
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Resource-aware Dynamic Service
Deployment for Local IoT Edge
Computing: Healthcare Use Case
JOHIRUL ISLAM, TANESH KUMAR, IVANA KOVACEVIC, ERKKI HARJULA
Centre for Wireless Communication, University of Oulu, Finland

Corresponding author: Johirul Islam (e-mail: johirul.islam@oulu.fi).

This research work was supported by Academy of Finland, under the projects: DigiHealth and 6G Flagship Projects (grants 326291,
318927).

ABSTRACT Edge computing is a novel computing paradigm moving server resources closer to end-
devices. In the context of IoT, Edge computing is a centric technology for enabling reliable, context-aware
and low-latency services for several application areas such as smart healthcare, smart industry and smart
cities. In our previous work, we have proposed a three-tier IoT Edge architecture and a virtual decentralized
service platform based on lightweight microservices, called nanoservices, running on it. Together, these
proposals form a basis for virtualizing the available local computational capacity and utilizing it to provide
localized resource-efficient IoT services based on the applications’ need. Furthermore, locally deployed
functions are resilient to access network problems and can limit the propagation of sensitive user data
for improved privacy. In this paper, we propose an automatic service and resource discovery mechanism
for efficient on-the-fly deployment of nanoservices on local IoT nodes. As use case, we have selected a
healthcare remote monitoring scenario, which requires high service reliability and availability in a highly
dynamic environment. Based on the selected use case, we propose a real-world prototype implementation
of the proposed mechanism on Raspberry Pi platform. We evaluate the performance and resource-
efficiency of the proposed resource matching function with two alternative deployment approaches:
containerized and non-containerized deployment. The results show that the containerized deployment
is more resource-efficient, while the resource discovery and matching process takes approximately 6-17
seconds, where containerization adds only 1–1.5 seconds. This can be considered a feasible price for
streamlined service management, scalability, resource-efficiency and fault-tolerance.

INDEX TERMS IoT, edge computing, distributed computing, virtualization, resource discovery, mi-
croservices, nanoservices.

I. INTRODUCTION

DURING the past decade, microservice architectures
(MSA) [1], [2] have superseded the monolithic ser-

vice architectures as the foundation of modern cloud com-
puting systems. MSA decomposes monolithic applications
into smaller independent services or processes that can be
distributed in the cloud computing infrastructure, which
ensures the performance optimization of applications and
the whole system in terms of flexibility, scalability, and
maintainability [2], [3]. Some well-known and promising
example enterprises adopting MSA architectures are Netflix
and Amazon [1]. Recently, Edge computing has extended
the cloud architecture by bringing parts of the microservice

architecture from data centers to edge servers, closer to
the end user and IoT devices [4]. Typically, these edge
servers reside within the access network infrastructure, e.g.
co-located with RAN base stations [5].

In many IoT cases, the connection between the IoT
devices and the access network is intermittent and/or low
in capacity. As a result, the unstable data path between
the sensor and actuator devices and the service components
causes problems in the service availability. This is highly
problematic with mission-critical tasks, such as health mon-
itoring or industry process control [6], [7]. For the delay-
sensitive IoT applications, such as continuous remote mon-
itoring of patients in healthcare domain, it is important

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

Figure 1: Focus of the paper.

that the most critical functions can be provided locally if
needed [8]. In situations where local monitoring devices
and sensors are disconnected from the rest of the network,
it is highly important to ensure the availability of enough
capabilities and resources needed to execute the critical
tasks using local computing. Bringing edge computing to
local level by deployment of microservices to local nodes
with sufficient computational capacity is a prominent way
to address the problem described above. However, as IoT
nodes are typically capacity-constrained, there is a need to
specify a lightweight version of microservices to enable their
deployment on the IoT nodes. Recently, the authors of this
paper have developed a concept of nanoservice [9], [10],
which can be seen as a miniature version of a microservice,
specifically dedicated to perform a single-purpose granular
operations, such as periodically reading sensor data and
sending it further to a gateway node, performing a com-
putational task when requested, accessing a local database,
or controlling an actuator based on a request.

In our proposed decentralized nanoservice architecture,
the nanoservices are mainly designed based on request-
response paradigm that is traditionally implemented in a
centralized manner. In the architecture, a number of decen-
tralized components, operated by various stakeholders, need
to be seamlessly integrated to provide services based on the
current need in a dynamic operation environment consisting
of capacity-constrained, in many cases also mobile, devices.

This operational environment generates high requirements
for resource discovery and matching the discovered re-
sources to the needs of the system and the applications. De-
ploying nanoservices at non-uniform, resource constrained
local IoT networks is much more complex since the ser-
vice requirements are highly dynamic. Therefore, the tra-
ditional resource discovery and orchestration mechanisms
used in current microservice architectures are not suitable
in resource-limited, highly dynamic and decentralized local
environments [11]. Hence, this paper extends our previous
prototype implementation of the nanoservice architecture
[10], by developing further its orchestration mechanism to

fulfil the requirements of highly dynamic and decentralized
operation environment.

In summary this paper provides the following key contri-
butions:
• We develop further the concept of dynamic nanoservice

deployment mechanism to fulfil the needs of service
requirements in a non-uniform, resource constrained,
and highly dynamic local IoT environment.

• We propose a nanoservice and resource discovery
and matching algorithm to enable dynamic resource
allocation, and develop our prototype implementation
further by integrating dynamic resource discovery and
matching functionalities in it.

• We provide a performance evaluation of the proposed
dynamic nanoservice deployment and analyze the feasi-
bility of the prototype by comparing non-containerized
and containerized deployment scenarios.

The rest of the paper is organized as follows. Section
II elaborates the background, on-going work and relevant
concepts. We describe the selected use case in section III.
Section IV explains the dynamic nanoservice deployment
mechanism and section V provide the required system
configuration for the deployment. We perform the Proof-
of-Concepts (PoCs) implementation based on the defined
use case in section VI. Evaluation results are presented
in section VII. Finally, we provide discussion and future
directions in section VIII and conclude the paper in the
section IX.

II. BACKGROUND AND RELATED WORK
A. CLOUD-EDGE CONTINUUM
Cloud computing refers to the delivery of different elec-
tronic services through the Internet. In cloud computing, the
functional service components, such as data storage, servers,
databases, software platforms and applications typically
reside in large centralized computing clusters, called data
centers. Cloud computing has been widely used as the brains
of many IoT based applications as it provides practically
unlimited computational, processing and storage capabilities

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

and global access. In addition to these undeniable benefits,
cloud computing also faces many challenges, such as high
latency and dependency on always-on network connections.

Edge computing is a concept developed to address these
challenges by bringing cloud computing resources near the
local devices. It enables features previously not available for
cloud computing, such as low-latency communication, but
also helps enhancing privacy protection by providing means
to process sensitive data close to its source and therefore
reduce the need to propagate it to public networks. It also
improves scalability and resource-efficiency with possibility
for data preprocessing and reduction near the source of data
[4], [12]. Multi-access Edge computing (MEC) is a standard
solution proposed by European Telecommunications Stan-
dards Institute (ETSI) for enabling faster data processing,
analytics, storing, decision making and local offloading for
the next generation 5G and beyond systems.

In local edge computing [13], the key idea is to push
processing even further to the network edge, involving the
sensor and actuator devices in processing computational
tasks. Local edge is also known as extreme edge, and local
edge computing is also known as mist computing [13]. Local
edge computing paradigm implies that some of the needed
communication can be performed at the local devices to
reduce the burden at access and core networks [14]. This
also ensures the local availability of the services for the end
devices, even if there is no connection available/established
with the higher tiers. The cloud - edge continuum, consisting
of the three tiers (cloud computing (core), edge computing
(access) and local edge computing (local)) is illustrated in
Fig. 1.

B. MONOLITHIC VS MICROSERVICES VS
NANOSERVICES

Monolithic service architecture was used in the first-
generation cloud systems [15]. In monolithic service archi-
tecture, various services and functions are encapsulated into
a single functional unit. The drawback of the monolithic
architecture is that a developer must build and deploy an
new version of the whole unit, when updates - even minor
ones - are needed. As a consequence, the management of
such architecture is resource consuming and leads to limited
scalability, maintainability and feasibility [16].

