
This paper is included in the Proceedings of the
19th USENIX Conference on File and Storage Technologies.

February 23–25, 2021
978-1-939133-20-5

Open access to the Proceedings
of the 19th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

Remap-SSD: Safely and Efficiently Exploiting SSD
Address Remapping to Eliminate Duplicate Writes

You Zhou, Qiulin Wu, and Fei Wu, Huazhong University of Science and Technology;
Hong Jiang, University of Texas at Arlington; Jian Zhou and Changsheng Xie,

Huazhong University of Science and Technology
https://www.usenix.org/conference/fast21/presentation/wu-qiulin

Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to
Eliminate Duplicate Writes

You Zhou†, Qiulin Wu†, Fei Wu†∗, Hong Jiang‡, Jian Zhou†, and Changsheng Xie†

†Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology,
Huazhong University of Science and Technology

‡Department of Computer Science and Engineering, University of Texas at Arlington

Abstract
Duplicate writes are prevalent in diverse storage systems,
originating from data duplication, journaling, and data reloca-
tions, etc. As flash-based SSDs have been widely deployed,
these writes can significantly degrade their performance and
lifetime. To eliminate duplicate writes, prior studies have
proposed innovative approaches that exploit the address re-
mapping utility inside SSDs. However, remap operations lead
to a mapping inconsistency problem, which may cause data
loss and has not been properly addressed in existing studies.

In this paper, we propose a novel SSD design, called Remap-
SSD, with two notable features. First, it provides a remap
primitive, which allows the host software and SSD firmware
to perform logical writes of duplicate data at almost zero
cost. Second, a hybrid storage architecture is employed to
maintain the mapping consistency. Small byte-addressable
non-volatile RAM is used to persist remapping metadata in
a log-structured manner and is managed synergistically with
flash memory. We verify Remap-SSD on a software SSD
emulator with three case studies: intra-SSD deduplication,
SQLite journaling, and F2FS cleaning. Experimental results
show that Remap-SSD can realize the full potential of address
remapping to improve SSD performance and lifetime.

1 Introduction
Duplicate writes are pervasive in real-world storage systems.
Not only data duplication is common [16, 51, 62, 64], but also
a broad spectrum of system software and applications intro-
duce duplicate writes. For example, many databases and file
systems employ double-write journaling to guarantee write
atomicity [24, 46, 55]; data relocations are required for space
cleaning in log-structured/copy-on-write systems [35,46] and
for file defragmentation [23]; file copy and snapshotting opera-
tions are common behaviors [60, 66].

On the other hand, NAND flash-based solid state drives
(SSDs) have been widely employed in various storage systems.
Due to the idiosyncrasies of flash memory, the SSD-internal
∗Corresponding author. Email: wufei@hust.edu.cn.

firmware, called flash translation layer (FTL), performs out-
of-place updates. Logical pages written from the host are
always mapped to new free flash pages, while obsolete flash
pages are invalidated. Thus, a logical-to-physical (L2P) mapp-
ing table is maintained to translate logical page numbers
(LPNs) to physical page numbers (PPNs) [21, 42]. For fast
lookups, this table is typically cached in SSD-internal DRAM.
The FTL also conducts garbage collection (GC) periodically
to reclaim invalid pages in the granularity of flash blocks,
where valid pages are relocated and then the blocks are erased.
Notice that writes are harmful to both the performance and
lifetime of SSDs [14, 43]. This situation deteriorates, as flash
technologies are scaling rapidly to increase the bit density but
at the cost of degraded write speed and endurance [33].

To eliminate duplicate writes on flash memory, innovative
approaches have been proposed to exploit the SSD address
remapping functionality [16, 17, 22–24, 28, 34, 45, 46, 60]. By
directly modifying the L2P mapping table, copies and moves
of data pages as well as duplicate writes of repeating data
pages can be completed quickly without conducting physical
writes. Also, data transfers between the host and SSD can be
avoided. Although enabling such remapping requires minor
modifications to the host software and SSD interface, the
benefits are quite worthwhile. The performance, lifetime, and
space utilization of SSDs can be improved significantly.

However, remap operations lead to a critical mapping incon-
sistency problem, which may cause data corruption. Whenever
a logical data page is written to a flash page, the FTL needs
to store some house-keeping metadata including the relevant
LPN either in the out-of-band (OOB) area of the same flash
page [21, 41] or in another reserved flash page [8]. These per-
sistent physical-to-logical (P2L) mappings are indispensable
for completing data relocations during each GC operation
and for recovering L2P mappings after sudden power failures
(see Section 2). Remap operations change the L2P mapp-
ings, but the relevant P2L mappings on flash memory cannot
be updated accordingly. Due to such mapping inconsistency,
wrong L2P mappings would be modified after data reloca-
tions during GC or be restored during power-off recovery,

USENIX Association 19th USENIX Conference on File and Storage Technologies 187

compromising data consistency.
This mapping inconsistency problem, although crucial, has

not been properly addressed in prior studies. The common
solution in [16, 22, 23, 34, 45, 46] is to persist new P2L mapp-
ings generated by remap operations in a dedicated log on
flash memory. Its main drawback is that the log size would
increase continuously over time, incurring prohibitively high
lookup overheads at last. Although limiting the log size could
confine the lookup overheads, it would also restrict the usage
of SSD address remapping. In addition, some other solutions
have been proposed but only fit in very limited application
scenarios of address remapping [24, 28]. These solutions and
their drawbacks are discussed thoroughly in Section 3.3.

In this paper, we propose a novel SSD design, called Remap-
SSD, to safely and efficiently exploit SSD address remapping
for reducing duplicate writes. Its two notable features are: (1)
providing a remap primitive, which allows the host software
and SSD firmware to conduct logical writes of duplicate data
at almost zero cost; and (2) employing a hybrid storage ar-
chitecture, where small byte-addressable non-volatile RAM
(NVRAM) is employed to store remapping metadata in a log-
structured manner and is managed synergistically with flash
storage. Remap-SSD not only ensures that persistent P2L
mappings are always consistent with the latest L2P mappings,
but also enables fast lookups of P2L mappings during GC.
We verify Remap-SSD on FEMU (a software SSD emula-
tor [38]) with three case studies: intra-SSD deduplication,
SQLite journaling, and F2FS cleaning. Experimental results
show that Remap-SSD can realize the full potential of address
remapping for improving SSD performance and lifetime.

2 Background
Mappings in flash-based SSDs: Modern SSDs generally em-
ploy a page-level FTL, powered by embedded processors and
DRAM, for high performance [20, 21]. Since a host logical
page can be dynamically mapped to any flash page, an L2P
mapping table is maintained for address translation. Assum-
ing the page size is 4KB and each mapping entry takes 4B, the
table size is about 0.1% of the SSD capacity. The table is per-
sisted on flash memory and usually cached in DRAM for fast
lookups, which locate on the critical path of I/O processing.

When a logical page is written to a flash page, the FTL
transparently persists the reverse P2L mapping (i.e., the LPN)
and write timestamp as house-keeping metadata on flash me-
mory for two reasons. First, data pages are periodically mi-
grated on flash memory for GC and wear leveling purposes.
P2L mappings need to be retrieved to locate and modify the re-
levant L2P mappings after the migrations. Second, the mapp-
ing consistency needs to be guaranteed. The latest L2P mapp-
ings in DRAM may get lost after sudden power failures [42].
By scanning the persistent metadata, the FTL can obtain all
the PPN-LPN entries and write order of PPNs, from which
the latest L2P mappings can be restored.

Flash management: SSDs are architected with a number
of channels connecting many flash dies, each of which is a
parallel unit for accesses [30]. It has been a common prac-
tice, especially for high-performance SSDs, to organize flash
storage in superblocks [8, 14, 20, 54, 58]. A superblock con-
sists of flash blocks with the same offset across multiple dies.
Both space allocations for data writes and GC operations are
performed in the unit of a superblock. This has several ad-
vantages. First, the intra-SSD parallelism can be maximized.
Second, flash management is simplified due to a large gra-
nularity. Third, it facilitates die-level RAID, as parity can be
easily added in each superblock [14, 33, 67]. Finally, the FTL
can accelerate the recovery speed of L2P mappings by storing
house-keeping metadata of each superblock collectively in its
tail flash pages [8]. Then, only a small amount of tail flash
pages need to be scanned, rather than all the flash pages.

Non-volatile RAM: NVRAM technologies (e.g., PCRAM
and MRAM) have received much attention and their deve-
lopments are advancing [47]. Compared to flash technolo-
gies, they offer attractive benefits, such as lower latency and
byte-addressability, but have lower bit density and higher cost.
Therefore, NVRAM complements flash memory well and has
opened up new opportunities to enhance flash-based SSDs for
various purposes [26, 28, 40, 44]. Notably, SSDs with hybrid
storage architectures have entered the market since 2019 (e.g.,
Intel Optane memory H10 with Optane memory and QLC
flash [7]) and will gain increased popularity in the near future.

