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Abstract: Side-scan sonar is widely used in underwater rescue and the detection of undersea targets,
such as shipwrecks, aircraft crashes, etc. Automatic object classification plays an important role in
the rescue process to reduce the workload of staff and subjective errors caused by visual fatigue.
However, the application of automatic object classification in side-scan sonar images is still lacking,
which is due to a lack of datasets and the small number of image samples containing specific target
objects. Secondly, the real data of side-scan sonar images are unbalanced. Therefore, a side-scan
sonar image classification method based on synthetic data and transfer learning is proposed in
this paper. In this method, optical images are used as inputs and the style transfer network is
employed to simulate the side-scan sonar image to generate “simulated side-scan sonar images”;
meanwhile, a convolutional neural network pre-trained on ImageNet is introduced for classification.
In this paper, we experimentally demonstrate that the maximum accuracy of target classification
is up to 97.32% by fine-tuning the pre-trained convolutional neural network using a training set
incorporating “simulated side-scan sonar images”. The results show that the classification accuracy
can be effectively improved by combining a pre-trained convolutional neural network and “similar
side-scan sonar images”.

Keywords: style transfer; target classification; side-scan sonar images; transfer learning; convolu-
tional neural network

1. Introduction

As high-resolution, multi-purpose marine detection equipment, side-scan sonar is
widely used in the ocean, lakes, and other bodies of water, and is currently the main
technique for underwater target detection. It can quickly obtain large-area and high-
resolution acoustic images of the seafloor and, combined with seafloor image data from a
small number of sampling sites, researchers can distinguish the different types of objects
on the seafloor based on side-scan sonar images; this is useful for activities such as mine
detection, seafloor mapping, marine ecosystem monitoring, and underwater rescues [1–4].
For underwater rescues, side-scan sonar has been widely used to detect shipwrecks, aircraft,
and victims on the seafloor or on the bottom of lakes.

With the increase in maritime investigation activities and the development of inland
river water traffic, water accidents occur frequently, such as the lost Malaysia Airlines
incident in 2014, and the 2015 Yangtze River shipwreck. For long rescue tasks, sonar rescue
personnel constantly scrutinize the screen to see whether there is a target object. After
working for a period of time, the staff become tired and miss the rescue targets more easily,
and the efficiency is low. In order to reduce the workload of staff, decrease the number
of subjective errors caused by visual fatigue, and improve work efficiency, the automatic
classification of side-scan sonar seafloor images has practical significance.
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Shape features or shadow shapes are generally used for classification in traditional
methods of underwater target classification, and many model-based methods have been
proposed. The accurate segmentation of target object shadows is achieved by using a
priori knowledge of sonar images combined with a Markov random field model (MRF)
to segment images into shadows, submarine reverberations, and highlight target regions
as a way to improve classification accuracy [5–8]. Sinai et al. used the Chan–Vese active
contour algorithm to convert images into shadows and highlight mappings and made use
of geometric characteristics of the target to achieve a good recognition effect in the image [9].
Martin tried to improve the classification accuracy by fusing information [10]. Quidu et al.
used dynamic segmentation and genetic algorithms to generate sets of individuals, and the
Fourier decomposition of individual contours acted as potential identifiable solutions and
moved contours to match shadows for dynamic classification [11]. To a certain extent, the
model-based method has excellent classification performance, but it relies too much on the
local feature descriptor of prior knowledge; thus, it has not been widely recognized.

As a small-sample classifier, support vector machines (SVMs) have been widely used
in the field of side-scan sonar image classification, achieving excellent results. Among them,
the texture features of sonar images were extracted using wavelet coefficients; then, the
nearest neighbor algorithm and SVM were used to classify the sonar images [12]. Guo et al.
extracted image features using a gray-level co-occurrence matrix and classified them with
an SVM [13]. For the fast and efficient classification of sonar images, Zhu M. et al. pro-
posed a classification method based on principal component analysis (PCA) and an extreme
learning machine (ELM) for sonar images, which is stable and has higher classification
accuracy [14]. Although the above methods are effective in improving the classification
accuracy to some degree, the methods they proposed only address the specific information
of sonar images and cannot make good use of all feature information. In addition, the sub-
marine environment is complex and variable, and different angles and heights of imaging
devices can produce different sonar images [15], which further limits the popularity of the
above methods.

