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Abstract

Video analysis is gaining importance in the recent past

due to its usefulness in a wide variety of applications. The

efficiency of a video analytics engine primarily depends

on its ability to extract the spatio-temporal features, which

has enough discriminative. Inspired by the way the human

visual system operates, we propose a hierarchical archi-

tecture to capture the spatio-temporal information from a

given input video at different time scales. The proposed

architecture has a 3D Inception module followed by two

layers of modified Convolutional Long Short Term Mem-

ory (ConvLSTM) as the fundamental unit. At each level,

we consolidate the LSTM cell and hidden states to the next

level by using an visual attention-based pooling approach.

The proposed network is used for video action detection

and localization application that is the foundational ele-

ment for video analysis. UCF101 and AVA datasets are

used to show that the recognition accuracy achieved by the

proposed algorithm advances the state-of-the-art in spatio-

temporal action detection and localization application.

1. Introduction

A video is a sequence of image frames that forms a mov-

ing visual media. Visual perception is a requirement for

the interpretation of videos for multimedia applications and

autonomous robots. It involves a continuous process and

needs object detection, localization of objects and identifi-

cation of actions. Videos provide valuable contextual in-

formation about the scene that helps in holistic perception.

When humans see a video, the context is first created using

the visual image and its short-term temporal variations. In

order to interpret long term visual information, spatial infor-

mation is first stored in memory. The variations in temporal

information is encoded over and above the stored spatial

memory [31]. Video analysis has benefited from the deep

learning models developed for image analysis (spatial) in

addressing video analytics challenges such as viewpoint and

pose variations, cluttered background, camera ego-motion,

insufficient annotated data, and many more [17]. The bot-

tleneck is the representation of spatio-temporal activities. In

order to advance the state-of-the-art, it is very important to

build a system that best represents the spatio-temporal dy-

namics of the given input video.

Spatio-temporal tasks like video classification and action

recognition require only a few frames to achieve good re-

sults. Others like video object detection require a deeper

look into the frame-level spatial features. More challeng-

ing problems like video search and video action localiza-

tion require both spatial and temporal features. Memory-

based units such as recurrent neural networks have been

widely used in time series analysis of sequential signals and

are now being explored for video applications. In [13], the

need for multiple frames for action recognition is analyzed

and they conclude that spatial image features are predomi-

nantly used and the temporal information is not used to the

fullest extent. Spatio-temporal action detection and local-

ization (STADL) deals with the detection of action objects,

localization of action objects and identification of actions

in videos. STADL forms the basic functional block for a

holistic video understanding and human-machine interac-

tion. Traditional action detection will identify the presence

of the dynamic motion, whereas STADL includes localiza-

tion along with identifying the presence of temporal dynam-

ics in the video.

In this paper, inspired by the way the human visual sys-

tem works [31], we propose a hierarchical deep neural ar-

chitecture to extract the spatio-temporal features from the

given input video. The hierarchical nature of our architec-

ture allows us to operate at different time scales. We build

a new architecture based on Inception 3D (I3D) [3] and

long short term memory (LSTM) [25] for spatio-temporal

information capture and ResNet [11] for spatial informa-

tion capture. We propose an attention-based pooling mod-

ule to capture the important information at every level and

forward it to the higher levels to achieve contextualization.

Corresponding changes required for the LSTM unit is also

developed. In our experimental section, we show that the

performance of our architecture advances the state-of-the-

art for STADL on both AVA [10] and UCF101 [27] datasets.

The following are the core contributions using the proposed

architecture:

• A hierarchical architecture with I3D features for
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micro-scale (low time scale) and a multi-layer con-

vLSTM for macro-scale (higher time scale) spatio-

temporal representation is developed.

• An attention-based pooling strategy is proposed to cap-

ture the important information from a lower layer and

pass on to upper layers.

• Corresponding to the new architecture and attention-

based pooling strategy, the fundamental ConvLSTM

unit is modified.