3 Motivation
SSDs have been deployed in diverse storage systems [18,
19], where duplicate writes are prevalent. We illustrate this
with several examples in Section 3.1. Although duplicate
writes degrade the performance, lifetime, and space utilization
of SSDs, they can be eliminated by exploiting SSD address
remapping. We detail where and how prior studies leverage
SSD address remapping in Section 3.2 and their drawbacks
in ensuring mapping consistency in Section 3.3.

3.1 Duplicate Writes
Data Duplication. One major source of duplicate writes is
data duplication, which is commonplace [10, 39, 51, 62, 64].
For instance, in the disk images of some departmental work-
ing environments [16] and file system images collected from
smartphones [64], the data duplication rate is 8%~86% and an
average of 33%, respectively, while duplicate writes account
for 6%~28% and 22%~48% of total writes; in the three pro-
duction systems at FIU, the ratios of duplicate writes range
from 33% to 92% [22].

Journaling. To guarantee write atomicity, journaling
approaches have been widely used in databases (e.g., MySQL
and SQLite) and file systems (e.g., ext4 and XFS) [24, 46].
Either before-images (e.g., rollback journaling) or after-
images (e.g., write-ahead logging) of updated pages are

188 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: Examples of SSD remap operations. Duplicate
writes to LPNs L2 and L4 can be completed through address
remapping without writing flash pages. However, L2P and
P2L mappings become inconsistent, causing data corruption.

written in a dedicated log, after which updates are applied to
home/original locations in place. Such journaling introduces
double writes of data, for example, causing a worst-case slow-
down of about 73% in ext4 compared to no journaling [55].

Data Relocation. Copy-on-write and log-structuring me-
chanisms are popular means to provide write atomicity and
write sequentiality (e.g., in Couchbase and F2FS) [35, 46].
They conduct out-of-place updates, so periodical cleaning or
compaction operations are required to reclaim storage space
occupied by stale data. In addition, file fragmentation has been
a long-standing problem that degrades the performance of file
systems. Many file systems recommend periodical defragmen-
tation [23]. Both cleaning/compaction and defragmentation
cause data relocations and thus duplicate writes.

Data Copy and Snapshot. Data copy is a frequent behavior
of users and applications. Snapshotting, which provides point-
in-time states of data volumes, is an important feature and a
common routine in storage systems [56]. These operations
may introduce duplicate writes to create physical data copies.

3.2 Exploiting SSD Address Remapping
To eliminate duplicate writes, the SSD address remapping
functionality can be utilized. Assume LPN Ly is written with
a duplicate data page copied or moved from LPN Lx. The FTL
can realize the write by remapping Ly to the flash page storing
Lx, rather than by writing a new free flash page. Such remap
operations, as shown in Figure 1, can be done quickly by
updating the relevant L2P mappings in SSD-internal DRAM.

Many prior studies have proposed to exploit SSD address
remapping in a spectrum of application scenarios, as sum-
marized in Figure 2 and Table 1. Among the studies, a
body of works integrate a data deduplication engine inside
SSDs [16, 22, 34, 50, 63, 65].1 The engine identifies duplicate

1Intra-SSD deduplication presents a drop-in solution that is highly desira-
ble for two reasons. First, the detrimental effects of writes on SSDs can be
substantially alleviated without modifying the host software and consuming
host computing and memory resources. Second, data deduplication can be

data pages written from the host (through hashing finger-
prints). Instead of writing them to flash memory, they can be
remapped to existing flash pages that store the same contents.
Address remapping is also attractive for reducing journaling
overheads [17, 24, 45, 46, 60]. After data pages to be updated
are written to the log, they can be applied by remapping LPNs
of their original locations to the relevant flash pages storing
the log. Using remapping for snapshotting files [60] is straight-
forward, like copying data A in Figure 1. Data relocations for
cleaning [28], compaction [46], and defragmentation [23] can
be accomplished similarly to moving data C in Figure 1.

However, address remapping causes a critical mapping
inconsistency problem. Remap operations modify the L2P
mappings, but the relevant P2L mappings on flash memory
cannot be updated accordingly (because flash memory does
not support in-place updates). Such inconsistency between
L2P and P2L mappings would finally cause data corruption,
since L2P mappings would be altered incorrectly during GC
or be rebuilt falsely during power-off recovery. For example,
in Figure 1, after remapping LPN L2 (previously mapped to
PPN P2) to PPN P1 (already referenced by L1), the L2P and
P2L mappings of P1 become inconsistent ({L1,L2}→ P1 vs.
P1→ L1). Then, after a GC operation migrates the data page
on PPN P1 to P1′ and erases P1, L2 would still be mapped to
P1 wrongly. Consider another scenario where L2P mappings
need to be restored after a sudden power outage. An improper
L2P mapping, i.e., L2→ P2, would be recovered from the
P2L mapping, i.e., P2→ L2, persisted on flash memory.

Although several schemes have been proposed in existing
studies to cope with the mapping inconsistency, they suffer
from severe drawbacks. To facilitate in-depth analysis of the
drawbacks in Section 3.3, we classify the applications of
remapping in two dimensions. Note that remap operations
change the L2P mapping regularity from conventional 1-to-1
to M-to-1. In the first dimension, a remapping scenario is
considered as P-type, if the maximum M, namely degree of
L2P association, is predefined. Otherwise, it is U-type. For
example, data relocation and journaling are P-type (M equals
to 1 and 2, respectively), while deduplication and file copy are
U-type (M depends on content popularity and user behaviors,
respectively). In the second dimension, a remapping scenario
is D-type, if the LPNs and PPNs for future remapping are
deterministic at the time of the PPNs being written. Otherwise,
it is N-type. For instance, in write-ahead logging (D-type),
when data pages being updated are written to the log, the
LPNs of their original locations are already known.

Combining the two dimensions (P/U-type and D/N-type),
applications of SSD address remapping are divided into three
types (PD, PN, and UN), as shown in Figure 2. The UD type
is not applicable because the U type and D type contradict
with each other.

implemented efficiently by utilizing the FTL’s functionalities (e.g., address
remapping and GC) [16]. Also, a hardware hash unit can be employed [22].

USENIX Association 19th USENIX Conference on File and Storage Technologies 189

Table 1: Prior studies exploiting SSD address remapping.

Name Applications of remapping Schemes for mapping
consistency guarantee Major drawbacks

JFTL [17] Write-ahead logging (WAL) None N/AANViL [60] Snapshots, data deduplication, WAL
CAFTL [16],
CA-SSD [22] Intra-SSD data deduplication Maintain a dedicated log

on flash memory to record
P2L mappings changed by

address remapping

High lookup overheads
of P2L mappings

during GC,

poor scalability

Janusd [23] File system defragmentation
Copyless copy [45] WAL, intra-SSD data deduplication

SHARE [46]
WAL, compaction, tree wandering

in copy-on-write databases

PebbleSSD [28]
Cleaning

in log-structured file systems
Replace (fixed-size) flash OOB
with byte-addressable NVRAM

Only apply in P-type
remapping scenarios

WAL-SSD [24] WAL
Write the predetermined LPN

for future remapping to flash OOB
Only apply in PD-type
remapping scenarios

Figure 2: Applications of SSD address remapping. They
can be classified according to characteristics of remapping.

3.3 Schemes for Mapping Consistency

To address the mapping inconsistency problem caused by re-
mapping, several schemes have been proposed, as listed in
Table 1. Taking all types of remapping scenarios into consi-
deration, the common scheme adopted in [16,22,23,45,46] is
to maintain a dedicated log on flash memory for persisting the
P2L mappings changed by remapping. This scheme is referred
to as Remap-SSD-FLog in Section 5. Its major drawback is
that it requires scanning the entire log to retrieve certain P2L
mappings during every GC operation and power-off recovery.
Especially, the log size increases continuously and could grow
very large as remap operations are used. Assume the SSD
capacity is 4TB, page size is 4KB, and each log entry for a
page remap operation takes at least 12B (e.g., 4B PPN + 4B
LPN + 4B timestamp). When 5% or 20% of data pages have
been remapped (these ratios are quite reasonable, consider-
ing the popularity of duplicate writes discussed in Section
3.1), the log size is as large as 600MB or 2.4GB, respec-
tively. Hence, the lookup overheads of P2L mappings would
increase over time and finally become exceedingly high. It
would not be an effective solution to add high-speed NVRAM

for storing the log (denoted as Remap-SSD-NLog in Section
5). This is because the scanning process would still be very
time-consuming, e.g., from tens of milliseconds to seconds
when the log size is hundreds of megabytes.

To confine the lookup overheads, Janusd [23] sets a limit
on the log size and reclaims obsolete mapping entries periodi-
cally. However, remap operations have to be disabled when
the number of valid entries reaches the limit. Additionally,
high reclamation overheads are introduced, i.e., reading and
re-writing the entire log on flash memory.