Microservice architecture (MSA) paradigm has emerged
during the past decade to address the above-mentioned prob-
lems of the monolithic service architectures. Microservice
architecture allows the developer to build, manage and up-
date an application easily as separate independent units [16].
It brings a number of advantages in terms of flexibility and
scalability. A few studies have been performed in the context
of deployment of the MSA for various IoT applications
based on the edge [17], [18] and mist computing [19].
Microservices are widely deployed in cloud data centers
or edge cluster nodes in the last few years. Furthermote,
microservices provide the foundation for distributed cloud

computing and edge computing by allowing logical and
geographical distribution of system components.

As mentioned in the previous subsection, local edge
computing allows bringing edge cloud services to local tier.
However, since the IoT devices and sensors at the local
tier have very limited hardware resources and computational
capabilities, most of the legacy cloud microservices are
too heavy to be managed on these local devices. There-
fore, we can recognize a clear need for a lightweight
version of microservices to perform local edge computing.
In our previous work, we have proposed a nanoservice-
based conceptual service model, ’nanoEdge’ [9], [10], where
local functions are virtualized as nanoservices - lightweight
versions of microservices - that integrate local functions in
the cloud-edge continuum. The proposed nanoservice ar-
chitecture allows dynamic deployment of the local services
according to the needs of the specific functions.

C. IOT EDGE-CLOUD MODELS
In [20], [21], we have introduced three different architec-
tural models for IoT-based applications. Fig. 2 depicts these
three models. The first one is the ’traditional Cloud-IoT’
model, where the sensors/devices at local networks sense
and gather the needed information and send most of the
data to the centralized cloud for the required processing,
management and storage purposes. However, this model
suffers from long latency and high network load. The cen-
tralized cloud also forms a single point of failure. Therefore,
it cannot fulfil the delay and mission-critical application
requirements that are typical in e.g., healthcare applications.

To address these challenges, the second model ’2-tier
Edge IoT’ model integrates edge computing to the Cloud-
IoT architecture as an intermediate tier located at the access
network between the local and cloud tiers, bringing a part
of the cloud computing infrastructure closer to the end-
users or devices to address the challenges related to latency,
efficiency and reliability.

The third model, ’3-tier Edge-IoT’ model integrates the
local devices as a part of the cloud computing infrastructure.
The local tier processing is highly crucial for mission-
critical applications that require continuous operation in
every situation, including the network outage. It also helps
improving resource-efficiency by allowing data reduction
functions at local tier to save network capacity in data-
intensive applications. Furthermore, local processing of data
can help improving data privacy and security by reducing
the need to deliver sensitive raw data further from the local
tier.

D. LIGHTWEIGHT VIRTUALIZATION TECHNOLOGIES
Virtualization refers to a technology that generates a virtual
instance of different parts of a computer system, which
can be accessed through an interface. Since the lower
functional layers are abstracted behind an interface, the
application or service developers do not need to consider
the complexity of the underlying systems. Virtualization also

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

Figure 2: IoT Edge-Cloud models [9], [10].

allows modifying and updating the underlying technologies
without disturbances to users and applications above the
virtualization interface.

Hypervisor systems, such as Oracle Virtual Box and
VMware, is a traditional and widely adopted virtualization
technology. It creates an isolated environment that separates
the operating system from the underlying real physical
hardware to wrap and run one or many applications. As
a drawback, this virtualization technique is resource-hungry
and also introduces performance degradation when run on
the host machine, because each of the virtual machine is
required to run on the separate/individual guest operating
system.

Container-based virtualization, on the other hand, shares
the OS kernel in addition to hardware resources (e.g CPU,
memory, storage etc) to run an application on top of the host
and separates the virtualized instances by their processes.
Container runtime engine, such as Docker, LXC, LXD or
etc is required to run a containerized application. Among
these, docker technology is seen crucial for empowering the
microservices architecture mainly due to its low overhead,
faster boot-up time, and less memory requirements. To
manage these containers, Docker may cooperate various
orchestration engines, such as Docker Swarm, Kubernetes,
Apache Mesos, and etc.

E. NANOEDGE CONCEPT
The NanoEdge concept takes the conventional Edge Com-
puting (MEC) vision even a step ahead by deploying some
of the edge services to the resource constrained local IoT
nodes. Nanoservices utilizes local computational resources
for deploying parts of cloud services in proximity of data
sources and/or service consumers. The nanoservices have
certain requirements in terms of node hardware capacity and
capabilities. For example, a oxygen saturation level detect-
ing nanoservice requires a pulse oximeter attached to the

computational node running it, and sufficient computational
capacity to run the function.

In our previous work [9], [10], we have developed a PoCs
implementation of a virtualized nanoservice architecture for
local IoT edge networks. We have analyzed the feasibility
of deploying some edge services from the higher tiers to the
local tier, by utilizing the local hardware as the computing
platform. The prototype was implemented using docker and
docker swarm technologies that enabled the deployment and
orchestration of nanoservices on low-capacity IoT nodes.
At the first phase, the composition and deployment of
these nanoservices were done in a static manner. In such
deployment, the needed service requirements are checked
manually before the actual deployment. In this paper, the
aim is to further extend this prototype implementation for
dynamic deployment of the nanoservices at the local IoT
edge networks.

III. USE CASE: COVID-19 PATIENT MONITORING
As use case, we consider a digital healthcare scenario,
where a patient has been diagnosed with a contagious
COVID-19 disease. To minimize the risk of spreading this
dangerous and highly contagious disease, it is beneficial
to treat patients at home as long as it is possible. In this
scenario, advanced remote monitoring using modern IoT
equipment is needed to determine if and when an infected
person should be hospitalized. In this use case, a home
treatment patient is given a medical device or wearables, e.g.
smart/sport watches, smart clothing [22], or skin-mounted
biosensors [23] capable of measuring a patient’s health data.

When the patient is at a home quarantine, the sensor in-
formation is analyzed locally to avoid extra load on hospital
systems, which is crucial in widespread pandemics, where
tens of thousands of patients may be taken care by a single
hospital. If a patient’s condition gets worse, the automatic
analysis of the monitored data can alert the personnel,
who, if needed, can make the decision of hospitalizing the
patient. In the scenario, the need for remote monitoring
continues in hospital (with increased intensity), since face-
to-face care needs to be minimized to avoid exposing the
medical personnel to the disease.

For simplicity, we have divided the remote COVID-19
patient monitoring system into four sub-tasks. These four
sub-tasks are indicted with alphabetic notation from A to
D and highlighted with red circles as shown in Figure 3.
The initial sub-task is related to the (A) data acquisition
where different types of medical sensors/devices are used to
monitor the current health status of a patient, e.g. the oxygen
saturation level (SpO2) of the blood, heart rate (HR) and
body temperature (BoT). When the patient is hospitalized,
actuators such as oxygen controller (OC) dosing oxygen
for the patient through an oxygen mask and a screen
(i.e. monitor) are used for keeping the oxygen in certain
required level and for displaying the patient status. All the
nanoservices and the devices used in this use case are shown
in Table 1.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

Table 1: Nanoservices, devices and alert thresholds in our
case.

Sub-Task Nanoservices Devices (sensors / actuator) Threshold
Oxygen Level (SpO2) < 90%

rate < 40 or > 120 bpm,Heart Rate (HR) Pulse Oximeter [24]
variability < 20 ms

Armband using MCP9808Body Temperature (BoT) (BLE Temperature) [25] > 40o C

Oxygen mask with DC motor

A

Oxygen Controller (OC) & Oxygen cylinder [26] SpO2 < 90%

B Alerts Email, SMS, Call –
C Data Display (DD) Any screen / monitor –

Advanced nanoservices for Any advanced medical Defined as perD continuous monitoring services/facilities e.g. ECG specific services

The next sub-task (B) alerts activation checks if the
measured health values go beyond the threshold limits for
longer periods, e.g. 30 minutes. If this happens, an alert
nanoservice will be activated to send an alert notifying
the medical staff about the patient status, through e.g. an
SMS or email. The medical staff can now start (C) remote
data monitoring of the patient. If the data shows signs of
severe symptoms, the medical staff can fetch the patient
with an ambulance to the hospital and will arrange advanced
medical services in the last sub-task (D) Hospital monitoring
services.