In recent years, the classification performance of machine learning has almost reached
the level of humans in the field of conventional image classification. Dobeck et al. used
a detection density algorithm with a stepwise feature selection strategy, combined with
a k-nearest neighbor attractor neural network (KNN) and optimal discriminant filter for
mine detection [16]. Similarly, deep neural networks play an important role in target
recognition. Kim et al. used convolutional neural networks (CNNs) for submarine vehicle
recognition [17] and Hoang et al. used CNN models for mine detection [18], both of
which prove that deep neural networks can substantially improve classification accuracy
compared with traditional methods. The above classification methods mainly involve the
classification and detection of mines and single targets on the seabed. It cannot meet the
needs of underwater rescue for the classification of multiple targets such as drowning
victims, aircraft, and wrecks.

To address this problem, this paper proposes a multi-target classification based on
a convolutional neural network, including drowning victims, aircraft, wrecks, and the
seabed. The complexity of aircraft and shipwreck structures is much higher than that of
mines and the seabed; therefore, a CNN model with powerful feature extraction capabilities
was selected. Convolutional neural networks can extract sample features well and input
them into the classifier to classify sonar images. However, a large amount of sample data
are essential for training CNN models. Side-scan sonar data are difficult and costly to
obtain, and there are fewer image samples containing specific targets such as aircraft and
victims [3,4], which makes it much more difficult to train convolutional neural networks.
The side-scan sonar dataset can work well as a small dataset with the proper introduction
of migration learning. In addition, some easy-to-implement methods are used to further
improve the classification accuracy, such as synthetic data, to efficiently solve difficult
acoustic problems at a low cost. In order to overcome the deficiencies, the following
procedures were conducted in this paper:
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• Considering the problem of unbalanced data of side-scan sonar samples, we propose
a method to generate “simulated side-scan sonar images” by combining image seg-
mentation and style transfer networks with optical images as inputs, which are used
to generate images of drowning victims and aircraft;

• We modified the image style transfer network and performed experimental compar-
isons, and the results showed that the improved network generates clearer and more
natural images;

• By using pre-trained CNN model classification, such as VGG19, 70% of the real side-
scan sonar images and “similar side-scan sonar images” were used to fine-tune the
CNN model; then, 30% of the real side-scan sonar images were used to verify the
model, and the final test accuracy achieved was up to 97.32%, which is better than
the classification performance of the fine-tuned model merely using real side-scan
sonar images.

2. Methods
2.1. Image Style Transfer Algorithm

The image style transfer algorithm based on the CNN model proposed by Gatys et al. [19]
extracts the style and content feature map of the image through five convolutional layers,
and the randomly generated white noise image is continuously iteratively updated to
generate a simulation image that maintains both the original content of the synthesized
image and the style of the side-scan sonar image.

The style image is denoted by s, where the feature maps obtained on all convolutional
layers are denoted by Sl , and l denotes the number of layers. The content image is denoted
by c, where the feature maps only obtained on the fourth convolutional layers are denoted
by Cl . The random noise image is denoted by r, where the feature maps obtained on all
convolutional layers are denoted by Rl .

The texture features of style images are represented by the Gram matrix [19]:

Gl
ij= ∑k Rl

ikRl
jk (1)

where Gl
ij is the inner product between feature maps i and j in the l layer, and Rl

ik is the
activation of the ith filter at position k in layer l. The formula finds the inner product of the
two feature maps. There is no relationship between the texture features and the position
of the image; therefore, it is the result of the inner product calculated by the Gram matrix
and the position of the two feature maps, which can be used to measure the texture feature,
which is the most common way to express texture features of the images.