PebbleSSD [28] proposes an NVRAM-enhanced scheme,
which replaces the fixed-size OOB area in flash pages with
byte-addressable NVRAM. Therefore, P2L mappings of
remapped data pages can be updated in place in the NVRAM
OOB, retaining consistent with the L2P mappings. However,
due to the limited OOB size, this scheme only fits in P-type
remapping scenarios, where the maximum degree of L2P asso-
ciation is limited and small. For UN-type remapping, where
the degree of L2P association may be high, large NVRAM
OOB area would be required. This would greatly increase
the cost. Moreover, NVRAM space utilization would be low,
since not all flash pages have high degrees of L2P association.

By utilizing the property of PD-type remapping, WAL-
SSD [24] writes the predetermined LPN for future remapping
to the OOB area when the relevant flash page is written. Thus,
the L2P and P2L mappings of the flash page are consistent
after the predefined remap operation. This scheme is only app-
licable for PD-type remapping scenarios, because the LPNs
for future remapping are totally uncertain in N-type scenarios.

In summary, existing SSD designs that exploit address re-
mapping restrict the application scenarios and/or usage fre-
quency of remapping severely, mainly due to the L2P and
P2L mapping inconsistency problem. Furthermore, simply
enhancing the SSD with extra NVRAM is inadequate to re-
move the restrictions. As a consequence, the full potential of
SSD address remapping is largely underutilized.

190 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 3: Overview of Remap-SSD. The SSD supports a remap primitive, which can be invoked by host software (ÌÍ) or the
FTL internally (e.g., by an intra-SSD deduplication engine Ë). To guarantee the L2P and P2L mapping consistency, remapping
metadata entries are persisted in NVRAM segments that are exclusively allocated to each flash superblock on demand.

4 Design
In this section, we present a novel SSD design, called Remap-
SSD. The goal is to maximize the utilization of address
remapping in diverse application scenarios and meanwhile
maintain the L2P and P2L mapping consistency efficiently.

4.1 Overview of Remap-SSD

Remap-SSD provides a remap primitive at the firmware/FTL
level, which embodies the address remapping utility, as shown
in Figure 3. The primitive is exposed to the host software as
a vendor specific command, which is supported inherently
in current interface techniques (e.g., NVMe and SATA).
Through the primitive, applications and file systems can copy
or relocate data pages without performing flash writes. Fur-
thermore, the primitive can be used internally by the FTL,
e.g., to eliminate writes of duplicate data when an intra-SSD
deduplication engine is employed.

The remap primitive is formatted as remap(tgtLPN,
srcLPN, length, remapFlag) (tgt: target, src: source). It
remaps a range of LPNs between tgtLPN and tgtLPN +
length - 1 to the flash pages currently mapped to the range
of LPNs between srcLPN and srcLPN + length - 1. The
remapFlag parameter is a 1-bit flag indicating whether the
source LPNs should be deallocated/invalidated or not after re-
mapping. For data relocations, the corresponding flash pages
should no longer be mapped to source LPNs (remapFlag
= 1). Regarding data copies, the L2P mappings of source
LPNs are retained (remapFlag = 0) and the degrees of L2P
association of relevant flash pages increase by one. Both re-
mapping and invalidation of LPNs are realized by directly
modifying the L2P mapping table in SSD-internal DRAM.

Another notable feature of Remap-SSD is a hybrid storage

architecture consisting of flash memory and byte-addressable
NVRAM. Flash memory is organized in superblocks for data
storage. Each superblock consists of flash blocks with the
same offset across all flash dies. Besides P2L mappings and
write timestamps that are persisted on flash memory along
with data pages, Remap-SSD stores additional house-keeping
metadata on NVRAM for address remapping, called remapp-
ing metadata (RMM). Whenever an LPN is remapped to a
flash page, a RMM entry that includes the changed P2L mapp-
ing is written to NVRAM. A remap command is considered to
be completed successfully only after the involved L2P mapp-
ings have been modified in DRAM and the relevant RMM
entries have been persisted on NVRAM. Modifications of
L2P mappings are not required to be persisted because they
can be recovered from house-keeping metadata (see Section
4.5). Thus, remap operations can be carried out quickly.

We introduce how to manage RMM entries on NVRAM in
Section 4.2, which is the key to solve the problems of high-
overhead lookups and poor scalability in the exiting solution
(Remap-SSD-FLog). Details of RMM, which guarantee the
mapping consistency and remapping atomicity, are described
in Section 4.3. Sections 4.4 and 4.5 present how Remap-SSD
performs GC operations and power-off recovery, respectively.

4.2 Co-management of Flash and NVRAM

Naively logging RMM entries would result in an expensive
scan of the log for every lookup of P2L mappings, as analyzed
in Section 3.3. To address this challenge, Remap-SSD takes
advantage of a key observation that a flash superblock is the
basic unit of free space allocations (for data writes) and GC
operations. This observation delivers a favorable conclusion
that retrievals of P2L mappings are always performed in the
granularity of a flash superblock.

USENIX Association 19th USENIX Conference on File and Storage Technologies 191

P2L mappings are retrieved during GC and power-off re-
covery. In each GC operation, the FTL selects a victim flash
superblock, where valid data pages are read out and written
to a free flash superblock. Before the migrations, valid P2L
mappings of the victim superblock need to be retrieved so
that the involved L2P mappings can be updated to point to
new physical locations. After the migrations, the victim su-
perblock can be erased and become free. The main process of
power-off recovery is rebuilding the latest L2P mapping table
based on house-keeping metadata of data pages that have been
persisted on flash memory. This process starts with scanning
the house-keeping metadata in write time order. Since data
pages and their house-keeping metadata are written to flash
memory superblock by superblock, P2L mappings of data
pages in a superblock are examined together.

Based on the conclusion, Remap-SSD manages flash me-
mory and NVRAM synergistically. The NVRAM volume is
divided into fixed-size segments, which are exclusively al-
located to a flash superblock on demand to store its RMM
entries. A segment validity bitmap (SV-bitmap) is maintained
in DRAM or NVRAM to indicate whether each segment is
used or free. Each segment is partitioned into slots, which are
written with RMM entries in a log-structured manner. When
any data page in a flash superblock is remapped, the relevant
RMM entry is appended in the free NVRAM segment allo-
cated to the superblock (e.g., Ì in Figure 3). If the superblock
has no segments yet (e.g., Í in Figure 3) or the segment in
use is full (e.g., Ë in Figure 3), a new free segment is assigned
first. We refer to the NVRAM segments that belong to a flash
superblock as a segment group. A group contains zero or an
unfixed number of segments, which are linked together.

An NVRAM segment group is actually a small and
size-varied local log of remapping metadata for a flash su-
perblock.2 Compared with scanning a single global log for
retrieving P2L mappings during GC in prior studies (i.e.,
Remap-SSD-FLog), Remap-SSD achieves fast lookups by
scanning only a segment group. Meanwhile, Remap-SSD is
adaptive to workloads and has high NVRAM utilization.

4.3 Remapping Metadata

Contents of RMM entries should be carefully designed to
serve three goals: mapping consistency, atomicity of remap
operations, and space efficiency.

First, the changed P2L mapping and timestamp of an LPN
remapping should be recorded for power-off recovery of L2P
mappings. Recall that a remap operation is to remap a target
LPN to the PPN that is currently mapped to a source LPN; if
it is a relocation-based remapping (remapFlag=1), the source
LPN needs to be deallocated. The P2L mapping contains four
fields: a pair of target LPN and PPN, a remapping flag, and
an alterable field, i.e., a source LPN if the flag is set or null

2For SSDs that do not employ a superblock-based FTL, our design still
applies and the only change is that the granularity becomes a flash block.

value otherwise. Without the last two fields, deallocations of
source LPNs could not be recognized and then L2P mappings
of source LPNs may be revived undesirably after power-off
recovery.3 The timestamp can be virtual time. In the current
implementation, we use the number of host write/remap opera-
tions that have been performed in the SSD, i.e., write/remap
sequence number for short.

Second, atomicity of remap operations should be main-
tained, as their executions may be disrupted by sudden power
outages. We distinguish two atomicity levels: remapping ato-
micity and command atomicity. The former refers to the ato-
micity of remapping a single LPN, or more precisely, write
atomicity of a RMM entry on NVRAM. A partially updated
or written RMM entry would result in improper power-off
recovery of L2P and P2L mappings and thus data corruption.
A remap command includes one or multiple RMM entries
that may scatter in several NVRAM segments. Command
atomicity implies atomic remap commands. If the write of
any RMM entry in a remap command fails, all the mapping
changes caused by the command should be discarded.

Partial updates of RMM entries have been avoided by the
log structure of NVRAM segments. Remap-SSD must be
able to further detect incomplete writes of RMM entries on
NVRAM for remapping atomicity, and moreover, recognize
whether all the RMM entries of a remap command have been
persisted successfully for command atomicity. This can be
achieved by adding extra fields in each RMM entry.