• The proposed architecture is implemented for the

harder spatio-temporal action detection and localiza-

tion (STADL) task.

2. Related work

Action detection and localization has been one of the key

challenges in the area of video analytics. Even though there

are many works in literature, we mention some of the most

recent ones that have made significant progress towards the

state-of-the-art [1]. Piergiovanni et al. [22] has introduced

the concept of temporal attention filters where each filter

focus on a sub segment of a video to extract features. The

outputs of all temporal attention filters are concatenated to-

gether and used as a feature vector for classification. Girid-

har et al. [8] proposes the usage of weighted average pool-

ing operation as a replacement for the traditional pooling

operation used in convolutional neural networks. These

weights are learnt to focus on the specific parts of given

input video which might have important features needed

for improving the accuracy of action recognition task. Pier-

giovanni et al. [23] proposes the concept of learning super

events from videos to aid for the task of activity detection.

These super events are a set of multiple events occurring to-

gether with a specific temporal organization. They use their

earlier proposed approach on temporal attention in order to

learn super events. Sun et al. [30] model the spatio-temporal

features by using the relation features extracted from the in-

put video. This relation features are further used for action

classification. A heat map is also generated as the output

of the network that localizes the actor and action. Yang et

al. [37] proposed a progressive learning framework where

the initial coarser proposals are further refined in the sec-

ond stage by increasing the temporal context before it is fed

to a classifier. This progressive way of increasing the tem-

poral context will help in overcoming spatial displacement

problem. Stroud et al. [29] has initially shown that tradi-

tional conv3D networks do not completely capture the tem-

poral information. They proposed a D3D network where a

separate entity, which is dedicated to learn temporal infor-

mation will be used to fine-tune the spatio-temporal infor-

mation learned by a preliminary network. Giridhar et al. [7]

proposes transformer networks for video action recognition,

which can be used to extract the spatio-temporal context

of the person. This can be used for human activity clas-

sification. Feichtenhofer et al. [6] proposed two paths for

information flow in their architecture. The faster pathway

captures the fine temporal information while the slow path-

way captures the spatial information. Both paths are ag-

gregated and then the final information will be used for ac-

tivity classification. As most of the above work deals with

interpreting videos of length four seconds or lesser, Wu et

al. [35] proposed architecture for aggregating features from

a long duration video. This improved state-of-the-art video

classification accuracy. These methods used frame-level ac-

tion recognition accuracy and the mean average precision

(mAP) that expresses the spatio-temporal more effectively

was around 65%. In order to increase the mAP scores,

the recent trend has been to move towards multi-level ar-

chitecture. Normally, a multi-level architecture is built by

modification of the core LSTM units or by arranging the

LSTM units in new ways. We will describe them briefly and

highlight how our approach is different and advantageous

over the state-of-the-art multi-level LSTM architectures for

video applications.

Ibrahim et al. [14] propose a two-layer LSTM network

for group activity recognition. Given the region proposals

of each person in the video, the LSTMs in the first layer

extracts the person-level information while the LSTM in

the second layer aggregates the person-level information

through a max-pooling operation to infer the group activ-

ity in the scene. Such a kind of architecture cannot be

generalized to a general STADL system where the num-

ber of persons in the scene is not known in advance. Li et

al. [19] propose a two-layer architecture that extracts the

information from given input video at multiple granularity

such as frame, consecutive frames, clips, and a complete

video. They use 2D CNNs for extracting features from a

frame and consecutive frames, while 3D CNNs are used to

extract the features from the clip and the complete video.

