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Abstract: In the present paper, we investigate the fundamental trade-off of identification, secret-key,
storage, and privacy-leakage rates in biometric identification systems for remote or hidden Gaussian
sources. We use a technique of converting the system to one where the data flow is in one-way
direction to derive the capacity region of these rates. Also, we provide numerical calculations of three
different examples for the system. The numerical results imply that it seems hard to achieve both
high secret-key and small privacy-leakage rates simultaneously.
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1. Introduction

Biometric identification indicates an automated process of recognizing an individual
by matching the individual’s biological data (bio-data) with the digital files stored in the
system database [1]. Some unique bio-data that can be used for biometric identification
include fingerprint, iris, face, voice, palm, and so on [2]. Compared to the traditional
method such as password or smart card based identification, it provides higher convenience
and security. However, the critical drawback for biometric identification is that the usable
sources are limited [3], for instance, human has only two eyes and if their information are
leaked, there is no alternative option to replace, and therefore it is important to protect
users’ privacy. Furthermore, the size of the storage should be minimized to reduce the
memory space of the database [4], especially when the number of users becomes large.

From an information theoretic point of view, there are two major settings of the studies
related to biometric identification systems (BISs), namely, the BIS with exponentially many
users and the system with one user. The difference of these systems is that in the former
setting, we are interested in finding the maximum number of users who are reliably identi-
fiable, i.e., the maximum achievable identification rate at which the error probability of the
BIS vanishes (the identification capacity). However, in the latter setting, the estimation of
the user need not be considered since there exists only one user and it becomes redundant.
For discrete memoryless sources (DMSs), the fundamental performance of the BIS was
widely analyzed for both scenarios.

The BIS with multiple users was initially treated as a mathematical model in the
seminal work [5], and the identification capacity of the BIS was clarified. In the model, it
is assumed that every biometric identifier is enrolled via a noisy channel, and this type
of model is known as a remote or hidden source model. The term the remote sources
were used in [6,7], and hidden source model (HSM) is from [8]. In this paper, we use
HSM as in [8] to represent the BIS with noisy enrollment. The encoding process was
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introduced in [9] to reduce the size of the storage. This work was extended to incorporate
noisy reconstruction in [10]. The BIS with estimating both user’s index and secret key for
two classical models, namely, generated- and chosen-secret BIS models, was investigated
in [11]. In this literature, a clear explanation of the difference of these models is given.
Later, adopting the concept of the wiretap channel to assume that the adversary has side
information of the identified user’s bio-data sequence for the generated-secret BIS model
was analyzed in [12]. Recently, a storage constraint and an HSM added to the model
of [11] were studied in [13,14]. By using an additional private key, user’s privacy-leakage
can be made negligible [15,16]. Another scenario, that is, the BIS with one user, was
extensively examined in [8,17–22]. More precisely, in [17,18], the relation of secret-key and
privacy-leakage rates was analyzed. The optimal secret-key rate under privacy and storage
constraints was characterized in [8,19] for non-vanishing and vanishing secrecy-leakage
rate, respectively. It is worthwhile noting that in [8], a successful attempt for characterizing
the capacity region of the BIS with one user for HSM was first made. The works of [8]
was extended to constrain the action cost for the decoder in [20], and to consider two-
enrollment systems for the same hidden source, where the encoders do not trust each
other [21]. Moreover, in [22], the secret-key capacity of a multi-enrollment system, in which
the decoder is required to estimate all secret keys generated in the earlier enrollments,
was formulated.