Modern processors generally support 8-byte atomic writes
to NVRAM [68]. Remap-SSD configures RMM entry size
to be a multiple of 8 bytes, say K ∗ 8 bytes. As K is larger
than one, Remap-SSD adopts a simple tornbit mechanism
implemented by Mnemosyne [59] to guarantee atomic writes
of RMM entries. In every 8 bytes, a single torn bit is preserved.
NVRAM segments are initialized to zeros when allocated for
use. Completely written entries will have all K torn bits set as
ones, while incomplete entries, which have at least one zero
torn bit, will be discarded during power-off recovery.

If command atomicity is desired, three more fields are re-
quired in a RMM entry: the start LPN and length of the remap
command, a command atomicity flag indicating whether the
remap command is required to be atomic. Each remap com-
mand can be identified by its write/remap sequence number.
When RMM entries on NVRAM are scanned during power-
off recovery, a remap command is successfully executed only
if all the RMM entries in its LPN range are found to be intact.
Otherwise, the remap command is partially performed and
will be abandoned to guarantee command atomicity.

Current applications commonly require remapping atomi-
city. This resembles regular SSDs, where single-page write
atomicity is guaranteed and maybe only some of data pages
in a write command are persisted after a sudden power out-
age. Atomic remap commands are similar to the advanced

3The interface protocols may require an SSD to return an error or some
deterministic value (e.g., zeros) when a deallocated LPN is read [4].

192 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 2: Remapping metadata entry.
First 8 bytes Second 8 bytes

0 Torn bit 64 Torn bit

1-21 Flash page offset 65-95 Target LPN
in superblock 96 Remapping flag

22-63 Write/Remap 97-127 Null or
sequence number source LPN

atomic-write primitives proposed in [49,52] and NVMe speci-
fication [4]. Although these atomic commands are not widely
used yet, they provide an option to reduce the complexity and
overheads for atomicity assurance in the host software. In the
current implementation, Remap-SSD ensures only remapping
atomicity by default.

The third goal of elaborating a RMM entry is to improve
the space efficiency, which can be realized by compacting its
fields. The target PPN is replaced by its physical page offset
in the resident flash superblock, as each NVRAM segment is
dedicated to a specific superblock. Also, the unused bits in
LPN fields can be utilized. Assuming the SSD capacity and
page size are 4TB and 4KB, respectively, a 4B LPN field can
spare two bits for holding the torn bit and/or remapping flag.
Table 2 shows an example layout of a RMM entry, whose size
is 16B. The entry size can be extended to 24B, if any fields
demand more bits or command atomicity is required.

Besides RMM entries, each NVRAM segment contains a
segment metadata entry in its head slot. This entry stores a
flash superblock ID which the segment is associated with, the
current write/remap sequence number, a segment sequence
number among the segments allocated to the superblock, and
a next segment ID that links the segments in a group. The
former three fields are written immediately when the segment
is allocated, while the next segment ID is written when the
segment is full and a next free segment is allocated. The asso-
ciation relationships between flash superblocks and NVRAM
segments can be restored from segment metadata entries.

4.4 Garbage Collection

Both the writes of data pages to flash superblocks and RMM
entries to NVRAM segments are conducted in a log-structured
fashion. Thus, GC is required to reclaim invalid flash pages
and invalid RMM entries.

When free flash superblocks run out, a flash GC operation
is triggered on a victim superblock (e.g., with the most invalid
pages). Since address remapping is enabled, a flash page may
be referenced by multiple LPNs. Only flash pages without any
references are invalid and can be recycled. The FTL maintains
a reference counting table (RC-table) to track the number of
references to each flash page. Consider the number of writes
on most duplicate data is small (e.g., smaller than ten [16,34]).
Four-bit counters are used by default.

NVRAM GC is performed both passively and actively.

Reclamation of a flash superblock causes a passive recycle
on its NVRAM segment group. An active recycle is triggered
when free NVRAM segments run out. The NVRAM segment
group with the most invalid RMM entries will be selected as
the victim. Invalid RMM entries are those whose P2L mapp-
ings are not consistent with the latest L2P mappings. The FTL
tracks the number of invalid RMM entries in each segment
group. Specifically, a bitmap is used to indicate whether the
current L2P mapping of each LPN is established by a remap
or write operation, called LR-bitmap. When a remapped LPN
is remapped again or written to a new PPN, the number of
invalid RMM entries in the segment group of the flash su-
perblock where the stale PPN resides increases by one. To
recycle a segment group, RMM entries in it are checked,
where valid entries are migrated to a new group of free seg-
ments and invalid ones are discarded. Then, the stale segment
group is zeroed to be free.

The usage of address remapping is limited by both the re-
ference counting capability and the NVRAM capacity. If the
counter of a flash page reaches its maximum, remapping to
this page is prohibited. Also, if all the NVRAM segments are
filled with valid RMM entries, remap operations are disabled.
It is important to note that these two cases do not mean Remap-
SSD would return a failure on the relevant remap command
and require the host software to perform error handling. In-
stead, Remap-SSD internally transforms the prevented remap
operations to regular physical writes of duplicate data pages,
which is transparent to the host. Therefore, host software can
maximize the utilization of remap commands without con-
cerning the operational details inside the SSD. In addition, to
restrain NVRAM GC overheads, remap operations are dis-
abled when the ratio of valid RMM entries is larger than a
high watermark (95% by default).

4.5 Power-off Recovery

Power-off recovery aims to recover the FTL to a consistent
state with the latest mappings after sudden power outages.
The key is to ensure P2L mappings of data pages that have
been written on flash memory are persistent. Then, the most
recent L2P mapping table can be rebuilt from P2L mappings.

Remap-SSD maintains head and tail metadata in each flash
superblock for fast power-off recovery, similar to conventional
SSDs [8]. When a flash superblock is allocated, head metadata
are written first before any data writes, including at least the
type, write timestamp, and erase count of the superblock. The
type indicates whether the superblock stores host data pages
or FTL metadata or other vendor-specific information. Write
timestamps preserve the write order of superblocks. Note that
flash pages in a block must be written sequentially and blo-
cks in a superblock can be written in parallel. Remap-SSD
chooses the first flash page of the Xth block in a superblock
to keep head metadata, where X is the modulus of superblock
ID and the number of blocks each superblock contains. This

USENIX Association 19th USENIX Conference on File and Storage Technologies 193

Figure 4: Persistent metadata for power-off recovery. WSN:
write/remap sequence number, PPO: physical page offset in
the superblock. The latest L2P mappings can be rebuilt from
persistent metadata in flash superblocks and NVRAM.

enables concurrent reads to head metadata of different su-
perblocks. Tail metadata are retained in the last several flash
pages in each data superblock. They collectively hold the P2L
mappings and write/remap sequence numbers of data pages
that have been written in the superblock.

Power-off recovery of Remap-SSD relies on the head and
tail metadata in flash superblocks and remapping metadata in
NVRAM segments, as shown in Figure 4. The main recovery
procedure includes three steps. First, head metadata of all
flash superblocks are read to identify superblocks storing host
data, which are organized in write time order. Second, tail
metadata of superblocks are scanned in write time order, from
which we can obtain the L2P mapping table established by
data page writes and these writes’ timestamps. The power-
off recovery of traditional SSDs ends after this step. Third,
Remap-SSD examines all NVRAM segments. Based on intact
RMM entries whose timestamps are more recent than the
write timestamps of relevant data pages, the changes to L2P
mappings caused by the latest remap operations are applied.
As the latest L2P mapping table has been recovered, the RC-
table is also acquired. Moreover, segment metadata entries are
used to restore the SV-bitmap and association relationships
between flash superblocks and NVRAM segment groups.

4.6 Discussion

Hybrid Storage Architecture. One might wonder whether it
is necessary for Remap-SSD to employ a hybrid storage ar-
chitecture or whether NVRAM segments can be replaced by
reserved flash pages. We argue that pure flash storage is not
adequate to address the mapping inconsistency problem. This
is mainly due to the size discrepancy between RMM entry
and flash write unit. If NVRAM is not adopted, for each flash
superblock containing remapped data, its RMM entries would
have to be cached in DRAM and accumulate to a page size
before being written to a flash page. Then, there would be
a large amount of cached entries (from many superblocks)

facing the risk of loss if sudden power outages occur. It is
feasible to use supercapacitors for some level of power loss
protection and periodically flush cached entries. However,
this would lead to write amplification and underutilized sto-
rage space when cached entries of a superblock cannot fill a
page. Also, supercapacitors increase the cost and raise new
reliability concerns (e.g., aging effect [11]).

We should note that adding NVRAM in Remap-SSD has
high cost-efficiency. The requirement for NVRAM capacity
is small. Writes of every 1GB duplicate data through address
remapping only produce 4MB RMM. In contrast, the utiliza-
tion of remapping brings large savings on storage space and
cost. Assume PCRAM, whose bit cost is roughly 5 times that
of flash memory [47], is in use. The cost of storing RMM on
PCRAM is only about 2% of the cost of storing duplicate data
on flash memory. On the other hand, given 1GB NVRAM,
which can accommodate a maximum of 256GB duplicate
data, its cost can be compensated as long as 5GB flash sto-
rage space is saved. In addition, the NVRAM lifetime is not
a concern, since NVRAM has more than 1,000 times better
write endurance than flash memory.