In this use case scenario, it is crucial that the system
remains functional even when the quality of network con-
nectivity is occasionally low or even completely down.
In these situations, the continuous sensor data analysis
can be ensured using local sensors/devices computational
capacity. Therefore, e.g. alerts generated during network
outages can be sent to the hospital system when the network
connection is restored. At the same time, local analysis
relieves the network load and computational load on the
hospital system, which can be a significant factor to ensure
the online healthcare system functionality when there is a
risk of system overload, e.g. during severe pandemics such

as COVID-19.

IV. DYNAMIC NANOSERVICE DEPLOYMENT
In this paper, we propose a dynamic orchestration solution
for our nanoEdge concept [9]. In its first PoC implementa-
tion [10], the node capabilities and the service requirements
needed to be manually checked before the deployment.
The mechanism proposed in this paper, makes the PoC
follow better the original nanoEdge concept, by providing an
automatic nanoservice deployment for dynamically chang-
ing environments, based on node capabilities and service
requirements. In the following subsections, we describe the
cluster formation and service deployment of our proposal in
more detail.

A. CLUSTER FORMATION
In the nanoEdge concept, the nanoservices are deployed
to the cluster of local nodes with different capabilities.
We distinguish two type of nodes, manager and worker
nodes. The manager nodes are responsible for maintaining
the cluster and deploying services to the worker nodes,
whereas the worker nodes are executing those services. If
a cluster is made of multiple manager nodes, one is set
to active. Active manager node initiates the cluster, while
other manager nodes are set to reachable status and used
as the backup manager nodes. The active manager node
may demote from manager role or leave a the cluster at
anytime. When the active manager node is demoted from
the manager role to the worker role or left the cluster,
then one of the manager nodes is activated as a new leader
from the other remaining manager nodes. By decentralizing
the cluster management this way, we can avoid reliability
problems that would arise from a single point of failure.
The whole orchestration process is done by the orchestration

Figure 3: COVID-19 patient remote monitoring use case.

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

engine.
In our proposed model, as shown in Fig. 4, the active

manager node distribute the nanoservices to the associated
worker nodes based on the service requirements. We denote
the set of manager nodes as M = {M1, ...Mj , ...,MJ}. It
maintains a list of nanoservices in the service repository
that should be deployed: S = {S1, S2, . . . Sk. . . SK}. Each
nanoservice is characterised with a service profile Pk that
specifies the type and amount of resources necessary for the
service to be executed at the worker node. The set of worker
nodes is denoted by W = {W1, ...Wi, ...,WI}. Similarly,
each worker node is characterised with a resource profile
Pi that specifies the amount and type of resources available
for execution of nanoservices.

Table 2: Symbolic representation
Notation Meaning Notation Meaning
M Set of manager nodes tk / ti Node type (sensor / actuator)
W, i Set and index of worker nodes ck / ci CPU (number of cores, etc.)
S, k Set and index of nanoservices mk / mi Memory (RAM)
Sk Nanoservice k sk /si Storage (SD / SSD / HDD)
Wi Worker node i bk / bi Operating power (AC / DC)
Pi Resource profile of Wi nk / ni Network (WiFi, Bluetooth)
Pk Service profile of Sk – –

Service Sk has a service profile Pk =
{Tk, ck,mk, bk, nk, sk} where T is the type of node,
i.e. the set of node capabilities T = {t1, t2..} necessary to
execute the service. Node capability t denotes the type of a
node, i.e. a sensor, an actuator or a computational resource.
Parameter c represents the number of CPU cores as an
integer value; m represents the memory requirement in MB;
b represents the battery requirement, i.e. whether the node

is operating with DC mode or AC power; n represents the
type of the network connection required (WiFi, Bluetooth,
etc.); and s represents the storage requirement in MB. This
is a general service profile, so if the service does not have
the requirement for certain worker node property, its value
is set to 0. Worker node Wi has a node profile in the
same format Pi = {ti, ci,mi, bi, ni, si}, representing the
available resources at the time of allocation. The notation
is summarized in Table 2.

B. NANOSERVICE DEPLOYMENT
The dynamic nanoservice deployment mechanism is per-
formed in the following five steps, which are also marked
with red circles in Fig. 4 .

Step 1: Resource Discovery — At the beginning, all
available resource information is gathered to generate a local
resource profile Pi at a worker node Wi. The local resource
profile includes configuration or properties of a worker node.
This step is performed by each worker node right after
joining the cluster.

Step 2: Resource Reporting — The worker node Wi

initiate resource reporting procedure to store the resource
configuration as a resource profile Pi at the active manager
node Mj . This step is also performed by each worker node
right after the completion of the resource discovery (step 1).

Step 3: Service Discovery — The active manager node
discovers the available nanoservices (i.e container images)
from a remote service repository (for example, from a
Docker Hub or a private registry) after the resource reporting
(step 2). In this step, an active manager node generates

Figure 4: Service deployment process.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

a list of service profiles S for each nanoservice located
at the remote service repository including all the resource
requirements.

Step 4: Service-Resource Matching — Service require-
ments need to match the worker node capabilities. The
active manager node allocates a nanoservice Sk to a suitable
worker node Wi. Worker node can execute more than one
nanoservice at the time only if it has sufficient capacities.
This matching process is a continuous process for all of the
nanoservices. The details of this procedure are given in the
section IV-C.

Step 5: Service Deployment — The active manager node
starts deploying the matched nanoservices Sk (chosen in
step 4) to the suitable worker nodes Wi.

C. SERVICE-NODE MATCHING AND RESOURCE
ALLOCATION ALGORITHM
In our deployment we use a simple algorithm to select the
worker nodes to execute the different nanoservices. The
selected active manager node Mj allocates the nanoservices,
one by one, to the worker node that fulfill their requirements.
Thus, several nanoservices can be executed by one worker
node. After each assignment, the available capacities (e.g.
remaining storage) of the worker node is updated.The steps
of the node-matching and resource allocation algorithm are
presented in Algorithm 1:

Algorithm 1 Resource Allocation

1: FOR k = 1 to K
2: i=1; Match = 0
3: WHILE Match = 0 and i < I + 1
4: IF tk ∈ ti, ck ≤ ci,mk ≤ mi, bk = bi, nk = ni, sk ≤ si
5: Match = 1; allocate sk to Wi

6: Pi = ti, ci − ck,mi −mk, bk, nk, si − sk
7: ELSE i=i+1
8: END IF
9: END WHILE

10: END

Algorithm 1 creates a resource-service configuration pro-
file by matching the nanoservice requirements over the
resources available at the worker nodes. The active manager
node sends a deployment request to the selected worker
node once the active manager node has the resource-service
profile along the list of worker nodes and the associated
deployable nanoservices. All these steps and the deployment
of nanoservices are done asynchronously. Each worker node
continuously informs to the active manager node about the
current state of the deployment.

V. SYSTEM CONFIGURATION
In this section we give an overview of the system configu-
ration of our use case scenario, with the purpose to evaluate
the proposed dynamic nanoservice deployment solution.

In the deployment, we use two machines (i.e. J = 2) as
manager nodes (M) and five Raspberry Pis (i.e. I = 5) as

worker nodes (W). These devices are non-uniform in terms
of hardware functionalities and computational capacities, in
order to demonstrate the resource-based selection algorithm
in action. Depending on the use case scenario, these nodes
can host different nanoservices based on types of sensors
and actuators having diverse computational resources.

Table 3: Cluster nodes used in the implementation

Notation Node role Host OS Description Quantity
M1 Manager Ubuntu 18.04 Desktop 1
M2 Manager Ubuntu 18.04 Laptop 1

W1 & W2 Worker Raspbian 10 RPi 3 2
W3 – W5 Worker Raspbian 10 RPi 4 3

Master node M1 is a laptop computer with 4 GB RAM
having Intel Core i3 2 GHz CPU, while master node M2

is a desktop computer with 16 GB RAM having Intel Core
i7 1.6 GHz CPU. Both are running with Debian based 64-
bits Ubuntu 18.04 Operating System (OS). All worker nodes
are running with Debian based 32-bits Raspbian GNU/Linux
10 (buster) OS. The summary of the cluster nodes used in
out evaluations is represented in Table 3, while the detailed
configuration parameters of the worker nodes are given
below.

1) CPU
The capacity of a CPU depends on the number of cores
and their clock speed along with other parameters e.g.
BogoMIPS that is explained at the end of this section.
The limits of these parameters are defined by the device
manufacturers. Table 4 shows the CPU properties of the
five RPis used as the worker nodes in the cluster.

