analysis of electro-physiological data acquired on monkeys during

learning tasks and involving sleep, aiming to confirm (or reject) the findings obtained

with the above rodent-based models and simulations. Unfortunately, due to the

COVID-19 contingency, the last part of my activity could only be considered a sort

of "methodological" section, in which I could experiment the analysis of in vivo data

recorded in the past years by The Motor Control and Cognition Lab, without any

interaction with sleep. I clearly understand that this section could be considered a

bit disconnected from the rest of the work, but represented for me a really fruitful

and formative activity, preparatory for the study of sleep effects on cognition tasks

in the next future.



1.2 Sleep: a phenomenon essential for cognition and learning 3

1.2 Sleep: a phenomenon essential for cognition and

learning

Human brains spend about one-third of their life-time sleeping. Sleep is present in

every animal species that has been studied (see Tononi and Cirelli 110). This happens

notwithstanding two negative aspects: the danger caused by sleep, that diminishes

the capability to defend from predators and other threats, and the reduction of

time available for activities targeting immediate rewards (e.g. hunting or gathering

food). Having survived the evolutionary selection in all species, sleep must therefore

provide strong advantages. Another notable fact is that newborns’ human brains

occupy the majority of their time asleep, nevertheless they learn at a very fast

rate. The reader can see, for instance, Tononi et al. 111, containing a compendium

of motivations for the study of sleep, also in relation to consciousness. Moreover,

even if occasional awakening does not seriously impair brain biology and cognitive

functions, in the long term chronic deprivation of sleep produces measurable effects

on cognition, mood and health (see Killgore 53). Experimental studies like Tononi

and Cirelli 110 and Watson et al. 118 investigated the effects of sleep on firing rates

and synaptic efficacies. In 110, Tononi and the other authors formulated hypotheses

about homeostatic processes occurring during sleep. A possible motivation for the

brain entering in the sleep activity would be to set a better energy consumption

regime during next wakefulness cycle. This might be obtained by reducing firing rates

and the amplitude of evoked post-synaptic potentials. It could be reached by pruning

non necessary synapses and by reducing synaptic weights within the limits imposed

by the conservation of adequate coding for memories. In 118 Watson et al. propose a

novel intriguing experimental evidence. They used large-scale recordings to examine

the activity of neurons in the frontal cortex of rats and observed that neurons with

different pre-sleep firing rate are differentially modulated by different sleep substates

(REM, non-REM and micro arousal). Sleep activity such as slow waves activity and

sharp-waves ripples have been shown to be beneficial for memory consolidation (see
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Walker and Stickgold 116 and Jadhav et al. 51) and task performances optimization

(Smulders et al. 100).

The impact that sleep has on learning and cognition, drove my work on the

study of this phenomena. In particular, I concentrated on the specific phase of slow

oscillations and on their effects on awake performance. At the neural population

level, in both deep-sleep and anesthesia, slow oscillations emerge in the deepest stage

of NREM sleep (stages IV), from the alternation between transients of high neural

firing (UP states) and transients of near silence (DOWN states) (see Steriade et al.

105), occurring at a frequency in the range [0.5, 4] Hz (delta band).

In a sleeping brain, SO are not an isolated dynamical pattern. Indeed, Up and

Down states involves large parts of the cortical tissue and propagate on the cortical

surface as travelling waves. Observing the sleeping brain at a macroscopic scale, a

spatial component appears, that transforms SO in a phenomenon synchronized in

space and time as traveling waves (slow wave activity, SWA). Slow waves has been

observed both in in vivo and in vitro (cortical slices) with speeds in the order of few

tens of millimiters per second (ranging from 10mm/s to 30mm/s depending on the

animals, the kind of sleep, in case from the used anaesthetic, etc).

In the following I try to analyze, both with models and data analysis, the effects

of deep-sleep-like slow oscillation activity on learning and memory consolidation.

1.3 Analysis of experimental data and simulations of
cortical Slow Waves

Today, the richness of data and methodologies, used for analysis in the neuro-

physiological field, constitute a key point for the study of brain dynamics and their

function. A landscape of different recording techniques spotlights on different aspects

of neural activity. Recorded data vary among them for several aspects: kind of

signals (e.g. electrophysiological, optical imaging, magnetic resonance, single unit),

time resolution (from milliseconds to seconds), space resolution (from millimeters to

the whole brain), and so on (Chen et al. 19).
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From one side, this facilitates scientific progress by enabling a variety of new

methodological approaches and analytical findings. On the other hand, this diversity

makes it more difficult to relate complementary yet different approaches, to make the

results comparable, and to incorporate them into models, such that the heterogeneity

of analytical methods, tools, and even terminologies makes it difficult to form a

coherent understanding. In other words, making scientific progress by building a

cumulative understanding based on existing results is every day more challenging.

Figure 1.1. Multi-scale and multi-methodology recording of a the slow waves
phenomenon. Different kind of recording produce different readings of the same
phenomenon in space resolution, ranging from micron to few centimeters, and in time
resolution, from microseconds to milliseconds and up. Adapted from Gutzen et al. (43)

.

The slow waves study is an example of this scenario. The phenomenon can be

observed during deep-sleep and anesthesia with various measurement techniques and

in a wide variety of species (Adamantidis et al. 2, Alkire et al. 3), from mouse to

primates, up to the humans (see Figure 1.1 adapted from Gutzen et al. 43). At the

same time, several models can be used to replicate this phenomenon. This poses a

requirement of cross-domain comparison in order to reach a comparability, needed
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both for models calibration and validation and for the quantification of experimental

variability.

In our work we thought that the use of a unified software analysis pipeline (De

Bonis, et al. 25) could be a boost in the direction of improving the understanding

of neurological phenomena and on the comparison of results coming from different

acquisition methodologies. Moreover, it can give a help also in the direction of

reproducibility of data analysis for all the scientific experiments who gives full access

to experimental results (see Plesser, 83).

The construction of such an analysis tool is not simple, when we take into account

the different data acquisition methods and also the different kind of observables we

want to extract from them. In this context, modularity is of crucial importance to

allow the user to build its own analysis workflow and to interface with different input

data.

In this optic, the analysis pipeline I collaborated to build during this work, under

the coordination of Jülich Research Center (FZ Jülich) and the National Institute

of Nuclear Physics (INFN), can be seen as a workflow that combines multi-scale,

multi-species, multi-methodology experimental data sets or simulation models and

can be applied to both experimental data and simulation results (see Gutzen et al.

43, and software references 119, 120, 121).

1.4 Modeling of SWA and asynchronous AW-like states

The multiscale organization of the brain is multifaceted as despite an invariance

of its structural properties, like the connectivity between its components: the ongoing

collective dynamics of this complex system can display disparate and qualitatively

different states. A sleeping brain, for instance, expresses at the single-neuron and local

network levels slow oscillations (SO) of activity which at a macroscopic scale appears

to be synchronized in space and time as traveling waves (slow wave activity, SWA).

The same brain during quiet wakefulness (QW) shows an asynchronous distributed

activity which, even in the absence of interactions with the environment, displays
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a multiscale correlation continuously changing in time, eventually highlighting the

existence of competing subnetworks.

Several computational models are available to provide the community with tested

and proven open-source models to be used in new studies and implementations.

Just to cite some of them, the Potjans-Diesmann model (84) describes a cortical

microcircuit containing two cell types (excitatory and inhibitory) distributed in four

layers, representing the cortical network below a surface of 1 mm2. This model has

been used in a huge number of studies, also adapting it to specific scientific purposes

(for example using different classes of neurons models). Another example is the

Virtual Brain (94), a neuroinformatic platform based on the Jirsa model, that tries to

simulate the brain organization on the macroscopic level of detail. This tool is based

on the idea of taking advantage of available functional and structural brain data

generated by imaging techniques such as MRI, functional MRI and trans-cranial

magnetic stimulation. Virtual Brain applications span from the research study

(for instance allowing the monitoring of the dynamics of communications between

different brain regions) to more concrete medical applications, also at the scale of

the human brain.

The purpose of my work is much more limited of those of Virtual Brain, both in

terms of area and complexity of rhythms. Nevertheless it was not less challenging,

because the transitions between SWA and QW like those naturally expressed during

the wake-sleep cycle can be considered a demanding task for parallel simulation

of large multi-scale models of the brain. During SWA, part of the network is syn-

chronously active with a huge rate of exchanged spikes while the rest of the system is

almost silent. On the other hand, during QW an asynchronous state involves homo-

geneously the whole network. This poses a question whether computational power

and inter-process communication load of simulation platforms are fully exploited in

both these brain states.

To address this issue, we run a bunch of simulations of spiking neuron networks

organized in two-dimensional grids of modules, each aiming at modelling a cortical
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column, including up to 50G synapses connecting 46M point-like neurons (Leaky

Integrate and Fire with Spike Frequency Adaptation) distributed over a large set of

MPI processes. Just changing a few parameters in the neuron description (mainly the

parameter that express the fatigue or the adaptation of the neuron), slow oscillation

and transition to the awake-like state can be modulated.

Distributed simulations have been executed on the NEST platform both under

SWA- and QW-like brain states. For comparison and validation, the same scaling

analyses have been performed on the proprietary mixed time and event driven

DPSNN engine (Distributed Simulator of Plastic Spiking Neural Networks) running

the same large-scale spiking neuron network models (79).

The use of DPSNN allows for faster simulations of the columnar model when

compared with the simulations of the same model with the most flexible and general-

purpose NEST engine. There is a widely felt need for versatile, general-purpose

neural simulators that offer a user-friendly interface for designing complex numerical

experiments and provide the user with a wide set of models of proven scientific

value. This boosted a number of initiatives (notably the NEST initiative, now

central to the European Human Brain Project). However, such flexibility comes at a

price. Performance-oriented engines, missing all the layers required for offering user

generality and flexibility, contain the bare minimum code. In the case of DPSNN,

this resulted in higher simulation speed, reduced memory footprint, and diminished

initialization times, es extensively reported in Chapter 3 (see also Pastorelli et al.,

79).

As a last point, let me address the acceleration obtained with the use of GPU

instead of simple CPU. Over the past decade there has been a growing interest in

the development of parallel hardware systems for simulating large-scale networks

of spiking neurons. Compared to other highly-parallel systems, GPU-accelerated

solutions have the advantage of a relatively low cost and a great versatility, thanks

also to the possibility of using the CUDA-C/C++ programming languages. In this

context has been developed NeuronGPU (see Golosio et al. 38 and 39), a GPU
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library for large-scale simulations of spiking neural network models, written in the

C++ and CUDA-C++ programming languages, based on a novel spike-delivery

algorithm. This library includes simple LIF (leaky-integrate-and-fire) neuron models

as well as several AdEx (adaptive-exponential-integrate-and-fire) neuron models

with current or conductance based synapses, user definable models and different

devices.

1.5 Awake-sleep cycles in incremental learning tasks

This section summarizes the scientific question of my thesis activity: the key

aspect of the role of sleep during learning. Sleep is essential in all animal species,

and it is believed to play a crucial role in memory consolidation as described also

in Walker ans Stickgold (116), or in Jadhav et al. (51), in the creation of novel

associations, as well as in the preparation of tasks expected during the next awake

periods. Among the multiple effects of sleep on the brain and body, we focus here

on the consolidation of learned information, as studied also from Buzsáki in the past

years (14). Homeostatic processes could normalize the representation of memories

and optimize the energetic working point of the system by recalibrating synaptic

weights (Tononi and Cirelli 110) and firing rates (Watson et al. 118). Specifically,

Watson et al. show that fast-firing pyramidal neurons decrease their firing rates

over sleep, whereas slow-firing neurons increase their rates, resulting in a narrower

population firing rate distribution after sleep. Also, sleep should be able to select

memories for association, promoting higher performance during the next awake

phases (see Smulders et al. 100). Indeed, in Capone et al. (15) we demonstrate

the beneficial effects of sleep-wake phases involving homeostatic and associative

processes in a visual classification task.

In this work, we show the interesting effects of deep-sleep-like slow oscillation

activity on a simplified thalamo-cortical model which is trained to encode, retrieve

and classify images of handwritten digits. During slow oscillations, spike-timing-

dependent-plasticity (STDP) produces a differential homeostatic process. It is
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characterized by both a specific unsupervised enhancement of connections among

groups of neurons associated to instances of the same class (digit) and a simultaneous

down-regulation of stronger synapses created by the training. This hierarchical

organization of post-sleep internal representations favours higher performances

in retrieval and classification tasks. The mechanism is based on the organizing

principle of the cortex described by Larkum (58): the interaction between top-down

cortico-thalamic predictions and bottom-up thalamo-cortical projections during

deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during

sleep, cortico-thalamo-cortical connections favour the activation of other neurons

coding for similar thalamic inputs, promoting their association.

After this first promising work, the activity proceeded on the same line with the

development of a refined thalamo-cortical model. Increasing experimental evidence

is mounting for both the role played by the combination of bottom-up (perceptual)

and top-down/lateral (contextual) signals and for the beneficial effects of sleep as

key components of many high-level cognitive functions in the brain. In the following,

I give an overview of some aspects, driven from experimental observations, that we

have taken as fundamental building blocks for the construction of this model.

It is known that the cortex follows a hierarchical structure (see Barone et al. 4);

starting from this, Larkum et al. (58) propose an associative mechanism built-in

at a cellular level into the pyramidal neuron, exploiting the cortical architectural

organization. Long-range connectivity in the cortex follows the basic rule that

sensory input (i.e., the feed-forward stream) terminates in the middle cortical layers,

whereas information from other parts of the cortex (i.e., the feedback stream) mainly

projects to the outer layers. This also applies to projections from the thalamus, a

structure that serves both as a gateway for feed-forward sensory information to the

cortex and a hub for feedback interactions between cortical regions. Indeed, only 10%

of the synaptic feedback inputs to the apical tuft come from nearby neurons, and the

missing 90% arise from long-range feedback connections. This feedback information

stream is vitally important for cognition and conscious perception, and this picture
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leads to the suggestion that the cortex operates via an interaction between feed-

forward and feedback information. Larkum et al. highlight that, counter-intuitively,

distal feedback input to the tuft dendrite could dominate the input/output function

of the cell: short high-frequency bursts would be produced on a combination of

distal and basal input. As a consequence, although small (under-threshold) signals

contribute only to their respective spike initiation zones, the fact that input has

reached the threshold in one zone is quickly signaled to other zones. This provides

the possibility for a contextual prediction: the activity in the apical tuft of the

cell can lower the activity threshold driven by the basal region, the target of the

specific nuclei in the thalamus that projects there the perceptual and feed-forward

streams. In summary, this mechanism is ideally suited to associating feed-forward

and feedback cortical pathways. Thus, they propose a conceptual interpretation of

these biological pieces of evidence: the feedback signal aims at predicting whether a

particular pyramidal neuron could or should be firing. Moreover, any neuron can fire

only if it receives enough feed-forward input. Resulting from this interpretation, the

internal representation of the world by the brain can be matched at every level with

ongoing external evidence via a cellular mechanism, allowing the cortex to perform

the same operation with massively parallel processing power.

Inspired by those biological mechanisms, we exploited the combination of context

and perception in a thalamo-cortical model based on a soft winner-take-all circuit of

excitatory and inhibitory spiking neurons. After calibrating this model to express

awake and deep-sleep states with features comparable with biological measures, we

demonstrate the model capability of fast incremental learning from few examples,

its resilience when proposed with noisy perceptions and contextual signals, and an

improvement in visual classification after sleep due to induced synaptic homeostasis

and association of similar memories.
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1.6 Preparing the analysis of complex cognitive tasks
in monkeys

The brain exhibits capabilities of fast incremental learning from few noisy exam-

ples, as well as the ability to associate similar memories in autonomously created

categories and to combine contextual hints with sensory perceptions. Together

with sleep, these mechanisms are thought to be key components of many high-level

cognitive functions, as demonstrated by the model above described.

At this point the idea was to study the same phenomena on experimental

recordings, analyzing the traces recorded on monkeys to find hints of the interplay

between sleep and the cognitive tasks. Unfortunately, this kind of recordings,

reporting the effect of sleep and in particular of slow wave activity on learning

and cognition, were not available for non-human primates at the moment of my

thesis. Anyhow, to take confidence with experimental data recorded during cognitive

tasks on monkey, I started my activity analyzing the data already available in the

The Motor Control and Cognition Lab, mainly with the experimental recordings of

transitive inference and countermanding tasks.

The complexity and multidimensionality of cortical activity indisputably stands

out during learning. Neural representations are modulated in the brain behavioural

and cognitive tasks (Mattia et al. 65). The idea behind this research work was

to understand how such complexity change as a function of a specific behavioural

context and as a function of the received stimulus. Often recent studies adopted

dimensionality reduction to analyze neural populations and to extract features from

them (see Cunningham et al. 23 and Gao et al. 31). With dimensionality reduction

methods, data can be reduced to a low-dimensional space, allowing a faster and

easier insight into the dynamic of neural correlates.

Following this new trend, I concentrated my attention on the study of the dimen-

sionality variability in learning tasks. In some sense, the neuronal dimensionality

has been taken as a measure of neuronal complexity along a behavioural cognitive

task as in Gao et al. (31). In our case, for example, some indications could arise
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from the characterization of this measure for different difficulty levels of the tasks,

such as different symbolic distances in transitive inference (Brunamonti et al. 10) or

stop signal and short delays in countermanding experiments (Mirabella et al. 69).

I performed all this kind of analysis relaying on the classical Principal Com-

ponent Analysis (PCA) to obtain dimensionality reduction, after having take into

consideration also other methodologies. In particular I considered the one proposed

by Laio (29), and I conducted a comparison between these two methods, as reported

in section 5.4, concluding that PCA, with the opportune caveats, still remain the

most reliable method.

1.7 Structure of the thesis

In Chapter 2 I briefly present an adaptable and reusable analysis pipeline to

support quantitative statistical comparisons on the level of slow wave characteristics.

The key objective of the pipeline is to bring together existing methods, standards,

and tools in a flexible and modular manner in order to serve the requirements of

a wide range of datasets and research questions. This analysis tool represent a

promising item for the statistical study of identified waves, propagation velocities

and local excitability, not only in mouse SWA but also on different rhythms in

monkeys.