Compared to the analyses of the BIS for DMSs, the results given under Gaussian
sources are still few. For example, the optimal trade-off between secret-key and privacy-
leakage rates was characterized in [23] and in order to speed up search complexity, hierar-
chical identification was taken into account in [24]. A common assumption in [23,24] is that
the enrollment channel is noiseless, known as a visible source model (VSM). However, in
real-life application, the signal of bio-data is basically represented with continuous values,
and most communication links can be modeled as Gaussian channels [23]. What is more,
the HSM is considered to be more realistic, e.g., captured picture of a finger via a scanner,
and when the BIS is switched from the VSM to the HSM, the evaluation becomes more
challenging [8] because many techniques used for deriving the results of the VSM are
not directly applicable. These facts motivate us to extend the models in [13] to Gaussian
sources and channels. Note that from the technical perspectives, this extension is not
trivial since the technique for establishing Theorems 1 and 2 in [13] massively depends
on the property that the alphabet sizes are finite, but unfortunately it cannot be applied
to continuous sources. The technique used in this paper will be explained in Section 5 in
details. Therefore, the extension is of both theoretical and practical interest. Although it is
well-known that the bio-data is real-valued, as mentioned in [23], the validity of Gaussian
assumption is not discussed in this paper and we leave this for further research. Here, we
are interested in specifying the optimal trade-off of the BIS.

In this study, our goal is to find the optimal trade-off of identification and secret-key
rates in the BIS under privacy and storage constraints. We demonstrate that an idea of
converting the system to another one, where the data flow of each user is in the same
direction, enables us to characterize the capacity region. More specifically, in establishing
the outer bound of the region, the converted system allows us to use the entropy power
inequality (EPI) [25] doubly in two opposite directions, and also its property facilitates
the derivation of the inner bound. In [8], Mrs. Gerber’s lemma was applied twice, too, to
simplify the rate region of the HSM for binary sources and symmetric channels without
converting the BIS. That was possible due to the uniformity of the source, and the backward
channel of the enrollment channel is also the binary symmetric channel with the same
crossover probability. However, this claim is no longer true in the Gaussian case, so it is
necessary to formulate the general behavior of the backward channel. We also provide
numerical calculations of three different examples. As a consequence, we may conclude
that it is difficult to achieve high secret-key and small privacy-leakage rates at the same
time. To achieve a small privacy-leakage rate, the secret-key rate must be sacrificed.
Furthermore, as a by-product of our result, the capacity regions of the BIS analyzed in [8]
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for Gaussian sources and channels are obtained, and as special cases, it can be checked that
this characterization reduces to the results given in [5,23].

The rest of this paper is organized as follows. In Section 2, we define the notation used
in this paper, and describe our system model and the converted system. In Section 3, the
formal definitions and main results are discussed in detail. We continue investigating the
basic properties of the capacity regions, and provide there different examples in Section 4. The
overviews of the proof of our main results are given in Section 5. The full proof is available
in Appendices A and B. Finally, some concluding remark and future work are mentioned in
Section 6.

2. System Model and Converted System
2.1. Notation and System Model

Upper-case A and lower-case a denote random variable (RV) and its realization,
respectively. An = (A1, · · · , An) represents a string of RVs and subscripts represent the
position of an RV in the string. fA denotes the probability density function (pdf) of RV A.
For integers k and t such that k < t, [k : t] denotes the set {k, k + 1, · · · , t}. log x stands for
the natural logarithm of x > 0.

The generated-secret BIS model and chosen-secret BIS model considered in this study
are depicted in Figure 1. Arrows (g) and (c) indicate the directions of the secret key of the
former and latter models. Let I = [1 : MI ], S = [1 : MS], and J = [1 : MJ ] be the sets of
user’s indices, secret keys, and helper data, respectively, where MI , MS, and MJ denote the
numbers of users, secret keys, and helper data, respectively. These sets are assumed to be
finite. Xn

i ,Yn
i , and Zn denote the bio-data sequence of user i generated from source PX , the

output of Xn
i via the enrollment channel PY|X , and the output of Xn

i via the identification
channel PZ|X, respectively. For i ∈ I and k ∈ [1 : n], we assume Xik ∼ N (0, 1), where
N (0, 1) is a Gaussian RV with mean zero and variance one. Note that an RV with unit
variance can be obtained by applying a scaling technique. PY|X and PZ|X are additive
Gaussian noise channels modeled as follows:

Yik = ρ1Xik + N1, Zk = ρ2Xik + N2, (k ∈ [1 : n]). (1)

where |ρ1| < 1, |ρ2| < 1 are the Pearson’s correlation coefficients, and N1 ∼ N (0, 1− ρ2
1)

and N2 ∼ N (0, 1− ρ2
2) are Gaussian RVs, independent of each other and bio-data sequences.