Metadata Overheads. Compared with traditional SSDs
whose address remapping ability is not exposed, Remap-SSD
introduces extra metadata overheads. First, remapping meta-
data and segment metadata are stored in NVRAM. The NV-
RAM capacity limits the maximum number of valid RMM
entries and thus unique LPNs that can be remapped. The seg-
ment metadata size is inversely proportional to the segment
size, for example, 1.6% of NVRAM capacity when the seg-
ment size is 1KB. Second, the SV-bitmap (see Section 4.2),
RC-table, and LR-bitmap (see Section 4.4) are maintained in
DRAM or NVRAM (if DRAM is too small). The SV-bitmap
size is negligible. The sizes of RC-table and LR-bitmap are
proportional to the physical and logical capacities of the SSD,
respectively. Assume the logical and physical capacities of
the SSD are 4TB and 5TB, respectively, and the page size is
4KB. The RC-table (with 4-bit counters) size in Remap-SSD
is 640MB, while that (with 1-bit counters) in conventional
SSDs is 160MB. The LR-bitmap occupies 128MB space and
can be embedded into the L2P mapping table if its PPN field
has any unused bit.

5 Case Studies and Evaluation

5.1 Experimental Setups

To evaluate Remap-SSD, we perform three case studies with
various applications: intra-SSD deduplication, write-ahead
logging in SQLite, and cleaning in F2FS. Remap-SSD is com-
pared with one scheme, called NoRemap-SSD, which does
not exploit SSD address remapping, and three other schemes,
which exploit SSD address remapping but differentiate in
how to guarantee the mapping consistency. Remap-SSD-FLog
maintains a dedicated log of RMM entries stored on parallel

194 19th USENIX Conference on File and Storage Technologies USENIX Association

(a) Normalized performance (10% duplicate data). (b) Normalized performance (30% duplicate data). (c) Flash write amplification (30% duplicate data).

Figure 5: Intra-SSD deduplication with 10% and 30% data duplication ratios. Performance (bandwidth or throughput)
numbers are normalized to those of NoRemap-SSD, which does not perform deduplication. Remap-SSD-FLog, Remap-SSD-
NLog, and Remap-SSD are evaluated in each workload with three log/NVRAM sizes, i.e., 40MB, 80MB, and 120MB. Flash
write amplifications (lower is better) with 10% duplicate data are not shown as they present similar insights to Figure (c).

flash dies. This scheme corresponds to the commonly adopted
solution in existing studies listed in Table 1. Remap-SSD-
NLog enhances Remap-SSD-FLog by using NVRAM to store
the log. Remap-SSD-Opt is an optimal case assuming RMM
entries can always be retrieved in O(1) time. It also repre-
sents prior studies (i.e., PebbleSSD [28] and WAL-SSD [24])
that target only specific applications of remapping. The maxi-
mum usage of remapping in Remap-SSD-FLog, Remap-SSD-
NLog, and Remap-SSD is restricted by the log/NVRAM size,
while Remap-SSD-Opt has no limit. The NVRAM segment
size is set as 1KB by default in Remap-SSD.

Most experiments are conducted on FEMU, a QEMU-
based NVMe SSD emulator [38]. FEMU runs in a machine
with 3.80GHz 16-core Intel i7-9800X CPU and 64GB DRAM.
The emulated SSD is configured with 32GB logical capacity
plus 4GB over-provisioning space (the total capacity is lim-
ited by DRAM size of the machine). Every flash block has
1024 pages whose size is 4KB. Each superblock contains 16
blocks, since the SSD consists of 16 parallel dies (each die
has one plane). The flash read, write, and erase latencies are
50µs, 500µs, and 5ms, respectively. The NVRAM read and
write latencies are 50ns and 500ns per 64B, respectively. In
addition, we carry out some experiments of intra-SSD dedup-
lication on SSDsim, a popular SSD simulator [25], to evaluate
the schemes with a larger SSD and real-world traces. The
simulated SSD has 256GB/288GB logical/physical capacity
and 32 dies, while the flash block size remains unchanged.
Write-dominant workloads are used for evaluation, since our
work aims to reduce duplicate writes.

5.2 Intra-SSD Deduplication

Intra-SSD deduplication is a case worthwhile for studying
for two reasons. First, data duplication incurs extensive dupli-
cate writes, demanding the exploitation of address remapping.
Second, deduplication generates complex UN-type remapp-
ing behaviors, similar to those in copying or snapshotting
files. Such behaviors challenge the schemes for maintaining
mapping consistency, so their efficiency differences can be

clearly presented. In all the schemes excluding NoRemap-
SSD, we implement a deduplication engine in the FTL, similar
to CAFTL [16]. The FTL maintains a hash-based fingerprint
store and computes the fingerprint of each logical data page
written from the host. We assume a hardware hash unit is used
and the computational overhead is 32µs [22]. If a fingerprint
hits the store, the remap primitive is used to map the logical
page to be written to the existing logical page that has the
same content. Otherwise, the fingerprint is unique and added
to the store and the logical page is written to flash memory.

We conduct two sets of experiments on FEMU-SSD run-
ning benchmark tools and on SSDsim running real-world
traces. Benchmarks include the fileserver and oltp workloads
in filebench [2], updating RocksDB with a zipfian request
distribution in YCSB [6], and random-write workload (fio-
randw for short) in fio [3]. These benchmarks do not include
content locality in their data sets. Thus, we use their I/O
patterns and simulate contents of logical data pages using a
zipf distribution, which has been verified in characterizing
the content popularity [22]. The distribution is expressed by
P(ti) = C/ta

i , where, C = 1/(∑N
i=1 t−a

i), N is the number of
unique contents in the data set, a is the zipf parameter repre-
senting the skewness in content popularity. We set a as 0.2 and
the data duplication ratio as 10% or 30% (N equals to 90% or
70% of the total number of logical data pages, respectively).
Real-workload traces include homes and mail, collected from
production systems at FIU [22]. They contain real fingerprints
of data pages, which can be used for deduplication.

Figure 5 shows the performance and flash write amplifica-
tions (WAs) of the five schemes when data duplication ratio
is 10% and 30%. The performance metric is bandwidth or
throughput (operations per second), which is measured by
benchmark tools. The WA results from valid data migrations
during GC and is calculated as the ratio between total flash
page writes and host page writes. Compared to NoRemap-
SSD, the other schemes significantly improve the storage
performance (e.g., by 1.5~8.2 times in Remap-SSD-Opt) and
reduce the WA below one (e.g., by 40.5%~80.4% in Remap-
SSD-Opt). Such benefits stem from intra-SSD data dedupli-

USENIX Association 19th USENIX Conference on File and Storage Technologies 195

(a) SSD bandwidth in homes. (b) SSD bandwidth in mail.

Figure 6: Intra-SSD deduplication with real-world traces.
Bandwidth values are normalized to those of Remap-SSD-Opt.
Different log/NVRAM sizes, 160MB, 320MB, and 640MB,
are evaluated (SSD capacity is 256GB). Bandwidths of
NoRemap-SSD are 6~40 times lower than those of the other
schemes and are not shown in the figures.

(a) Normalized performance. (b) Flash write amplification.

Figure 7: Impacts of NVRAM segment size in Remap-SSD
under intra-SSD deduplication (10% duplicate data). The
NVRAM size is 40MB. With a larger NVRAM, the impacts
of segment size decrease.

cation, which completes host writes of duplicate data through
quick remap operations without performing flash page writes.
Moreover, deduplication reduces the GC overheads since it
results in smaller storage space consumption and thus larger
over-provisioning space.

For the three schemes that log remapping metadata (i.e.,
Remap-SSD-FLog, Remap-SSD-NLog, and Remap-SSD), the
log/NVRAM size is a critical factor that affects their perfor-
mance and WA. When the log/NVRAM size is enlarged,
the performance increases because more RMM entries or
remap operations can be afforded. With 30% data duplica-
tion ratio, 17%~34% of remap operations are demoted to
regular flash writes (because the log/NVRAM is full) when
the log/NVRAM size is 40MB. The percentages become up
to 4.5% and 0%, respectively, when the log/NVRAM sizes
are 80MB and 120MB. Compared to Remap-SSD-FLog and
Remap-SSD-NLog, Remap-SSD improves the performance
by an average of 20.2% and 17%, respectively, when the
log/NVRAM size is 40MB. The improvements increase to
38.5% and 24.3% for an 80MB log/NVRAM, and further to
44.3% and 26.8% for a 120MB log/NVRAM. The main rea-
son behind these performance improvements is that Remap-
SSD-FLog and Remap-SSD-NLog suffer from high over-
heads of scanning the entire log, no matter on flash memory
or faster NVRAM, in every GC operation. The larger the log

size is, the higher the overheads are. In contrast, Remap-SSD
always achieves fast lookups by maintaining a small local log
for each GC unit on demand, rather than a global log.