Simulation methodologies and their support on the reproducibility of the different

rhythms of cerebral cortex are presented in Chapter 3. This chapter underline

the difficulties and the problematic afforded to set-up high-resolution, wide-field

simulations using different approaches (both mean-field and spiking), as well as the

applied accelerations techniques.

Chapter 4 describes the thalamo-cortical models able to classify images extracted

from the MNIST set of handwritten digits. The models are based on the organizing

principle of the cerebral cortex proposed by Larkum (58). They show capabilities

of fast incremental learning from few noisy examples and the ability to associate

similar memories in autonomously-created categories, combining contextual hints
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with sensory perceptions. Together with sleep, these mechanisms are thought to be

key components of many high-level cognitive functions.

Finally, Chapter 5 reports the activity done on the analysis of recorded ex-

perimental data coming from two different kind of experiments conducted on the

MCC_lab, the countermanding and the transitive inference. The focus of the activ-

ity is on the study of dimensionality and its variability over trials, in addition to

some preliminary analysis describing a methodology prepared to be applied on data

that will be hopefully available in the future, accounting of the sleep phase and its

interaction with behavioural tasks.

1.8 Personal contribution

These thesis reports results related to both the analysis of neural correlates

on non-human primates performing behavioural tasks recorded in the The Motor

Control and Cognition Lab and cortical simulation and data analysis carried out as

participant in the European project Human Brain Project (HBP) in the framework

of the HBP APE Research Group of INFN Sezione di Roma.

In particular I contributed to the developments of models reproducing slow

wave activity and awake-like state, and on the high-resolution large-scale simulation

engine able to reproduce this kind of cerebral activity as described in Chapter 3

and published in 79 and 78. The analysis I performed on simulations for real-time

execution was published in 99, while the acceleration studies using GPU platform

in 38 and 39. The preliminary results of these publications was also presented as

oral contribution at the NEST Conference 2017 - A Forum for Users & Developers,

19-20 December2017, Jülich, Germany.

For what concerns models, in addition to the one above mentioned that is able to

reproduce the slow waves traveling on the whole hemisphere of a mouse at biological

neural and synaptic resolution, I also participated in the development of the thalamo-

cortical models described in Chapter 4 that demonstrate the deep-sleep effects on

learning and cognition and published in 15 and 37. These models was preliminary
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presented as a poster at the Human Brain Project Summit 2018, 15-18 October 2018,

Maastricht, together with the simulation results above described, and published in

15 and 37.

In addition, I also contributed to the development of the analysis tools described in

Chapter 2, an aim toward the FAIR principles that in these last years are animating

the scientific community and presented with my contribution at the Bernstein

Conference 2020 with the poster 43. I also participate to present the preliminary

results obtained with the developed analysis pipeline applied to experimental and

simulated data to the SP3-based meeting: Scientific highlights and collaborations

across HBP - 2018.

The activity reported in section 5 constitute my personal contribution to the

analysis of already recorded data on monkeys, in particular during transitive inference

tasks. The data acquisition was done in the past years in The Motor Control and

Cognition Lab (MCC_lab) directed by Prof. Stefano Ferraina at Sapienza University.
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Chapter 2

Analysis of SWA in neural
correlate through an innovative
tool

The phenomenology of slow wave activity (SWA) covers a crucial role in this work.

Therefore, the analysis tools able to extract the salient features of this phenomenon

constitute a prerequisite, in order to study the effects of SWA on learning and

cognition.

Several tools are already available in the neuroscience community, but quite

often they are dedicated to analyzing specific input data, and quite rarely provide a

complete workflow adaptable to different cases.

More in general, in the last years, there is a strong tendency among scientific

community, to move toward a "FAIR" approach to science. FAIR is an acronym

that stands for Findability, Accessibility, Interoperability, and Reuse of scientific

data and their management. These principles have the aim to facilitate knowledge

discovery by assisting humans and machines enhancing their ability to automatically

find and reuse scientific data, in addition to supporting data integration and analysis

throughout associated algorithms and workflows.

In this context, the team of work I am involved in, decided to set up a dedicated

tool inspired to the basic FAIR principles (see Gutzen et al. 43). The tool is manly

focused on the study of slow waves, but at the same time it could be general enough
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to be reused in different context, foreseeing a modularity and a flexibility for what

concern the input data that could be analyzed, the flux of analysis to be followed,

the features that need to be extracted.

The tool has been applied to the data we had in our Lab, in particular to some

ECoG datasets provided by IDIBAPS (Institut d’Investigacions Biomèdiques Agustí

Pi i Sunyer), and to optical data constituted by calcium imaging datasets, acquired

from mice, by LENS (European Laboratory for Non-Linear Spectroscopy).

To complement this work, we also set up theoretical models expressing slow waves,

that are able to demonstrate that such waves play a crucial role on the learning

process (see Chapter 4). Our analysis tool, thanks to its flexibility and reusability,

has been also applied to synthetic data obtained from simulations, allowing us better

calibration of detailed models of brain dynamics and function.

2.1 An analysis pipeline for slow waves activity

The Slow Waves Analysis Pipeline (SWAP) is a reusable and adaptable tool,

able to analyze diverse datasets of slow rhythms in the cerebral cortex. The main

investigation focus is the analyses of the features and cognitive effects of slow wave

activity (SWA) observed in the cerebral cortex during deep sleep and anesthesia.

More in detail, SWAP can be used to extracts key spatial-temporal characteristics

from experimental or simulated slow waves. SWA can be acquired with multiple

experimental methodologies (e.g. using micro-ECoG arrays or wide-field Calcium

imaging techniques) at local and multi-areal spatial resolution; when applied to

simulation results similar features should be extracted, to enable a quantitative

comparison between synthetic and experimental data, fostering a better calibration

of simulations.

For this reason, a common framework has been established for experimental and

simulated data, addressing the efforts towards the design and implementation of a

set of analysis tools that integrate and expand already existing more general tools

widely used in the neuroscience community.
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Finally, there is experimental evidence that wave-like propagation can be observed

across several frequency bands (from delta to gamma) in electro-physiological data

(see for instance Wu et al. 125, Sato et al. 95 and Muller et al. 73). Thus, despite the

scientific question that triggered this work was the SWA, such that the pipeline in its

current formulation has been designed and developed specifically for addressing slow

rhythms in the cortex, we are evaluating a further generalization of the tools, in the

direction of a "WAP", Wave Analysis Pipeline, aiming at disentangling the different

components that appear to be present when looking at the collective cerebral signals

expressed across brain states.

2.1.1 Reproducibility and modularity

The pipeline is built to be adaptable to different input data types and different

analysis methods to address various scientific questions, trying to follow the FAIR

principles. For this reason, it is structured as a modular system executing the

processing and the analysis in order to satisfy multiple requirements. At a very

high level of description, the input data may differ in terms of spatial or temporal

resolution, scale, signal type, etc. Disregarding if the data are obtained via EEG,

electrode arrays, imaging techniques, or even simulations, the aim is that to converge

towards a common description of the phenomenon of interest. Once reduced the

input data to a common language, the pipeline can be used selecting a variety of

specific analysis to derive the characterization metrics according to the phenomenon

the user needs to analyze (see Figure 2.1)

The pipeline is structured into a series of sequential stages, where each stage is a

self-consistent logical unit with a specific purpose, well defined inputs and outputs.

Each stage is further segmented into blocks. A block defines a concrete action to be

performed on the data, i.e., it implements a method. Similar to stages, blocks have

specific inputs and outputs by which they are chained together, but in contrast to

stages, block are modular and are not necessarily executed in a predefined sequence.

At the current level of implementation, the SWAP pipeline is based on five stages,
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Figure 2.1. SWAP: a modular pipeline approach

each one with its specific purpose as described here in the following.

1. Data Entry: the first stage is used to load datasets and, when available,

metadata. The most important feature addressed by this stage is the conversion

of the data into a common standardized format, the NEO data format (32). In

addition, a check is done whether data and metadata conform to the pipeline

requirements.

The main block implemented in this stage is the data_curation. The input

data, coming from different kind of recordings, such as EcOG, optical acquisi-

tion, or simulations, are converted in a common format, the NEO data format.

Since this point on, all the data result uniform to the same format.

2. Processing: during this second stage, data are prepared for the analysis.

Here the selection of the blocks that will be executed in accordance with the

data type and the analysis objectives is essential.

Among the main blocks that can be selected, the user can chose to apply

different type of filters (frequency_filter), normalization (normalization),

spatial smoothing (spatial_downsampling), detrending (detrending) and

the selection of the region of interest (ROI, roi_selection).

3. Trigger Detection: this stage implements a trigger for the detection of the
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transition times from DOWN to UP states (up-ward transitions) and from UP

to DOWN states (down-ward transitions), on the data already pre-processed

during previous stages. The trigger strongly depends on the dataset, the

processing and the detection method selected by the user.

Different methodologies can be used to detect the phase transitions, such

as threshold, hilbert_phase, or minima. Moreover, if needed, the re-

move_short_states block can be used to removes short UP and/or DOWN

states.

4. Wavefront Detection: at this point, the data have been reduced to a

common description of waves. The detection methods can operate on trigger

times, grouping them into individual wavefronts, agnostic about the type of

the original data.

In this stage two blocks are mainly notable: the clustering that groups

triggered events by spatial and temporal distance, and the optical_flow that

calculates vector velocity field.

5. Wave Characterization: this is the final stage used to calculates the char-

acteristic measures related to a user-defined specific task or to a given scientific

question. The result can be for instance used for the comparison between

different datasets or between methods of analysis, for model validation, method

benchmarking, and so on.

Some of the blocks already implemented for the analysis of slow waves are

the direction and the velocity_planar respectively for the interpolation of

the directions of planar waves and for the interpolation of waves propagation

velocity.
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Figure 2.2. Stages of the SWAP pipeline: five successive stages containing each a set
of block performing specific analysis on the input data

2.2 An analysis pipeline extracting local oscillation fea-
tures

The Slow Oscillation Analysis Pipeline (SOAP) has been developed to investigate

the local oscillations of the multi-unit activity signal between Up and Down states,

i.e. without including the information on spatio-temporal coherence among the

recording sites and thus the signal propagation. This tool, strictly related to SWAP,

focuses on the characteristic of SO at each pixel or electrode, producing an output

that complements and enriches the information of SWAP.

Basically, SOAP results can be obtained re-using the first three stages of the

SWAP pipeline, with this also demonstrating the modularity and reusability of

SWAP. In particular the blocks of the Trigger Detection stage can be used to

this purpose. Depending on the user-specific analysis, the blocks of threshold,

hilbert_phase, or minima can be used as alternative methodologies.

The idea consists in understanding where the wave is at a specific instant on

the selected point, disregarding the spatial component of the wave. In some sense,

it can be considered as a local analysis of a macro-phenomena, where the spatial

components are not taken into account. Obviously, if the area under study is little

enough that its behaviour can be considered synchronous (all the neurons of the

system are simultaneously in UP or in DOWN state), also larger portions of cortex

can be considered, as in optical imaging analysis where the whole voxel is analyzed,

or when the distance of electrical micro-arrays is so little that the area have the
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same behaviour. In this case the scientific question is slightly different from the

complete analysis of SWA done by the SWAP pipeline, but its reconfigurability and

modularity make it perfectly suitable to be re-used also as with a different goal, the

local study of Slow Oscillations.

2.3 Characterizing the spatio-temporal feature of the
waves

The phenomena of cortical Slow Waves is observed in all mammals in a state

of deep sleep or under anaesthesia (Sanchez-Vives, et al 92, Nghiem et al.,76) and

is characterized by a large-scale collective activation of groups of neurons, with

a characteristic undulatory space-time pattern. The propagation throughout the

cortex modulates the spiking frequency of the underlying neurons populations. This

results in a transition of the involved neurons from a state of low spiking activity

(down-state), to a state of more intense activity (up-state) while waves travel on the

cortex.

With the last stage of the pipeline, traveling waves already identified in the

previous stages are analyzed according to the scientific question of the user. In

this version of the SWAP pipeline specific characteristics are extracted, such as

planarity, velocity and direction of the wave. But thanks to its intrinsic modularity,

the tool can be expanded to address the identification of additional features that

can be gathered from complex wave patterns, such as phase, source or sink location,

excitability, just as a few examples.

In the following section an example of this feature extraction is reported, in the

specific starting from optical imagining in half hemisphere of cortical mouse.

2.3.1 Analysis of high-resolution whole cortical hemisphere optical

GECI recordings of SWA in mouse

Up to few years ago, electroencephalography (EEG) and electrocorticography

(ECoG), as well as more invasive techniques like extracellular and intracellular
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recording both in vivo and in vitro, have been the standard methods for collecting

slow wave data (anchez-Vives et al. 90, Steriade et al. 106, Capone et al. 16). Even

though electrophysiological recordings have been largely used to characterize brain

states, they are limited in spatial resolution and cannot target specific neuronal

populations. Recently, large-scale optical imaging techniques coupled with functional

indicators overcame these restrictions and will give new important insight on the SW

phenomenon. Among them, GECIs represents an interesting technique enabling the

visualization of fluctuations in calcium concentration, which represents an indirect

reporter of neuronal spiking activity (see Grienberger et at. 42).

In detail, cortex-wide mesoscopic optical imaging, combined with fluorescent in-

dicators of activity, provided new insight on the spatio-temporal propagation pattern

of the brain activity. The combination of wide-field fluorescence microscopy and a

transgenic mouse model expressing a calcium indicator (GCaMP6f) in excitatory

neurons is becoming an innovative methodology for examining the neuronal activity

in anesthetized and awakening mice, as described in detail in Resta et al. (86).

Among the first results obtained applying the analysis pipeline to the calcium

imaging data, there is the computation of the waves velocity, the firing rate distribu-

tion, the preferential propagation directions and the waves origin points on the half

hemisphere of the mouse cortex. In Figure 2.3 the main results of the analysis are

reported.

Panel A represents the histogram of the estimated average velocity of the traveling

waves on the whole mouse hemisphere. To obtain the average speed of each wave,

the velocity is calculated on different points. Knowing the passage time function

of the wave T(x,y), representing the time at which a the (x,y) position has been

reached by the wave during its propagation, the speed of a wave on a specific point

can be defined as the inverse of the module of the function’s gradient:

v(x, y) = 1
∇T (x, y) (2.1)
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Computing the gradient and taking its module, we obtain:

v(x, y) = 1√
(∂T (x,y)

∂x )2 + (∂T (x,y)
∂y )2

(2.2)

Panel B reports the firing rate distribution calculated on the whole mouse

hemisphere. On panel C, propagation directions are reported in polar coordinate.

The result is obtained starting from the same data of wave velocity, but this time

the velocity of each single pixel is mediated trough a Gaussian filter w(µ,σ) centered

in the pixel involved in the transition and with σ = 2 (see 2.3). In this way, noise

is removed from this velocity estimation with a weight decreasing according to the

Gaussian sigma (2 pixels in the example).

θ(x, y) = tan−1
(
〈vy〉w(y,σ)

〈vx〉w(x,σ)

)
(2.3)

Finally, panel D represent the main origin points of slow waves. More the point

tends to yellow, more it is source of slow waves. The results reported are mediated on

seven acquisitions of about 40 seconds each, on a mouse anesthetized with isoflurane.

2.4 Integration in the EBRAINS platform of the Hu-
man Brain Project

The analysis pipeline discussed in this chapter is part of a work done in coop-

eration with some partners of the Human Brain Project (HBP). In particular, the

development has been curated by a team of my lab (INFN) and a team of the Jülich

Research Centre, in collaborations with other HBP partners mainly responsible for

providing the data to be analyzed (IDIBAPS, LENS). The final goal is that to make

the tool publicly available to the neuroscience community, in order to facilitate the

investigation of SWA, and in the future also of other brain rhythms, on a variety

of different kind of recorded and synthetic input data. The distribution of SWAP

will be done throughout the EBRAINS platform, a shared digital brain research

infrastructure for the European Community, that is being set up in the framework
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Figure 2.3. Waves analysis. Panel A: histogram of all the velocity points calculate on
the whole mouse hemisphere. Panel B: firing rate distribution. Panel C: preferential
propagation directions of the waves calculated taking into account the contribution of
surrounding pixels. Panel D: representation of the main points of waves origin.

of the EU-funded Human Brain Project.

EBRAINS is a platform providing tools and services which can be used to

address challenges in brain research and brain-inspired technology development. Its

components are designed to facilitate researchers activity and, above all, with their

contribution. The tools assist scientists to collect, analyze, share, and integrate

brain data, and to perform modelling and simulation of brain function, to accelerate

the effort to understand human brain function and disease.

Accessing the EBRAINS platform, a set of data, atlases, models and software

are made available to the research community following the FAIR principles that

are nowadays beginning more and more relevant. A large part of EBRAINS in-

frastructure is constituted by the Knowledge Graph, an online solutions based on

these FAIR principles to facilitate sharing and access of research data, computa-
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tional models and software. A preliminary demonstration to the general public

of the application of the SWAP pipeline (March 2020 release) can be found at

https://wiki.ebrains.eu/bin/view/Collabs/slow-wave-analysis-pipeline, which also

contains pointers to the GitHub repository.
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Chapter 3

High-resolution wide-field
simulations of SWA

The use of models for the study of physical systems is an acquired and well-

established methodology by which the scientist aim to demonstrate the behaviour of

complex systems. In a closed-loop fashion, that can be covered in both directions, sci-

entists start from theory, derive the equations describing the fundamental behaviour

of the system, then build a model to confirm the supposed theory and compare the

results with experimental data. On the contrary, starting from the experimental

data, models can be built deriving parameters from observations, then a theory can

be formulated that describe the observed experimental phenomena (see Figure 3.1

for a graphical explanation). Anyhow, the built of models is one of the central points

of this methodology, already extensively used since many years in several fields of

study, from engineering to meteorology, from automotive to aerospace.

The human brain is another complex system that can benefit from modelling

and simulation: the models can help scientists to better understand the mechanism

underlying specific problems, to test hypothesis and to find solutions sometimes

hardly manageable directly using experimental results.

The trend in building models of neuronal activity is strongly emerging in the

last two decades, as also demonstrated by the wide variety of neural simulator today

available (NEST 34, 52, NEURON 47, 17, GENESIS 124, BRIAN 41, 107), Virtual
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Figure 3.1. Loop from theory to experiments and back

Brain 94), or even specific accelerated systems (Modha et al. 70, Izhikevich et al.