From (1), Yik and Zk are also Gaussian with zero mean and unit variance, and the Markov
chain Y− X− Z holds. Then, the pdf corresponding to the tuple (Xn

i , Yn
i , Zn) is given by

fXn
i Yn

i Zn(xn
i , yn

i , zn) = ∏n
k=1 fXYZ(xik, yik, zk), (2)

where for x, y, z ∈ R,

fXYZ(x, y, z) = fX(x) · fY|X(y|x) · fZ|X(z|x), (3)

=
1√

(2π)3(1− ρ2
1)(1− ρ2

2)
exp

(
−
(

x2

2
+

(y− ρ1x)2

2(1− ρ2
1)

+
(z− ρ2x)2

2(1− ρ2
2)

))
. (4)

In the generated-secret BIS model, upon observing Yn
i , the encoder e(·) generates

secret key S(i) ∈ S and helper data J(i) ∈ J as (S(i), J(i)) = e(Yn
i ). Then, J(i) is stored

at position i in the public database (helper DB) and S(i) is saved in the key DB, which is
installed in a secure location. Let W and Ŵ denote the index of the identified user and its
estimated value, respectively. Seeing Zn, the decoder d(·) estimates (Ŵ, Ŝ(W)) from Zn

and all helper data in DB J ≡ {J(1), · · · , J(MI)}, i.e., (Ŵ, Ŝ(W)) = d(Zn, J).
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Figure 1. The generated- and chosen-secret BIS models.

In the chosen-secret BIS model, the secret key S(i) is chosen uniformly from S , i.e.,

PS(i)(s) = 1/MS (s ∈ S), (5)

and independent of other RVs. The encoder forms the helper data as J(i) = e(Yn
i , S(i)) for

every individual. The decoder d(·) owns the same functionality as in the generated-secret
BIS model.

2.2. Converted System

The original system, having X as input source and Y, Z as outputs, is in the top figure
in Figure 2. There are two main obstacles toward characterizing the capacity regions
directly from this system. (I) In establishing the converse proof, an upper bound regarding
RV Y for a fixed condition of RV X is needed, but it is laborious to pursue the desired bound
since applying EPI to the first relation in (1) produces only a lower bound. (II) It seems
difficult to prove the achievability part by generating the codebook via a test channel due
to the input X. To overcome these bottlenecks, we use an idea of converting the original
system to a new one in which the data flow of each user is one-way from Y to Z without
losing its general properties. The image of this idea is shown in the bottom figure of
Figure 2, where Y becomes input virtually. To achieve this objective, knowing the statistics
of the backward channel PX|Y, namely, how X correlates to the virtual input Y, is crucial
and we explore that in the rest of this section.

Figure 2. The original (top) and converted (bottom) systems
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Due to the Markov chain Y − X − Z, Equation (3) can also be expanded in the
following form.

fXYZ(x, y, z) = fY(y) · fX|Y(x|y) · fZ|X(z|x). (6)

Observe that

x2

2
+

(y− ρ1x)2

2(1− ρ2
1)

=
x2

2
+

y2

2(1− ρ2
1)
− ρ1xy

1− ρ2
1
+

(ρ1x)2

2(1− ρ2
1)

=
y2

2
+

(x− ρ1y)2

2(1− ρ2
1)

. (7)

Without loss of generality, the exponential part in (4) can be rearranged as

−
(

y2

2
+

(x− ρ1y)2

2(1− ρ2
1)

+
(z− ρ2x)2

2(1− ρ2
2)

)
. (8)

From (6) and (8), we may conclude that the following relations hold with some RV
N′1 ∼ N (0, 1− ρ2

1).