The mean square error El is calculated by the Gram matrix Gl of r and the Sl of style
image s, and the style loss function Lstyle is used to describe the difference in style, which is
denoted as [19]:

Lstyle(s, r) = ∑L
l=0 wlEl (2)

where wl are weighting factors of the contribution of each layer to the total loss, L is the
maximum layer index in the CNN, so the value of l ranges from 0 to L. El is denoted as:

El=
1

4N2
l M2

l
∑i,j

(
Gl

ij − Sl
ij

)2
(3)

where i and j denote the ith feature map and jth feature map of the l layer, respectively.
The loss function of content image calculates the mean square error Lcontent by Rl of

the fourth layer and Cl , which is denoted as:

Lcontent(c, r, l) =
1
2 ∑

i,j

(
Rl

ij − Cl
ij

)2
(4)

where i and j denote the ith feature map and jth feature map of the l layer, respectively.
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The total loss, Ltotal , is denoted as:

Ltotal= αLstyle(s, r) + βLcontent(c, r) (5)

where α and β denote the weights of the style loss function and the content loss function, respectively.
The real side-scan sonar image and processed optical image are input into the con-

volutional neural network, and the random white noise image is constantly updated and
iterated through the gradient descent; finally, the simulation image with the original content
of the synthesized image and the style of the side-scan sonar image is output.

2.2. Hybrid Dilated Convolution and K-Means Algorithm

As shown in Figure 1, hybrid dilated convolution (HDC) adds cyclic cavities into the
convolution filter at an interval rate of [1,1,2,2,5,5], which increases the perceptual field
without losing resolution and without introducing additional parameters, and contains
a larger range of information in each convolution output [20]. Better results than tradi-
tional convolution can be obtained in various problems that require global information
dependence, such as style transfer and semantic segmentation. However, hybrid dilated
convolution must be satisfied with the following equation:

Mi = max[Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri), ri] (6)

where ri is the interval rate of layer i, and Mi is the maximum interval rate of layer i.
Then, suppose there are n layers, and the default is Mn = rn. Assume that the convolution
kernel is k × k, and the target is M2 ≤ k. In this way, all the holes can be covered by
ordinary convolution.
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Figure 1. Schematic diagram of hybrid dilated convolution.

The K-means algorithm is an unsupervised clustering algorithm. The main idea of the
algorithm is to use the mean value of the objects in each cluster as the cluster center, and
the objects in the dataset are divided into k classes according to the principle of minimum
distance from the cluster center through iteration, where k is the number of clusters, and
the clustering performance evaluation function is optimized so that each cluster itself is as
similar as possible, and each cluster is as different as possible [21].

The K-means algorithm uses distance as the similarity index. In this paper, Euclidean
distance was used to calculate the distance:

dist(X, Y) =
√

∑n
i=1(xi − yi)

2 (7)

where the smaller the distance, the higher the sample similarity. The larger the distance,
the worse the similarity.
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2.3. Pre-Trained Convolutional Neural Network

Pre-trained convolutional neural networks are also called transfer learning. In the
case of small samples, transfer learning can be introduced appropriately. Transfer learning
applies knowledge learned in one field to similar fields. This is due to the generality of the
underlying image features, so as to achieve the learning effect of transferring labeled data
or knowledge structures from related domains and completing or improving the target
domain or task as a way to overcome the problem of data deficiency [22].

If a domain is represented by D = {X, P(X)}, X denotes the feature space and P(X)
denotes the marginal probability distribution. A task is indicated by T = {y, f (.)}, where y
denotes the label space and f (.) denotes the target prediction function. Then, the definition
of transfer learning can be expressed as follows: given a domain Dy and a task Ty, we
can obtain data information from another domain, Dx, and task, Tx [22]. The purpose of
transfer learning is to improve the predictive performance f (.) of the task Ty by means
of this transferred knowledge. Here, domain Dy and task Ty are two different but related
domains from domain Dx and task Tx. Figure 2 shows the process of deep transfer learning.
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Figure 2. Deep transfer learning used in this paper. A CNN model is first pre-trained on the ImageNet dataset; then, the
trained weights are transferred and the CNN model is fine-tuned by the side-scan sonar dataset; finally, the model is tested
on the side-scan sonar image validation set.