At the second level, LSTMs are used to extract the tem-

poral information from multiple granularity levels and fol-

lowed by a softmax block to get the predictions from each

of the components. Even though useful information is ob-

tained from different granularity levels, there is redundant

information that is being captured resulting in lower mAP

scores. Zhao et al. [39] propose a multi-scale RNN architec-

ture for video summarization application. The given input

video is divided into multiple sub-clips and each sub-clip is

given as an input to different LSTMs in the first layer. This

layer essentially captures the features corresponding to each

of the sub-clips. In the second layer, Bi-directional LSTMs

are used to capture the dependencies across multiple sub-

clips. The output of each LSTM in the second layer is used

as the prediction score. By using LSTMs the temporal de-

pendency alone is captured while the spatial information is

equally important while deciding the importance of a sub-

clip to be a part of summarization. Li et al. [18] propose

2



a two-stage network called recurrent tubelet proposal and

recognition (RTPR). The first stage is focused on generat-

ing proposals in a recurrent manner. These action proposals

are further combined together to form video tubelet propos-

als. In the second stage, the network has a multichannel

architecture where each channel operates on different se-

mantic level information. A separate LSTM is used to cap-

ture the temporal dynamics of each channel and final recog-

nition scores are combined by using a fusion-based tech-

nique. Here, the nature of semantics at each channel is pre-

defined. Tang et al. [32] proposes a multi-scale approach

for video saliency detection. Their architecture has three

submodules. The first one is spatial sub-network which is

used to extract spatial information of the given input video.

The temporal sub-network takes the RGB frame along with

motion prior as input. The spatio-temporal information ex-

tracted by the first two subnetworks is given as input to the

third, which comprises of multiple convLSTM units. The

spatio-temporal information captured by the other two sub-

networks will get fine-tuned. A regular concatenation strat-

egy as was done in the ConvLSTM unit of [32] might carry

unimportant information to the output. Qiu et al. [24] pro-

poses an architecture where the local and global features are

extracted simultaneously and interact with each other to ex-

tract the robust spatio-temporal representation of the given

input video. This interaction between local and global fea-

tures happens through a diffusion mechanism. This work

proposes a hierarchical technique for capturing the long-

range dependencies and is close to the way human brain

operates. All the above methods are compared in our work

using Video mAP and Frame mAP to show that the pro-

posed architecture is better at capturing the spatio-temporal

information. Further, the strategies adopted are discrimina-

tive for a specific task and may not enable transfer learning

and domain adaptation.

3. Long short term memory (LSTM)

In this section, we briefly introduce various types of

LSTM followed by the justification of our choice of LSTM

in this work. LSTM units are a special type of recurrent

neural networks, which are capable of learning long term

temporal dependencies in sequential data; the modification

over vanilla RNN gives them the ability to remember pat-

terns over a longer time duration. Unlike traditional RNNs,

LSTMs do not change all information in the memory at

once; but selectively modify it with the help of three gates:

input, output and forget. Even though there were many

LSTM variants that were introduced for sequential data,

we introduce LSTM variants that are specifically used for

spatio-temporal data capture.

ConvLSTM: Standard LTSMs [9] have shown great per-

formance in many text and speech-related tasks. In order

to handle spatio-temporal data, the convLSTM was intro-

duced [36]. Here, fully connected gate interactions of hid-

den states and inputs were replaced with convolution layers.

ST-LSTM: The disadvantage of ConvLSTMs is that in the

case of a network of stacked LSTM layers, the memory

cells of the different layers are mutually independent. To

facilitate spatio-temporal memory sharing between the lay-

ers, ST-LSTM [34] introduces additional memory cells.

Unlike ST-LSTM [34], the proposed approach implements

attention-based propagation of spatio-temporal information

from the bottom layers to the top layers. This ensures that

the redundant information is filtered and only the important

features are considered for building the representation.

Grid LSTM: The concept of memory cells along the depth

dimension is adopted in Grid LSTM [15]. In this, the depth

is added by an additional hidden vector in the temporal di-

mension. This is similar to the introduction of attention in

temporal space. In the case of a spatio-temporal network,

there is a need to build attention mechanism by using the

spatial data as a constraint, which is what is proposed.