50, Nageswaran et al. 75), or neuromorphic platforms (SpiNNaker 30, BrainScaleS

96, TrueNorth 67).

Also in my work, in order to answer the scientific question about the effect

of SWA on learning with the analysis of recorded data, not yet available at the

beginning of the activity, I started working on models and on different kind of

simulators that could be in any case useful to replicate the phenomena.

The goal was that to simulate the whole cortical mouse hemisphere activity

starting from connectivity and other parameters inferred from wide-field optical

imaging data of SWA, provided by LENS, to obtain a model with biological

neural and synaptic resolution. The result obtained is depicted in Figure 3.2,

that represent a short segment of a movie in which a traveling wave crosses the

mouse cortex. The whole movie can be downloaded from GitHub at the address

https://github.com/epastorelli/MouseHemisphereMovie.

The following sections of this chapter describe in detail the model of the whole

mouse hemisphere here briefly mentioned, and the results of the SWAP analysis

pipeline applied on the simulation outputs of this model. In order to reach this
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Figure 3.2. Spiking simulation of SWA: four snapshots taken at a distance of 40 ms
that clearly show the slow wave traveling across the cortical surface of the whole mouse
cortex

objective, several steps was required. First of all, I worked on the reproduction of

large-scale non-plastic simulations, I mean disregarding the synaptic plasticity, that

will be introduced in successive steps to study learning and cognition with the model.

Plastic large-scale high-resolution simulation are an ambitious goal that can not be

reached before having a solid background in being able to support simulations with

millions of neurons and billions of synapses. Indeed, plasticity requires a very high

computational cost, that can be roughly estimated in a 4x of the original cost. Also,

the optimization techniques described in the last sections of this chapter are focused

on obtaining effective instruments to reach this goal.

Part of the material reported in this chapter has been extracted from the pub-

lication of Pastorelli et al. (79) published in the journal Frontiers in Systems

Neuroscience. All the pictures extracted by my previous publications are systemati-
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cally indicated.

3.1 Spiking simulation at hemisphere scale at biological
neural and synaptic resolution

Thanks to the simulation methodology to which I contributed during these years,

I was able to reproduce a large-scale high-resolution spiking simulation of the model

of the mouse half hemisphere at biological neural and synaptic density. The final

aim is that to provide accurate simulations of SWA and AW-like states that could

be used by the scientific community for the study of cortical rhythms and their

interaction with consciousness and learning.

Spiking simulations methodology, described in detail in the following sections of

this chapter, were refined and calibrated in terms of input parameters and biological

plausibility. This was possible using a specific procedure for the extraction of the

required parameters from experimental recordings, using a likelihood maximization

technique that progressively increases the match between experimental data and the

results of mean-field simulations.

The model is based on a columnar network of Adaptive exponential integrate-

and-fire model neurons (Adex) described by Brette and Gerstner (7) composed of two

populations of neurons, excitatory and inhibitory, respecting the usual proportion of

4:1 (exc:inh). The functional connectivity and other parameters for simulation of

SWA activity of a whole hemisphere of the wild type mouse have been inferred from

optical GECI calcium imaging GCaMP-6f recording (field of view: 4x5 mm2, pixel

resolution: 50x50 µm2, temporal resolution: 40ms) provided by the HBP partner

LENS. See for details Celotto et al. (18). Mainly three parameters are inferred from

simulated data and injected into a spiking simulation:

1. lateral connectivity

2. mean external firing rate

3. neuronal adaptation parameter
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In the right panel of Figure 3.3 an example of lateral connectivity is reported for

eleven neurons. As can be seen, not all the neurons present the same connectivity,

also visible from the distribution of the intensity around them. The left panel of

the same figure reports instead a snapshot of a wave taken at 480 ms after the

simulation starts. A more explicit example of the resulting simulation can be seen in

Figure 3.2, where four snapshot of a simulation are reported, showing the traveling

wave on the mouse hemisphere at a distance of 40 ms each from another, while the

movie downloadable from https://github.com/epastorelli/MouseHemisphereMovie

represent 10 second of simulated slow wave activity.

Figure 3.3. Spiking simulation of SWA. Left panel: instantaneous snapshot of wave.
Right panel: example of inferred connectivity for eleven neurons scattered on the mouse
cortical surface

3.2 Analysis of simulation outputs and comparison with
experimental data

The output of the above described simulation of whole mouse hemisphere have

been analyzed with the SWAP analysis pipeline. Figure 3.4 reports the main results

of this analysis.

In detail, panel A shows the histogram of the estimated velocity calculated point

by point on the whole mouse hemisphere using equation 2.2. The histogram has the

same qualitative aspect of the one produced analyzing the calcium imaging data



3.2 Analysis of simulation outputs and comparison with experimental data 32

reported in Figure 2.3, even if the exact match from a quantitative point of view

has not been reached, yet. Some further calibration in simulation parameters is still

needed.

Another interesting output of the analysis of simulated data is reported in Panel

B and describes the firing rate derived from the inter-spike intervals calculated on all

waves and in all cortical points. The range of frequency is qualitatively compatible

with the biological one (delta band).

Panel C describes the propagation directions of the waves in polar coordinate

calculated according to equation 2.3. As can be seen, most of the waves propagate

diagonally in an antero-posterior way, toward a north-east direction. With less

frequency, in the simulation there are also waves propagating in the opposite direction

(postero-anterior waves, from north-east to south-west) as often happens in biology

(Massimini et al. 61, Murphy et al. 74). Comparing this plot with the one available

for experimental data of calcium imaging (see panel right of Figure 2.3), it is

noteworthy the similarity between experimental and simulated results.

Panel D reports the main origin points of all the waves during the whole simulation.

As can be seen from the picture, the bottom-left side of the cortex is the one with

the higher number of waves generated (antero-posterior waves). In minor number,

the other source point can be individuated in the higher part of the mouse cortex

(postero-anterior waves).

As a preliminary comparison between the analysis of simulated and experimental

data, it is evident that the simulation parameters still need calibration, but the

macroscopic results are already in qualitative agreement with those coming from

the experiments. In addition, the simulation results here analyzed are relative to a

single simulation of ten seconds length. For a fair comparison between Figures 3.4

(simulation) and 2.3 (experiment) more run should be done with a longer simulation

time. The activity is already proceeding in this direction, with the aim of finding

the best tuning of all the parameters.
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Figure 3.4. Analysis on spiking simulation output of the mouse whole hemi-
sphere. Panel A: histogram of all the velocity points calculated on the whole mouse
hemisphere. Panel B: firing rate distribution. Panel C: preferential propagation directions
of the waves. Panel D: wave origin points on the mouse cortex

3.3 Anatomical priors: exponential decay of lateral con-
nectivity in a columnar architecture

A simulation including a few tens of billions of synapses is what is required

to simulate the activity of one cm2 of cortex at biological resolution (e.g. 54K

neuron/mm2 and about 5K synapses per neuron in the rat neocortex area as

described by Schnepel et al. in 97). The capability to scale a problem up to such a

size allows simulating an entire cortical area. In my work I focuses on the possibility

to build models able to implement connectivities pointed out in recent studies

reporting about long range intra-areal lateral connectivity in many different cerebral

areas, from cat primary visual cortex (Stepanyants et al. 103), to rat neocortex

(Schnepel et al. 97 and Boucsein et al. 6), just as examples. For instance, in rat

neocortex, the impact of lateral connectivity on the pyramidal cells in layer 2/3 and
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layer 6a, results in ∼75% of incoming remote synapses to neurons of these layers.

Previous studies considered intra-areal synaptic connections dominated by local

connectivity: e.g. Schuz in 98 estimated at least 55% the fraction of local synapses,

reaching also a ratio of 75%. Such shorter-range lateral connectivity has often been

modeled with a distance dependent Gaussian decay (see Potjans and Diesmann, 84)

B · exp(−r2

2σ2 ), where r stands again for distance between neurons, σ2 is the variance

that determines the lateral range and B fixes the total number of projections.

Longer-range intra-areal connectivity can be modeled by a distance-dependent

exponential decay of the probability of synaptic connections between pairs of neurons:

i.e. A ·exp(−rλ ), where r stands for the distance between neurons, λ is the exponential

decay constant and A is a normalization factor that fixes the total number of lateral

connections. Decay constants in the range of several hundred microns are required

to match experimental results.

At the beginning of my activity, I have taken into account both kind of connectiv-

ity. In one of my works (78) I deeply studied the intrinsic technical difficulties in the

implementation of the two modalities. Exponentially decaying lateral connectivity

(longer-range) have been compared to a Gaussian connectivity decay (shorter-range),

analyzing the scaling and the memory usage of the used simulator.

At the end of these studies, the model, as well as the spiking large-scale custom

simulator adopted to accommodate it, where both optimized to obtain the maximum

efficiency specifically in case of the selected long-range lateral connectivity, being

this the most prominent feature according to the more recent studies, as reported

above. To complete the overview of the used models, also mean-field simulations

have been done inside the team as described in the following section 3.4 to accelerate

the process of study of SWA and above all to define a strategy for the refinement of

spiking neural network models parameters (see 3.1).



3.4 Mean-field columnar simulation of whole cortical hemisphere in mouse 35

3.4 Mean-field columnar simulation of whole cortical
hemisphere in mouse

For the study of the slow waves phenomenon and the comparison with recorded

data, one of the faster approach is that to set up mean-field simulation able to

reproduce the whole cortical mouse hemisphere.

The brain is a highly complex system composed of millions of neurons intercon-

nected by billions of synapses and displaying extremely complicated firing patterns.

Mean-field approaches aim at simplifying such dynamics by focusing of the collective

activity and on the correlation patterns of neurons grouped together, in this way

bridging microscopic (single-neuron spikes) and macroscopic scales (instantaneous

spike rate of a neuronal ensemble).

The model we presented in our work on Frontiers in System Neuroscience in

2019 (79) is able to reproduce both the slow wave synchronous and an awake-like

asynchronous activities. A prerequisite was the elaboration of a dynamical mean-field

description for the simulation of the two cortical states, formulated by one of the

authors of our work (Cristiano Capone), that represents the starting point for the

definition of the parameters for the spiking simulations.

The assumption is that the inputs received by the different neurons in a module

are independent but are conditioned by the same (and possibly time-dependent)

mean and variance of the input synaptic current, as described in Brunel and Hakim

(11) and Mattia and Del Giudice (63).

The gain function φi for this kind of neurons was firstly found by Ricciardi in

the 1977 (88) as the reciprocal of the first-passage time (FPT) of the membrane

potential to the firing threshold, for an integrate-and-fire neuron with stationary

white noise input current, in the diffusion approximation. In detail, the transfer

function elaborated to fit our work was the following:

φi(µ, σ2) = 1
σ2

∫ Vθ

−∞
dV

∫ Vθ

max(V,Vr)
du e

− 1
τmσ2

∫ u
V

[f(v)+µτm]dv (3.1)
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where µ and σ are the mean and variance of the input current, Vθ is the voltage

spiking threshold of the neuron, Vr is the voltage reset value after a spike, τm is

the membrane time constant and f(v) = −(v(t)− El), with El being the reversal

potential.

Spike frequency adaptation is an important ingredient for the occurrence of slow

oscillations in the mean-field dynamics, as demonstrated by the works of Gigante et

al. (35) and Capone et al. (16).

The mean-field dynamics for the average activity νi, i = {F,B, I} is determined

by the gain functions φi as follows:

(F,B) :


ν̇i = φi(−→ν ,−→c )−νi

τE

ċi = − ci
τc

+ αcνi

; (I) : ν̇i = φi(−→ν )− νi
τI

(3.2)

where τE and τI are phenomenological time constants for excitatory and inhibitorory

neurons respectively. The interplay between the recurrent excitation embodied in

the gain function, and the activity-dependent self-inhibition, is the main driver of

the alternation between a high-activity (Up) state and a low-activity (Down) state

(see Mattia and Sanchez-Vives (64) and Capone et al. (16)).

In the mean-field description of the neural module, synaptic connectivity is

chosen to match the total average synaptic input that the neurons would receive

inside the multi-modular network. The fixed points of the dynamics expressed by

equations (3.2) can be analyzed using standard techniques described by Strogatz

(108). The nullclines of the system (where ν̇ = 0 or ċ = 0) cross at fixed points that

can be predicted to be either stable or unstable. In the simulations described here,

the strengths of recurrent synapses Jt,s connecting source population s and target

population t, and of external synapses Jt,ext, is randomly chosen from a Gaussian

distribution with mean Jt,s and variance ∆Jt,s = 0.25× Jt,s.

We relied on mean-field analysis to identify neural parameters setting the net-

work’s modules in SW or AW dynamic regimes. Panel A of Figure 3.5 shows an
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example of nullclines for the mean-field equations (3.2) of a system displaying SW.

The black S-shaped line is the nullcline for the rate ν, while the red straight line

is the one for the fatigue variable c (for details see Mattia and Sanchez-Vives (64)

and Capone et al. (16)). The stable fixed point, at the intersection of the nullclines,

has a low level of activity and is characterized by a small basin of attraction: the

system can easily escape from it thanks to the noise, and it gets driven towards the

upper branch of the ν nullcline from which, due to fatigue, it is attracted back to

the fixed point, thus generating an oscillation (see panel B of Figure 3.5).

Network parameters can also be set in order to have an asynchronous state,

mainly by setting a lower Foreground-to-Foreground (FF) synaptic efficacy, which

generates a more linear ν nullcline close to the fixed point (see panel C of Figure

3.5). In this case the basin of attraction of the fixed point is larger, and oscillations

do not occur, resulting in a stationary asynchronous state (see panel D of Figure

3.5), in which neural activity fluctuates around the mean-field fixed point.

3.5 Preparing the technology for large scale columnar
spiking simulation

At the large scale, the neural dynamics of the cerebral cortex results from

an interplay between local excitability and the pattern of synaptic connectivity.

This interplay results in the propagation of neural activity. A case in point is the

spontaneous onset and slow propagation of low-frequency activity waves during

the deep stages of natural sleep or deep anesthesia (Destexhe and Contreras (27),

Hobson el al. (48), Sanchez-Vives and Mattia (91), Reyes-Puerta et al. (87)).

The brain in deep sleep expresses slow oscillations of activity at the single neuron

and local network levels which, at a macroscopic scale, appear to be synchronized

in space and time as traveling waves (slow wave activity, SWA). The “dynamic

simplicity” of SWA is increasingly being recognized as an ideal test bed for refining

and calibrating network models composed of spiking neurons. Understanding the

dynamical and architectural determinants of SWA serves as an experimentally
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Figure 3.5. Dynamical representation of the SW and AW states. Panel A: phase
space representation of mean-field analysis with a weakly stable fixed point. Panel
B: firing-rate time course for an example module, for foreground, background, and
inhibitory sub-populations (respectively in black, blue, and red) in the SW state. Panel
C: phase space representation of mean-field analysis with a stable fixed point at a high
level of activity. Panel D: Firing-rate time course for an example module, for foreground,
background, and inhibitory sub-populations (respectively in black, blue, and red) in the
AW state. Adapted from Pastorelli et al. (79).

grounded starting point to tackle models of behaviorally relevant, awake states (Han

et al. (44), Luczak et al. (60), Curto et al. (24)). A critical juncture in such a

logical sequence is the description of the dynamic transition between SWA and

asynchronous, irregular activity (AW, asynchronous wake state) as observed during

fade-out of anesthesia, for instance, the mechanism of which is still a partially open
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problem (Solovey et al. (101), Curto et al. (24), Steyn-Ross et al. (102)). To

help determine the mechanism of this transition, it may be of interest to identify

the factors enabling the same nervous tissue to express global activity regimes as

diverse as SWA and AW. Understanding this repertoire of global dynamics requires

high-resolution numerical simulations of large-scale networks of neurons which, while

keeping a manageable level of simplification, should be realistic with respect to both

nonlinear excitable local dynamics and to the spatial dependence of the synaptic

connectivity, as well as the layered structure of the cortex (Hill and Tononi (46),

Bazhenov et al. (5), Potjans and Diesmann (84), Krishnan et al. (56)).

Notably, efficient brain simulation is not only a scientific tool, but also a source of

requirements and architectural inspiration for future parallel/distributed computing

architectures, as well as a coding challenge on existing platforms. Neural network

simulation engine projects have focused on: flexibility and user friendliness, biological

plausibility, speed and scalability (e.g. NEST 34, 52, NEURON 47, 17, GENESIS

124, BRIAN 41, 107). Their target execution platforms can be either homogeneous

or heterogeneous (e.g. GPGPU-accelerated), high-performance computing (HPC)

systems, such as the ones described by Modha 70, Izhikevich 50, Nageswaran 75, or

neuromorphic platforms, for either research or application purposes (e.g. SpiNNaker

30, BrainScaleS 96, TrueNorth 67).

From a computational point of view, SWA and AW pose different challenges to

simulation engines, and comparing the simulator performance in both situations is

an important element in assessing the general value of the choices made in the code

design. During SWA, different and limited portions of the network are sequentially

active, with a locally high rate of exchanged spikes, while the rest of the system is

almost silent. On the other hand, during AW the whole network is homogeneously

involved in lower rate asynchronous activity. In a distributed and parallel simulation

framework, this raises the question of whether the computational load on each core

and the inter-process communication traffic are limiting factors in either cases. We

also need to consider that activity propagates for long distances across the modeled
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cortical paths, therefore the impact of spike delivery on the execution time depends

on the chosen connectivity.

In preparation of this, part of my activity was concentrated in achieving a fast and

flexible simulator: the Distributed and Plastic Spiking Neural Networks (DPSNN)

engine, able to run models of SWA as well as of AW-like activity (79). Early versions

of the simulator, described in 77 by Paolucci et al., originated from the need for a

representative benchmark developed to support the hardware/software co-design of

distributed and parallel neural simulators. DPSNN was then extended to incorporate

the event-driven approach of Mattia and Del Giudice (62), implementing a mixed

time-driven and event-driven strategy similar to the one introduced by Morrison et

al. (71). In the following chapters, the simulator is described in more details and

compared with the state-of-the-art available at that moment.