Transfer learning is divided into four major categories based on the specific imple-
mentation method: instance-based transfer, feature-based transfer, transfer based on a
shared parameter/model, and relationship-based transfer. Currently, model-based transfer
learning is one of the most popular transfer learning methods, especially in the image
domain; here, pre-training ImageNet was chosen to initialize the model. Experiments have
demonstrated that the learning effect of pre-training a model based on ImageNet and then
fine-tuning it on a small dataset is better than that of direct transfer learning with a fixed
convolutional layer [23]. The reason why model-based transfer learning works well is the
generality of the low- and mid-level features of the image data.
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3. Synthesis of “Simulated Side-Scan Sonar Images”
3.1. Image Synthesis Method

There are few images containing specific target objects in side-scan sonar, which are
prone to overfitting problems when using convolutional neural networks for classification.
Although the problem of insufficient data can be compensated to a large extent by using
the transfer learning method, less real data results in fewer samples of high-level features
extracted by the convolutional neural network, which will lead to more classification errors.
Therefore, it becomes particularly important to simulate more side-scan sonar images
containing targets such as victims and aircraft.

Images are stylized and processed by traditional style transfer through building
statistical models and textures, etc. [24–27]. Gatys et al. [19,28,29] proposed a convolutional-
neural-network-based image style transfer algorithm to implement image style transfer.
After training the multilayer CNN, the artistic style is recognized and extracted, and then
applied to ordinary photographs, so that the generated images have the original content
and artistic style at the same time. Additionally, this image content exhibits the detail
loss phenomena.

In this paper, we propose a side-scan sonar image synthesis method based on con-
volutional neural networks; the synthesis process is shown in Figure 3. The method first
clusters the optical images to highlight the target objects, then extracts clustered target
contours using binary threshold segmentation, fuses them with the clustered images to
form images containing shadow regions, and finally uses the real side-scan sonar images
as style images and the fused images as content images for style migration. The detailed
process is as follows:

• The input optical images are clustered to separate the front and back backgrounds
and highlight the target objects. In this study, the K-means algorithm is used to cluster
the optical images into two categories, namely, background and target object, and the
detailed features are removed;

• A digital morphology opening operation is used on the image to eliminate small and
meaningless target objects, fill some holes, and eliminate small particle noise in the
target region;

• The background color of the clustered image is changed to gray and the color of the
target object is changed to white; then, the target object is extracted using binary thresh-
old segmentation. Likewise, the background color of the clustered image is changed
to gray and expanded by 1.2 times along the x-axis or y-axis as the shadow region;

• The extracted target object is fused with the expanded image to obtain an image with
a shadow region. This image used as the content image and the real side-scan sonar
image used as the style image are simultaneously input into the modified style transfer
network to generate the “simulated side-scan sonar images”, as shown in Figure 3.
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3.2. Improved Style Transfer Network

The output image obtained by the style transfer algorithm of the convolutional neural
network can learn the texture information and color of the style image very well. However,
the phenomenon of edge detail loss exists. Based on this problem, this paper introduces the
K-means algorithm and hybrid dilated convolution on the basis of the original algorithm
to make the image content and style more realistic.