Eidetic LSTM: Although ST-LSTM performs well for video

prediction, it still has trouble capturing long term spatio-

temporal dependencies. To address this, Eidetic LSTM

was [33] introduced where 3D convolutions are incorpo-

rated inside the LSTM units. At each timestep, cell states

from multiple previous timesteps are combined using the at-

tention module. Due to the cell state peephole connections

in ST-LSTM, the forget gates tend to respond strongly to

short-term features and interrupting long-range information

flows. Therefore in Eidetic LSTM, cell state peephole con-

nections are only used for the output gate. Eidetic LSTM

does not attempt to combine different temporal scales for

video analysis. We incorporate the idea of peephole con-

nection in ConvLSTM architecture and extend the same to

allow multi-layer implementation.

There are interesting features in each LSTM implementa-

tions. An architecture that integrates these features and ad-

heres to the goal of spatio-temporal representation is the gap

in the state-of-the-art. Based on the above information, we

choose ConvLSTM and ST-LSTM as the candidates for the

fundamental unit in our architecture. The idea of peephole

connection in Eidetic LSTM and the temporal attention in

Grid LSTM are incorporated by introducing a new LSTM

block and an attention module respectively in the new ar-

chitecture.

Moving-MNIST dataset [28] was used to choose the

most suitable fundamental units. The duration of each video

in the Moving-MNIST dataset is 20 frames long and con-

sists of two digits (randomly chosen) move in 64 × 64

patch. We perform two experiments using Moving-MNIST

dataset to choose the basic unit and the number of layers.

In order to select the basic LSTM unit, we perform a video

frame reconstruction experiment using a ConvLSTM and

ST-LSTM. We construct an auto-encoder type network ar-
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Figure 1. Architecture of a two layer LSTM that is used in our training. gc and gh are attention networks that use I3D features as context.

Once trained, the spatio-temporal representation that are tapped every second can be used in multiple video applications such as action

recognition and video mining.

chitecture for this experiment where the input is a set of 10

consecutive frames, and this is given to an I3D pre-trained

model. The output at mixed 4b layer is tapped and given to

the LSTM layer. The output of the LSTM layer is given to

a series of 3d convolution layers and 3D transpose convolu-

tion layers to reconstruct the input frames. For the LSTM

layer, we implement ConvLSTM units and ST-LSTM units

and compare the reconstruction outputs and LSTM states

of the two networks. Qualitatively, it was observed that

the convLSTM features have more interpretability than ST-

LSTM features. The reconstruction ability of ConvLSTM

was also observed to be much better than ST-LSTM. Based

on this, we select ConvLSTM as our basic LSTM unit. For

choosing the number of layers, the input to the network

is a set of ten consecutive frames and this is passed on to

one-, two- or three-layer networks with ConvLSTM and ST-

LSTM units. The outputs of the last layer are used to pre-

dict the next frame. By visualizing the hidden state outputs

and cell state outputs at each LSTM layer in the three net-

work variations, we found that ConvLSTM captures spatio-

temporal variations better. Based on these observations and

Moving-MNIST experiments, we select ConvLSTM as a

base LSTM unit with two layers for all our experiments.

The number of layers can be seamlessly expanded using the

proposed architecture depending on the application but we

stick to two layers for STADL application.

4. Hierarchical spatio-temporal LSTM

In neurology, there is growing evidence to suggest vi-

sual encoding, storage and retrieval are processed at mi-

croscopic, mesoscopic and macroscopic scales in the neural

circuits [31]. Further, there is evidence to suggest that spa-

tial visual cues are stored and reused during decision mak-

ing at mesoscopic and macroscopic scales [2]. Although

this is an ongoing field of research and many papers are be-

ing published, these results are quite intuitive. The spatial

data is first captured and minimal temporal variations fol-

lowed by layers of temporal information is used to create a

global context within the brain. Bengio et al. [4] propose a

similar network for language modeling where they build a

character model at the first layer followed by word model

at the second layer and phrase model at the third layer. Al-

though the intuition is similar to ours, the hierarchical net-

work focuses on capturing temporal relationship and con-

text only as language modeling involves sequential process-

ing. For analysis of videos, context is provided by spatial

information and decision is made by combining the context

with multi-scale temporal information at meso- and macro-

scales. This work attempts to build the required framework

for capturing spatial, temporal and spatio-temporal infor-

mation capture. We call it Hierarchical Spatio-Temporal

LSTM or in short HST-LSTM.