Xik = ρ1Yik + N′1, (9)

Zk = ρ2Xik + N2 = ρ1ρ2Yik + ρ2N′1 + N2. (10)

Equations (9) and (10) describe the outputs of the backward channel PX|Y and the
combined channel PZ|Y of the virtual system. Actually, these relations can also be observed
directly from the covariance matrix of RVs (X, Y, Z). However, we derive them based
on the joint pdf for general readers’ purpose. Moreover, this transformation is useful for
the analysis of a non-standard source. The above relations play key roles for solving the
problem of the HSM, and we use them in many steps during the analysis in this paper.
In [23,24], the concept of this transformation is not seen because the enrollment channel is
noiseless due to the assumption of VSM as mentioned before.

Remark 1. In the case where there is no operation of scaling, Equations (9) and (10) are settled as
follows. Suppose that Xik ∼ N (0, σ2

x) with σ2
x < ∞, Yik = Xik + D1, and Zk = Xik + D2, where

D1 ∼ N (0, σ2
1 ) and D2 ∼ N (0, σ2

2 ) are Gaussian RVs, and independent of each other and other
RVs. By applying the similar arguments around (6)–(8), we obtain that

Xik =
σ2

x

σ2
x + σ2

1
Yik + D′1, Zk = Xik + N′2 =

σ2
x

σ2
x + σ2

1
Yik + D′1 + D2, (11)

where D′1 ∼ N (0, σ2
x σ2

1
σ2

x+σ2
1
) is Gaussian and independent of other RVs. The capacity regions of the

models considered in this paper can also be characterized via (11), and the results for this case will
be mentioned in Remark 3. However, equation developments need more space and do not look so
neat. Herein, we pursue our results based on the method that RVs X, Y, and Z are standardized.

Now from (9) and (10), it is not difficult to verify that

I(X; Y) =
1
2

log

(
1

1− ρ2
1

)
, I(Z; Y) =

1
2

log

(
1

1− ρ2
1ρ2

2

)
, (12)

where the right equation in (12) is attained because the variance of the noise term ρ2N′1 + N2
in (10) is equal to 1− ρ2

1ρ2
2.

3. Problem Formulation and Main Results

The achievability definition for the generated-secret BIS model is given below.

Definition 1. A tuple of identification, secret-key, public storage, and privacy-leakage rates
(RI , RS, RJ , RL) is said to be achievable for the generated-secret BIS model under a Gaussian
source if for any δ > 0 and large enough n there exist pairs of encoders and decoders satisfying
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maxi∈I Pr{(Ŵ, Ŝ(W)) 6= (W, S(W))|W = i} ≤ δ, (error probability) (13)
1
n log MI ≥ RI − δ, (identification rate) (14)

mini∈I
1
n H(S(i)) ≥ RS − δ, (secret-key rate) (15)
1
n log MJ ≤ RJ + δ, (public storage rate) (16)

maxi∈I
1
n I(S(i); J(i)) ≤ δ, (secrecy-leakage rate) (17)

maxi∈I
1
n I(Xn

i ; J(i)) ≤ RL + δ. (privacy-leakage rate) (18)

Moreover,RG is defined as the set of all achievable rate tuples for the generated-secret BIS model,
called the capacity region.

For the chosen-secret BIS model, the definition is provided as follows:

Definition 2. A tuple (RI , RS, RJ , RL) is said to be achievable for the chosen-secret BIS model
under a Gaussian source if there exist pairs of encoders and decoders that satisfy all the requirements
in Definition 1 for any δ > 0 and large enough n. Note that the left-hand side of (15) is expressed
as 1

n log MS because the key is chosen uniformly from S (cf. (5)). In addition,RC is defined as the
capacity region for the chosen-secret BIS model.

Remark 2. Note that in the BIS, there are two databases, namely, databases of secret keys and helper
data. The memory space of the database for storing the helper data (public database) is minimized,
while that for the secret keys (secure database) should be maximized. This means only a part of the
entire storage space of the BIS, which is the public database, is being compressed, and thus it is
suitable to call this compression rate the public storage rate. However, we call the public storage rate
just the storage rate as in [8] hereafter for brevity reason.