As shown in Figure 4, s is the style image, c is the fused optical image, and r is
the randomly generated white noise image. The style features and content features are
extracted by five hybrid cavity convolutions and the obtained feature maps are labeled
as Sl and Cl , respectively, maintaining Sl and Cl obtained by the fourth hybrid dilated
convolution to ensure that the random white noise, r, is not disturbed by the content image
while obtaining enough style features.
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4. Experiment
4.1. Synthetic Data Ablation Experiment

To verify the effect of the K-means algorithm and hybrid dilated convolution on the
model performance, an ablation experiment was designed in this study. The model pro-
posed in this paper was tested for transfer learning in the same experimental environment
as the model proposed by Gatys et al. [19]. The image set was composed of an optical
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image, a fused optical image and two side-scan sonar images (as shown in Figure 5); the
first column was the optical image as the content image and the fused optical image, and
the second column was the side-scan sonar image as the style image. Three style trans-
fer experiments were performed on the content images, and the experimental results are
shown in Figure 5. The third column shows the effect of the model proposed by Gatys et al.,
and the fourth column shows the effect of the model proposed in this paper. From the first
and second rows, it can be seen that the introduction of the K-means algorithm effectively
solves the loss of image content edge details after style transfer, and the images are more
similar to the real side-scan sonar images. From the second and third rows, it can be
seen that the hybrid dilated convolution captures more detailed local features without
increasing the parameters, which makes the graphics clearer and more natural.
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4.2. Experiment Based on Transfer Learning and “Simulated Side-Scan Sonar Images”
4.2.1. Dataset

The data in this paper were derived from a portion of the Seabed Objects-KLSG dataset
established by Huo G. et al. [30], and also includes a portion of the data collected in this
paper. The dataset was divided into four categories, i.e., shipwreck, drowning victim,
aircraft, and seafloor. Table 1 shows the number of images per category in the dataset.
Some of the images are shown in Figure 6.

Table 1. The number of images per category in the dataset.

Categories Drowning Victim Aircraft Seafloor Shipwreck

Numbers 18 62 289 385
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Due to the small number of images containing specific targets in the side-scan sonar
images, the model could not obtain enough features to train the weights. In this paper,
54 images of victims and 60 images of aircraft as “simulated side-scan sonar images” were
generated by the style transfer network. Some of the images are shown in Figure 7.
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Figure 7. Similar side-scan sonar images: the first row are images of the drowning victim; the second
row are images of the airplane.

4.2.2. Experimental Environment

In order to verify that the methods using transfer learning and “simulated side-scan
images” are effective, this paper presents a comparative analysis of VGG16 [31], VGG19 [32],
and resnet18 [33].
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To save the training time of the CNN model, a deep learning model that had been
pre-trained on ImageNet was downloaded. For each category in the side-scan sonar dataset,
the training set accounted for 70% of the total, while the remaining 30% were in the test
set. In order to test the effectiveness of the “simulated side-scan sonar images”, they
were put into the training samples for training. The initialization of model parameters
had certain randomness; therefore, it affected the classification results to a certain extent.
The training process was repeated five times, and the average value was used as the
classification accuracy.

The choice of hyper-parameters is also particularly important when training networks
in order to achieve better results. In this paper, an adaptive learning rate adjustment
(Adadelta) optimizer was used: the initial learning rate was set to 0.01 and the remaining
parameters were default parameters; 32 batches were used. The experiment was terminated
when the training had completed 100 epochs.

4.2.3. Results

In this study, two methods were used to train the model: one was to only use the real
side-scan sonar image training set for training; the other was to train a mixed training set of
real side-scan sonar images and “simulated side-scan sonar images”, using the real images
for verification. The “simulated side-scan sonar images” in the training set consisted of
54 images of victims and 60 images of aircraft. Figure 8 shows a comparison of the five
classification results. The performance of all methods was evaluated by testing the overall
accuracy (OA). The classification accuracy values are shown in Table 1.
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As shown in Figure 8 and Table 2, after five repeated experiments, vgg16 and resnet18
could achieve certain results in sonar image classification, with accuracies of 87.50% and
89.02%, respectively. It was proven that CNN is suitable for the classification of side-scan
sonar images. However, there were a large number of parameters in the neural network.
When small sample datasets are classified, the network parameters cannot be fully trained,
and it is easy to overfit them, which affects the final classification accuracy. However, by
adding “simulated side-scan sonar images” to expand the data sample, the data shortages
can be made up to a certain extent. Therefore, the CNN can extract enough features to train
the parameters, avoid falling into overfitting, and improve the classification accuracy. When
vgg16 and resnet18 used “simulated side-scan sonar images” for classification, the accuracy
values were 88.84% and 90.18%, respectively. The classification accuracy improved slightly,
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which proves the effectiveness of the “simulated to side scan sonar images” in classification.
Although there were some differences between the “simulated side-scan sonar images”
and real side-scan sonar images, the “simulated side-scan sonar images” could still be used
for training. This is mainly because a “simulated side-scan sonar image” retains the main
contour of the target object and conforms to the feature distribution of a real side-scan
sonar images.