A two-layer five-second span HST-LSTM is shown in

Fig. 1. Built on ConvLSTM as a basic unit, the architecture

uses I3D features for micro-level spatio-temporal represen-

tation. In the architecture shown, we capture 1/3rd of a

second (10 frames in a 30fps video) temporal information

in addition to the spatial information from the I3D network.

The first LSTM layer consists of five separate LSTM cells,

one for each second; the previous second LSTM cell state

is fed as the initial cell state to the next LSTM cell. The

I3D features at every 1/3rd second is given as input at each

timestep. The LSTM outputs at each second are combined

and given to the second LSTM layer, consisting of a sin-

gle LSTM cell. For the second level of LSTM, we do not

use LSTM outputs straight away as done by many authors.

Instead, an attention mechanism is introduced. The context

of this attention network is provided by micro-level features

captured using I3D. Intuitively, for making a decision at the
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one-second resolution, spatial details are required at finer

scales. For decision making in the second layer of LSTM,

the attention network decides the micro-scale information

that is useful for mesoscale decision making. The same

process continues at higher levels by pooling the tempo-

ral information using the proposed attention networks. The

green patch in Fig. 1 indicates the keyframe and pre-trained

ResNet-50 is used for creating spatial region proposals that

are required in multiple video applications.

With this in background, it is clear that the second and

subsequent layers require a modified basic unit that can en-

capsulate information from earlier layers. Further, an at-

tention block is required that combines microscale contex-

tual information with the previous LSTM layers. Although

Fig. 1 shows a two-layer five-second span HST-LSTM net-

work for clarity, it should be noted that it is easily scal-

able for other configurations including the number of layers,

temporal resolution at each layer, etc..

4.1. HST­LSTM unit and pooling function module

Figure 2. Architecture of First layer LSTM.

HST-LSTM unit in the first layer is shown in Fig. 2 and

the following are its governing equations:
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where ∗ is the convolution operator, ◦ is the Hadamard

product, subscript m indicates the time step, superscript l
indicates the layer index, x ∈ R

d is the input vector to the

LSTM unit which is extracted from I3D features, f ∈ R
h

is the forget gate’s activation, i ∈ R
h is the input gate’s

activation, o ∈ R
h is the output gate’s activation, c ∈ R

h is

the cell state vector, and h ∈ R
h is the hidden state vector.

W ∈ R
h×d , U ∈ R

h×h, b ∈ R
h are the weight matrices

and bias vectors which are learned during training. The

dimensions of the input vector to LSTM and the hidden

state vector are d and h, respectively.

In the proposed approach, we have HST-LSTM cell

present in higher layers as well. These LSTMs at higher lay-

ers extract the useful information from lower layers through

pooling modules gclm and ghl
m whose architecture is as

shown in Fig. 3. The inputs to the pooling modules gclm
and ghl

m are cell states and hidden states, respectively. In

the pooling operation, we carry forward useful information

from lower layers to the upper layers and compute the rep-

resentation for video with a larger time duration. This oper-

ation of calculating a compact representation for larger time

duration is analogous to the max pooling operation in CNN,

which actually increases the spatial receptive field.

Figure 3. Architecture of pooling function module.