Now we are ready to introduce our main results.

Theorem 1. The capacity regions for the generated- and chosen-secret BIS models are given by

RG =
⋃

0<α≤1

{
(RI , RS, RJ , RL) : RI + RS ≤

1
2

log

(
1

αρ2
1ρ2

2 + 1− ρ2
1ρ2

2

)
,

RJ ≥
1
2

log

(
αρ2

1ρ2
2 + 1− ρ2

1ρ2
2

α

)
+ RI ,

RL ≥
1
2

log

(
αρ2

1ρ2
2 + 1− ρ2

1ρ2
2

αρ2
1 + 1− ρ2

1

)
+ RI ,

RI ≥ 0, RS ≥ 0
}

, (19)

RC =
⋃

0<α≤1

{
(RI , RS, RJ , RL) : RI + RS ≤

1
2

log

(
1

αρ2
1ρ2

2 + 1− ρ2
1ρ2

2

)
,

RJ ≥
1
2

log
(

1
α

)
,

RL ≥
1
2

log

(
αρ2

1ρ2
2 + 1− ρ2

1ρ2
2

αρ2
1 + 1− ρ2

1

)
+ RI ,

RI ≥ 0, RS ≥ 0
}

. (20)

The proof of Theorem 1 is provided in Appendices A and B. It can be verified that
the regions RG and RC are both convex, whose proofs are available in Appendix C.
Unlike the approach taken in [23], based on investigating the second derivative of the rate
region function, our proof makes use of the concavity of the logarithmic function. In both
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regions, α = 0 is excluded by the reason that the point is not achievable, and this fact will
be mentioned again in the converse proof of Equation (19).

For a fixed α, the optimal rate values for the regions RG and RC are shown in
Figure 3. We begin with explaining Figure 3a. Suppose that 0 < RI <

1
2 log

( 1
αρ2

1ρ2
2+1−ρ2

1ρ2
2

)
.

In the top band chart, 1
2 log

( 1
αρ2

1ρ2
2+1−ρ2

1ρ2
2

)
is the maximum achievable rate that user’s

identities can be estimated correctly at the decoder. Since the index and the secret key
of the identified user are reconstructed at the decoder, the sum of the optimal values
for the identification and secret-key rates is equal to this value, implying the optimal
secret-key rate is RS = 1

2 log
( 1

αρ2
1ρ2

2+1−ρ2
1ρ2

2

)
− RI . One can see that these rates are in a

trade-off relation as the identification rate rises, the secret-key rate falls off. In the bottom
one, 1

2 log
( 1

α

)
is the entire rate that we need to generate auxiliary random sequences for

encoding. The first part (blue part) represents the secret-key rate, and the second half

( 1
2 log

( 1
α

)
− RS = 1

2 log
( αρ2

1ρ2
2+1−ρ2

1ρ2
2

α

)
+ RI) is the rate of the sequences that are shared

between the encoder and decoder to help estimation of the index and secret key, correspond-
ing the storage rate. Storing the helper data at this rate results in leaking the user’s privacy

at least 1
2 log

( αρ2
1ρ2

2+1−ρ2
1ρ2

2
αρ2

1+1−ρ2
1

)
+ RI , which is the optimal or minimum privacy-leakage for a

given α.

Figure 3. (a,b) are the explanations of the optimal values of identification, secret-key, storage, and privacy-leakage rates in
the regionsRG andRC, respectively, for a fixed α.

For Figure 3b (the chosen-secret BIS model), the relation of the identification and secret-
key rates is the same as in the generated-secret BIS model. However, the optimal storage
rate becomes larger than the one seen in Figure 3a, equal to 1

2 log
( 1

α

)
(the bottom band

chart of Figure 3b), as the information related to the secret key chosen at the encoder (the
concealed part) must be saved together with the helper data in DB to help the estimation
of the key. For the privacy-leakage rate, the minimum values are not distinct in both
models. This is because the unconcealed part of the storage at rate 1

2 log
( 1

α

)
− RS =

1
2 log

( αρ2
1ρ2

2+1−ρ2
1ρ2

2
α

)
+ RI , identical to the optimal storage rate of the generated-secret BIS

model, is still exposed publicly, and thus the minimum privacy-leakage rates of the two
models are the same.