Table 2. Comparison of the average results of different models using the real data training set, and
real data and the synthetic data training set, from five repetitions.

Methods
OA (%)

Using Real
Data Only

OA (%)
Using Real Data

and Synthetic Data

VGG16 87.50% 88.84%
Resnet18 89.02% 90.18%

Transferred
VGG19 95.98% 96.88%

Transferred
Resnet18 95.54% 96.43%

At the same time, as shown in Figure 8 and Table 2, the accuracy of using pre-
trained vgg19 and pre-trained resnet18 networks in a classification task was 95.98% and
95.54%, respectively, and the accuracy of the vgg16 and resnet18 networks was 87.50% and
89.02%, respectively. The accuracy of classification using a pre-trained neural network was
much higher than that without a pre-trained neural network. It can be proved that the
classification accuracy in the task of side-scan sonar image classification can be significantly
improved by transfer learning. The reason is that the CNN was trained on an ImageNet
dataset. Due to the large number of data samples, the network parameters were fully
trained, and a large number of middle- and low-level features were learned. These features
are universal in images. When the side-scan sonar images are classified by a pre-trained
network, the features of the side-scan sonar images can be extracted only by fine-tuning the
parameters of a small number of side-scan sonar images, so as to complete the classification
task quickly and efficiently. For the deep neural network without pre-training, there are
many different weights to learn, and the weights cannot be fully trained by the small-
sample dataset, resulting in poor feature extraction ability; therefore, it cannot distinguish
some complex-shaped images. In order to verify that features can be better extracted
by using pre-trained CNNs, the features of the first 12 channels of vgg19 and the first
convolution layer of pre-trained vgg19 are visualized in Figure 9. In comparison, more
feature information is obtained from the channel in Figure 9b, and the texture structure
is clearer. The experimental results show that the pre-trained CNN has better feature
extraction ability in the side-scan sonar image.

In order to further explore the classification ability of “simulated side-scan sonar
images” and pre-trained CNN on side-scan sonar images, the processes of training vgg16
and pre-training vgg19 using real side-scan sonar images are given in Figure 10, respectively.
From the comparison of Figure 10a,b, it can be seen that the vgg16 network trained with
real side-scan sonar images and the network model oscillated and failed to converge. On
the contrary, the vgg19 network had a deeper network, more parameters, and was more
difficult to train. Through the use of transfer learning, the network is more stable, and its
accuracy is substantially improved. Therefore, a pre-trained CNN can not only improve the
classification accuracy, but also complete classification tasks quickly and stably. However,
imbalances of the real side-scan sonar image samples may still lead to more classification
errors, which can be improved by using “simulated side-scan sonar images”. Figure 11
shows the processes of training resnet18, pre-trained resnet18 with real side-scan sonar
images, and pre-trained resnet18 with real side-scan sonar images and “simulated side-scan
sonar images”. From the comparison of Figure 11a–c, it can be seen that Figure 11c shows
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a more stable network performance and a substantial improvement in accuracy compared
with Figure 11a. The convergence rate of the network is faster compared with b. This further
verifies that the “simulated side-scan sonar images” combined with the pre-trained CNN
has better accuracy and effectiveness. At the same time, it can highlight the target contour,
and the extracted features are clearer, which is more conducive to classification, as shown
in Figure 9. Therefore, the proposed pre-trained CNN combined with the “simulated side-
scan sonar images” can solve the problem of overfitting caused by insufficient data samples,
improve the classification accuracy, and have certain practicability and effectiveness in the
classification of side-scan sonar images.
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In order to verify that “simulated side-scan sonar images” can improve the classifi-
cation accuracy when training the model, rather than the accuracy improvement caused
by the correct recognition of other categories, this study used real side-scan sonar images
and “simulated side-scan sonar images” to fine-tune the vgg19 model, and then derive the
confusion matrix of the training set; the results are shown in Tables 3 and 4.
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In Tables 3 and 4, the diagonal lines are the predicted categories that are the same as
the true categories, which are marked in blue, and the categories marked in red are the
prediction errors.