Table 4: CPU properties

Speed (MHz)Resources Model Cores (ci) Max Min BogoMIPS

W1, W2 Cortex-A53 1200 38.40
W3 - W5 Cortex-A72 4 1500 600 108.00

The number of instructions that could be processed by a
computational node can be measured in millions instructions
per second (MIPS). The manufacturer of a CPU usually
defines the maximum limit of MIPS handled by the CPU.
When a CPU crosses this maximum threshold value, it faces
a deadlock causing the processor to hang on, and a reboot
is required to restore its functionalities. This limit is defined
as BogoMIPS (Bogus + MIPS).

2) Memory
The execution of tasks or the number of instructions also
depend on the random access memory (RAM) used by
a computer system. The overall memory footprint of our
worker nodes is shown in Table 5.

The total memory (i.e. first column in Table 5) is fixed
by the manufacturer. The memory value for the rest five
columns rely on the concurrent running processes at a
worker node (Wj). ”Buffered/Cached” indicates the memory
used by kernel and applications in several I/O operations

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

Table 5: Memory (RAM) properties (in MB)

Resources Total (mi) Used Free Buffered Shared Available/ Cached
W1 434 198 126 108 40 178
W2 926 239 204 481 50 581
W3 924 280 273 370 94 488
W4 1939 813 394 731 198 1063
W5 3776 477 2550 748 226 2936

respectively, whereas ”Shared” indicates the memory used
by TMPFS (Temporary File System mounted in some op-
erations).The total memory and and the available memory
are calculated as follows:

mt
∼= mu +mf +mbc

ma
∼= mbc +ms

Here, the total memory (mt) is fixed for a RPi while the
rest of the memory, i.e used (mu), free (mf), buffered /
cached (mbc), available (ma), and shared (ms) memories
are occupied by various processes currently running in the
RPis.

3) Storage
We have used an SD card on each RPi that contains a host
OS (along with other utilities) to operate the system. An
important thing to note is that all the deployable nanoser-
vices are required to occupy certain amount of blank storage
to save its data onto the host machine. Table 6 shows
the measured SD card properties during the nanoservice
deployment.

Table 6: Storage (SD card) properties (in MB)

Size (MB)Resources File System Type Total Used Available (si)
W1 12045 8164 3253
W2 12053 8158 3260
W3 26569 8186 17011
W4 26941 9284 16266
W5

ext4

26941 10081 15469

4) Power source
Low energy consumption is vital for resource-constrained
IoT nodes since most of them have high battery-life re-
quirements. Therefore, the nanoservice deployment for such
nodes should be made in an energy efficient manner. In this
implementation, we have used both the DC and AC-powered
worker nodes, as shown in Table 7.

Table 7: Battery properties

Operating (bi)Resources AC DC State Percent (%) Capacity (%)

W1 – charging 75
W2 – fully-charged 100
W3 –

X
discharging 95

68.7831

W4, W5 X – – – –

Furthermore, we use in our implementation the informa-
tion on the charging status of the battery with the remaining

battery percentage. Here, we need to take into account that
the battery capacity degrades over its life-cycle. Therefore
the last column in Table 7 indicates the ratio between the last
observed energy (Watt-hour, Wh) and the observed energy
(Wh) at the manufacturing lab when the battery was new.

5) Network Connection
The worker nodes have WiFi and Bluetooth network in-
terfaces for communication. Table 8 describes the WiFi
network properties. All worker nodes are equipped with
802.11 WiFi network interface, giving 100 Mbps maximum
speed and 30 meters of maximum coverage.

Table 8: WiFi network properties

MaxResources Standard (ni) speed (Mbps) coverage (meters)
W1, W2 IEEE 802.11n
W3 – W5 IEEE 802.11ac/n 100 30

With Bluetooth, the maximum transfer unit (MTU) is an
important factor that defines e.g. the maximum allowed data
transfer rate (i.e receiving:sending) between two Bluetooth
devices. Table 9 summarizes the Bluetooth capacities of
our worker nodes on the maximum transfer unit (MTU) for
asynchronous connection-less link (ACL) and synchronous
connection-oriented link (SCO). ACL MTU used to denote
the receiving:sending rate for non-voiced data packets while
SCO MTU is used to denote the receiving:sending) rate
voiced data packets.

Table 9: Bluetooth network properties

Resources HCI version (ni) ACL MTU SCO MTU
W1, W2 4.1 (0x7)
W3 – W5 5.0 (0x9) 1021:8 64:1

Bluetooth devices usually connect via either a USB
(i.e universal serial bus) dongle or a UART (i.e universal
asynchronous receiver/transmitter). A communication de-
vice may use a USB dongle if it does not have built-in
Bluetooth (or UART) support. In our setup, both RPi 3
and RPi 4 use built-in Bluetooth (with UART) with host
controller interface (or HCI) version 4.1 and 5.0. According
to column 3 in Table 9, for the non-voice data transfer (i.e
in ACL MTU) all the worker nodes can receive 1021 packets
and send 8 packets in a single transmission. In the case of
voice data transmission, the ratio between the receiving and
sending data rate is 64:1 for all the worker nodes.

6) Sensors and actuators
In our previous work, we deployed containerized nanoser-
vices into the worker nodes in a static manner [10]. In this
paper, we introduce Sensor-Actuator Detection API service
to detect the PROM, EPROM or EEPROM memory based
HAT (Hardware Attached on Top) and pHAT (partial HAT)
based sensors and actuators belonging to our worker nodes
by applying DiCola’s technique [27]. The Sensor-Actuator

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

Detection API service detected the following sensors and
actuators from the worker nodes of our setup.

Table 10: Sensors and actuators discovered at cluster nodes

Type (ti)Resources Sensor Actuator Notation Description

W1 X – bot Body Temperature
W2 – – – –
W3 – X oc Oxygen Controller
W4 X – pom Pulse Oximeter (SpO2 & HRV)
W5 – X dd Data Display (a screen)

VI. PROOF-OF-CONCEPT IMPLEMENTATION
A. PROPOSED MECHANISM
1) Resource Discovery
During the Resource Discovery, each worker node periodi-
cally looks for available number of CPU cores (ci), memory
(mi), storage (si), battery (bi), networking capacities (ni)
and sensors & actuators (ti). The overall worker nodes
configuration is presented at Table 11.

Table 11: Overall cluster node configuration (Pi)

Available at WiResources
ci mi (MB) si (MB) bi ni ti

W1 434 3253 bot
W2 926 3260 –
W3 914 17011

DC
oc

W4 1939 16266 pom
W5

4

3776 15469 AC

BT, WiFi

dd

According to resource discovery, the body temperature
(bot) and pulse oximeter (pom) sensors are belongs to
worker node W1 and W4 respectively. On the other hand, the
oxygen controller (oc) as well as data display (dd) actuators
are belongs to worker node W3 and W5 respectively. All the
discovered sensors and actuators are presented at 7th column
in Table 11. Rest of other discovered configurations are
summarized at columns 2 to 6. However, after the successful
resource discovery, each worker node stores own resource
configurations as a local Resource Profile (Pi) in JSON
format.

2) Resource Reporting
A CoAP RESTful API nanoservice is implemented with
txThings framework and deployed at the active manager
node. Each worker node maintains its own local resource
configuration profile (Pi), which is periodically sent to the
active manager node. Different dynamic URL endpoints are
introduced to detect and store the resource profile (Pi) at
the manager node.

3) Service Discovery
Our active manager node periodically looks for nanoservices
from the Docker Hub service repository, specified by us.
Table 12 shows the dynamically deployable nanoservices
(defined in Table 1) used in our use case scenario.

In our implementation, we put the requirements of a
nanoservice in JSON format into the description field of the

Table 12: Target nanoservices to be deployed (Pk)

Requirements for SkNanoservices (Sk)
ck mk (MB) sk (MB) bk nk Tk

SpO2 & HRV 59.3 BT pom
BoT < 500 56.2 bot
DB > 500 & < 1000 72.0 –
OC < 500 55.3 oc
DD > 500 & < 1000 73.1 dd

SMS
email
call

1

< 500 56.2

– WiFi

–

specific docker image. The active manager node stores all
the nanoservices with their requirements in a JSON database
as a Service Profile (Pk).