Including the pooling functions, the architecture of HST-

LSTM units in the higher layers will get modified as shown

in Fig. 4. Let k be the number of LSTMs in the layer l − 1
that are pooled. For every LSTM with index m in layer l is

connected to k LSTMs in layer l−1 and the index n ranges

from (m− 1)k + 1 to (m− 1)k + k. The governing equa-

tions of LSTM cell in the higher layers are as follows.
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where, subscript n indicates the time step, pc ∈ R
h is the

pooled cell state vector, and ph ∈ R
h is the pooled hidden

state vector. yc, yh, sc, sh are the latent variables com-

puted within the pooling function module. It can be seen

that input to the LSTM cell in the first layer will be the mod-

ified I3D features while the input to higher layers LSTM
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cell will be from the module which computes the hidden

state vector by pooling k LSTM cells of previous layers and

LSTM of previous time step. Different layers capture infor-

mation from different time scales. The cell state at higher

layers is the function of previous layer cell states. Hence,

the representation computed at the final layer gives the com-

pact representation of the complete video segment.

Figure 4. Architecture of Higher layer LSTMs.

Figure 5. Architecture of spatio-temporal action detection and lo-

calization (STADL) using the proposed HST-LSTM module.

5. Spatio-temporal Action Detection and Lo-

calization

The details about how the proposed architecture is

adapted for spatio-temporal action detection and localiza-

tion (STADL) application are presented here. The input to

STADL is a video that is fairly long, approximately 15 min-

utes, and the action spans a few seconds. These actions

are composed of micro-action that span a second or less.

Hence, the problem reduces to spatial recognition of ob-

jects followed by micro-action recognition, which is then

followed by action detection and identification. The pro-

posed HST-LSTM is built to capture the features at dif-

ferent temporal scales. As shown in Fig. 5, the features

from different parts of the network are pooled: objects

are detected in the keyframes using ResNet-50 and region

proposal network (Faster R-CNN); spatio-temporal micro-

action is picked from I3D stage of the network; and fi-

nally, temporal information is represented by HST-LSTM

features. RoI pooling is performed to ensure that the same

sized feature map for each proposal is generated combining

ResNet, I3D, and HST-LSTM for every second. The output

of RoI pooling is subjected to bounding box refinement and

finally, action classification is performed.

6. Results and discussion

We compute intersection-over-union (IoU) at the frame

level and at the video level. At a frame level, we fix the IoU

threshold as 0.5 and compute the average precision in line

with the literature. We compute the average precision of

each class and take the mean over all the classes to get the

mean average precision (mAP). For video-level, we com-

pute 3D IoUs between ground truth tubes and linked detec-

tion tubes at the IoU thresholds of 0.05, 0.1, 0.2 and 0.3.

The mAP is computed by averaging over all classes. In ad-

dition to the mAP score, we compute the top-1 accuracy.

The top-x accuracy metric indicates the percentage of cor-

rect action class detections among the top x classes of the

network detection. Each LSTM layer has 64 filters at ev-

ery node. I3D output is passed through a convolution layer

of 64 filters and this output forms the context to our atten-

tion module. The loss function for UCF STADL is softmax

cross-entropy and AVA STADL is sigmoid cross-entropy.

The key frames in the AVA dataset are provided. For UCF

dataset, we select the middle frame at every second as the

keyframe. A stochastic gradient descent optimizer is used

and the network was trained with an initial learning rate of

0.0001 on a Quadro K4200 GPU.

6.1. Experiments on AVA dataset

The AVA dataset [10] has been used for action recog-

nition applications and video mining. In the AVA dataset,

80 atomic actions are densely annotated in 430 video clips,

where each clip is of 15 minutes duration. There are multi-

ple actors and multiple actions in any given frame. Follow-

ing [10], the dataset is split into 235 training, 64 validation,

and 131 test videos. Based on earlier works [30, 7, 10, 6],

we take videos only from 60 classes having at least 25 in-

stances in the validation and test split. The input to the

STADL network is a set of 120 frames spanning 5 seconds.

The frame size is retained as 320 × 400. During training,

we choose a training video, and randomly crop a 5-second

segment, ensuring it has actions only belonging to one of

the 60 classes being evaluated. Since each action object can

have multiple labels, the final action classification is done

separately for each class using sigmoid layers and sigmoid

cross-entropy loss; for regression, we minimize the L1 loss.