3.5.1 Simulations at very large scale on CPU-based HPC

Cortical synapses organization supports a range of dynamic states on multiple

spatial and temporal scales, from synchronous slow wave activity (SWA), charac-

teristic of deep sleep or anesthesia, to fluctuating, asynchronous activity during

wakefulness (AW). Such dynamic diversity poses a challenge for producing efficient

large-scale spiking models that embody realistic metaphors of short- and long-range

synaptic connectivity. In fact, during SWA and AW, different spatial extents of the

cortical tissue are active in a given timespan and at different firing rates, which

implies a wide variety of loads of local computation and communication. A balanced

evaluation of performance and robustness should therefore include tests of a variety

of cortical dynamic states.

The designed spiking model (79) is able to express both SWA and AW-like activity

using neural populations organized as bidimensional grids of modules (mimicking

cortical columns) as in Capone et al. (16) which reflects the modular organization

of the cortex.

With this model, using available simulators, both DPSNN and NEST, I explored
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networks up to 192×192 modules, each composed of 1,250 integrate-and-fire neurons

with spike-frequency adaptation, and exponentially decaying inter-modular synaptic

connectivity with varying spatial decay constant.

For each population in the modular network, specific parameters for the neural

dynamics can be defined, as well as specific intra- and inter-columnar connectivity

and synaptic efficacies. Connectivity among different populations can be modeled

with specific laws based on distance-dependent probability, specific to each pair of

source and target subpopulation. By suitably setting the available interconnections

between different populations, cortical laminar structures can also be potentially

modeled.

Each local module is always composed of K = 1250 neurons, further subdivided

into subpopulations. We implemented a ratio of 4:1 between excitatory and inhibitory

neurons (KI=250 neuron/module); in each module, excitatory neurons (E) were

divided into two subpopulations: KF=250 (25%) strongly coupled “foreground”

neurons (F ), having a leading role in the dynamics, andKB=750 (75%) “background”

neurons (B) continuously firing at a relatively low rate. Populations on the grid are

connected one to each other through a spatial connectivity kernel. The probability

of connection from excitatory neurons decreases exponentially with the inter-module

distance d:

Ctsλ(d) = C0
tsλ × exp(

−d
λ

) . (3.3)

More specifically, d is the distance between the source (s = {F,B}), and target

(t = {F,B, I}) module, and λ a characteristic spatial scale of connectivity decay. d

and λ are expressed using inter-modular distance units (imd). For the simulations

here described, the translation to physical units sets imd in the range of a few

hundred micrometers. Simulations are performed considering different λ values

(0.4, 0.5, 0.6, 0.7) imd, but C0
tsλ is set so as to generate the same mean number

of projected synapses per neuron (Mt = 0.9 ∗ Kt, t = {F,B, I}) for all λ values.

Connections originating from inhibitory neurons are local (within the same local
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module) and also in this case Mt = 0.9 ∗ Kt, t = {F,B, I}. All neurons of the

same type (excitatory/inhibitory) in a population share the same mean number of

incoming synapses. The connectivity has open boundary conditions on the edges of

the two-dimensional surface.

Synaptic efficacies are randomly chosen from a Gaussian distribution with mean

Jts and SD ∆Jts, chosen in different experiments to set the system in different

working regimes and simulate different states. The procedure for the selection of the

efficacies is based on a mean-field method described above. Each neuron also receives

spikes coming from neurons belonging to virtual external populations, collectively

modeled as a Poisson process with average spike frequency νext and synaptic efficacy

Jext. Excitatory neurons are point-like leaky integrate-and-fire (LIF) neurons with

spike frequency adaptation (SFA), as described in Gigante et al. (35) and in Capone

et al. (16). SFA is modeled as an activity-dependent self-inhibition, described by

the fatigue variable c(t). The time evolution of the membrane potential V (t), and

c(t), of excitatory neurons between spikes is governed by:


V̇ = −V−E

τm
− gc c

Cm
+
∑
Jiδ(t− ti − δi) +

∑
J iextδ(t− t

poiss
i )

ċ = − c
τc

+ αc
∑
k δ(t− t

(k)
sp )

(3.4)

τm is the membrane characteristic time, Cm the membrane capacitance, and E

the resting potential. SFA is not considered for inhibitory neurons; that is, in

(3.4), the second equation and the gc c
Cm

term in the first are absent. Incoming

spikes, generated at times ti, reached the target neuron with delay δi and provoked

instantaneous membrane potential changes of amplitude Ji. Alike, external stimuli

produce a J iext increment in the membrane potential, with tpoissi representing the

spike times generated by a Poisson distribution of average νext. An output spike

at time t(k)
sp was triggered if the membrane potential exceeded a threshold Vθ. On

firing, the membrane potential was reset to Vr for a refractory period τarp, whereas

c was increased by the amount αc. Once the network connectivity and the neural



3.5 Preparing the technology for large scale columnar spiking simulation 43

dynamics have been defined, synaptic efficacies and external stimuli can be set to

determine the dynamical states accessible to the system, by means of mean-field

theory.

3.5.2 Spiking simulation speed and scaling measures

The model above described has been used to test and improve the DPSNN

simulator (see more details on Paolucci et al. 77 and on Pastorelli et al. 79 and

78). The benchmark measures assessing simulator scalability in terms of run time,

initialization time, and memory usage herein described, were performed on the

Galileo server platform provided by the CINECA consortium. Galileo is a cluster

of 516 IBM nodes, where each node includes 16-cores, distributed on two Intel

Xeon Haswell E5-2630 v3 octa-core processors clocked at 2.40 GHz. The nodes

are interconnected through an InfiniBand network. Hyperthreading is disabled on

all cores, therefore the number of MPI processes launched during each run exactly

matches the hardware cores, with a maximum of 1,024 hardware cores (or equivalently

MPI processes) available for any single run, due to a specific configuration of the

server platform, in which the maximum-allowed partition of the server usable for a

single run includes 64 nodes.

DPSNN execution times for SW and AW state simulations are reported in Figure

3.6. Panels A and B show example snapshots of the simulated network activity in

the SW and AW states, respectively; panels C and D show corresponding power

spectra of the network activity, confirming the main features predicted by theory for

such states (such as the low-frequency power increase for SW, the high-frequency

asymptote proportional to the average firing rate, the spectral resonances related to

SFA, and delays of the recurrent synaptic interaction). Panels E and F represent

strong scaling for SW and AW: the wall-clock time required to simulate 1s of activity,

vs number of processes, for different network sizes, up to 46 Million neurons and

70 Giga synapses. In the same plots, weak scaling behavior is measured by joining

points referring to a four-fold increase in both the network size and the number of
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Figure 3.6. Simulation time scaling and phenomenological behavior. Panel A:
time consecutive snapshots of the activity distribution in space, showing the wavefront
propagation during a simulation expressing SW states. Panel B: consecutive snapshots
of the whole network activity in an asynchronous state. Panels C and D: power spectra
of network activity respectively in SW (C) and AW (D) states. Panels E and F: scaling
of wall-clock execution time for 1 s of SW (E) and AW (F) simulated activity. In both
SW and AW states, the scaling has been measured on different network sizes. Adapted
from Pastorelli et al. (79).
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processes.

Simulation speeds are measured using the equivalent synaptic events per sec-

ond, defined as the product of the total number of synapses and the number of

spikes occurred across the whole simulation, divided by the elapsed execution time.

This way, a comparison of the simulation cost among different problem sizes and

hardware/software resources (core/processes) can be captured in a single graph.

Departures from the ideal scaling behavior (linearly decreasing strong scaling plots,

horizontal weak scaling plots) are globally captured in panel A of Figure 3.7, for both

SW and AW states and for all the problem sizes. For the simulations reported in

this study, the simplified synaptic-events-per-second metric is a good approximation

of a more complex metric separating recurrent and external events (Poisson noise),

as demonstrated by panel B of Figure 3.7: looking in more detail, the simulation

of recurrent synaptic events is slower than that of external events that are locally

generated by the routine that computes the dynamics of individual neurons. In our

configurations there is about one order magnitude more recurrent synaptic event

than external.

3.5.3 Efficiency for real time simulations

Fast simulation of spiking neural network models plays a dual role: (i) it con-

tributes to the solution of a scientific grand challenge — i.e. the comprehension of

brain activity — and, (ii) by including it into embedded systems, it can enhance

applications such as autonomous navigation, surveillance and robotics, requiring

real-time performances. Moreover, real-time simulation of neural networks will be

essential for understanding the mechanisms underlying the cognitive functions of the

brain. Indeed, brain simulations should be embedded in complex environments, e.g.

robotic platforms interacting with the world in real-time, which makes requirements

on power consumption so much tighter. Therefore, cortical simulations assume a

driving role in shaping the architecture of either specialized and general-purpose

multi-core/many-core systems to come, standing at the crossroads between em-
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Figure 3.7. Simulation speed-up. Speed-up of the total number of equivalent simulated
synaptic events per wall-clock second evaluated for SW (circles) and AW simulations
(triangles) on the four used network configurations. Dashed lines stand for ideal speed-up
of the simulated synaptic events for SW (black) and AW (red). Adapted from Pastorelli
et al. (79).

bedded and HPC. See, for example Merolla et al. (67), describing the TrueNorth

low-power specialized hardware architecture dedicated to embedded applications,

and Stromatias et al. (109) discussing the power consumption of the SpiNNaker

hardware architecture, based on embedded multi-cores, dedicated to brain simulation.

Worthy of mention are also the work of Gewaltig and Diesmann (34) and the one of

Modha et al. (70) as examples of approaches based on standard HPC platforms and

general-purpose simulators.

I would also mention, even if it’s not the focus of this thesis, the activity done

to measure the power consumption and energy-to-solution for real-time cortical

simulation on DPSNN and the profiles of the relative scaling concerning computation,

communication and synchronization (Simula et al. 99). Specifically, we perform

several neural simulations to compare the performances of ARM and Intel-based
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multi-core platforms, with further focus on the possible impact of the usage of

off-the-shelf vs. custom networking components.

In this domain, being “real-time”, under a “soft” assumption, means a working

point for the application such that the total wall-clock time for running it is not

greater than the total simulated time, a condition necessary, but not sufficient, for

robotics applications and embedding HPC simulations into virtual or real world

environments, that would impose more stringent “hard” constraint to be satisfied at

the scale of each step, lasting at most a few tens of milliseconds each. The aim of

this work is to identify the obstacles that impede reaching the real-time target for

large neural networks. We performed a set of strong scaling tests on neural networks

of increasing size. For all network, we simulated 10 s of neural activity.

Figure 3.8 shows the runtimes for three neural network sizes. They should all be

able to run in real-time if the scaling valid for larger configurations applied. Indeed,

the 20480 neurons configuration reaches real-time (9.15 seconds to simulates 10

seconds of activity). The network with 20480 neurons reached its maximum speed

when distributed on 32 processes (Figure 3.8). Communication and synchronization

are the main obstacles against scaling (see Figure 3.8). For the 20480 neuron config-

uration they block a further acceleration over 32 processes and start impeding the

scaling toward real-time of larger neural networks. The profiling of the computation

and communication components demonstrated the critical impact of interconnect on

the scaling, limiting the size of the network that can be simulated in real-time.

In conclusion, the design of low-latency, energy-efficient interconnects supporting

collective communications is of primary importance to enable a time- and energy-

efficient exchange of neural spikes; this is expected to not only make cortical

simulations possible at a larger scale but also push their use in embedded systems

where it is often precluded by tight real-time constraints and limited power budget.
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Figure 3.8. Real time simulations. Left panel: Strong scaling of different problem sizes
on an Intel-based platform. The red line is the threshold to be reached for soft real-time
execution. Right panel: detail of the analysis on the Intel-based platform, in which is
evident that communication and synchronization are the main obstacles against scaling.
Adapted from Simula et al. (99).

3.5.4 Acceleration throughout a GPU-based HPC

It is evident, from what exposed also in section (3.5.3), that the cost of large-

scale spiking simulations is really high in terms of resources and computational

time: the simulation of brain activity at the level of signals produced by individual

neurons is extremely demanding, even if it is limited to relatively small regions of the

brain. Therefore, there is a growing interest in the development of high-performance

hardware and software tools for efficient simulations of large-scale networks of spiking

neuron models.

At the moment, this represents a fertile field of research. In recent decades, the

use of highly parallel hardware systems has been investigated for simulating large-

scale networks of spiking neurons. Such systems include custom made neuromorphic

very-large-scale-integration (VLSI) circuits (Indiveri et al. 49), field programmable

gate arrays (FPGAs) (Wang et al. 117) and systems based on graphical processing

units (GPUs) (Brette and Goodman 8, Sanders and Kandro 93, Garrido et al. 33,

Vitay et al. 115, Chou et al. 20). Compared to other highly parallel systems, the

latter have the advantage of a relatively low cost, a great versatility, thanks also to

the possibility of using the CUDA (Compute Unified Device Architecture) platform,
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and a sustained technological development driven by the consumer market. General

purpose computing on graphical processing units (GPGPU) is widely employed

for massively parallel computing. GPGPUs can significantly reduce the processing

time compared to multi-core CPU systems for tasks that require a high degree of

parallelism, because a single GPU can perform thousands of core computations in

parallel.

Following this trend, the NeuornGPU library (38) has been developed: a GPU

library for simulation of large-scale networks of spiking neurons, written in the C++

and CUDA-C++ programming languages. NeuronGPU can simulate networks of

any neuron model and synaptic current model whose dynamics can be described

by a system of ordinary differential equations (ODEs). The network can be easily

described by the user: the neuron parameters, connection weights and synaptic

delays can be initialized either using fixed values or through arrays or probability

distributions. Neuron groups can be connected either using predefined connection

rules (one-to-one, all-to-all, fixed indegree, fixed outdegree, fixed total number) or

by user-defined connections. In addition to the standard synapse model, nearest-

neighbor spike-timing-dependent-plasticity (STDP) is also available (Morrison et al.

72). Different types of devices can be simulated, including Poisson signal generators,

spike generators, multimeters and parrot neurons.

Several tests have been conducted on this library and comparisons with the

state-of-the-art reported good results in terms of accuracy and velocity of execution.

NeuronGPU was recently proposed for being integrated within the NEST neural

simulator (39).
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Chapter 4

Models of cycles of incremental
learning and sleep

The scientific question at the basis of my thesis was the study of the effects

of deep-sleep-like activity on learning. For the models of cycles of incremental

learning and sleep, the choice to focus exclusively on slow oscillation, neglecting

the spacial structure of slow waves widely discussed in previous chapter, is due

to a stepwise approach. The interaction of sleep and learning must be based on

a system provided of plasticity, totally absent in the simulations presented in the

previous chapter, as already underlined. Now plasticity (together with the effect

of deep-sleep on it) becomes the central node of the study. The idea was that to

start with a plastic system and its interplay with slow oscillations, to move in future

steps toward the application of a spatial structure to the whole system. In this

perspective, the knowledge acquired on how to speed-up large-scale simulations,

as described in Chapter 3, represents an essential building block for the extension

of this model toward biological dimension and plausibility (left-right visual areas,

different decodification layers to improve models accuracy, etc.).

To approach the problem, I started using a simplified thalamo-cortical model

trained to encode, retrieve and classify images of handwritten digits (Capone, et al.,

15). During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a

differential homeostatic process. It is characterized by both a specific unsupervised
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enhancement of connections among groups of neurons associated to instances of the

same class (digit), as described in the left panel of Figure 4.1, and a simultaneous

down-regulation of stronger synapses created by the training (right panel of the

same Figure). The starting hypotheses is that this hierarchical organization of

post-sleep internal representations favours higher performances in retrieval and

classification tasks. The supposed mechanism should be based on the interaction

between top-down cortico-thalamic predictions and bottom-up thalamo-cortical

projections during deep-sleep-like slow oscillations. Indeed, when learned patterns

are replayed during sleep, cortico-thalamo-cortical connections favour the activation

of other neurons coding for similar thalamic inputs, promoting their association.

Figure 4.1. Effect of deep-sleep on synapses: associative and homeostatic effects.
Left panel: Synaptic weights matrix of the recurrent connectivity of excitatory population
after the occurrence of sleep-like activity. The creation of associations among synapses
of different digit start emerging. Right panel: pre-sleep synaptic weights (violet), and
post-sleep (green) synaptic weights.

The model has been then improved as described in Golosio et al. (37) with

parameter calibration thanks to an iterative comparison with experimental results. As
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a consequence, also contextual signal has been more correctly calibrated, producing

a very important consequence: the memory of learned digits during the awake phase

are more equally represented, while, on the contrary, allowing for continuous cycling

of learning-sleep-learning no possible in the previous model. This enables a huge

advantage in terms of training velocity and precision (see section 4.5). Moreover,

the model demonstrates resilience when subjected to noisy perceptions with better

performances than other AI algorithms as for instance the K-nearest-neighbour

(Knn) algorithms, that is one of the most common and performant classification

methods (see Figure 4.2).

Figure 4.2. Sleep mitigation of incremental learning in case of noisy signals for
the improved model (Thaco). Left panel: comparison of the average accuracy of
the proposed thalamo-cortical spiking model compared to artificial K-nearest-neighbour
incremental algorithms in absence of noise (solid lines) and with noisy inputs (dotted
lines). Right panel: Sleep mitigation of the effects of noisy contextual signals on
classification performances. Adapted from Golosio et al. 37

In the following of this chapter, the thalamo-cortical model (and its subsequent

evolution we named Thaco) is described in detail, giving a deep insight of it and

of the obtained results. The main source of this material has been extracted by

some of my previous articles published during the Phd period with my group of

work in the framework of the HBP APE Research Group: the paper Capone et al.
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(15) published in Sci. Rep. in 2019, and the arXive Golosio et al (37), accepted for

publication in PLOS Computational Biology.

4.1 Data driven thalamo-cortical model

A few computational models have been developed to investigate the interaction of

sleep-like activity and plasticity. In González-Rueda et al. (40), the authors showed

that Up states specifically mediate synaptic down-scaling with beneficial effect on

signal to noise ratio received by post-synaptic neurons. The effect of thalamo-cortical

sleep on pre-stored time sequences is explored by Wei in 122 and 123.