4) Service-Node Matching
The service-node matching nanoservice selects a nanoser-
vice Sk from S and allocate it to the suitable worker nodes.
As we discuss in Algorithm 1, this process is iterated for all
available nanoservices. Table 13 presents the overall match-
ing results with the nanoservices and the corresponding
selected nodes.

Table 13: Nanoservices (Pk) with matched resources (Pi)

Nanoservices (Pk) Major requirements Selected nodes (Wi)
SpO2 & HRV pom W4

BoT bot W1

DB – W1,W2,W3,W4,W5

OC oc W3

DD dd W5

SMS
email
call

– W1,W2,W3,W4,W5

The service-node matching algorithm generates a new
JSON database as a Service-Node Profile (Sk−Wi), includ-
ing the combination of nanoservice and a node that satisfies
the nanoservice requirements.

5) Service Deployment
At the service deployment phase, the containerized nanoser-
vices, given in Table 13, are deployed into the worker nodes.
Here, the active manager node initiates the deployment of
nanoservices into the optimal worker nodes, based on the
Service-Node Profile (Sk −Wi).

B. NANOSERVICE IMPLEMENTATION
During the PoC implementation, we developed the required
nanoservices for the previously mentioned steps as shown
in Table 14. For example, at the step 1, the sensor-actuator
detection engine (X11) nanoservice is developed to detect
the type of a sensor or an actuator used in the cluster node.
This dedicated CoAP RESTful API nanoservice is made
with python, txThings [28] and tinydb. Furthermore, the
resource discovery engine (X12) nanoservice is developed
to detect all available resources that belongs to a cluster
node. upower, lshw, bluez and jq are used to build the X12

nanoservice.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

At step 2, the libcoap is used at each worker node to
create resource reporting engine (X21) which report all the
discovered resources. Moreover, the resource register server
(X22) nanoservice is used for saving the reported resource
configurations. This nanoservice is built with Python on top
of txThings framework.

Table 14: Enabling nanoservices used by proposed algorithm

Steps Nanoservices Notations
Sensor-Actuator Detection Engine X11Step 1 Resource Discovery Engine X12

Resource Reporting Engine X21Step 2 Resource Register Server X22

Step 3 Service Discovery Engine X3

Step 4 Service-Resource Matching Engine X4

Step 5 Service Deployment Engine X5

On the step 3, the service discovery engine (X3) is
used to discover the nanoservices required by use case.
Initially docker native search tool [29] is used to explore
the nanoservices from our predefined Docker Hub service
repository. The docker native search tool is unable to detect
recent changes in the nanoservice images. Later, we use
the docker engine API which can fetch new changes to the
docker images [30]. In this step, jq is used at the active
manager node, to filter the requirements. The curl tool is
used to make HTTPS request during the service discovery
through the docker engine API.

During the step 4, the service-resource matching engine
(X4) nanoservice consists of Python and is used to select the
suitable worker nodes for each nanoservice. Finally, at the
step 5, the service deployment engine (X5) is responsible
to start deploying the nanoservices into the suitable nodes
through docker-compose utility.

C. DEPLOYMENT APPROACHES
We deploy the proposed the aforementioned enabling
nanoservices in two alternative approaches: non-
containerized and containerized deployment.

Non-containerized deployment is directly involved with
different host machines. This means that the required
nanoservices are deployed directly without having a separate
virtualized layer. Therefore, for each worker node, an ad-
ditional continuous monitoring system is required to ensure
the availability of the needed enabling nanoservices required
by all five steps. Moreover, laborious service upgrades,
rolling back and auto-scaling are the clear weaknesses when
the deployment is performed without containers.

Containerized deployment, for one, boosts the formation
of a sustainable cluster by generating a lightweight virtu-
alized environment on top of each machine to ensure the
efficient use of system resources and low-effort upgrade-
ability [31], [32]. Container Orchestration engine ensures
the availability of the needed nanoservices whenever a node
joins to the cluster. Thus, additional continuous monitoring
system, which would be required at non-containerized de-
ployment approach, is not needed. Common orchestration

features such as service upgrading and rolling back, auto-
scaling and self-healing are achieved by this deployment.

In a nutshell, containerized approach brings several appli-
cation lifecycle management-related benefits over the non-
containerized approach with some expected reduction in the
performance and efficiency of the deployment. Therefore,
we identify the containerized approach as more favorable
approach with respect to the desirable above-mentioned
features.

D. DEPLOYMENT OF THE SCENARIO
We deploy the nanoservices defined in Table 14 which
enable our proposed dynamic deployment model. At first,
our mechanism discovers the worker node configuration
presented in Table 11. For example, pulse oximeter device
(BerryMed BM1000B) reads the SpO2 and HRV from
its sensors. During the resource discovery, our proposed
mechanism successfully detects the sensor at the worker
node W4. At the step 1, W4 node is labelled with type
pom to indicate that the pulse oximeter sensor is discovered
at W4.

During the step 2, all worker nodes send their discovered
resources to notify the active manager M1. The active
manager node is aware of the computational capacity of
a worker node once the worker accomplished its’ reporting.
After the reporting of the W4, the active manager node
knows that W4 requires SpO2 and HRV nanoservices.

Figure 5: Testbed setup.

We set the requirements of the nanoservices according
to use case scenario. For instance, SpO2 and HRV nanoser-
vices require pulse oximeter. We add pom to the requirement
at both nanoservices to indicate that these nanoservices re-
quire the pulse oximeter to read the data. In this manner we
build all nanoservices according to their requirements and
push them into our Docker Hub nanoservice repository. At
the step 3, our proposed mechanism obtains the nanoservices
requirements from the service repository i.e. Docker Hub.
Nanoservice discovery result is presented in Table 12.

At the step 4, our proposed algorithm performs service-
node matching. The nodes selected for each nanoservice, are
presented in Table 13. During the step 5, the active manager
node starts deploying each nanoservice defined Table 1 into

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

the selected nodes. The successful dynamic deployment of
nanoservices is presented in Figure 5.

VII. EVALUATION RESULTS
In this section, we compare the resource consump-
tion and end-to-end latency for the containerized and
non-containerized deployment approaches to evaluate the
resource-efficiency and performance of the proposed mech-
anism.

A. STORAGE CONSUMPTION
Nanoservices consume different amount of storage based on
their requirements e.g software packages or tools. An OS
executes and runs various applications through one or many
binary executable programs [33]. Depending on the nature
of an executable, our nanoservices require Python interpreter
or GCC compiler. In the use case, nanoservices X12 and
X21 require GCC while rest require Python. Besides that,
nanoservices require additional software tools and compo-
nents to run the nanoservices. However, different package
management tools are used to install, update, upgrade,
configure and remove these binary executables [34], [35].

We deploy the nanoservices defined in Table 14 into
different suitable host machines. According to the Table 15,
resource discovery and reporting related X12 and X21

nanoservices are deployed into each work node. Further-
more, different managerial X22, X3, X4 and X5 nanoser-
vices are deployed into active manager node M1. The
sensor-actuator detection nanoservice i.e X11 is deployed at
M2 manager node, though it could be deployed at any node.
Based on the deployment approach, these nanoservices
consume different storage in their target nodes. The storage
consumption is summarized in Table 15.

1) Non-containerized deployment
In this case, nanoservices mentioned in Table 14, are built
with debian based apt package management tool and de-
ployed directly into each host machine without having a
separate virtual layer. The nanoservices deployed at both
manager node are built with Python 2.7.16 where each
worker node uses GCC to build the target nanoservices
required by each worker node. Through column 4 & 5,
storage consumption for the non-containerized deployment
is presented in the Table 15. Here, column 4 represents the
consumption for the base tool or component e.g. Python or
GCC whereas column 5 indicates the consumption for the
additional tools or components required by a nanoservice.
The total storage consumption is the sum of column 4
and 5. According to the Table 15, for non-containerized
deployment approach, nanoservices deployed at M1 and M2

consume 109.96 MB and 112.06 MB respectively while the
nanoservices required by a worker node consume 35.11 MB.