Figure 4 shows a numerical example of the region RG for ρ2
1 = 3/4 and ρ2

2 = 2/3.
More specially, Figure 4a is a projection of the capacity region to the three-dimensional
Euclidean space with X-axis RJ , Y-axis RS, and Z-axis RI . The black thick arrow indicates
the direction of the achievable region for all rate tuples (RJ , RS, RI). Figure 4b is another
projection of the capacity region to RJ RI-plane. Red asterisks and circles correspond to the
rate points (RJ , RI) at which RI is zero and RI is optimal, respectively, for some α ∈ (0, 1].
To explain the relation of the identification and storage rates, let us focus on the rightmost
asterisk and circle pair in Figure 4b. When identification rate varies from zero to the optimal
value, the rate point (RJ , RI) moves from the asterisk point (in the bottom) to the circled
point along the arrow. From this, it is clear that the value of the storage rate for the circled
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point is greater compared to the asterisk point, implying that the change of identification
rate affects the storage rate.

Figure 4. Projections of the capacity regionRG onto (a) RJ RSRI-space and (b) RJ RI-plane.

As a by-product of Theorem 1, the following corollary is obtained.

Corollary 1. The capacity regions of the generated- and chosen-secret BIS models with a single
user (the models considered in [8]) for Gaussian sources are given by substituting RI = 0 into the
right-hand sides of (19) and (20), respectively.

Remark 3. LetR′G andR′C denote the capacity regions of the generated-secret and chosen-secret
BIS models characterized via (11) in Remark 1. The two regions are provided below.

R′G =
⋃

0<α≤1

{
(RI , RS, RJ , RL) : RI + RS ≤

1
2

log

(
(σ2

x + σ2
1 )(σ

2
x + σ2

2 )

ασ4
x + σ2

x σ2
1 + σ2

1 σ2
2 + σ2

2 σ2
x

)
,

RJ ≥
1
2

log

(
ασ4

x + σ2
x σ2

1 + σ2
1 σ2

2 + σ2
2 σ2

x

α(σ2
x + σ2

1 )(σ
2
x + σ2

2 )

)
+ RI ,

RL ≥
1
2

log

(
ασ4

x + σ2
x σ2

1 + σ2
1 σ2

2 + σ2
2 σ2

x

(ασ2
x + σ2

1 )(σ
2
x + σ2

2 )

)
+ RI ,

RI ≥ 0, RS ≥ 0
}

, (21)

R′C =
⋃

0<α≤1

{
(RI , RS, RJ , RL) : RI + RS ≤

1
2

log

(
(σ2

x + σ2
1 )(σ

2
x + σ2

2 )

ασ4
x + σ2

x σ2
1 + σ2

1 σ2
2 + σ2

2 σ2
x

)
,

RJ ≥
1
2

log
(

1
α

)
,

RL ≥
1
2

log

(
ασ4

x + σ2
x σ2

1 + σ2
1 σ2

2 + σ2
2 σ2

x

(ασ2
x + σ2

1 )(σ
2
x + σ2

2 )

)
+ RI ,

RI ≥ 0, RS ≥ 0
}

. (22)

It can be verified that RG and RC are equivalent to R′G and R′C, respectively, if one sets
ρ2

1 = σ2
x /(σ2

x + σ2
1 ) and ρ2

2 = σ2
x /(σ2

x + σ2
2 ), respectively. In addition, as a connection to the

result in a previous study, when there is no secret-key generation or provision (RS = 0), and RJ , RL
are large enough (RJ , RL → ∞), one can easily see that inR′G andR′C, the maximum value of RI
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is 1
2 log

(
(σ2

x+σ2
1 )(σ

2
x+σ2

2 )

σ2
x σ2

1+σ2
1 σ2

2+σ2
2 σ2

x

)
= 1

2 log
(

1 + σ2
x

σ2
1+σ2

2+σ2
1 σ2

2 /σ2
x

)
. This value is exactly the identification

capacity of the BIS for non-standard Gaussian RVs shown in [5] (Equation (21)) and it is achieved
when α ↓ 0.