We train the network to perform action detection and local-

ization at 1 fps. The keyframe at each second is mapped

to the object bounding box and action classification. The
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network was trained for 8000 iterations that took about 18

hours. The testing takes about 15 seconds.

Table 1 shows frame-mAP with IoU of 0.5 as a metric

for comparing the performance for AVA dataset. Among

these methods, except for [18], the rest of them use single-

layer LSTM. The proposed architecture outperforms all the

other methods with frame-mAP of 31.4%. The difference

between AVA v2.1 and v2.2 is only in the annotations where

2.2 is a bit more refined.

Table 1. Performance comparison with state-of-the-art for STADL

application. Frame mAP is calculated with IoU threshold as 0.5.
Approach frame mAP frame mAP

AVAv2.1 AVAv2.2

Sun et al. [30] 17.4 -

Yang et al. [37] 18.6 -

Li et al. [18] 22.3 -

Stroud et al. [29] 23 -

Giridhar et al. [7] 24.93 -

Wu et al. [35] 27.2 -

Wei Li et al. [20] - 29.4

Feichtenhofer et al. [6] 28.2 30.7

HST-LSTM - 31.4

Figure 6. Results for AVA dataset for three classes (rows): martial

arts, hand shaking and door opening. Images are resized to make

it uniform for the paper.

Fig. 6 shows the results for three classes: martial arts,

handshaking and door opening. The handshaking class (row

2) failed to detect, localize and classify correctly. AVA be-

ing a very difficult dataset has poor results compared to

UCF although better than what is presented in the literature.

6.2. Experiments on UCF dataset

The UCF101 is an action recognition dataset, consisting

of 13320 training videos from 101 action classes. A subset

of videos from 24 classes has been annotated with person

bounding boxes by Singh et al. [26]. This 24-class dataset

consists of 3207 training videos and is called UCF101D.

Following the literature [10], we use the standard train-val

split of three and chose the first split. The input to the net-

work is a video clip with a fixed duration of 5 seconds. We

resample the video frames at 24 frames per second, to get

an input size of 120 frames for 5 seconds. The frame di-

mension is kept as 240× 320. After resampling, we fix the

twelfth frame at each second as the keyframe for training

the Faster R-CNN and train the network for STADL for ev-

ery second of the input. The annotation for this dataset is

done at the video level, so each video is assigned an action

class; the video action label is also used as the frame-level

label in our network training, for each second of the input

five-second video segments. The network is trained for 18K

iterations and the learning rate is halved after 10k iterations.

The training took approximately two days to complete. The

testing time for a five-second video clip is about 12 seconds.

It can be seen from Table 2 that the proposed approach ad-

vances the state-of-the-art across different measures. The

result implies that our architecture is able to extract bet-

ter discriminative features than other methods in literature.

The qualitative results are shown in Fig. 7. Rows indicate

Table 2. Performance comparison of proposed approach on

UCF101D dataset
Approach video mAP frame mAP Top-1

0.05 0.1 0.2 0.3 0.5 Accuracy

Yang [37] 84.6 83.1 76.6 - 75.0 -

Li [18] 82.1 81.3 77.9 71.4 - -

Stroud [29] - - - - - 97.6

Crasto [5] - - - - - 98.1

Qiu [24] 88.3 87.1 82.2 71.4 - 98.2

Peng [21] 78.8 77.3 72.9 65.7 - -

Singh [26] - - 73.5 - - -

Kalogeiton [16] - - 77.2 - - -

Hou [12] 78.2 77.9 73.1 69.4 - -

Yang [38] 79.0 77.3 73.5 60.8 - -

HST-LSTM 89.1 88.15 87.15 84.62 82.4 99

classes and columns indicate the center frames of first, third

and fifth frames. We show the outputs for five actions - long

jump, cliff-diving (person-only action), pole-vault, horse-

riding and basketball (person-object interactions). In the

cliff-diving video, a person bounding box is detected in the

final frame even when the person is not visible after diving.