2) Containerized deployment
With docker, we build custom lightweight container im-
ages for the nanoservices presented in Table 14. These

Table 15: Storage consumption
Storage consumption (MB)

without container with containerSteps Nanoservices Deployed at
base tool others base image others

X11 M2 77.61 + 34.45 61.65 + 36.04Step 1
X12 + 8.01 + 17.84
X21

W1 −W5 26.94 + 0.16 3.77 + 1.88Step 2
X22 + 31 + 31.93

Step 3 X3 + 1.35 + 2.69
Step 4 X4

Step 5 X5

M1 77.61
+ 0

61.65
+ 0

lightweight images are generated from an existing struc-
ture known as base image [36], [37]. Docker generates a
base image including a fundamental software component
with basic OS related commands. For example, a python
related base image contains a Python interpreter along
with basic OS command such as cd, ls etc. We build the
nanoservice container images from associated base alpine
images depending on their required base tool. X12 and
X21 container images are built from alpine:3.12.0 base
image whereas other nanoservices built from python:2.7.16-
alpine base image. According 6th column of Table 15,
the alpine:3.12.0 base image consumes 3.77 MB whereas
python:2.7.16-alpine consumes 61.65 MB disk space. The
additional software package or components are managed by
apk alpine package manager [38]. The disk consumption
for additional required software packages is presented in
column 7. With additional required software packages, both
base images build custom lightweight container images for
different nanoservices. The total storage consumption for a
containerized nanoservice is the summation of column 6 and
7. Storage consumption for each step is shown in Table 15.
According to the table, for containerized deployment ap-
proach, the nanoservices deployed at M1 and M2 consume
96.27 MB and 97.69 MB respectively while nanoservices
deployed at each worker node consume 23.49 MB.

3) Summary of Resource Consumption Analysis
In both non-containerized and containerized deployments,
common packages are shared among the nanoservices with
apt package manager and Docker respectively. In con-
tainerized deployment scenario, the base requirement is
less consuming as compared to non-container one. We also
notice that, in the containerized nanoservices, the size of the
depending packages/tools are slightly increasing. However,
related nanoservices deployed at M1 and M2 are 14.22%
and 14.71% more storage consuming while we choose non-
containerized deployment over containerized one. In the
worker nodes, associated containerized nanoservices are
49.47% less storage consuming as they compared with non-
container deployment approach.

B. LATENCY
Each step of the dynamic nanoservice deployment intro-
duces processing delay (i.e latency, measured in millisec-
onds ms). Figure 6 shows deployment steps and their
associated latencies. The steps are depicted with numeric
circles while latencies are depicted with capital letter L with

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

Figure 6: Overall latency profile.

the index of the corresponding step and the processing node
(Wi or Mj).

The L1(Wi) represents the time required to discover all
the available resources at the worker node Wi during the
step 1 whereas L′2(Wi) represents the time required to send
all the discovered resources to the active manager node (M1)
during the step 2. In the step 2, block-wise CoAP data trans-
fer mechanism over UDP is introduced during the resource
reporting to process the large data volume. However, the
active manager node M1 sends a confirmation message to
the Wi worker node once the reporting is done successfully
which introduces latency L′′2(Wi). At the step 3, the active
manager node M1 requires L3(M1) during discovery of the
nanoservices from a docker hub repository and L4(M1) to

match the nanoservices and selects appropriate worker nodes
during the service-resource matching at step 4. At the step 5,
the active manager node M1 commands the docker engine
to deploy the nanoservices into the appropriate worker node
Wi, which takes L5(M1) ms.

Total latency consists of (i) computational latency at step
1, step 2 and step 4 and (ii) communication latency at step 2,
step 3 and step 5. We analyse computational and communi-
cation latency for both non-containerized and containerized
deployment approaches. During the measurement at every
steps, we take 20 samples and calculate the mean latencies
for an associated node (Wi or Mj). The mean latencies and
their variations for the non-containerized and containerized
deployment are presented in Fig. 7 and Fig. 8.

Computational Latency

at step 1 (Resource Discovery)

W
1

W
2

W
3

W
4

W
5

Worker nodes W
i

1500

2000

2500

3000

3500

4000

L
a
te

n
c
y
 (

in
 m

s
)

 L
1
(W

i)

without containers

with containers

(a) at Step 1

Computational Latency

at step 2 (Resource Reporting)

W
1

W
2

W
3

W
4

W
5

Worker nodes W
i

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

L
a

te
n

c
y
 (

in
 m

s
)

 L
' 2

(W
i)

without containers

with containers

(b) at Step 2

Computational Latency

at step 4 (Service-Resource Matching)

M
1

M
2

Worker nodes M
j

1000

1500

2000

2500

3000

3500

4000

L
a
te

n
c
y
 (

in
 m

s
)

 L
4
(M

j)

without containers

with containers

(c) at Step 4

Figure 7: Computational latency without and with containers.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

Communication Latency

at step 2 (Resource Reporting)

W
1

W
2

W
3

W
4

W
5

Worker nodes W
i

300

350

400

450

500

550

600

650

700

L
a

te
n

c
y
 (

in
 m

s
)

 L
" 2

(W
i)

without containers

with containers

(a) at Step 2

Communication Latency

at step 3 (Service Discovery)

M
1

M
2

Manager nodes M
j

600

700

800

900

1000

1100

1200

1300

L
a
te

n
c
y
 (

in
 m

s
)

 L
3
(M

j)

without containers

with containers

(b) at Step 3

Communication Latency

at step 5 (Service Deployment)

W
1

W
2

W
3

W
4

W
5

Worker nodes W
i

250

300

350

400

450

500

550

600

650

700

L
a

te
n

c
y
 (

in
 m

s
)

 L
5
(W

i)

without containers

with containers

(c) at Step 5

Figure 8: Communication latency without and with containers.

1) Computational latency
The computational latency comprises of L1(Wi), L′2(Wi)
and L4(M1) for resource discovery (step 1), resource re-
porting (step 2) and service-resource matching (step 4)
respectively. The computational latencies for these steps are
presented in Fig. 7.

During the resource discovery at step 1, X12 nanoservice
populates a resource profile (Pi) which is nearly 158.2 kB
at each worker node. We measure the total time required to
generate Pi and calculate the mean computational latency
for step 1. The overall mean computational latency L1(Wi)
at step 1 for containerized and non-containerized deploy-
ments are shown in Fig. 7(a).

During step 2, with X21 nanoservice, each worker node
initially sends the discovered resource profile Pi to the active
manager node with the CoAP’s default block size of 64
bytes per message block. With the default block size Worker
node W1 takes 247000 ms (i.e 247s) requiring 2445 message
blocks. To speed up the resource reporting, we increase
the block size to CoAP’s maximum block size, i.e 1024
bytes. In this case, we require 153 message blocks only. We
measure the mean latency for the reporting process at each
worker node. For the non-containerized and containerized
X21 nanoservice, the mean computational latency L′2(Wi)
at each worker node Wi are shown in Fig. 7(b).

At step 4, with X4 nanoservice, the service-resource
matching engine matches requirements of nanoservices with
the available resources of worker nodes. The average com-
putational latency L4(M1) measured at the active manager
node M1 for the non-containerized and containerized de-
ployments are presented in Fig. 7(c).

Total computational latency:
We observe the computational latencies for both non-

containerized and containerized deployment approaches of
the nanoservices required by steps 1, 2 and 4. In a cer-
tain node, the container-based nanoservices introduce more
computational latency as compared to non-containerized
nanoservices. For instance, at the step 1, worker node W1

takes 6980 ms (the orange bar) with non-containerized

deployment, and 7175 ms (the blue bar) with containerized
deployment. Nanoservices used at these steps are served
from virtualized server components. When a host machine
receives a request, it forwards the request to a containerized
nanoservice. As a result, these containerized nanoservices
require extra time in response to the coming request from
a host. Non-containerized nanoservices do not require this
extra time as they execute directly from the host machine.

2) Communication Latency
The communication latency comprises of L′′2(Wi), L3(Mj)
and L5(Wi) for resource reporting (step 2), service discov-
ery (step 3) and service deployment (step 5) respectively.
The communication latencies for these steps are presented
in Fig. 8.

At the step 2, we use the CoAP protocal during the
resource reporting. However, CoAP uses the unreliable UDP
protocol when the payload is exchanged in between the
server and client. As a result, in the reporting phase, there is
a chance for a packet loss. Our CoAP server sends a confir-
mation message to ensure the delivery of the payload. This
confirmation process introduces additional latency L′′2(Wi).
The observations of L′′2(Wi) for different worker nodes are
summarized in Fig. 8(a).