In this work, also reported in Capone et al. (15), we focus on sleep mediated

memory association and its implications on cognitive tasks performances. The

presented minimal thalamo-cortical model, after being trained on handwritten

characters in unsupervised mode, is induced to express sleep-like dynamics. We

measured its effects on the classification accuracy (defined as the percentage of

correct digit identified by the model over the whole set of proposed digits), the

structure of the synaptic matrix and the firing rate distributions.

Slow oscillations (SO) are considered the default emergent activity of the cortical

network (Sanchez-Vives, et al, 92) and are observed during the deepest of physiolog-

ical non-REM sleep stages as an alternation between Down states (characterized by

nearly silent neurons) and Up states (in which a subset of neurons goes in a high

firing rate regime) occurring at a frequency in the range [0.5, 4] Hz (delta band).

We set the model SO at a comparable frequency. SO activity is expected to play two

complementary roles, which are separately mediated by Up states and Down states.

Down states would play a purely biological function, with a lower immediate impact

on cognitive performance. The role of Down states, with a majority of neurons put

in a silent state for a long fraction of deep sleep time (several hundreds of ms), would

serve a restoration purpose, enabling periodic biological maintenance and recovery,

as it happens in the whole body when at rest (Vyazovskiy and Harris, 114). Our

modeling and investigation are focused only on the effects mediated by the Up states
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dynamics. During sleep, external perceptions are, at least, strongly attenuated, and

the majority of the motor system is blocked (Bucci and Grasso, 13). For this reason,

in our model the local interaction between cortex and thalamus is crucial during

sleep rather than contextual signal coming from other cortical modules and sensory

input coming from thalamic pathways.

In order to make a biologically realistic learning protocol and to implement the

role of the context in the learning phase, we took inspiration from the "organizing

principle" of Larkum (58) for the Cerebral Cortex, which describes specific computa-

tional strategies implemented by the neuronal structure of Layer 5. The architecture

is grounded on the separation of intra-areal and inter-areal contextual information

(reaching the apical dendrites of pyramidal neurons) from the feed-forward flow

of area specific information (targeting its basal synapses). Cellular mechanisms,

like Ca++ spikes, promote the detection of coincidence between contextual and

specific activity. High-frequency bursts of spikes are emitted when the coincidence

is detected. Relying on these observations we introduced in our model external

stimuli mimicking contextual information which changes the effective firing threshold

of specific subsets of neurons during the presentation of examples in the training

phase. For each example, a vector of features is projected toward the cortical

network by thalamic neurons. Due to the change in the perceptual effective firing

threshold, spike-timing-dependent-plasticity (STDP) creates stronger bottom-up

(thalamo-cortical) and top-down (cortico-thalamic) connections between a subset of

cortical neurons and the thalamic neurons.

4.1.1 Network architecture

The network has been designed to be a minimal thalamo-cortical model as

described by Destexhe in 26 (see Figure 4.3), composed of two populations of cortical

neurons (one excitatory cx and one inhibitory in) and two thalamic populations

(one excitatory tc and one inhibitory re). The spiking simulation of this model was

performed using the NEST simulation engine, the high-performance general purpose
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simulator developed by the NEST Initiative, release 2.12 (57).

The role of cortical inhibitory neurons in our model is to provide a shared

inhibition supporting a winner-take-all mechanism. Indeed, when a part of the whole

network responds to a specific input, the rest of the network is inhibited. A classical

choice to approximate a biological cortical network is to set a 4:1 ratio between

excitatory and inhibitory neurons. Keeping a fixed excitatory:inhibitory ratio is not

critical for the model here presented. In our runs, the ratio varied from 4:1 to 1:1

because for simplicity we kept the number of inhibitory fixed in all simulations, while

we increased the number of excitatory with to the number of training examples.

The connection probability is p = 1.0 for the populations connected by the

arrows in Figure 4.3. The learning mechanism is allowed by symmetric (α = 1.0)

spike-timing-dependent-plasticity (STDP) present in the cx → cx, cx → tc and

tc→ cx connections which shapes the weights structure.

The contextual signal is a Poissonian train of spikes which mimics a contextual

signal coming from other brain areas and selectively facilitates neurons to learn new

stimuli. The top-down prediction is the signal flowing through cx→ tc connections,

predicting the thalamic configuration which activated a specific cortical activity

pattern.

We tested the role and the mechanisms of the occurrence of SO in such thalamo-

cortical network model which was previously trained to learn and recall images. In

this case we used hand-written digits examples extracted from the MNIST dataset,

pre-processed through the application of the histogram of oriented gradients (HOG)

algorithm, that allows the transformation of each image in a sequence of bits (in our

case we used a 28x28 pixel image, histograms applied on a 14x14 cell size with stride

equal to 7 and 9 bins per histogram, with a total binary encoding of 4 bit/feature).

The network model included thalamic relay (tc) and reticular (re) neurons in the

thalamus, as well as pyramidal neurons (cx) and inhibitory interneurons (in) in the

cortex (Figure 4.3, panel A) following a standard minimal structure for thalamico-

cortical models (Destexhe, 26). Panel B shows an example of activity time-course in
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the cx and tc populations during the training phase, the retrieval phase, and the

early stage of sleep phase.

Figure 4.3. Thalamo-cortical model and protocol description. Panel A: sketch of
the structure of the simplified thalamo-cortical model considered, which is composed
of an excitatory and an inhibitory population both for the cortex (cx, in) and for the
thalamus (tc, re). Connectivity structure is represented by solid lines. The visual input
is fed into the model through the thalamic population, mimicking the biological visual
pathways. In the training phase a lateral stimulus enhances a specific subset of cx
neurons to preferentially represent the stimulus. Panel B: activity produced during
training phase, pre-sleep retrieval and the first 40s of SO activity in the cx (top) and
tc (bottom) populations. Only first 180 neurons in tc population are shown for visual
purposes. In the training 3 instances of 3 classes of digits (0,1,2) are learned by the
network. In the replay during sleep, thalamo-cortical connections promote the activation
of neurons coding for similar patterns of activity, causing the potentiation of cortico-
cortical connections between neurons representing digits of the same class. A general
depression reduces the largest synaptic weights. Post SO retrieval is not shown. Adapted
from Capone et al. 15.
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4.1.2 Training and pre-sleep retrieval

During the training, 9 different images were presented to the network, in a first

set of runs: 3 instances for each class of digit, for a total of 3 different classes (e.g.

0,1,2). In a second group of runs, 30 examples per digit constituted the training set.

For each image an external stimulus (contextual signal) induced a different subset of

cx neurons to code for that specific image, with STDP shaping the intra-cortical,

the thalamo-cortical and the cortico-thalamic connectivity. In order to adopt the

Larkum prescription (58), the parameters are set to make the cortical neurons fire

during the training only if they receive both sensory and contextual stimuli. This

training procedure works even in the extreme case where only one neuron is used to

code each digit example. However for one or a few neurons, self sustained oscillations

would not be well defined. For this reason, we chose a population of 20 cortical

neurons for each newly presented example, but we verified that the same qualitative

results are obtained also for the cases in which each example is coded by a different

number of cortical neurons (for example we tested it for 10, 15 and 25 neurons).

After the training, images were presented again (retrieval phase) without the

external stimulus. Thanks to the synaptic reinforcement of a specific group of

neurons induced by STDP during the training phase, the population of cx neurons

responding to that specific image is the same as the one selected in the training

phase by the external stimulus, demonstrating the success of the retrieval. In a few

words, just reading the firing rate of the different cx population (each one coded for

a specific image during the training phase), we get the answer of the model to the

presented stimulus.

4.1.3 Induction of Slow-oscillation

A non-specific stimulus at low firing rate was provided to cortical neurons only,

while model parameters are modulated eliciting the spontaneous occurrence of

cortically generated Up states and of thalamo-cortical SO (see Figure 4.3, panel B).

We relied on the framework of mean-field theory to obtain a model displaying
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different dynamical regimes. An oscillatory regime, closely resembling Slow Oscilla-

tions observed in deep sleep and anesthetized states can be induced by introducing

a relatively strong recurrent excitation and spike frequency adaptation, as described

in Gigante et al. (35) and Capone et al. (16). We tuned the parameters of the

network to make it display SO frequency (between 0.25Hz and 1.5Hz) and Up state

duration (a few hundred of milliseconds) comparable with experimental observations

in deep sleep recordings (see Contreras and Steriade 22, Steriade et al 104).

The activity (Figure 4.3, panel B) during the initial stages of simulated SO dis-

plays that Up states are independently sustained by populations coding for different

memorized images. However, thanks to the cortico-thalamo-cortical pathways each

population tends to recruit other populations sharing similar thalamic represen-

tations. Indeed, when a population initiates an Up states, it activates thalamic

patterns similar to the ones responsible for the activation of the population itself

during the retrieval phase. This is what we call top-down prediction. The thalamus,

in turn, activates all the other populations which coded for a similar thalamic input.

Across the sleep period, thanks to the cortico-cortical plasticity, the co-activation of

populations coding for similar predicted synaptic input becomes a more and more

prominent feature.

4.2 Effects of deep-sleep activity on synaptic weights
and on firing rates

We first considered the case with the training set composed of 3 classes and 3

examples per class. After the training stage the system undergoes a 600s period of

sleep. During this stage, the activation of groups of neurons associated to different

training examples induces, through STDP, not only a synaptic pruning but also

the creation of stronger synapses between groups of neurons that share enough

commonality in the features they received during the training.

This effect can be noticed comparing the structure of the synaptic matrix before

and after sleep as in Figure 4.4: panels A and B report the change from the initial
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flat structure (which reflects the individual training examples) towards a hierarchical

structure (embedding the categories of learned digits).

Figure 4.4. SO effects on connectivity structure. Panel A: synaptic weights matrix of
the recurrent connectivity of cx population, before (left) and after (right) the occurrence
of sleep-like activity. The yellow squares represent high weights emerged between neurons
encoding the visual input related to the same object (single instance of 0,1,2 ... image).
Red solid lines separate the neurons encoding visual inputs related to different classes of
objects (0,1,2 ...). Panel B: scatter-plot of the same synaptic weights before and after
sleep. Panel C: synaptic weights after sleep, separated in three groups, synapses between
neurons encoding the same object (yellow), the same class (but not the same object,
orange) and different classes (green). Adapted from Capone et al. 15.

Indeed we can observe that novel synapses are created among examples in the

same digit category (Figure 4.4, panel A-left). At the same time the system undergoes

a down-scaling of the strongest synapses, those linking neurons coding for the same

image (Figure 4.4, panel A-right). The differential effect on synapses can also be

observed in Figure 4.4, panel C, where the histogram of synaptic weights after-sleep
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is reported. The synapses between patterns encoding for different learned images of

the "same class" and those between "different classes" (respectively orange and green

distribution ) are originally drawn from the same distribution by definition, while

after sleep they are clearly differentiated.

The change in structure of the synaptic weights matrix modifies the activity

expressed by the network in the retrieval phase. This can be appreciated looking at

the difference of the correlations between groups of neurons before and after sleep

(see Figure 4.5, panel A).

Figure 4.5, panel B reports the difference among correlations evaluated after

and before sleep. It shows decorrelation (blue squares) of populations encoding

different classes, and correlation (red regions) of the ones coding the same class.

Such information is reported also in Figure 4.5, panel C, showing the correlation

changes for populations in the same class (blue) and in different classes (green).

Such effect might provide benefits in retrieval and classification tasks.

Figure 4.5. SO effects on internal representation. Panel A: activity correlation
between all pairs of populations representing the single images before (left) and after
(right) sleep. Panel B: correlation difference between after and before sleep. Panel C:
histogram of correlation differences for populations encoding the same class (blue) and
different classes (green). Adapted from Capone et al. 15.

The consistency of such result is testified by Figure 4.6. There, the same

simulation is performed for different training sets (different examples of 0,1,2 digits).

All simulations show that the synapses between neurons in the same class are the

more reinforced (Figure 4.6, panel A, orange versus green) and that their internal

representation has an increased correlation (Figure 4.6, panel B, blue versus green).
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Figure 4.6. Analysis of populations: synaptic weights and comparison between
correlations with and without cortico-thalamic predictions. Panel A: average
ratio between weights post- and pre- sleep for each simulation (top). The different
categories are separated in different colors. Yellow: synapses connecting neurons coding
for the same image, orange: different image of the same class of digits and green: different
classes. Panel B: the average change in correlation between post- and pre- sleep for
each simulation (top) and histogram of the distribution over all the simulations (n=6,
bottom). Blue: same class, green: different classes. Panels C and D: as in A-B but in
absence of cortico-thalamic connections. Adapted from Capone et al. 15.

4.3 Cognitive effects of sleep – awake cycles

In our model we observed that sleep induces both the association of patterns

encoding learned images belonging to the same category and a differential synaptic

down-scaling. This is also reflected in a differential modulation of firing rates,

producing observations similar to the ones reported by Watson et al. (118). Such

effect is probably related to energetic optimization in biological networks, that has

also beneficial effects on the performances of our network in the image recognition

task.

We propose that such effect is due to the interplay between cortico-thalamic

predictions and thalamo-cortical connections. In other words when a group of neurons

undergoes an Up state it formulates a prediction in the thalamus by activating a

thalamic pattern similar to the one received during training. In turn, the thalamus

projects to the cortex and activates those populations trained for similar input

patterns. This mechanism promotes the connections between populations of neurons

coding for the images of the same class through STDP. To prove this, we reproduced

the same experiment switching off the cortico-thalamic prediction. Results are
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reported in Figure 4.6, panels C and D. It is evident that there is no sign of

the preferential association observed in the control condition, nor in the synaptic

structure (panel C), neither in the internal representation (panel D).

4.4 Performance improvements in post-sleep classifica-
tion tasks

Finally, we evaluated the effect of sleep-like activity on the performance of a

set of classification task trials. Networks were exposed to example and test images

drawn from all the ten classes of digits in the MNIST dataset. Each simulation

trial used a different test set of 250 images, and a set of 3 training examples per

digit (30 training instances in total, also randomly extracted for each classification

trial). Each network was exposed to the training examples using the same protocol

discussed above for the simpler retrieval task. For each test image, the classification

was determined looking for the class of the neuron responding with the higher firing

rate. We note that class labels were used only during classification and not during

the training that was completely unsupervised.

We observed a net increase in the classification accuracy across the sleep period.

Panel A of Figure 4.7 reports in blue the time course of accuracy increase as a function

of the sleep time. After 3000s of sleep, the improvement was on average 6.0%± 0.5%

(accuracy rose from 58.0% to 64.0%, average performed over 24 simulations). In

absence of thalamic feedback the improvement is significantly lower (red line in

panel A), proving that the memory association due to the cortico-thalamo-cortical

interaction is beneficial to performance in a classification task.

Average weights evolution as a function of sleep time are reported in panel B.

Synapses between groups of neurons encoding for different instances of the same

digit class (yellow solid line) were on average strongly potentiated, much more than

the ones connecting training examples belonging to different classes (green solid line).

Synapses interconnecting neurons representing individual training instances were

down-scaled (orange solid line). When the thalamo-cortical feedback was switched
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Figure 4.7. Sleep effects on a classification task. Panel A: change in classification
accuracy across over 30 sleep epochs (100s each). Blue and red are respectively the
conditions in which thalamus is on and off. The improvement in accuracy is averaged
over 30 simulation trials. SEM is reported in the shading. Panel B: average synaptic
potentiation and depression over 30 sleep epochs. The colors indicate connections
between neurons coding the same instance (yellow), different instances of the same class
(green) and instances of different classes (orange). Dashed and solid lines represent the
comparison between the conditions in which thalamus is on and off. Panel C: average
synaptic depression over all the synapses. (inset) Average decrease of SO frequency
across sleep time, average over 4 simulations. Panel D: scatter of single neurons activity
in 8 simulations averaged over time in a classification task before and after 3000s of
sleep. Inset, average difference of activity after and before sleep as a function of activity
before sleep. Adapted from Capone et al. 15.

off (same colors, dashed lines) this differential effect did not happen. This is the

same effects already reported for the case with 9 training examples (Figure 4.4,
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simpler retrieval task).

Such differential mechanism occurred together with a general synaptic depression

(see panel C, thalamus on and thalamus off in solid and dashed line respectively).

We notice that the average down-scaling is very similar for simulations executed in

absence and presence of thalamic feed-back, allowing for a fair comparison of the two

conditions. As a consequence of such general synaptic depression the SO frequency

decreases over time (inset in panel C) consistently with experimental observations

of Hobson el al. (48).

We observe that an optimal range of SO frequencies is important to obtain the

reported results. Indeed an extremely low Up state occurrence would make weaker

the specific cortico-thalamo-cortical association. On the other hand a very high Up

state occurrence frequency would increase the probability to randomly associate

different classes of digits. Both scenarios would impair the positive effect of the sleep

period on network performances.

Firing rates also underwent a differential modulation. Neurons with pre-sleep low

activity became more active after sleep (and vice versa). Panel D of the same Figure

4.7 displays a scatter of time averaged single neuron activity during the classification

task, before and after the 3000s sleep period (data are drawn from 8 simulations).

The distribution of individual firing rates is rotated respect to the bisector line (red

dashed line). The average difference of activity after and before sleep is positive

for low values of pre-sleep firing rates and negative for high pre-sleep rates (inset

in panel D). This prediction is similar to what observed by Watson et al. in 118,

strengthening the biological plausibility of our model.

4.5 Model refinements

The previously described thalamo-cortical spiking model has been improved

and refined with the purpose of demonstrating a link among two phenomena that

we believe to be essential for the brain capability of efficient incremental learning

from few examples in noisy environments (Golosio et al. 37). Grounded in two
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experimental observations – the first about the effects of deep-sleep on pre- and post-

sleep firing rate distributions (Watson et al. 118), the second about the combination

of perceptual and contextual information in pyramidal neurons (Larkum 58) – our

model joins these two ingredients. This new model, named ThaCo, alternates phases

of incremental learning, classification and deep-sleep. Memories of handwritten digit

examples are learned through thalamo-cortical and cortico-cortical plastic synapses.