Table 3. Confusion matrix derived from fine-tuning the pre-trained vgg19 network using real
side-scan sonar images.

True
Class

Predicted Class

Drowning Victim Aircraft Seafloor Shipwreck

Downing
Victim 5 0 0 0

Aircraft 0 11 0 7
Seafloor 0 0 85 1

Shipwreck 0 1 0 114
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Table 4. Confusion matrix derived from fine-tuning the pre-trained vgg19 network using real
side-scan sonar images and “simulated side-scan sonar images”.

True
Class

Predicted Class

Drowning Victim Aircraft Seafloor Shipwreck

Downing
Victim 5 0 0 0

Aircraft 0 13 0 5
Seafloor 0 0 85 1

Shipwreck 0 1 0 114

According to Table 2, the accuracy of classification without using “simulated side-
scan sonar images” and using “simulated side-scan sonar images” was 95.98% and 96.88%,
respectively. It can be seen from Tables 3 and 4 that when the “simulated side-scan
sonar images” were unused or used, the numbers of correct and incorrect predictions of
shipwreck and the seafloor did not change, whereas the number of correct predictions of
airplanes increased, which indicates that the improvement in accuracy is not affected by
shipwreck and seafloor images. The improvement in accuracy comes from an increase in
the number of correct classifications of airplane images. However, there was no change
in the number of drowning victim images. The reason is that the structure of drowning
images is relatively simple and only has five prediction samples. When the side-scan
sonar images were classified by a pre-trained network, the whole network model could be
fine-tuned by a small number of training samples, which shows the effectiveness of the
pre-trained network on small-sample datasets. The above experiments show that the neural
network model trained by the training set containing “simulated side-scan sonar images”
can improve the classification accuracy to a certain extent, which proves the practicability
and effectiveness of “simulated side-scan sonar images”.

However, there were still five airplane images and one seafloor image that were
misclassified as a wreck image, as shown in Figure 12.
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Figure 12. (a) Aircraft with fuzzy features. (b–d) Aircraft with smaller target object. (e) Aircraft with missing tail. (f) Pure
seabed image.
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In Figure 12a, the airplane features are fuzzy, whereas in Figure 12e, the tail part of the
airplane is missing, which is not conducive to feature extraction and causes classification
errors. In Figure 12f, the shapes of sea bottom rocks are similar to the wreck, and it
could easily be misclassified as a wreck in classification. Although the airplane features in
Figure 12b–d are clear, there were also classification errors. In order to further study the
cause of the classification error, we redefined the size of the target object in the airplane
images, as shown in Figure 13. In this study, the weights trained in Tables 3 and 4 were
used to predict in Figure 13a–c, and the results are shown in Table 5.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 18 
 

 

Figure 12. (a) Aircraft with fuzzy features. (b–d) Aircraft with smaller target object. (e) Aircraft with missing tail. (f) Pure 
seabed image. 

In Figure 12a, the airplane features are fuzzy, whereas in Figure 12e, the tail part of 
the airplane is missing, which is not conducive to feature extraction and causes classifica-
tion errors. In Figure 12f, the shapes of sea bottom rocks are similar to the wreck, and it 
could easily be misclassified as a wreck in classification. Although the airplane features in 
Figure 12b–d are clear, there were also classification errors. In order to further study the 
cause of the classification error, we redefined the size of the target object in the airplane 
images, as shown in Figure 13. In this study, the weights trained in Tables 3 and 4 were 
used to predict in Figure 13a–c, and the results are shown in Table 5. 