On the other hand, Remap-SSD has slightly higher WAs
than Remap-SSD-FLog and Remap-SSD-NLog when the
log/NVRAM size is small, such as an average of 4.5% and
2.3% for log/NVRAM sizes of 40MB and 80MB, respectively.
When the log/NVRAM size increases to 120MB, the three
schemes obtain similar WAs. This is because Remap-SSD
allocates NVRAM segments for separate local logs and may
leave some segments underutilized, while Remap-SSD-FLog
and Remap-SSD-NLog can fully utilize the flash/NVRAM
log space and undertake more remap operations. When a
larger log/NVRAM is used, the gaps on space utilization and
remapping efficiency narrow.

We also study the performance of Remap-SSD with a
larger SSD and real-world traces, as shown in Figure 6. Be-
fore running each trace, we age the SSD by issuing random
writes until flash GC is triggered and by filling NVRAM
with 70% valid RMM entries with random LPNs. When the
log/NVRAM size is 160MB, 320MB, and 640MB, Remap-
SSD averagely improves the performance by 10.7%, 32.1%,
and 97.3%, compared to Remap-SSD-FLog, and 7.2%, 22%,
and 62.6% compared to Remap-SSD-NLog, respectively. Fur-
thermore, Remap-SSD has close performance to Remap-SSD-
Opt, e.g., an average of 2.1% and up to 6.2% lower perfor-
mance. These results demonstrate rapidly increasing perfor-
mance overheads of employing a global log when the log size
grows and, on the other hand, the good scalability of Remap-
SSD. Besides, the three schemes have similar WAs (not shown
in figures), as segmenting large NVRAM in Remap-SSD neg-
ligibly degrades the space utilization.

Figure 7 shows sensitivity studies on the NVRAM segment
size in Remap-SSD. A larger segment size results in trivial
performance degradations and slight WA increases. This is be-
cause space utilization of NVRAM decreases as the allocation
unit is enlarged. We set the segment size as 1KB by default,
despite marginally higher segment metadata overheads.

From above results, we can make two conclusions. First,
maintaining a global log for remapping metadata causes sig-
nificant performance overheads, which are proportional to the
log size. Second, Remap-SSD provides an efficient and scala-
ble scheme that can maximize the utilization of SSD address
remapping while ensuring the mapping consistency. When the
NVRAM size increases, Remap-SSD’s performance does not
degrade and keeps comparable with that of Remap-SSD-Opt.

5.3 Write-ahead Logging in SQLite

Write-ahead logging (WAL) is a widely used approach for
transactional atomicity in databases and file systems [24].
All modifications on the database file are written to a WAL
file and then applied to original locations during checkpoint
operations. With Remap-SSD, checkpointing writes can be

196 19th USENIX Conference on File and Storage Technologies USENIX Association

(a) SSD bandwidth under fillrandom workload. (b) SSD bandwidth under fillseq workload. (c) Flash page writes.

Figure 8: Performance results of SQLite. Numbers of flash page writes are normalized to those of NoRemap-SSD.

realized through the remap primitive, i.e., remapping LPNs of
original locations to those in the WAL file. We use SQLite, a
popular database [5], to verify Remap-SSD on reducing WAL
overheads. One issue is that data pages in the SQLite WAL
file are not page-aligned because they are interleaved with
frame headers [37]. To make data pages aligned, we simply
store frame headers collectively in reserved pages. The remap
primitive is implemented as a new NVMe command and is
invoked by SQLite through an extended ioctl system call.

We use the db_bench benchmark [1] to test SQLite (syn-
chronous=NORMAL). Two tests are conducted: one writes
1.6 million values in random key order (fillrandom) and the
other writes 1.5 million values in sequential key order (fillseq).
The value size is 16KB. Figure 8 shows the SSD bandwidth
over time and the numbers of total flash page writes of diff-
erent schemes. Remap operations are counted in measuring
the bandwidth. The log/NVRAM size is 80MB.

In each test, NoRemap-SSD sustains two sharp perfor-
mance drops, e.g., at the time around 500s and 1000s in Figure
8(a). The first drop is because the SSD has undergone a full
disk write and begins to conduct GC operations. At this time,
the working set (i.e., the number of valid unique LPNs) size
is moderate. As invalid flash pages has accumulated to a high
level, GC overheads are small. Then, the working set grows
and invalid flash pages are reclaimed over time, increasing the
GC overheads significantly. This leads to the second perfor-
mance drop. We can see the schemes that exploit SSD address
remapping postpone the first performance drop and avoid the
second drop, because remapping enables single-write WAL
and largely reduces flash writes, e.g., by 44.5% on average
(see Figure 8(c)). Also, the schemes with remapping finish
the tests much faster than NoRemap-SSD. In addition, SSD
bandwidth increases over time up to the first drop in Figure
8(a). The reason is that the ratio of reads, which originate
from read-modify-write operations for small random updates,
rises and the SSD processes reads faster than writes.

Remap-SSD always outperforms Remap-SSD-FLog and
Remap-SSD-NLog, e.g., by an average of 15.1% and 7.8%,
respectively, in the two workloads after GC has been tri-
ggered. Notably, Remap-SSD-FLog suffers from two band-
width drops at time 540s and 845s in fillrandom. This owes to
reclaiming invalid RMM entries in the log on flash memory,

which is slower than that in Remap-SSD-NLog. The reclama-
tion requires reading the entire log, writing back valid entries,
and erasing flash blocks. In contrast, Remap-SSD looks up
and reclaims RMM entries in a small unit, i.e., a segment
group, whose largest size is found to be 117KB in the experi-
ments of SQLite. These results exhibit the efficiency of RMM
management in Remap-SSD.

We notice that there is a performance inversion between
the schemes with remapping and NoRemap-SSD after the
first performance drop at around 600s in Figure 8(b). This
is attributed to higher GC overheads in the schemes with re-
mapping. On the one hand, the schemes with remapping have
a larger working set size than NoRemap-SSD at that time due
to higher write bandwidth. On the other hand, despite elimi-
nating WAL overheads, remapping reduces the number of
invalid flash pages and thus GC efficiency. In NoRemap-SSD,
the WAL file is overwritten repeatedly when it becomes full
and its contents have been applied to the database file. Such
overwrites lead to invalidation of flash pages that store obso-
lete WAL contents. By contrast, these flash pages remain valid
in the schemes with remapping, because they are remapped
to and referenced by relevant logical pages in the database
file. As the working set size grows and invalid flash pages
are reclaimed by GC over time in NoRemap-SSD, its GC
overheads increase and the performance inversion between it
and Remap-SSD ends.

5.4 Cleaning in F2FS
Considering the detrimental effects of random writes on SSDs,
log-structured file systems naturally fit for SSDs and have
drawn close attention [35]. They provide write sequentiality
by organizing data in logs. However, cleaning is required to
reclaim invalid data blocks. Similar to and independent from
intra-SSD GC, the log cleaning process includes migrating
valid data blocks and thus introduces duplicate writes. We
modify F2FS, a state-of-the-art and popular log-structured file
system designed for flash devices [35], to utilize the remap
primitive for migrating valid data blocks at almost zero cost.

Two workloads are used for testing F2FS: the fileserver
workload in filebench, updating MongoDB with a zipfian re-
quest distribution in YCSB [6]. Each test consists of three
successive phases: (1) running the workload to generate in-

USENIX Association 19th USENIX Conference on File and Storage Technologies 197

(a) fileserver in filebench. (b) YCSB on MongoDB.

Figure 9: Speedups in F2FS. Performance is normalized to
that of NoRemap-SSD. The log/NVRAM size is 80MB.

valid data blocks in F2FS; (2) manually triggering cleaning
operations until all invalid data blocks in F2FS are reclaimed;
(3) running the workload for the second time for performance
evaluation. Figure 9 shows the speedups of the schemes with
remapping over NoRemap-SSD on above three phases. The
utilization of SSD address remapping accelerates the cleaning
process (i.e., the second phase) by an average of 28.3% and
improves F2FS performance at runtime by up to 50%. The
cleaning process includes a large number of remap opera-
tions. Then, Remap-SSD-FLog and Remap-SSD-NLog con-
tain much more RMM entries in the log in the third phase than
in the first phase. As a result, average performance improve-
ments of Remap-SSD over Remap-SSD-FLog and Remap-
SSD-NLog are 2.8% and 4% in the first phase but increase
to 19.1% and 11.6% in the third phase, respectively. These
results verify the efficiency and scalability of Remap-SSD in
exploiting SSD address remapping.

6 Related Work

Innovative SSD architectures have been an active field of
study in both academia and industry. Below we discuss some
representative designs in two areas related to Remap-SSD,
i.e., novel SSD interfaces and hybrid SSD architectures.