In absence of noise, the combination of contextual information with perception

enables fast incremental learning. Deep-sleep becomes crucial when noisy inputs are

considered. We observed in ThaCo both homeostatic and associative processes: deep-

sleep fights noise in perceptual and internal knowledge and it supports of categorical

association of examples belonging to the same digit class, through reinforcement of

class-specific cortico-cortical synapses. The distributions of pre-sleep and post-sleep

firing rates during classification change in a manner similar to those of Watson

experimental observation. These changes promote energetic efficiency during recall

of memories, better representation of individual memories and categories and higher

classification performances.

4.5.1 Thaco main improvements

The main differences between Thaco and the previous simplified thalamo-cortical

model, above described, can be principally ascribed to the trend of bringing it as

near as possible to biological principles. Almost all parameters had been adjusted to

reach a behaviour similar to that observed in neuro-phisiological experiments, as the

ones reported by Watson et al. in 118. This was achieved with an iterative method

based on simulations and comparison of results with the experimental data (mainly

firing rate of neural populations during awake and deep-sleep states), that allowed

to calibrate the synthetic networks parameters.

A more accurate calibration of the contextual signal impinged a collateral, really

important effect: the memories are equally represented in the network, allowing for

continuously cycling of incremental learning, no possible in the previous simplified
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Figure 4.8. Thalamo-cortical spiking model (ThaCo). Panel A: scheme of the
Thalamo-cortical spiking model (ThaCo). Input images, passed through a filter (HOG)
are projected (blue arrow) to thalamic excitatory neurons (tc), mimiking the mechanism
of the retinal visual stimulus. Thalamic neurons stimulate cortical excitatory neurons (cx)
with a perceptual feedforward excitation (blue). Cortico-cortical and cortico-thalamic are
considered as top-down prediction connections (red). (Red arrows - context/prediction)
Currents coding for higher abstraction features incoming from other cortical areas.
Cortical inhibitory neurons (in) arbitrate competition among cortical groups in a
soft Winner-Take-All mechanism (WTA). Inhibitory reticular neurons (re) control
the thalamic firing rate. Panel B: a cellular mechanism for associating feed-forward
and feedback signals. Low-level features are encoded in primary sensory regions and
this signal propagates up the visual hierarchy (e.g. striate cortex (V1) sensitive to
orientation, V4 sensitive to colour, V5 sensitive to motion, and inferior temporal (IT)
cortex sensitive to shapes and objects). Higher-level areas provide feedback information
(context or expectation) to lower areas.The ThaCo model presented in this paper is a
single area model and the contextual signal is assumed to collect during training the
knowledge carried by all other areas in the hierarchy (see red arrows in panel A). Panel
C: conceptual representation of the back-propagation activated calcium (BAC) firing
hypothesis supporting efficient binding of features and recognition. Pyramidal neurons
receiving predominantly feed-forward information are likely to fire steadily at low rates,
whereas the simultaneous presence of contextual and perceptual streams changes the
mode of firing to bursts (BAC firing). This coincidence mechanism is mimicked in our
ThaCo model. Panels B and C are used to compare the architecture of our model with
the biological principles described by Larkum in 58.Adapted from Golosio et al. 37.
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model. The cycles of incremental learning demonstrated to perform better than

other Artificial Intelligence algorithms (for example Knn) when the input signal is

presented in absence of noise.

In addition, in this new model we studied the beneficial effects of sleep on a

noisy signal, introducing a ’Salt and Pepper’ noise in the contextual signal: slow

oscillations can compensate this noise through homeostasis, equalizing synaptic

weights and creating beneficial associations that improve classification performance.

Improvements were also implemented on the coding of thalamic input features.

A pre-processing HOG algorithm is applied to the MNIST handwritten digits images

to make them suitable to be encoded into the neural circuits, as in the previous

simplified thalamo-cortical model. The innovation introduced in Thaco was a fuzzy-

logic inspired approach that codes the HOG output into 6 truth values, each one

stimulating a specific thalamic neuron, instead of the 4 values binning previously

used. This creates a smoother representation of the HOG information and reduces

the loss of information, possible whenever real values are discretized.

4.5.2 Thaco architecture

ThaCo exploits the combination of contextual and perceptual signals to construct

a soft Winner-Take-All mechanism (WTA) capable of fast learning from few examples

in a synaptic matrix shaped by spike-timing-dependent plasticity (STDP). We set the

network parameters to induce the creation of soft WTA mechanisms by emulating

the organizing principle of the cortex described by Larkum as depicted in Figure 4.8.

The proposed ThaCo circuit is organized into three layers, as shown in Fig. 4.8,

panel A: an input layer, the thalamus, which consists of an excitatory population

(tc) whose firing rate is under the control of a reticular inhibitory fully-connected

population (re); the cortex, consisting of an excitatory population (cx) and an

inhibitory population (in), also fully connected; a readout layer, to which the cortex

is also fully connected, composed of a subgroup of neurons associated to each class.

The phases of the training and testing protocol is described in Figure 4.9. During



4.5 Model refinements 68

Figure 4.9. Phases in Thalamo-cortical spiking model. During training (left), the
injection of contextual signal, plays the role of internal prediction and increases the
perceptual threshold of a subset of cortical neurons. The simultaneous presence of
perceptual and contextual promotes a high firing rate in such neurons, mimicking the
BAC mechanism.In the classification phase (centre) the contextual signal is turned off.
In the sleep phase (right), the sensory pathways are turned off, and all the activity is
generated spontaneously. Adapted from Golosio et al. 37.

the training phase, for each example that have to be learned, groups of excitatory

neurons in tc are facilitated through the presentation of a contextual signal, leading

to an enhancement of connections between the cortical neurons trained over the

presented example and with the subgroup of readout neurons associated to the

correct class. The simultaneous stimulation from perceptual and contextual signals

emulates, as a first approximation, the organizing principle of the cerebral cortex,

as described by Larkum. This approach approximates the effects of the dendritic

apical amplification mechanism at the cellular level. It is worth noting that this is

the only stage when a category-specific (rather than an example-specific) signal is

given to the network: protocols concerning this third layer are supervised training

protocols, whereas those for the other layers can be referred as unsupervised training

protocols. During the classification phase, on the other hand, the contextual signal

is sent neither to the cortical neurons nor to the readout ones. We infer the network

answer to the classification task in two different ways: first, unsupervised, taking

the class of the example over which the most active subgroup of cortical neurons

has been trained; second, supervised, taking the class associated to the most active

subgroup of readout neurons. Specifically, the readout layer performs the integration

of signals coming from the subgroups of cortical neurons trained over different



4.5 Model refinements 69

examples belonging to the same class for a more detailed representation of the

learning process.

4.5.3 Comparison with biological observations

ThaCo has been calibrated to express deep-sleep-like activity and to induce

modifications to the distributions of pre- and post-sleep firing rates comparable to

biological measures like those carried out by Watson for an investigation of the deep-

sleep effects on learning and classification. Specifically, with ThaCo we investigated

several aspects and learning capabilities: 1- incremental learning from few examples;

2- resilience to noise when trained over degraded-quality examples and asked to

classify corrupted images; 3- comparison with the performances of knn algorithms;

4- the ability to fight noise in the contextual signal thanks to the introduction of

a biologically-plausible deep-sleep-like state, inducing beneficial homeostatic and

associative synaptic effects.

As a first step, we compared the ThaCo model behaviour with biological obser-

vations on the changes of firing rate distributions in awake, sleep and post-sleep

phases (see Fig. 4.10). Indeed, since one of the goals of this work is to implement

a biologically-plausible model which is capable to display different cognitive states,

the comparison with experimental outcomes become an important issue to asses its

plausibility. We compare the network behaviour of the model during three simulated

phases (pre-sleep awake-like, deep-sleep-like and post-sleep awake-like, see Figure

4.10) with those observed in mice by Watson et al. in 118. The previous thalamo-

cortical model described in section 4.1 was already able to express the transition

between states, such as sleep-like slow oscillations activity and awake-like classifica-

tion, but in the improved Thaco model, we refined its parameters to make it more

biologically plausible using as calibration tool the comparison with experimental

observations about differential changes of firing rates.

After the validation obtained against experimental results, we demonstrate

the capability of the model for incremental learning, i.e. with additional learning
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Figure 4.10. Sleep-like features. Panel A: state-wise differences of average firing rate,
to be compared with Figure 2A by Watson et al. 118. Cumulative distribution of the
firing rates of individual cortical neurons (log scale); note the brain-state dependent
differences (colour). Vertical lines separate neurons sorted by AWAKE firing rates into
six subgroups (sextiles) with an equal number of elements. Panel B: firing rate changes
across sleep in each of the six groups defined by the awake firing rates, to be compared
with Figure 3B by Watson et al.. High firing rate neurons show decreasing activity; low
firing rate neurons do not increase their activity over sleep. Panel C: opposite modulation
of neurons of different firing rates, to be compared with Figure 3D by Watson et al..
Comparison of individual neuron firing rates during the first and last packet of sleep.
The regression line is significantly different from unity, showing that high and low firing
rate neurons are oppositely modulated over sleep. Panel D: cortical neuron population
mean firing rate changes across sleep, to be compared with Figure 3B by Watson et
al.. Panel E: awake firing rate distribution of cortical neurons pre-sleep (upper plot)
and plot-sleep (lower plot). Solid lines depict descriptive statistics parameters: Q1, 25%
quartile; Q2, 50% quartile (median); Q3, 75% quartile. Middle plot: boxplots of the
distributions. The central mark indicates the median, and the bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively. Adapted from Golosio et al.
37.
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examples presented to the trained network. In addition, we also tested Thaco with

noisy signals, obtained injecting a ’Salt and Pepper’ noise (density = 0.2) into the

unprocessed MNIST images.

In conclusion, in order to be compliant with biological rhythms, we first verified

that the proposed network, derived from the thalamo-cortical spiking model proposed

in 4.1, is able to reproduce the experimental measures of neuronal firing rates during

awake and deep-sleep states performed by Watson et al 118. Then we verified that

the proposed model is capable of fast incremental learning from few examples and of

alternating several learning-sleep phases. At the end we assessed its resilience when

subjected to noisy perceptions with better performances compared to other common

classification algorithms.
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Chapter 5

Preparing the study of cognitive
tasks in monkeys

Among the objectives of my activity there was the study of neural correlates in

non-human primates during cognitive tasks and motor behaviour, in case of controlled

answers. The presented work is a preliminary data analysis, mainly focalized on the

methodology to produce the tools useful to work on electrophysiological data also in

different conditions, for instance to study the effect of sleep (and more specifically,

of slow waves) on the learning process and memory consolidation in behavioural

tasks, which constituted a specific interest among my activities in the last years.

As a first step in this direction, to take confidence with the experimental data,

I started analysing data collected by researchers of the The Motor Control and

Cognition Lab (MCC_lab) directed by Prof. Stefano Ferraina at Sapienza University

in the past years. I want to underline that the work here reported is based on data

previously published and curated by the staff of the The Motor Control and Cognition

Lab, that performed animal care, housing and experimental procedures conformed to

European and Italian laws on the use of nonhuman primates in scientific research.

The recordings were acquired on two rhesus monkeys chronically implanted

in the left dorsal premotor (PMd) cortex with a 96-channel microelectrode array

(Blackrock Microsystems, Salt Lake City, Utah). Monkeys were tested both on

transitive inference (TI) tasks and on countermanding (CM) tasks while neural
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activity was recorded extracellularly. From the recorded signal, the unfiltered Local

Field Potentials (uLFP), I extracted the Multi-Unit Activity (MUA) that represents

an aggregate measure of the neuronal spiking activity in the local neighborhood of

the recording electrode of about 200 µm, providing a good estimate of the firing rate

of the neurons surrounding the electrode tip (Mattia and Del Giudice, 63). Starting

from the raw recorded signal, I extracted the MUA according to the methodology

set-up by M. Mattia et al. and well described in 89. For each channel/electrode,

the Power Spectral Density (PSD) of the signal is computed. The MUA signal is

calculated as the average power of the normalized spectra filtered in the frequency

band 0.2–1.5 kHz. Then the MUA is logarithmically scaled to balance the large

fluctuations due to the spikes of the neurons surrounding the single electrode. At

the end, the log(MUA) time signal is smoothed using a moving average based on a

sliding window of 80 ms. The MUA calculated with this methodology constitutes

the basis of all the analysis described in this chapter.

One prospective focus of this research is the study of the transitions between

brain states, such as from deep anaesthesia to awake state, which entail changes

in the "complexity" of neural activity. On the other hand, during the performance

of a task, neural activity has been observed to ‘loose complexity’ when a task-

dependent decision is taken, or upon processing a sensory stimulus (often observed as

a collapse of inter-trial variability). Therefore, important changes in the complexity

of neural dynamics are observed both in spontaneous neural activity and in task-

related activity, and suitable definitions of complexity are wanted. Among the many

proposals in this direction, the dimensionality of neural activity is arguably a useful

complexity measure; I focus in the following on simple dimensionality measures, as

defined in 1 by Abbott, Rajan and Sompolinsky and exploited by Recanatesi in

85 and Mazzucato 66, and test them on neural activity recorded during CM and

TI tasks. A summary description of these tasks is reported in section 5.1 and 5.2

respectively.

In addition, I also analyzed transitive inference experiments to find specific
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neural correlates that start acting in different conditions, for instance something

that can help distinguishing when the correct answer is on left or right, or if there

are differences in neural correlates for different symbolic distances.

The results of these studies are reported in the following sections.

5.1 The countermanding task (CM)

The countermanding paradigm is particularly suitable for the study of the ability

to suppress an impending action, or in other words of an inhibitory control of the

actions (see Logan and Cowan 59 or Hanes and Schall 45). In experiments done in

the MCC_lab (Pani et al. in 82 and 81), the focus of the study done using this

paradigm was the inhibitory control of reaching arm movements in monkeys.

Figure 5.1. Countermanding task: the two different protocols of no stop trials and stop
trials are described in the picture. Adapted from countermandings works performed at
the MCC_lab.

Each session of the experiment is constituted of several trials in which a central
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cue appears on a screen. The animal has to touch it until a new target appears

either on the left or on the right of the same screen. When the central cue disappears

(go signal), the monkey have to reach the new spot and receive the reward. In a

fraction of trials, after a variable delay, the central cue reappears signaling a stop

in the action execution. If the monkey aborts the movement the trial is considered

correct, otherwise it is a wrong one. The protocol is described in Figure 5.1.

5.2 The transitive inference task (TI)

Transitive inference (TI) is an inductive reasoning task that allows to derive

relations between items that have not been explicitly compared before. Generally

speaking, the TI task demonstrates the ability to support deductions like:

(B > C) ∧ (C > D) =⇒ (B > D) (5.1)

i.e., if item B is greater in rank of item C and item C is greater in rank of item

D, then B is superior in rank to D. TI has been used in several research studies

on humans and non-humans subjects, to understand various aspects of inferential

problem solving (see for instance Bryant and T. Trabasso 12 and Brunamonti et al.

9, 10).

Figure 5.2 represents a sketch of the experiment set up in the MCC_lab for the

recording data that I used in my thesis. At the beginning of the daily experimental

session, a set of six items was randomly selected out of a set of about 80 items

consisting of abstract images. The six selected stimuli were randomly organized in

an always novel serial hierarchy at every daily experimental session. During the

experiment, the animal is required to learn the relationship among these six elements.

At the beginning, the monkey is posed in front of a screen where, after the beginning

of the task, a central cue appears. The monkey touches the cue. Then two of the

selected symbols appear on the screen (target on), one to the left, the other to the

right. As soon as the central cue disappears, the monkey starts moving the arm
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toward one of the two symbols (detach). The correct choice happens if the selected

item is the higher in rank. In that case, the animal receives a reward.

Figure 5.2. Transitive inference task: the animal is in front of a screen pressing the
central cue when it appears. Then two items are proposed. At the go signal (cue off),
the monkey selects one of the symbols and receives a reward if the selected one is greater
in the established ranking. Adapted from Mione et al., 68.

.

Each session of the experiment evolves through three phases:

1. Learning phase: two different procedures can be adopted: 1- a sequential

learning procedure and 2- a chain-linking learning procedure. In the first one,

the first pair of symbols, adjacent in rank (i.e.: with symbolic distance equal

to one), is presented to the animal, that has to identify the correct one by

trial and error (all correct answers are rewarded). The winning item can be

positioned either on the left or on the right side of the screen. This phase

goes on until the percentage of correct responses is at least 80% for that pair.

Then the next pair is presented following the same procedure. Instead, in

the chain-linking learning procedure, the animal is trained, with the same

methodology, only on the first three items (e.g. A > B > C), then on the last

three items (D > E > F ) until the correct response level of 80% is reached, as

in previous case. At the end the chain is closed instructing the animal to learn

the missing relation among the six elements (C > D).

2. Consolidation of learning phase: all five pairs already known by the

animal are presented in random order. Note that all the pairs are always at

symbolic distance one (e.g. A−B, B −C, C −D, etc.). This phase ends only

when the monkey reaches the percentage of correct responses >60%. For the
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sequential learning procedure this phase is performed after the whole sequence

has been learned (i.e. at the end of the previously described learning phase),

while in chain-linking learning procedure it is done just before the chain closing

(i.e., before the animal is instructed to recognise the relation between the two

linking items C > D)

3. Testing phase: here both learned and novel pairs are presented, and the

animal is asked to infer the hierarchy of symbols, generalizing the basic rules

already acquired for consecutive pairs of symbols. The presented symbols are

already known by the monkey during the learning phase, but the symbolic

distance at which they are presented could range from one to the maximum

allowed (i.e. "five" for the experiments I analyzed).

As a matter of fact, at the end of the experiment, the animal should be able to

recognize the higher ranked symbol when compared with any other symbol on which

it has been trained that day, either if it is presented on left or on right side of the

screen and whichever is the symbolic distance between the two presented symbols.

For more details see also the papers of Brunamonti et al. (9 and 10) that describe

the exact setup used to record the data I analyzed.

5.3 Dimensionality

In neuroscience, dimensionality provides a representation of how compact the

measure of the network activity could be, or, in other words, how many degrees of

freedom can be used to explore a phenomenon. The activity of a huge number of

neurons can be seen as a set of points in the firing rate space. The dimension of

this space is in general equal to the neuronal ensemble size, but usually the effective

activity can be localized in a smaller subset of them. Dimensionality reduction acts

in this sense: it creates a new space that reflects the essential features of the original

one, but with a reduced dimension and, in general, it helps in removing noise or

information that are irrelevant to the task.
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Roughly speaking, dimensionality is the minimal number of dimensions that is

necessary to provide an accurate description of the neural dynamics. It exploits the

redundancy of the input data finding a smaller set of new variables, each being a

combination of the input ones, basically containing the same information.