In the pole-vault example, a false detection is made in the

initial frame, which vanishes in the next frames. Overall,

the frame-level detection improve considerably due to the

capture of temporal variations across a longer time dura-

tion. The HST-LSTM module is able to capture and propa-

gate useful information even in the presence of large camera

motion and varying environment.

6.3. Ablation study

The impact of the features and the number of layers was

assessed using an ablation experiments on UCF101D data.

Feature contribution: The features from ResNet50, LSTM

and I3D blocks are concatenated and given as an input to the

STADL classifier. Table 3 shows the influence of various

features on the performance. Adding every feature boosted
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Figure 7. Results for UCF101D dataset for five classes (rows): cliff

diving, basket ball, pole vault, horse riding, long jump. Columns

show centre frames for the first second, third second and fifth sec-

ond. Correct detections are in Yellow; False detections are in Red.

the performance of the proposed architecture reflecting their

importance.

Table 3. Ablation study of contribution of features in detection and

localization using UCF101D dataset.
Features video mAP frame mAP Top 1

0.05 0.1 0.2 0.3 0.5 Accuracy

ResNet 47.1 45.22 42.5 39.1 63 93.40

ResNet + I3D 69.1 68.33 66.12 63.5 75.2 94

HST-LSTM 89.1 88.15 87.15 84.62 82.4 99

LSTM layer contribution: We evaluate the influence of

LSTM layer and whether two layers of LSTM are needed.

The first row of Table 4 indicates the performance metrics

when the features from the first layer LSTM are tapped

while the second row indicates the performance when the

features are tapped from second layer of LSTM. It can be

seen that adding LSTM layers boosted the performance sig-

nificantly. Further, we visualize the intermediate layers

as shown in Figure 8. Attention pooling enables focusing

the object of interest and reduces confusion between simi-

lar classes such as ‘speaking to someone’ and ‘listening to

someone/something’. Both action classes usually occur si-

multaneously, and are frequently mis-classified due to sub-

tle spatio-temporal variations. We compare attention pool-

ing with average pooling, and make two observations: a)

average pooling has very similar responses to classes that

are almost identical in the spatial domain; b) It shows higher

responses at spatial keypoints such as the bars on the door

in the fourth output. In contrast, attention pooling is able

to capture temporal variations accurately and gets activated

in the region where the action happens resulting in better

performance.

Table 4. Ablation study of single layer LSTM vs hierarchical

LSTM using UCF101D dataset.
Features video mAP frame mAP Top 1

0.05 0.1 0.2 0.3 0.5 Accuracy

ResNet + I3D 85.25 84.8 83 79.32 78.1 98

+ LSTM layer 1

HST-LSTM 89.1 88.15 87.15 84.62 82.4 99

Figure 8. Intermediate layer visualization on AVA dataset. Row

1: Input keyframe for each second; Row 2: LSTM layer 1 output

of a single filter for every 1/3rd second; Row 3: Output of Atten-

tion pooling of LSTM layer 1 output; Row 4: Output of average

pooling of LSTM layer 1 outputs; Row 5: LSTM layer 2 output

7. Conclusion and future work

We propose a hierarchical LSTM architecture for the
task of spatio-temporal action detection and localization.
Given an input video, we extract the spatio-temporal fea-
tures using the proposed architecture that is built on I3D and
a modified hierarchical LSTM where each layer operates at
different time scales. One of the key contributions of the
proposed architecture is the use of pooling based attention
module that allows only important features to be forwarded
from lower layers to higher layers. We use frame-mAP and
video-mAP as the two performance measures to compare
with state-of-the-art. The performance of the proposed
approach advances state-of-the-art frame mAP by 0.7% for
the AVA dataset and by 7.4% for the UCF101D dataset.
Our approach is more close to the way human visual system
operates and hence in future we would like to adapt the
usage of our architecture for other applications like video
summarization and video search and retrieval.
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