Novel SSD interfaces. The conventional block interface im-
pedes hardware-software co-designs that can maximally ex-
ploit the performance characteristics of flash storage. Hence,
several new SSD interfaces have been devised. A number
of designs employ remap or similar primitives to reduce du-
plicate writes by utilizing the SSD address remapping uti-
lity [16, 17, 23, 24, 28, 45, 46, 60]. Compared to these designs,
Remap-SSD avoids their limitations on the usage of remapp-
ing (see Section 3) by solving the mapping inconsistency
problem in an efficient manner.

Atomic-write interfaces have also been proposed by le-
veraging the copy-on-write nature of the FTL [31, 49, 52].
Through the interfaces, the burden of ensuring transactional
atomicity can be removed from the host software. To eli-
minate redundant log layers across the storage stack and
provide predicable performance, the open-channel and ZNS
(zoned namespaces) interfaces allow the host to directly ma-
nipulate data layout on flash memory [13, 36, 48]. Recently,

key-value (KV) interfaces [29, 32, 61] and dual block- and
byte-addressable interfaces [9, 12] have been presented for
SSDs. KV-SSDs consolidate KV management with the FTL
to provide high-performance and scalable KV stores. Dual-
interface SSDs open a fast and fine-grained path to access
SSDs. Besides, Willow [53] proposed a user-programmable
SSD that enables flexible interactions between the host and
SSD. These schemes and Remap-SSD share the same design
philosophy of breaking the block interface.

Hybrid SSD architectures. To address the idiosyncrasies
of flash memory and take advantage of emerging NVRAM
technologies, hybrid SSD architectures have been studied. NV-
RAM can be used in different ways for various purposes, e.g.,
to store the L2P mapping table for fast and energy-efficient
address translation [26], to absorb small updates to data pages
on flash memory [57], to replace flash OOB for supporting
byte-addressable metadata [28], and to store intra-SSD RAID
parity for reducing parity updating overheads [27, 67]. These
efforts along with Remap-SSD demonstrate the large design
space and great potentials of hybrid SSD architectures.

In addition, our design on the co-management of NVRAM
and flash storage is partially inspired by the co-management
of reserved space and value storage in HashKV [15]. As a KV
store built on KV separation, HashKV divides value storage
into fix-sized partitions and allows a partition to grow on
demand by allocating segments in reserved space.

7 Conclusion

Reducing flash writes has been a long-standing goal in de-
ploying SSDs. In this paper, we present Remap-SSD, which
exports a remap interface and employs a flash and NVRAM
hybrid storage architecture. It allows the host and FTL to ma-
ximally exploit the address remapping facility for eliminating
duplicate writes. Meanwhile, Remap-SSD ensures the latest
mappings can always be retrieved quickly and recovered from
house-keeping metadata persisted on flash memory and NV-
RAM together with written or remapped data. Through three
practical case studies, we demonstrate Remap-SSD delivers a
safe, efficient, and scalable solution that exploits SSD address
remapping for performance and lifetime improvements.

Acknowledgments

We would like to thank our shepherd, Patrick P. C. Lee, and
the anonymous reviewers for their valuable feedback. This
work was supported in part by the NSFC under Grant No.
61902137, No. U2001203, No. 61872413, No. 61821003,
Key Area Research and Development Program of Guangdong
Province under Grant No. 2019B010107001, National Key
Research and Development Program of China under Grant
No.2018YFB1003305, the 111 Project (No. B07038), and
Key Laboratory of Information Storage System, Ministry of
Education of China.

198 19th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Database Microbenchmarks. http://www.lmdb.tec
h/bench/microbench/.

[2] Filebench Benchmark. https://github.com/fileb
ench/filebench/wiki.

[3] Fio Benchmark. https://github.com/axboe/fio.

[4] NVM express base specification. https://nvmexpre
ss.org/resources/specifications/.

[5] SQLite Home Page. https://www.sqlite.org/ind
ex.html.

[6] YCSB Benchmark. https://github.com/brianfr
ankcooper/YCSB.

[7] Intel Optane Memory H10 with Solid State Storage.
https://www.intel.com/content/www/us/en/pr
oducts/docs/memory-storage/optane-memory/
optane-memory-h10.html, 2019.

[8] Flash translation layer in the storage performance devel-
opment kit (SPDK). https://spdk.io/doc/ftl.ht
ml, 2020.

[9] Ahmed Abulila, Vikram Sharma Mailthody, Zaid
Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen-mei Hwu. FlatFlash: Exploiting the byte-
accessibility of SSDs within a unified memory-storage
hierarchy. In Proceedings of the 24th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19), 2019.

[10] Mohammadamin Ajdari, Pyeongsu Park, Joonsung Kim,
Dongup Kwon, and Jangwoo Kim. CIDR: A cost-
effective in-line data reduction system for terabit-per-
second scale SSD arrays. In Proceedings of the IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA’19), pages 28–41, 2019.

[11] G. Alcicek, H. Gualous, P. Venet, R. Gallay, and A. Mi-
raoui. Experimental study of temperature effect on ultra-
capacitor ageing. In Proceedings of the European Con-
ference on Power Electronics and Applications, 2007.

[12] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young
Hwang, Sangyeun Cho, Dong-Gi Lee, and Jaeheon
Jeong. 2B-SSD: The case for dual, byte- and block-
addressable solid-state drives. In Proceedings of the
45th Annual International Symposium on Computer Ar-
chitecture (ISCA’18), 2018.

[13] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The linux open-channel SSD subsystem. In
Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST’17), 2017.

[14] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 105(9):1666–1704, 2017.

[15] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. HashKV: Enabling efficient updates in
KV storage via hashing. In Proceedings of the USENIX
Annual Technical Conference (ATC’18), 2018.

[16] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL:
a content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In
Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST’11), pages 77–90, 2011.

[17] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. Jftl:
A flash translation layer based on a journal remapping
for flash memory. ACM Transactions on Storage, 4(4),
2009.

[18] Kevin Conley. Flash: The Great Disruptor. Flash Me-
mory Summit, 2015.

[19] Bob Fine. Mckesson mixes SSDs with HDDs for op-
timal performance and ROI. Flash Memory Summit,
2016.

[20] Donghyun Gouk, Miryeong Kwon, Jie Zhang, Sungjoon
Koh, Wonil Choi, Nam Sung Kim, Mahmut Kandemir,
and Myoungsoo Jung. Amber*: Enabling precise full-
system simulation with detailed modeling of all ssd re-
sources. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[21] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
DFTL: a flash translation layer employing demand-
based selective caching of page-level address mappings.
In Proceedings of International Conference on Architec-
tural Support for Programming Languages and Operat-
ing System (ASPLOS’09), 2009.

[22] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and
Anand Sivasubramaniam. Leveraging value locality in
optimizing NAND flash-based SSDs. In Proceedings of
the 9th USENIX Conference on File and Stroage Tech-
nologies (FAST’11), 2011.

[23] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving file system performance of mo-
bile storage systems using a decoupled defragmenter. In
Proceedings of the USENIX Annual Technical Confer-
ence (ATC’17), pages 759–771, 2017.

[24] Kyuhwa Han, Hyukjoong Kim, and Dongkun Shin.
WAL-SSD: Address remapping-based write-ahead-
logging solid-state disks. IEEE Transactions on Com-
puters, 69(2):260–273, 2020.

USENIX Association 19th USENIX Conference on File and Storage Technologies 199

http://www.lmdb.tech/bench/microbench/
http://www.lmdb.tech/bench/microbench/
https://github.com/filebench/filebench/wiki
https://github.com/filebench/filebench/wiki
https://github.com/axboe/fio
https://nvmexpress.org/resources/specifications/
https://nvmexpress.org/resources/specifications/
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-memory/optane-memory-h10.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-memory/optane-memory-h10.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-memory/optane-memory-h10.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-memory/optane-memory-h10.html
https://spdk.io/doc/ftl.html
https://spdk.io/doc/ftl.html

[25] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo,
and Shuping Zhang. Performance impact and interplay
of SSD parallelism through advanced commands, allo-
cation strategy and data granularity. In Proceedings
of ACM International Conference on Supercomputing
(ICS’11), 2011.

[26] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Shuping
Zhang, Jingning Liu, Wei Tong, Yi Qin, and Liuzheng
Wang. Achieving page-mapping FTL performance at
block-mapping FTL cost by hiding address translation.
In Proceedings of IEEE Symposium on Mass Storage
Systems and Technologies (MSST’10), 2010.

[27] Soojun Im, Dongkun Shin, Dongkun Shin, Dongkun
Shin, and Dongkun Shin. Flash-aware RAID techniques
for dependable and high-performance flash memory
SSD. IEEE Transactions on Computers, 60(1):80–92,
2011.

[28] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou,
and Steven Swanson. Improving ssd lifetime with byte-
addressable metadata. In Proceedings of the Interna-
tional Symposium on Memory Systems (MEMSYS’17),
page 374–384, 2017.