A lower dimensional data representation with respect of the original one, in

which the noise and other redundant information are removed, just retaining the

signal of interest, can be essential in understanding hidden structures and patterns.

In this sense, it can be viewed as a method for latent feature extraction. Several

techniques are available for dimensionality reduction. The paper of Cunningham

and Yu (23) represents a comprehensive review of many of them.

5.4 Dimensionality over trials evolution

Dimensionality could not be considered constant during the execution of the

whole trial. Conceivably it changes around specific events that occur along it. For

instance, in case of countermanding tasks, the go, stop, or reward signals are specific

points that change the value of dimensionality (see 5.5.1). The same happens in

transitive inference tasks (see 5.7). In this sense, the trials can be considered time

series whose analysis can be used to infer properties describing the underlying

structure of the system.

Principal component analysis (PCA) is one of the most simple and widely used

dimensionality reduction methods, but as other many linear methods commonly used,

it disregards the temporal structure hidden in the data, treating data at different

time steps as independent static samples (Clark et al. 21, Recanatesi et al. 85). I

searched for other approaches that could give more reliable and complete results for

the calculation of this value for data displaying high variability due to their temporal

structure.

One methodology used to calculate dimensionality variability along trials is

described by Recanatesi in 85 and Mazzucato in 66. After the application of PCA to

the data coming from the acquisition on several electrodes, the value of dimensionality
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is calculated as the weighted measure of the number of axes explored by the "cloud"

generated by the distribution of the neural population across many trials:

D = (
∑N
i=2 λi)2∑N
i=2 λ

2
i

. (5.2)

where λ are the eigenvalues of the covariance matrix.

For completeness, in this work I also took into account an extension of linear

analysis methodology. In particular I considered the calculation of dimensionality

reduction proposed by Laio et al. (29). The authors propose a new estimator

for the intrinsic dimensionality using only the distance of the first and the second

nearest neighbor of each point in the sample. They affirm that the proposed method

is theoretically exact in uniformly distributed datasets and provides consistent

measures in general. Moreover, they say it also returns good results also in presence

of high-dimensional noise and seems to require a low computational cost.

First of all, I compared the calculus of dimensionality reduction using the two

approaches (Laio methodology and equation 5.2 applied to the eigenvalues of the

covariance matrix obtained with PCA) on synthetic noiseless data to facilitate the

comparison. The data series was built mixing two signals with different dimensionality.

The first signal (S1) is a hyper-plane of dimension two, while the second signal (S2)

is a hyper-sphere of dimension N. The data series is built including S1 and S2 with

different percentage throughout a sigmoid function that, at the beginning, produces

the full inclusion of the S1 signal without any contribution of S2, then it smoothly

increases the contribution of S2 and correspondingly reduces the contribution of S1

until it fully disappears. The sigmoid function is used to weight the value of the

dimension and move from the minimum to the maximum value in a smooth way,

ruling the transition from lower to higher dimensionality. For the signal S2, the

hyper-sphere, I used two values of dimensionality: a hyper-sphere of dimension 10

and hyper-sphere of dimension 96.

The results are reported in Figure 5.3, respectively in panel C and D. Panel A
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and B give a 3D projection respectively of the hyper-plan and of a generic hyper-

sphere. It is evident as the Laio methodology works well for low dimensionalities,

but presents some instability for higher dimensions, that is not really desirable

when the dimensionality reduction has to be applied to a signal with a starting

dimension equal to 96 (the channel number of the Utah array used to acquire the

electrophysiological signal during the experiments).

Figure 5.3. Comparison of dimensionality reduction using Laio methodology
or the PCA and equation 5.2, for a different number of elements in a non-
stationary time series. Panel A: 3D projection of the starting element of the non-
stationary series represented by a 2-dim hyper-plan. Panel B: 3D projection of the
hyper-sphere of dimension 96, representing the last element of the non-stationary series.
Panel C and D: calculation of dimensionality using PCA and Laio for the time series in
the range 2 to 10 (C) or 2 to 96 (D).

In a second experiment I compared the behaviour of the two methods with

noisy signals variable in time. In the specific example reported in 5.4, I created a

hyper-plan and after I added a white Gaussian noise to it (see panel A of 5.4). Then

I moved in time randomly changing the noise at each time step. Panel B of the

same figure reports the dimensionality calculated with equation 5.2 (based on the

eigenvalues of the covariance matrix obtained with the PCA method, and always

resulting around the value of 2, 1.98 in this case) and that calculated with Laio
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method, that is highly variable and presents a mean well above the value of 2 (23.08

in this case). Both dimensionality calculations have been computed using a sliding

window of size equal to 3 milliseconds.

Figure 5.4. Comparison of PC and Laio methodology for a different noisy signals:
Panel A: noisy signal produced adding white Gaussian noise to a hyper-plan. Panel B:
results obtained applying PCA and Laio dimensionality reduction methods. In both
methods, a sliding window of 3 ms has been used for the computation.

At the end I can conclude that the methodology proposed by Laio is highly

sensible to the signal noise, as in the case of neural signals that generally present a

high degree of noise, both for the possible problems during the acquisition phase,

and for the high variability of the signal itself. Moreover, the application to an

original space presenting high dimensionality does not produce stable results.

As a matter of fact, possibly due to this high sensibility to noise, the application

of the Laio methodology to the transitive inference tasks, for the reduction of the

original space created by the 96 electrodes of the Utah array, and the creation of a

less-dimensional space for the analysis of the neural dynamics for different symbolic

distances, does not produce outstanding results.

In conclusion, I decided to use the PCA and equation 5.2, with the caveat to

apply it to trial-averaged signals and to work on small time windows, in order to

reduce variability due to noise retaining the variance due to neural dynamics.
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Table 5.1. CM trials per kind and per monkey

Trials
Monkey no-stop stop-correct stop-wrong Total
Monkey 1 689 87 89 865
Monkey 2 221 38 20 279

5.5 Dimensionality along trials in CM tasks

I analyzed the data coming from two countermanding experiments each one done

on a single monkey. According to the applied protocol, the trials are divided in

no-stop trials, stop-correct trials and stop-wrong trials (the one in which the monkey

receives the stop signal but continues the arm movement). Table 5.1 summarize the

number of trials available for the three kind of tasks.

In a first measurement, I analyzed only the no stop and stop wrong trials, aligning

all of them to the detach signal. I started from the raw signal registered in PMd

cortex of monkeys at the MCC_lab using the 96 channels Utah array. From this

signal, I extracted the MUA spectral estimate as described in the introduction of

this Chapter 5 for each channel. Then I calculate the dimensionality reduction using

the PCA method.

First of all, in the new PCA space, I subtracted the MUA spatial mean, that

represent the projection of the data on the first principal component (PC1), that

substantially would dominate the analysis. Therefore, because I’m interested in

analyzing the dimensionality of the subspace resulting orthogonal to PC1, before

proceeding with the analysis I needed to remove the spatial mean of the obtained

MUA signal.

The results of the dimensionality calculation for monkey 1 are reported in Figure

5.5: in this graph, only trials involving the monkey arm movement are taken into

consideration, both the correct ones (no stop) and the wrong ones (stop wrong).

In case of no stop trials the dimensionality starts increasing at detach signal and

remains almost stable until reward (basically the end of task). On the contrary, in
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stop wrong trials it decreases and remains at much lower values after the stop signal.

The dimensionality collapse immediately after the monkey received the go signal

represents a loss in complexity, and can be considered as a result of the fact that the

decision about the movement has been taken, and the motor plan is already formed.

Then, after the touch signal in case of correct no stop trials, the dimensionality rises

again more or less at the values it presents at the beginning of the task.

Quite different is the condition for stop wrong trials, in which the decrease of this

value is still visible at the reaction time, but then it remains at low values (better

visible in Figure 5.6), because probably the monkey has already realized the error.

As said before, all the trials are aligned to the detach signal. The additional

depicted lines represent the occurrence of other events happening during the trial.

Considering that the different events occur with a little variability for each trial, to

better show this happening, I traced larger lines, that show the first and the last

occurrence of each single event. In same cases the lines are smaller (the occurrence

is almost the same in all the trials), in other cases they are larger (the difference

among trials is more pronounced).

In an additional analysis I considered also the stop correct trials, starting from

a different alignment given by the go signal. In this case results are reported in

Figure 5.6. Also in this graph, the additional significant events are reported, with

the same consideration of line width as in Figure (5.5). Dimensionalitity between

correct trials (no stop and stop correct) are quite similar, even if the moment in

which dimensionality rises again happens in two different moments: after the stop

signal for stop correct trials, and after detach for no stop ones, both representing

the moment in which the motor plan can be considered concluded for that specific

task. On the contrary, as in the previous plot, the case of stop wrong trials presents

a collapses after the detach, reaching completely different values well below the ones

of the other cases, as if the missed aborted movement is still keeping the animal in a

low complexity neural state.

In conclusion, the temporal profile of the dimensionality here analyzed is very
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Figure 5.5. Dimensionality over trials in CM tasks. Variation of dimensionality
during two different kind of tasks: the no stop trials and the stop wrong ones. Is evident
how much dymensionality is reduced in case of wrong trials with respect to the others.
The width variability of the lines marking the different events on the plot are due to
their different happening within the various trials.

Figure 5.6. Dimensionality over trials in CM tasks. Variation of dimensionality
during three different kind of tasks: no stop, stop correct and stop wrong tasks. In this
case the alignment of the tasks is at the go signal. The width variability of the lines
marking the different events on the plot are due to their different happening within the
various trials.

similar for no stop and stop wrong trials until the movement decision is being taken,

and value of dimensionality significantly decrease before the movement initiation.

At the same time, the value definitively change among the two cases after the Touch

event, when probably the monkey realize the error (it received the stop signal but

doesn’t abort the movement). On the contrary, in stop correct trials, the value

of dimensionality is still high when the monkey receive the stop signal, coherently

with the idea that it is able to inhibit the movement because it is not ready for the

movement, yet. In other words, the movement inhibition is possible because the
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motor plan has not been completed at that moment.

A further consideration is about the time of arrival of the stop signal: from

Figure 5.6 it is evident that the stop correct trials receive the stop signal well before

the stop wrong ones. Probably this could give the monkey more time for the decision

and for the completion of the motor plan itself.

5.5.1 Dynamic of movement inhibition in CM tasks

I also analyzed the dynamic of movement inhibition in countermanding tasks,

with the aim to find differences among the different kind of trials. I started from

the raw signal registered in PMd cortex of monkeys at the MCC_lab using the 96

channels Utah array. As in previous analysis, I extracted from it the MUA spectral

estimate for each channel. Then I calculate the dimensionality reduction using the

PCA method.

In the new PCA space, after the subtraction of the MUA spatial mean, I analyzed

the trajectory of the dynamics in the three different kind of countermanding tasks,

as reported in Figure 5.7. It is clear from it that there is a strong similarity between

the no stop and stop wrong trajectories: when in the stop wrong case the animal

doesn’t perform the required stop, it continues the movement, more or less as in the

other case. Different is the dynamic of stop correct case: as soon as the stop signal

is perceived, the movement is aborted and the dynamic in the PCA space exactly

reflect this behaviour.

In figure 5.7, the different trajectories are reported with a sequence of dots,

sampled at constant time. Anyhow, in the graph the dots appear at different

distances one from the other (within the same kind of trials). This give a clear hint

of the velocity with which the trajectory is covered during the movement: where the

dots appear more distant, the velocity is higher than where the dots are denser.

An additional comment on the trajectories concerns the stereotyped PCA space

where each trajectory tends. It seems that going toward the reward state, the

dynamics of each kind of trial (stop correct and no stop), move toward a similar
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localized PCA space, while the stop wrong trials have a different, but always

stereotyped end point. This is confirmed also from the cluster analysis done by

Baglietto et al. in collaboration with the MCC_lab.

Figure 5.7. Dynamic of movement in CM tasks. PCA trajectories in case of three
different CM tasks: no stop (NS), stop correct (SC) and stop wrong (SW). The trajectory
start is placed at smaller dots and proceed toward larger ones. The black dots represent
the arrival of the stop signal for stop correct and stop wrong trials, while the red dots
represent the movement initiation for no stop and stop wrong trials.

The results described in sections 5.5 and 5.5.1 are consistent with those obtained

by Ferraina, Del Giudice et al., and presented with the poster "Attractors and Flows

in the Neural Dynamics of Movement Control" at the Organization for Computational

Neuroscience CNS 2019 in Barcelona.
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5.6 Analysis of TI tasks

To check the flexibility and general applicability of the analysis tools illustrated

above, and in view of further study to be developed, I next considered the transitive

inference tasks, that, from the perspective of MUA recorded signal, is just beginning

to be studied in the MCC_lab. In this section I will first illustrate a summary of

behavioural data collected from two monkeys performing the TI task; I will then

describe the time course of the recorded MUA in different conditions of the task, and

I will check to what extent it can be usefully captured by dimensionality reduction;

finally (similarly to the analysis of the CM task) I will inspect the time course of a

measure of the dimensionality of the neural activity during the correct and error

trials.

5.6.1 Behavioural phenomenology

TI experiments were conducted on two monkeys ("Monkey 1" and "Monkey 2"

in the following). For a set of six visually presented items (chosen to be equally

visually salient and such as to avoid visual bias, and renewed every day) an arbitrary

rank order is defined: labelling the visual stimuli as A,B,C,D,E,F, such order implies

A>B>C>D>E>F. For each trial, a pair of symbols are presented on a screen. The

monkey has to perform a reaching movement towards the higher-rank symbol of

the pair, independently of whether it appears on the left or right on the screen.

Training proceeds along two alternative protocols (for details see Mione et al. 68

and Brunamonti et al. 10, 9): either the monkey is trained on all pairs of symbols

which are adjacent in the rank order, or training initially involves two 3-symbols

subsequences (A,B,C; D,E,F), which are later ‘chained’. The recordings analyzed in

the present work refer to the test phase (test protocol is the same for the two training

modes), in which the monkey is presented with two symbols that can be non-adjacent

in the rank order (e.g. A-C, F-B), and their distance in ranking is termed ‘symbolic

distance’ (SD), such as for instance A-D have SD=3. The successful monkey is able

to infer that F<B based on the learnt rank relations between adjacent pairs, though
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Table 5.2. Summary of TI tasks for right and left winning target position

Trials
Monkey Correct right Correct left Wrong right Wrong left Total
Monkey 1 155 148 8 12 399
Monkey 2 167 170 26 22 450

pairs with SD>1 were never seen during training. It is intuitive and verified by data

that, the difficulty of a trial decreases with SD.

Table 5.2 summarizes the number of test trials performed by each monkey,

counting separately correctly and wrongly performed trials, and trials in which the

winning symbol was presented on the left or on the right on the screen. Though

the requested direction of movement is known to imply differences in the cortical

activities associated with the preparation and execution of the movement, in the

analysis we did not focus on this aspect and we lumped together right and left trials.

Table 5.3 summarizes the performances of the two monkeys for the five SDs.

From table 5.3 it appears evident that, though performances of Monkey 1 are

systematically higher than those of Monkey 2, in both cases the success rate increases

(while the failure rate decreases) with increasing SD, as anticipated.

The level of difficulty of the trials is also expected to affect the reaction times

(defined as the difference between the time of go signal and the moment when the

monkey detaches the finger from the screen to reach the chosen target - detach

event); also, according to standard evidence in decision making experiments, reaction

times are expected to be different between correct and wrong trials. This is in fact

observed, as reported by Mione et al. in 68.

5.6.2 Analysis of MUA signal

I analyzed the MUA signal in all different cases reported in table 5.3. For each

monkey I analyzed both correct and wrong trials, as well as different time alignments

of the trials, taking either the target on or the detach events as reference times. Of

course, once aligned to one event, trials show a spread in time of the other events.
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Table 5.3. Summary of TI tasks for each SD

SD1
Monkey Correct Wrong % wrong on total
Monkey 1 52 9 15%
Monkey 2 57 19 25%

SD2
Monkey Correct Wrong % wrong on total
Monkey 1 64 4 6%
Monkey 2 56 22 28%

SD3
Monkey Correct Wrong % wrong on total
Monkey 1 61 3 5%
Monkey 2 76 4 5%

SD4
Monkey Correct Wrong % wrong on total
Monkey 1 60 2 3%
Monkey 2 73 0 0%

SD5
Monkey Correct Wrong % wrong on total
Monkey 1 66 0 0%
Monkey 2 75 1 1%
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For each case I calculated the time course of the mean MUA over trials; I also

represented the time course of the MUA as a rasterplot of color-coded MUA values

across trials (sorted by reaction times), separately for each SD. Correct trials are

aligned to target on in Figure 5.8, and to detach in Figure 5.9.

Although the time course of the average MUA (top-left panel in Figure 5.8) shows

little variations for different SDs, it can be noted that the MUA ramps across the

decision period are shifted in time for different SDs, easier trials (larger SD) being

typically anticipated with respect to harder trials (smaller SD). This is tentatively

interpreted as a neural correlate of the different reaction times observed for different

SDs. From the MUA rasters it can be seen that, across the time interval from the

go signal to the completion of the movement, the MUA peak visible in the plot of

average MUA is in fact differently spread across trials depending on SD: the upward

and downward ‘fronts’ of the peak are pretty aligned in time for larger SDs, while

they exhibit more (skewed) variability for smaller SDs. This is consistent with the

intuition that the time needed for the planning and execution of the movement in

easily decided cases is more reproducible across trials.

In case of wrong trials, the much smaller number of cases makes of course the

plots noisy and of hard interpretation, providing a very few statistics to be analyzed.

The only aspect that clearly emerge from the analysis of the data, is that the reaction

time for wrong trials (0.46 s) is greater than that for correct ones (0.40 s) with a

difference of about 60 ms, showing that the reaction time is correlated with the

performance, as a confirmation of what reported by Mione et al. in 68.

5.6.3 PCA trajectories over TI tasks

Analogously to what I reported for the analysis of the CM task, as a preparation

for the analysis of dimensionality of the neural activity, I turned to the representation

of the MUA dynamics in the PCA space.