Another special case where RI = 0 (only one user), RJ → ∞ (the storage rate is
sufficiently large), and ρ1 → 1 (the enrollment channel is noiseless), one can see that
Theorem 1 naturally reduces to the characterizations of [23].

4. Behaviors of the Capacity Region
4.1. Optimal Asymptotic Rates and Zero-Rate Slopes

For the sake of succinct discussion, we concentrate on the generated-secret BIS model
at which RI = 0, and the capacity region for this case is denoted byR, whose characteriza-
tion is obtained by setting RI = 0 in the right-hand side of (19). We first investigate some
special points of secret-key and privacy-leakage rates when storage rate becomes extremely
low or large. Define two rate functions of RJ as

R∗S(RJ) = max
(RS ,RJ ,RL)∈R

RS, R∗L(RJ) = min
(RS ,RJ ,RL)∈R

RL, (23)

where the left and right equations in (23) are the maximum secret-key rate and the minimum

privacy-leakage rate, respectively. Moreover, we define Rα
J = 1

2 log( αρ2
1ρ2

2+1−ρ2
1ρ2

2
α ), so that

we can write

R∗S(Rα
J ) =

1
2

log

(
1− ρ2

1ρ2
2/22(Rα

J )

1− ρ2
1ρ2

2

)
,

R∗L(Rα
J ) =

1
2

log

(
1− ρ2

1ρ2
2

1− ρ2
1 + ρ2

1(1− ρ2
2)/22(Rα

J )

)
. (24)

As Rα
J → ∞ (α ↓ 0), the optimal asymptotic secret-key rate and the amount of

privacy-leakage approach to

lim
Rα

J→∞
R∗S(Rα

J ) =
1
2

log

(
1

1− ρ2
1ρ2

2

)
= I(Y; Z), (25)

lim
Rα

J→∞
R∗L(Rα

J ) =
1
2

log

(
1− ρ2

1ρ2
2

1− ρ2
1

)
=

1
2

log

(
1

1− ρ2
1

)
− 1

2
log

(
1

1− ρ2
1ρ2

2

)
= I(X; Y)− I(Z; Y). (26)

The result (25) corresponds to the optimal asymptotic secret-key rate [23] (Sect. III-B),
and in order to achieve this value, it is required to let the storage rate go to infinity and
leak the user’s privacy up to rate I(X; Y)− I(Z; Y).

In contrast, when RJ ↓ 0, it is evident that RS and RL become zero as well, which does
not carry much information. However, to investigate the BIS that achieves high secret-key
and small privacy-leakage rates in the low storage rate regime, the zero-rate slopes of
secret-key and privacy-leakage rates, namely, how fast these rates converge to zero, are
important indicators. In light of (24), by a few steps of calculations, the slopes of secret-key
and privacy-leakage rates at RJ ↓ 0 can be determined as follows:

dR∗S(Rα
J )

dRα
J

∣∣∣∣
Rα

J =0
=

ρ2
1ρ2

2
1− ρ2

1ρ2
2

, (27)

dR∗L(Rα
J )

dRα
J

∣∣∣∣
Rα

J =0
=

ρ2
1(1− ρ2

2)

1− ρ2
1ρ2

2
=

ρ2
1ρ2

2
1− ρ2

1ρ2
2
·

1− ρ2
2

ρ2
2

, (28)
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where (27) is equal to the signal-to-noise ratio (SNR) of the channel from Y to Z, and this
value multiplied by the reverse of the SNR of the channel PZ|X appears in the slope of
privacy-leakage rate in (28).

4.2. Examples

Next, we give numerical computations of three different examples and take a look
into behaviors of the special points.