In step 3, nanoservices are discovered from Docker Hub
repository through HTTPS request. At each container image,
the nenoservice requirements are written in the description
field. These requirements are extracted by the active man-
ager node during the step 3. We summarize our observations
related to Step 3 in Fig. 8(b).

At step 5, the active manager node sends a nanoservice
deployment request to the docker engine at the worker
nodes. The worker immediately starts downloading the
nanoservice from the docker-hub repository and deploys
the nanoservice at their own. For each worker node, we
observe the communication latency at step 5 for the con-
tainerized deployment of the X5 nanoservice over the non-
containerized deployment. We summarize the observations
in Fig. 8(c).

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

Total communication latency:
Total communication latency is higher with containerized

nanoservices than without it. In case the X3 is deployed at
the manager node with a container, the mean communication
latency increases 8.31% and 13.68% at manager nodes M1

and M2 respectively. The reasons for this such as port
forwarding or mapping from host to container are already
discussed in VII-B1.

3) Total latency
During the resource reporting phase at step 2, worker node
Wi splits the whole 152.8 kB payload into 153 blocks
having 1024 B payload size for each block. Each worker
node sends message blocks to the active manager node. In
some of our measurements, the active manager node starts
the service discovery process as soon as it gets the last
massage block from worker node Wi. In this scenario, the
active manager node does not wait for the response message
that is to be sent to the worker node Wi. Therefore, the
communication latency L′′2(Wi) should not consider during
total latency calculation. Overall latency for a worker node
Wi and manager node Mj is:

L = L1(Wi) + L′2(Wi) + L3(Mj) + L4(Mj) + L5(Wi)

Table 16: Total deployment latency

Total latency (ms) without containers
Worker nodes (Wi)

Manager nodes (Mj) W1 W2 W3 W4 W5

M1 14693 13170 11640 10088 8520
M2 12713 11190 9660 8108 6540

Total latency (ms) with containers
Worker nodes (Wi)

Manager nodes (Mj) W1 W2 W3 W4 W5

M1 16061 14455 12854 11259 9641
M2 14038 12432 10831 9236 7618

The total latencies are presented in Table 16. Total
latency increases by approximately 1-1.5s when container
is used compared to non-containerized deployment. Similar
observations are made for both M1 and M2 manager nodes.
When we take into account L′′2(Wi), the total latency L(Wi)
at worker node Wi is increases for approximately 0.5s in
both deployments.

VIII. DISCUSSION AND FUTURE DIRECTIONS
This work provides a potential solution for a dynamic
deployment of IoT services, consisting of decentralized
nanoservices, in a heterogeneous cluster of IoT nodes. In
this paper, we consider a remote healthcare monitoring
use case for a COVID infected patient to highlight the
benefits of dynamic nanoservice deployment in a real-world
scenario. For this purpose, we demonstrated the feasibility
of dynamic resource allocation through PoCs implemen-
tation. The proposed resource-aware dynamic nanoservice
deployment mechanism shows how the needed nanoservices

are deployed from a Docker-Hub repository to resource-
constrained IoT cluster nodes based on service requirements.

With the proposed resource-matching mechanism, the
nearby available hardware resources can be dynamically
discovered and matched with medical service requirements
to deploy different parts of the medical service to the
most suitable nodes in the cluster of available local nodes.
Dynamic resource availability is vital for ensuring contin-
uous monitoring of a patient in our scenario, where the
patient along with the attached medical sensors and needed
equipment/local computing hardware moves from home to
ambulance and then from ambulance to the hospital. In this
case migration/orchestration of the services/resources (from
home to ambulance and then to hospital) are managed by
the edge servers.

We have evaluated the storage consumption and the
nanoservice deployment latency in two different deploy-
ment approaches: with and without containerization. Both
approaches have their own merits and demerits. The de-
ployment of container-based nanoservices takes 1-2 seconds
longer than with non-containerized services. On the other,
non-containerized nanoservices are more resource consum-
ing compared to containzerized nanoservices. This comes
from the additional overhead of sending the requests from
the host to the container application. However, container-
based deployment has significant benefits in terms of better
upgrading mechanism, scalability, self-healing and auto-
mated bin packing with minimal downtime. Therefore, ad-
ditional 1-2 seconds in the deployment phase are tolerable.

This evaluation work was performed in the context of
a remote monitoring healthcare scenario for a COVID
patient. However, the results can be generalized to any IoT
application scenario with dynamically changing service re-
quirements. For example, in the case when there is unstable
access network connectivity, the deployment of dynamic
nanoservices is vital for executing the local processes/tasks
until the connection to access networks get stable.

Our work has several future directions. In this work, we
have enabled dynamic nanoservice deployment, based on
the availability of the hardware resources in the cluster.
However, we did not yet consider the current load or perfor-
mance of the cluster nodes in the nanoservice deployment.
Therefore, using AI/ML approach to enable dynamic load
and performance-aware service deployment would further
improve the performance of decentralized nanoservice ar-
chitectures on clusters of resource-constrained IoT nodes,
and would therefore be an interesting direction for future
research. Future work also includes distributed mechanisms
to establish trust between different nanoservice providers,
such as DLT and Blockchain approaches, to ensure sufficient
privacy and security of the local IoT services.

IX. CONCLUSION
This article proposes and evaluates a model for enabling
dynamic resource-service matching in distributed local edge
computing. This work extends our previously developed lo-

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

cal edge computing architecture (nanoEdge) for constrained
IoT setups, by enabling automatic resource discovery and
deployment on highly dynamic IoT scenarios. To showcase
the feasibility of the model in real-life scenarios, we have
chosen a topical Covid-19 patient monitoring use case as
a basis for evaluation. The proposed dynamic resource-
service matching mechanism is evaluated by implementing
and comparing two alternative approaches, a containerized
approach providing on-the-fly configuration of nanoservices,
and a simple non-containerized approach with fixed service
configuration.

According to the results, the service deployment takes
slightly more time when containers are used, compared to
the non-containerized approach. On the other, container-
ized nanoservices are more resource efficient. Overall, con-
tainerization provides clear advantages in terms of service
management, such as effortless upgrading, rolling back
and auto-scaling. It also ensures the sufficient scalability,
resource-efficiency and fault-tolerance required by highly
dynamic yet resource-constrained IoT scenarios. Although
the evaluation was made for a healthcare scenario, the
results can be generalized to any IoT scenario with dynami-
cally changing service requirements and available resources
in unstable access network connectivity. The future work
includes taking into consideration the current load and
performance of devices in the nanoservice deployment and
distributed DLT/Blockchain mechanisms to establish trust
among various service providers.

ACKNOWLEDGMENT
The authors would like to thank Mr. Jude Okwuibe and Mr.
Muneeb Ejaz for productive discussions during the writing
process of this paper.

References
[1] C.-Y. Fan and S.-P. Ma, “Migrating monolithic mobile application to

microservice architecture: An experiment report,” in 2017 IEEE Interna-
tional Conference on AI & Mobile Services (AIMS). IEEE, 2017, pp.
109–112.

[2] S. Newman, Monolith to microservices: evolutionary patterns to transform
your monolith. O’Reilly Media, 2019.

[3] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[4] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for the
internet of things: A case study,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 1275–1284, 2018.

[5] “Mobile edge computing a key technology towards 5G,”
http://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_
a_key_technology_towards_5g.pdf, 2015, eTSI White Paper No. 11,
accessed: 10-10-2016.

[6] H. Ning, F. Farha, Z. N. Mohammad, and M. Daneshmand, “A survey and
tutorial on “connection exploding meets efficient communication” in the
internet of things,” IEEE Internet of Things Journal, vol. 7, no. 11, pp.
10 733–10 744, 2020.

[7] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, “Performance evaluation met-
rics for cloud, fog and edge computing: A review, taxonomy, benchmarks
and standards for future research,” Internet of Things, p. 100273, 2020.

[8] F. Wu, C. Qiu, T. Wu, and M. R. Yuce, “Edge-based hybrid system
implementation for long-range safety and healthcare iot applications,”
IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9970–9980, 2021.

[9] E. Harjula, P. Karhula, J. Islam, T. Leppänen, A. Manzoor, M. Liyanage,
J. Chauhan, T. Kumar, I. Ahmad, and M. Ylianttila, “Decentralized Iot
Edge Nanoservice Architecture for Future Gadget-Free Computing,” IEEE
Access, vol. 7, pp. 119 856–119 872, 2019.