In the (by now standard) application of PCA dimensional reduction to the

analysis of neural data, a few choices depend on the quantity and quality of available
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Figure 5.8. Mean MUA for all SDs and rasterplots for each SD - Target On
alignment - Correct trials. The mean MUA representation shows the MUA signal
for the different SDs. A peak is evident at the detach moment when the animal start the
movement. Also remarkable is the ramp-up of the MUA immediately before the detach:
the lines are ordered according to the SD value, hint that the velocity in reaching the
detach moment is inversely proportional to the SD. Also in the rasterplots, even if less
evident, the reaction time is more remarkable for smaller SDs.

Figure 5.9. Mean MUA for all SDs and rasterplots for each SD - Detach align-
ment - Correct trials. This panel is analogous to the previous one, but here the
alignment is to the detach event. Of course the ramp up of the MUA before the detach
is less appreciable, but the reaction time variation for the different SDs is still notable.
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data, and the scientific question asked. In the case examined here (both for the CM

task and for the TI task) the feature space is defined by the recording channels,

while for the samples different choices are available: for example, all trials (or all

trials of a given type) can be concatenated so that for each channel the sample data

are the MUA across all the chosen time points of all trials; or, averaging across trials,

the sample data are then the average MUA across the chosen trial time interval.

In the first case, the variability accounted for by PCA include temporal, inter-trial

variations, which are averaged in the second case; on the other hand, the second

option can fruitfully eliminate noise, deemed detrimental for the analysis. Once a

choice is made, a commonly used representation is, as in the CM case, obtained by

projecting the data, in time, onto the first three PC in order to draw 3-d trajectories

in the PCA space.

In the case studied here, according to the first approach the PCA components

accounting for at least the 80% of the variability in the neuronal activity turn out to

be 12 in case of Monkey 1 and 34 for Monkey 2. Indeed, the first three PC explain

63% of the variance in case of Monkey 2, and only the 34% for Monkey 1. Instead,

averaging the signal over trials, the first three PCA components account for more

than 86% for both monkeys. Therefore, for the 3-D trajectories to ‘live’ in the space

maximally accounting for data variability, I decided to average the signal on the

trials.

In the study of the PCA trajectories for transitive inference tasks, the main

discriminant factors that could give some hints were related to the analysis for

different symbolic distances and the comparison between correct and wrong trials,

for the same SD. To obtain these plots, I calculated the PCA over the whole set

of trials under analysis (for instance, in case of different SDs I calculated the PCA

considering the space given by all five symbolic distances, obviously separated for

each monkey). In this way I obtained a sort of normalization in the PCA space,

common to all the SD of that specific animal. Then I projected the MUA signal

over the PCA components and plotted a 3d graph of the obtained trajectories using
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only the first three components. Data were smoothed by a Gaussian filter of 100

ms and then z-scored, to obtain a sort of normalization, in which the data set has

mean 0 and standard deviation 1, even if it still retains the shape properties of the

original data set.

The plots of the trajectories in all the subsequent figures are done using the

target on event as task alignment and as starting point of the trajectories (black

dot). The trajectories course stops one second after the occurring of the detach

signal represented by a green dot. The go signal is also indicated, using a red dot.

Figure 5.10 reports the plot of all the trajectories (one for each SD) for correct

and wrong trials, for Monkey 1 and Monkey 2. It is evident the regularity and

homogeneity of the lines in correct trials, while the wrong ones do not have a common

trace. In addition, for the wrong cases, the trajectories became more variable and

unpredictable for growing SDs. This is mainly due to the fact that the number of

wrong trials for higher SDs is really small, sometimes between 1 and 3 trials, and it

cannot be mediated as for correct ones.

Figures 5.11 and 5.12 report instead the comparison of correct and wrong trials

for each SD, respectively for Monkey 1 and Monkey 2. An aspect that emerges from

all the comparisons, is that the wrong trials start diverging from the correct ones

since the beginning, and increase with the SD: the more SD is high in rank (4 or

5 in the studied cases), the more trajectories differ. For the same reason exposed

before, statistic speculation on these cases with really small number of trials are

very difficult.

5.7 Dimensionality along trials in TI tasks

Analogously to what done on CM tasks, I used the same methodology to calculate

the dimensionality expressed by transitive inference tasks, according to equation 5.2.

The used data are those analyzed in the previous sections, recorded during the test

phase of TI tasks both on Monkey 1 and on Monkey 2 (see section 5.2 for details).
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Figure 5.10. TI PCA trajectories of correct and wrong trials for the two mon-
keys. The trials starts at the target on event (black dot) and terminate one second after
the detach (green dot). In addition also the go signal is reported (red dot)

Figure 5.11. Comparison of correct vs wrong TI PCA trajectories for each SD
in Monkey 1. The trials starts at the target on event (black dot) and terminate one
second after the detach (green dot). In addition, also the go signal is reported (red dot)

The tasks are aligned to the target on signal and the dimensionality is calculated

with 5.2, using a sliding window of 50 ms, with an overlap between a window and

the following of 25 ms. For this analysis, PCA was computed on the concatenated
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Figure 5.12. Comparison of correct vs wrong TI PCA trajectories for each SD
in Monkey 2. The trials starts at the target on event (black dot) and terminate one
second after the detach (green dot). In addition, also the go signal is reported (red dot)

trials, no average across trials was performed.

The dimensionality for the two monkeys is very different during the trial time

course. One of the few common points is that a collapse of dimensionality can be

observed close to touch, at the end of the movement. Moreover, in the time interval

of interest, dimensionality in wrong trials is lower compared to that of correct ones;

at the moment one can only speculate that correct trials imply the simultaneous,

ongoing processing of alternatives the monkey has difficulty in choosing from, and

this situation can plausibly entail higher complexity/dimensionality.

Figure 5.14 can be considered an expansion of the previous one, underlining

the details for each SD. No relevant features can be extracted from it, but can be

considered a complement to the previous figure.

In conclusion, the behaviour of the two monkeys is quite different under several

aspect, as the previous showed analysis demonstrated. It would be interesting,

during a future expansion of this work, to verify if this diversity can be attributed

to differences that can be found session per session also with the same monkey,

or if they are the hint of an intrinsic systematic difference in the kind of cortical
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processing schema observable in monkeys.

Figure 5.13. Dimensionality over trials in TI tasks. The figure shows the trend of
dimensionality for correct and wrong trials, both for Monkey 1 and Monkey 2. The
presented alignment is to the target on event. In both monkeys the wrong trials
dimensionality remains well below the dimensionality of correct ones, symptom that
the complexity of the neural representation is more elevated when the animal correctly
complete the task.

5.8 Preliminary analysis on the learning phase

Before concluding this activity, I started a very preliminary analysis on the

learning phase applied to the two animals, Monkey 1 and Monkey 2. As described

in section 5.2, the animal must learn the predefined ranking order of six randomly

chosen items that are showed on a touch-screen, both on right or left side. Naming

these items with alphabetical letters, just to simplify the comprehension of the task

design, the order should for instance be A > B > C > D > E > F. In the two tasks I

analyzed, the chain-linking learning procedure had been used to instruct the animal

to recognize the items and their ranking order. The experiment is structured in the
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Figure 5.14. Dimensionality over correct trials in TI tasks calculated for each
SD. In this picture the detail about the different SDs is reported. Also in this case
the alignment is to the target on event. No specific differences among SDs can be
extrapolated from this plot.

following way:

1- all the adjacent pairs of symbols are presented to the animal, with the winning

target both on right or on left side of the screen, until it reaches about 80% of

performances: at the beginning only the first pair (A-B), then the second (B-C),

and so on, until the required level of performance is reached; the only pair never

presented is the central one (C-D);

2- the already known pairs are presented in random order and, again, on right

or left side of the screen, until about 60% of performances is reached;

3- the central pair is presented (C-D) until also in this case the required level of

performance is reached.

I focused on this last phase of learning, looking for evidence in the MUA profile

analysis accounting for two specific cases: a comparison of the signal when the
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monkey performs a correct or a wrong trial, but always moving to the same direction;

a comparison when the monkey performs correct trials with a movement toward

right or toward left. Figure 5.15 is related to this two questions using the results

acquired on Monkey 1.

More specifically, panel A shows the comparison between correct and wrong

tasks, where the monkey always moves toward left direction. The two signals start

diverging immediately after the target presentation, and the spread become more

prominent after the detach event, sign that the error causes a change in the MUA

profile with respect to the correct phase. Panel B shows instead the comparison

between correct trials that entail or right or left movements. In this case the signals

are quite similar, symptom that the direction of movement has not a relevant impact

on the MUA profile.

Figure 5.15. Analysis of learning phase - CD pair. Panel A reports the MUA signal
calculated for wrong and correct trials, where the movement is always done toward left.
In panel B the comparison between movements toward right and toward left for correct
trials is reported.

During the analysis of this learning phase I noticed a strange phenomenon,

mainly present in Monkey 2: around the target presentation, strong oscillations were

clearly visible in the MUA signal. I then decided to analyze all the trials clustered
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according to the following three conditions: all trials preceded by a correct one, all

those preceded by a wrong one, all those preceded by two wrong ones. In Monkey 2,

all the trials preceded by a wrong trial, even if sometimes they are concluded in the

correct way, present oscillations. Of course, this happens also for those preceded by

two wrong trials. Instead, the ones preceded by correct ones (independently if they

are correct or wrong) do not present this phenomenon. On Monkey 1 this kind of

oscillations are hardly visible, just before the target presentation.

At the moment, the reason of these oscillations is not clear, I can only give an

interpretation, absolutely preliminary, that it could be a behavioural reflex on the

MUA signal, strictly connected with the subject. Of course, this topic, such as the

analysis on the learning phase, needs to be examined more in depth, first of all

using a larger datasets, but also using different approaches (for instance, clustering

analyses) at the moment well beyond the possibility of my work.

Figure 5.16. Analysis of learning phase - Conditioned trials. This figure reports
the MUA signal for Monkey 1 (panel A) and Monkey 2 (panel B) calculated for all
the trials of learning phase, both correct and wrong, collected using the following three
conditions: all trials preceded by a correct one, all those preceded by a wrong one, all
those preceded by two wrong ones. Different behaviour in the two monkeys are evident
in the phase preceding the target presentation, with Monkey 2 MUA subjected to strong
oscillations in case of trials preceded by errors.
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5.9 The COVID-19 impact on data acquisition

The impact of the SARS-CoV-2 (Covid-19) coronavirus pandemic on my research

activity was not negligible. The Covid-19 has slowed a large part of laboratory activity

mainly for what concern data collection, face to face discussion with colleagues,

students and supervisors. Moreover, and it is not a minor point, there was a strong

decrease of academic conferences, symposia and meetings, notwithstanding a few of

them took place remotely as part of videoconferences.

In my specific case, if the course of my last PhD year would have been normal, it

is possible that some additional recording could be available for the analysis before

the end of this thesis and could be included in my work. Of course, it is not to be

excluded that some of them could be structured in order to study the effect of sleep

on monkey behavioural tasks.

5.10 Future work: analysis of sleep effects on complex
learning tasks on monkeys

Up to now I studied the effects of sleep on simulated simple tasks. Next step will

be that of study these effect on data recorded during more complex tasks in animals.

Specific experiments should be organized to confirm (or reject) what already find in

simulations.

One of the first points is surely the recording on naturally asleep (or if no possible

anesthetized) monkey and the analysis of the data using the SWAP analysis pipeline

described in Chapter 2. I expect to find slow waves parameters like the ones recorded

on mouse and rodents. This would be mainly a confirmation of the flexibility of our

analysis tool, also because it has been never tested on animals with a more complex

brain than mice.

More interesting, instead, would be the recording of different sessions of the

same animal, on different days, to check the effect of sleep on firing rate. Using the

transitive inference task, for instance, with the same elements in two subsequent

tests interleaved by a sleep period, I expect that the firing rate should decrease
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during the trials, while performances should increase. Moreover, also the synaptic

weight should reduce, but it could be more difficult to be recorded.

For the moment, the recording during sleep has not been possible because it

requires a wireless implant on the animal, to let the monkey free during the sleep

phase, at the same time allowing the acquisition. The second type of experiment

is instead more feasible, but not possible at the moment of the thesis, because the

entire experiment set-up was not available. As soon as possible, an analysis in this

direction would be for me of great interest.
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Chapter 6

Conclusions

In this work I studied the effect of deep sleep slow oscillation on learning and

cognition. Sleep is surely recognized as a fundamental element in this kind of activity,

but till now we can affirm that a complete understanding of its functions and of the

underlying mechanisms is still lacking.

In this study, I used models that try to exploit this mechanism, with the aim of

comparing the results of simulated interaction of slow waves with brain states. In

details two models were built, a large-scale model, able to reproduce the behaviour

of the phenomena on a portion of cerebral cortex at biological resolution, and a

simplified thalamo-cortical model that is more focused on the effects of slow waves

on learning and cognition.

For what concern the first model, thanks to a preparatory work done in the past

years, I was able to develop a methodology that allows for large-scale high-resolution

spiking simulation. The result was a parallel distributed neural simulator, with

emphasis on the robustness of its performance and scaling with respect to quite

different collective dynamical regimes. This simulation engine has been used to

simulate large-scale networks including up to 46 million point-like spiking neurons

interconnected by 70 billion instantaneous current synapses (79). The final goal was

that to be able of execute accurate simulations of SWA and AW-like states that

could provide useful models to the scientific community for the study of cortical

rhythms and their interaction with consciousness and learning. Specific accelerations
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and tricks of simulations were applied to provide a fast simulation methodology for

the study of this occurrence.

The main result obtained with this model was the simulation of the whole cortical

mouse hemisphere activity starting from connectivity and parameters inferred from

experimental data of wide-field optical imaging:

https://github.com/epastorelli/MouseHemisphereMovie.

The experimental data was recorded at the LENS laboratory (European Labora-

tory for Non-Linear Spectroscopy) by means of the GECIs methodology that enables

the visualization of fluctuations in calcium concentration, considered an indirect

reporter of neuronal spiking activity.

The results obtained with this kind of simulation were analyzed with the SWAP

analysis pipeline, to extract the main features of the synthetic slow wave activity and

compare them with the same observables extracted from experimental data recordings.

The comparison evidenced a qualitative similarity, but not yet a quantitative match.

This means that further iterations on parameter extraction are needed to better

calibrate simulations.

The second model I worked on was a simplified thalamo-cortical spiking model

built to test the role and the mechanisms of the occurrence of SO in a network of

spiking neurons previously trained to learn and recall images extracted from the

MNIST dataset. Several versions of this model are available. The last and more

complete one exploits the combination of context and perception and is based on

a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. The

simultaneous stimulation from perceptual signals and contextual signals emulates,

as a first approximation, the organizing principle of the cerebral cortex, as described

by Larkum (58). This approach approximates the effects of the dendritic apical

amplification mechanism at the cellular level. The model is compliant with biological

rhythms, as resulted from the comparison with the experimental measures of neuronal

firing rates during awake and deep-sleep states performed by Watson et al. (118).

The proposed model is capable of fast incremental learning from few examples
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(its performances are comparable to those expressed by Knn, of rank increasing

with the number of examples) and of alternating several learning-sleep phases;

moreover, it demonstrates resilience when subjected to noisy perceptions with better

performances than Knn algorithms, known to be the fastest and more accurate in

this kind of tasks. The crucial ingredient, which mostly differentiates this approach

from other works, is the introduction of a contextual signal which drives the training

procedure, making it similar to a target-based approach, enabling huge advantages in

terms of training velocity and precision. Such mechanism, as said before inspired by

the work done by Larkum, suggests that the activity of a neuron is amplified when

it receives a coincidence of signals from both lower and higher levels of abstraction.

This allows the recruitment of new neurons to learn novel examples through the

incremental building of a soft-WTA mechanism.

Moreover, the predictions of our model are also a first step toward the reconcilia-

tion of recent experimental observations about both an average synaptic down-scaling

effect (the SHY, synaptic homeostatic hypothesis by Tononi and Cirelli 112) and a

differential modulation of firing rates (Watson et al. in 118) induced by deep-sleep,

which is believed to be a default state mode for the cortex (Sanchez-Vives, et al.

in 92). In this sense, this work hints to a careful balance between architectural

abstraction and experimental observations as a valid methodology for the description

of brain mechanisms and of their links with cognitive functions.

All this work should be complemented with the analysis of experimental data

recorded on non-Human primates in the The Motor Control and Cognition Lab

(MCC_lab) directed by Prof. Stefano Ferraina at Sapienza University, that could

confirm or reject what found on-silico. Up to the end of this activity, I could only

analyze experimental data recorded during awake state in monkeys, without the

possibility to understand the sleep, or better the slow wave effects on the learning

process. In this sense, the last part of the presented work can be considered a

methodological section in which I had the possibility to set up the instruments

needed to work on neurophysiological data, to be later applied when data including
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sleep effects on learning in behavioural tasks will be available for analysis.

The work done on these recordings was anyhow very interesting and definitely

useful to introduce me into the world of electro-physiology. In this framework I

stated working on a measure that could give hints on the representation of the neural

activity, the dimensionality. As extensively described by Mazzucato et al. in 66,

dimensionality is able to capture the essential information of the neural network

circuits and the salient features about the relation among neurons. A high value

of dimensionality represents a low correlations among the neural ensemble that

can be explained as a widespread firing rate of all the neurons under analysis. On

the contrary, a low dimensionality value can be seen as a collapse in this space

of correlation, giving a hint of ensemble activity strongly uniform, generally in

coincidence of specific stimuli or activities performed. As a matter of facts, I

retrieved similar results analyzing the data coming from the MCC_lab.

My activity on slow waves and their interaction with learning and memory

consolidation will proceed also after the end of this PhD Thesis work. I hope I could

also work on newly acquired data on CM or TI experiments, when there will be the

possibility to study recordings involving sleep. It will be interesting to verify if the

results obtained with models and simulations could find some correspondence on

the experimental data, as I could do only for mice, up to now. Moreover, with new

sleep acquisitions on monkeys, there will also be the possibility to use the SWAP

analysis pipeline, with the opportune extensions of the already existing modules,

with the hope to bring a contribution in enlightening this intriguing phenomenon.
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