[29] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstanti-
nou, and Steven Swanson. KAML: A flexible, high-
performance key-value SSD. In Proceedings of the
IEEE International Symposium on High Performance
Computer Architecture (HPCA’17), 2017.

[30] Myoungsoo Jung and Mahmut T Kandemir. Sprinkler:
maximizing resource utilization in many-chip solid state
disks. In Proceedings of the 20st IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA’14), 2014.

[31] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: Transactional
FTL for SQLite databases. In Proceedings of the 2013
ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’13), 2013.

[32] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel D. G. Lee. Towards building a
high-performance, scale-in key-value storage system. In
Proceedings of the 12th ACM International Conference
on Systems and Storage (SYSTOR’19), 2019.

[33] Bryan S. Kim, Jongmoo Choi, and Sang Lyul Min. De-
sign tradeoffs for SSD reliability. In Proceedings of the
17th USENIX Conference on File and Storage Technolo-
gies (FAST’19), 2019.

[34] Jonghwa Kim, Choonghyun Lee, Sangyup Lee, Ikjoon
Son, Jongmoo Choi, Sungroh Yoon, Hu ung Lee, Sooy-
ong Kang, Youjip Won, and Jaehyuk Cha. Deduplication
in SSDs: Model and quantitative analysis. In Proceed-
ings of the 28th IEEE Symposium on Mass Storage Sys-
tems and Technologies (MSST’12), 2012.

[35] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: a new file system for flash sto-
rage. In Proceedings of USENIX Conference on File
and Storage Technologies (FAST’15), 2015.

[36] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Ji-
hong Kim, and Arvind. Application-managed flash. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST’16), 2016.

[37] Wongun Lee, Keonwoo Lee, Hankeun Son, Wook-Hee
Kim, Beomseok Nam, and Youjip Won. WALDIO:
Eliminating the filesystem journaling in resolving the
journaling of journal anomaly. In Proceedings of the
USENIX Annual Technical Conference (ATC’15), 2015.

[38] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Matias Bjørling, and Haryadi S.
Gunawi. The CASE of FEMU: Cheap, accurate, scala-
ble and extensible flash emulator. In Proceedings of the
16th USENIX Conference on File and Storage Technolo-
gies (FAST’18), 2018.

[39] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri
Narasimhan, Tony Zhang, and Ming Zhao. Cachededup:
In-line deduplication for flash caching. In Proceedings
of the 14th USENIX Conference on File and Storage
Technologies (FAST’16), pages 301–314, 2016.

[40] Lloyd Liu. MRAM based NVMe SSD Architecture.
Flash Memory Summit, 2019.

[41] Dongzhe Ma, Jianhua Feng, and Guoliang Li. LazyFTL:
A page-level flash translation layer optimized for NAND
flash memory. In Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data, 2011.

[42] Micron. How Micron SSDs Handle Unexpected Power
Loss. https://www.micron.com/-/media/client
/global/documents/products/white-paper/ssd
_power_loss_protection_white_paper_lo.pdf,
2014.

[43] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: random write con-
sidered harmful in solid state drives. In Proceedings of
USENIX Conference on File and Storage Technologies
(FAST’12), 2012.

200 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.micron.com/-/media/client/global/documents/products/white-paper/ssd_power_loss_protection_white_paper_lo.pdf
https://www.micron.com/-/media/client/global/documents/products/white-paper/ssd_power_loss_protection_white_paper_lo.pdf
https://www.micron.com/-/media/client/global/documents/products/white-paper/ssd_power_loss_protection_white_paper_lo.pdf

[44] Sparsh Mittal and Jeffrey S. Vetter. A survey of soft-
ware techniques for using non-volatile memories for
storage and main memory systems. IEEE Transactions
on Parallel and Distributed Systems, 27(5):1537–1550,
2016.

[45] Fan Ni, Xingbo Wu, Weijun Li, Lei Wang, and Song
Jiang. Leveraging ssd’s flexible address mapping to
accelerate data copy operations. In Proceedings of the
IEEE 21st International Conference on High Perfor-
mance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th In-
ternational Conference on Data Science and Systems
(HPCC/SmartCity/DSS’19), pages 1051–1059, 2019.

[46] Gihwan Oh, Chiyoung Seo, Ravi Mayuram, Yang-Suk
Kee, and Sang-Won Lee. Share interface in flash storage
for relational and nosql databases. In Proceedings of
the International Conference on Management of Data
(SIGMOD’16), page 343–354, 2016.

[47] Michael Oros. Analysts Weigh In On Persistent Memory.
Persistent Memory Summit, 2018.

[48] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: Software-
defined flash for web-scale internet storage systems. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’14), 2014.

[49] Xiangyong Ouyang, David Nellans, Robert Wipfel,
David Flynn, and Dhabaleswar K. Panda. Beyond block
i/o: Rethinking traditional storage primitives. In Pro-
ceedings of the 17th IEEE International Symposium on
High Performance Computer Architecture (HPCA’11),
2011.

[50] Jisung Park, Sungjin Lee, and Jihong Kim. DAC: Dedup-
assisted compression scheme for improving lifetime of
NAND storage systems. In roceedings of Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE’17), 2017.

[51] João Paulo and José Pereira. A survey and classification
of storage deduplication systems. ACM Computing
Surveys, 47(1), 2014.

[52] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Li-
dong Zhou. Transactional flash. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation (OSDI’08), 2008.

[53] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable SSD. In Proceedings of the 11th

USENIX Symposium on Operating Systems Design and
Implementation (OSDI’14), 2014.

[54] Scott Shadley. NAND flash media management through
RAIN. https://www.micron.com/-/media/clie
nt/global/documents/products/technical-mar
keting-brief/brief_ssd_rain.pdf, 2011.

[55] Kai Shen, Stan Park, and Men Zhu. Journaling of journal
is (almost) free. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST’14),
pages 287–293, 2014.

[56] Sriram Subramanian, Swaminathan Sundararaman,
Nisha Talagala, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Snapshots in a flash with
ioSnap. In Proceedings of the 9th ACM European Con-
ference on Computer Systems (EuroSys’14), 2014.

[57] Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin Niu,
Yuan Xie, Yiran Chen, and Hai Li. A hybrid solid-state
storage architecture for the performance, energy con-
sumption, and lifetime improvement. In Proceedings of
the 16th International Symposium on High-Performance
Computer Architecture (HPCA’10), 2010.

[58] Ying Y. Tai. High Performance FTL for PCIe/NVMe
SSDs. Flash Memory Summit, 2016.

[59] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS’11), 2011.

[60] Zev Weiss, Sriram Subramanian, Swaminathan Sun-
dararaman, Nisha Talagala, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. ANViL: advanced virtu-
alization for modern non-volatile memory devices. In
Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST’15), 2015.

[61] Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang.
KVSSD: Close integration of LSM trees and flash trans-
lation layer for write-efficient KV store. In Proceedings
of Design, Automation & Test in Europe Conference &
Exhibition (DATE’2018), 2018.

[62] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun
Zhou. A comprehensive study of the past, present, and
future of data deduplication. Proceedings of the IEEE,
104(9):1681–1710, 2016.

[63] Zhichao Yan, Hong Jiang, Song Jiang, Yujuan Tan, and
Hao Luo. SES-Dedup: a case for low-cost ECC-based
SSD deduplication. In Proceedings of the 35th Sym-
posium on Mass Storage Systems and Technologies
(MSST’19), 2019.

USENIX Association 19th USENIX Conference on File and Storage Technologies 201

https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf

[64] Qirui Yang, Runyu Jin, and Ming Zhao. SmartDedup:
Optimizing deduplication for resource-constrained de-
vices. In Proceedings of the USENIX Annual Technical
Conference (ATC’19), pages 633–646, 2019.

[65] Miao-Chiang Yen, Shih-Yi Chang, and Li-Pin Chang.
Lightweight, integrated data deduplication for write
stress reduction of mobile flash storage. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11):2590–2600, 2018.

[66] Yang Zhan, Alexander Conway, Yizheng Jiao, Nirjhar
Mukherjee, Ian Groombridge, Michael A. Bender, Mar-
tin Farach-Colton, William Jannen, Rob Johnson, Don-
ald E. Porter, and Jun Yuan. How to copy files. In Pro-

ceedings of the 18th USENIX Conference on File and
Storage Technologies (FAST’20), pages 75–89, 2020.

[67] You Zhou, Fei Wu, Weizhou Huang, and Changsheng
Xie. LiveSSD: A low-interference RAID scheme for
hardware virtualized SSDs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 2020.

[68] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’18), 2018.

202 19th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background
	Motivation
	Duplicate Writes
	Exploiting SSD Address Remapping
	Schemes for Mapping Consistency

	Design
	Overview of Remap-SSD
	Co-management of Flash and NVRAM
	Remapping Metadata
	Garbage Collection
	Power-off Recovery
	Discussion

	Case Studies and Evaluation
	Experimental Setups
	Intra-SSD Deduplication
	Write-ahead Logging in SQLite
	Cleaning in F2FS

	Related Work
	Conclusion