 
(a) (b) (c) 

Figure 13. (a–c) Images after redefining the size of the aircraft. 

Table 5. Using the trained weights in Tables 3 and 4 to predict Figure 12a–c. 

Airplane 
Predicted Class 

Table 3 Table 4 
a ship airplane 
b ship airplane 
c ship airplane 

It can be seen from Table 5 that the network used in Table 4 classified the airplane 
correctly, whereas the network used in Table 3 classified it incorrectly. This further proves 
the effectiveness of the “simulated side-scan sonar images”. At the same time, it proved 
that the ability to extract features is insufficient when using the “simulated side-scan sonar 
images” and the pre-trained CNN to classify the small target with a complex structure 
and the side-scan sonar image with fuzzy image features, which eventually leads to a 
classification error. 

In summary, the proposed method of generating side-scan acoustic data based on a 
style transfer network is not strict, but it can still effectively solve the problem of inaccu-
rate classification due to insufficient training samples, mainly because the “simulated 
side-scan sonar images” retain the main contours of the target object and conform to the 
feature distribution of real side-scan sonar images. The “simulated side-scan sonar im-
ages” have also been well received by peers in the field. However, there is still a problem 
of insufficient feature extraction in the classification of small targets with complex struc-
tures and side-scan sonar images with fuzzy features. 

5. Conclusions 
In this paper, a transfer-learning-based method for the automatic classification of 

side-scan sonar images has been proposed. Experiments show that the use of a pre-trained 
CNN network model can effectively solve the overfitting problem caused by small data 

Figure 13. (a–c) Images after redefining the size of the aircraft.

Table 5. Using the trained weights in Tables 3 and 4 to predict Figure 12a–c.

Airplane
Predicted Class

Table 3 Table 4

a ship airplane
b ship airplane
c ship airplane

It can be seen from Table 5 that the network used in Table 4 classified the airplane
correctly, whereas the network used in Table 3 classified it incorrectly. This further proves
the effectiveness of the “simulated side-scan sonar images”. At the same time, it proved
that the ability to extract features is insufficient when using the “simulated side-scan sonar
images” and the pre-trained CNN to classify the small target with a complex structure
and the side-scan sonar image with fuzzy image features, which eventually leads to a
classification error.

In summary, the proposed method of generating side-scan acoustic data based on a
style transfer network is not strict, but it can still effectively solve the problem of inaccurate
classification due to insufficient training samples, mainly because the “simulated side-scan
sonar images” retain the main contours of the target object and conform to the feature
distribution of real side-scan sonar images. The “simulated side-scan sonar images” have
also been well received by peers in the field. However, there is still a problem of insufficient
feature extraction in the classification of small targets with complex structures and side-scan
sonar images with fuzzy features.

5. Conclusions

In this paper, a transfer-learning-based method for the automatic classification of side-
scan sonar images has been proposed. Experiments show that the use of a pre-trained CNN
network model can effectively solve the overfitting problem caused by small data samples
and greatly improve the classification accuracy. In addition, this paper also proposes a
convolutional-neural-network-based method of side-scan sonar image generation to solve
difficult acoustic problems effectively at a lower cost. It has been verified that training
a classification network model using simulated side-scan sonar images can effectively
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improve the classification accuracy, and the model converges rapidly and stably. Moreover,
the simulated side-scan sonar images are highly similar to the real side-scan sonar images.
At the same time, it also shows that for datasets with uneven distributions of data samples,
transfer learning can still classify the targets correctly, and the classification accuracy of the
targets can be further improved by adding “simulated side-scan sonar images”. However,
there is still a problem of insufficient feature extraction ability for the classification of
side-scan sonar images with small targets and complex structures. In future studies, we
will further test side-scan sonar images by combining the strong feature-extraction network
GoogleNet and deeper ResNet.
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