[10] J. Islam, E. Harjula, T. Kumar, P. Karhula, and M. Ylianttila, “Docker
Enabled Virtualized Nanoservices for Local IoT Edge Networks,” in
2019 IEEE Conference on Standards for Communications and Networking
(CSCN), 2019, pp. 1–7.

[11] Z. Houmani, D. Balouek-Thomert, E. Caron, and M. Parashar, “Enhancing
microservices architectures using data-driven service discovery and qos
guarantees,” in The 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing CCGrid, 2020, p. 10.

[12] S. P. Singh, A. Nayyar, R. Kumar, and A. Sharma, “Fog computing: from
architecture to edge computing and big data processing,” The Journal
of Supercomputing, vol. 75, no. 4, pp. 2070–2105, Apr. 2019. [Online].
Available: http://link.springer.com/10.1007/s11227-018-2701-2

[13] J. Portilla, G. Mujica, J. Lee, and T. Riesgo, “The extreme edge at the
bottom of the internet of things: A review,” IEEE Sensors Journal, vol. 19,
no. 9, pp. 3179–3190, 2019.

[14] E. M. Dogo, A. F. Salami, C. O. Aigbavboa, and T. Nkonyana, “Taking
cloud computing to the extreme edge: A review of mist computing for
smart cities and industry 4.0 in africa,” in Edge computing. Springer,
2019, pp. 107–132.

[15] R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-
driven approach,” in 2017 24th Asia-Pacific Software Engineering Confer-
ence (APSEC), 2017, pp. 466–475.

[16] T. Prasandy, Titan, D. F. Murad, and T. Darwis, “Migrating application
from monolith to microservices,” in 2020 International Conference on
Information Management and Technology (ICIMTech), 2020, pp. 726–731.

[17] S. Pallewatta, V. Kostakos, and R. Buyya, “Microservices-based iot appli-
cation placement within heterogeneous and resource constrained fog com-
puting environments,” in Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing, 2019, pp. 71–81.

[18] T. Leppanen, C. Savaglio, L. Lovén, T. Jarvenpaa, R. Ehsani, E. Peltonen,
G. Fortino, and J. Riekki, “Edge-based microservices architecture for
internet of things: Mobility analysis case study,” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2019, pp. 1–7.

[19] A. Sattari, R. Ehsani, T. Leppänen, S. Pirttikangas, and J. Riekki, “Edge-
supported microservice-based resource discovery for mist computing.”

[20] M. Ejaz, T. Kumar, M. Ylianttila, and E. Harjula, “Performance and
efficiency optimization of multi-layer iot edge architecture,” in 2020 2nd
6G Wireless Summit (6G SUMMIT), 2020, pp. 1–5.

[21] T. Kumar, E. Harjula, M. Ejaz, A. Manzoor, P. Porambage, I. Ahmad,
M. Liyanage, A. Braeken, and M. Ylianttila, “Blockedge: Blockchain-edge
framework for industrial iot networks,” IEEE Access, vol. 8, pp. 154 166–
154 185, 2020.

[22] [Online]. Available: https://www.hexoskin.com/pages/
hexoskin-connected-health-platform

[23] [Online]. Available: https://www.philips.fi/healthcare/product/
HC989803196871/wearable-biosensor-wireless-remote-sensing-device

[24] A. Industries, “Finger Pulse Oximeter with Bluetooth LE.” [Online].
Available: https://www.adafruit.com/product/4582

[25] “Wearable Continuous Temperature Monitor with Adafruit IO.” [On-
line]. Available: https://learn.adafruit.com/wearable-temperature-monitor/
assembly

[26] A. J. Puspitasari, D. Famella, M. S. Ridwan, and M. Khoiri, “Design of
low-flow oxygen monitor and control system for respiration and spo2 rates
optimization,” in Journal of Physics: Conference Series, vol. 1436, no. 1.
IOP Publishing, 2020, p. 012042.

[27] T. DiCola. (2019, apr) Sensors and data logging with embedded linux -
the ultimate guide part 1. [Online]. Available: https://www.balena.io/blog/
sensors-and-data-logging-with-embedded-linux-the-ultimate-guide-part-1/

[28] M. Wasilak, Chrysn, P. Berndt, R. Nowakowski and J. Kinestral. (2018,
December) txthings - coap library for twisted framework. [Online].
Available: https://github.com/mwasilak/txThings

[29] D. Docs. docker search. [Online]. Available: https://docs.docker.com/
engine/reference/commandline/search/

[30] ——. Engine api v1.24. [Online]. Available: https://docs.docker.com/
engine/api/v1.24/#32-images

[31] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to
support paas,” in 2014 IEEE International Conference on Cloud Engineer-
ing, 2014, pp. 610–614.

[32] J.-P. Rodrigue and T. Notteboom, “Looking inside the box: evidence from
the containerization of commodities and the cold chain,” Maritime Policy

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3102867, IEEE Access

J. Islam et al.: Resource-aware Dynamic Service Deployment for Local IoT Edge Computing: Healthcare Use Case

& Management, vol. 42, no. 3, pp. 207–227, 2015. [Online]. Available:
https://doi.org/10.1080/03088839.2014.932925

[33] “Executing Binary Programs & Shell Scripts in
Linux.” [Online]. Available: https://study.com/academy/lesson/
executing-binary-programs-shell-scripts-in-linux.html

[34] “PackageManagementTools - Debian Wiki.” [Online]. Available: https:
//wiki.debian.org/PackageManagementTools

[35] “Package Management.” [Online]. Available: https://ubuntu.com/server/
docs/package-management

[36] “Glossary,” Jun. 2021. [Online]. Available: https://docs.docker.com/
glossary/

[37] “Dockerfile reference,” Jun. 2021. [Online]. Available: https://docs.
docker.com/engine/reference/builder/

[38] “Alpine Linux package management - Alpine Linux.” [Online]. Available:
https://wiki.alpinelinux.org/wiki/Alpine_Linux_package_management

JOHIRUL ISLAM received his bachelor’s degree
in Information and Communication Technology
from Mawlana Bhashani Science and Technology
University, Bangladesh, in 2014, and master’s
degree in Wireless Communications Engineering
from the University of Oulu, Finland, in 2019.
He is doing his doctoral research under the su-
pervision of Asst. Prof. Erkki Harjula at CWC-
NS Networks and Systems research group in
the University of Oulu, Finland. His research

interests include Internet of Things (IoT), Cloud and Edge computing; and
virtualization technologies for intelligent environment.

TANESH KUMAR is currently working as a
postdoctoral researcher at the Centre for Wire-
less Communications (CWC), University of Oulu,
Finland. He received his D.Sc. degree in com-
munications engineering from the University of
Oulu, Finland, in 2016, the M.Sc. degree in com-
puter science from South Asian University, New
Delhi, India, in 2014 and the B.E. degree in com-
puter engineering from the National University
of Sciences and Technology (E&ME), Pakistan,

in 2012. He has coauthored over 40 peer-reviewed scientific articles. His
current research interests include security, privacy and trust in the IoT,
5G/6G edge computing, Blockchain and Medical ICT.

IVANA KOVACEVIC received the bachelor’s de-
gree in electronics and telecommunication engi-
neering from the University of Belgrade, Serbia,
in 2012 and the M.Sc. degree in communications
engineering from the University of Oulu, Finland,
in 2015, where she is currently pursuing the Ph.D.
degree in wireless networks. In 2015, she joined
the Centre for Wireless Communications, Univer-
sity of Oulu. Her research interest is in the area
of network slicing, low latency communications,

radio resource management, edge computing, network optimization theory,
game theory and machine learning.

ERKKI HARJULA works as an Assistant Profes-
sor (tenure track) at the Centre for Wireless Com-
munications - Networks and Systems (CWC-NS)
research group, University of Oulu, Finland. He
focuses on wireless system level architectures for
future digital healthcare, where his key research
topics are wrapped around intelligent trustworthy
distributed IoT and edge computing. Dr. Harjula
has background in the interface between computer
science and wireless communications: mobile and

IoT networks, distributed networks, cloud and edge computing and green
computing. He has also long experience as a research project manager.
He received his D.Sc. degree in 2016, and his M.Sc. degree in 2007 at
University of Oulu. He is a Member of IEEE.

16 VOLUME 4, 2016