Ex. 1: (a) ρ2
1 = 3/4, ρ2

2 = 2/3, (b) ρ2
1 = 7/8, ρ2

2 = 2/3, (c) ρ2
1 = 15/16, ρ2

2 = 2/3,

Ex. 2: (a) ρ2
1 = 3/4, ρ2

2 = 2/3, (b) ρ2
1 = 9/10, ρ2

2 = 7/8, (c) ρ2
1 = 15/16, ρ2

2 = 11/12,

Ex. 3: (a) ρ2
1 = 3/4, ρ2

2 = 2/3, (b) ρ2
1 = 3/4, ρ2

2 = 8/9, (c) ρ2
1 = 3/4, ρ2

2 = 14/15.

Note that as ρ2
1, ρ2

2 are large, the levels of noises (noises with smaller variances) added
to the bio-data sequences at the encoder and decoder become small. Example 1 is the case
where the level of noise at the encoder gradually decreases from (a) to (c), but the level
of noise at the decoder stays constant for each round. Example 2 is the case in which the
levels of noises at both the encoder and decoder are improved gradually from (a) to (c).
Example 3 is opposite to Example 1. The calculated results of the secret-key and privacy-
leakage rates for these cases are summarized in Tables 1 and 2, and Figure 5.

Table 1. The secret-key and privacy-leakage rates when RJ → ∞.

Cases
The Optimal Secret-Key Rate Privacy-Leakage Rate

(a) (b) (c) (a) (b) (c)

Ex. 1 0.35 0.44 0.49 0.35 0.6 0.90

Ex. 2 0.35 0.77 0.98 0.35 0.38 0.41

Ex. 3 0.35 0.55 0.6 0.35 0.14 0.09

Table 2. The slopes of secret-key and privacy-leakage rates at RJ ↓ 0.

Cases
The Slope of Secret-Key Rate The Slope of Privacy-Leakage Rate

(a) (b) (c) (a) (b) (c)

Ex. 1 1.0 1.40 1.67 0.5 0.7 0.83

Ex. 2 1.0 3.71 6.11 0.5 0.53 0.56

Ex. 3 1.0 2.0 2.33 0.5 0.25 0.17

It is ideal to keep the privacy-leakage rate small while producing a high secret-key
rate, but Example 1 works out in the opposite way (cf. the rows of Ex. 1 in Tables 1 and 2),
so this is not a preferable choice. Example 2 realizes a high secret-key rate, but the amount
of privacy-leakage remains high at some level, too (cf. the rows of Ex. 2 in Tables 1 and 2,
and Figure 5a,b). On the other hand, in Example 3, the privacy-leakage rate declines,
but the secret-key rate becomes smaller compared to Example 2 (cf. the rows of Ex. 3
in Tables 1 and 2, and Figure 5c,d). From these behaviors, we may conclude that it is
unmanageable to achieve both high secret-key and small privacy-leakage rates at the same
time. If one aims to achieve a high secret-key rate, it is important to diminish the levels of
noises at both encoder and decoder, e.g., deploying quantizers with high quality, but this
could result in leaking more users’ privacy. In different circumstances, to achieve a small
privacy-leakage rate, it is preferable to maintain a certain level of noise at the encoder and
pay sufficient attention for processing the noise’s level at the decoder. In this way, however,
the gain of the secret-key rate may be dropped.
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Figure 5. The projections of the capacity regionRG onto two dimension figures for Exs. 2 and 3. (a) is the boundary of the
capacity region RG onto RJ RS-plane for Ex. 2. (b) is the boundary of the capacity region RG onto RJ RL-plane for Ex. 2.
(c) is the boundary of the capacity regionRG onto RJ RS-plane for Ex. 3. (d) is the boundary of the capacity regionRG into
RJ RL-plane for Ex. 3.

5. Overviews of the Proof of Theorem 1

The detailed proof of Theorem 1 is provided in Appendix A for RG and
Appendix B for RC. The regions RG and RC can be derived similarly, and the differ-
ence is that one-time pad is used to conceal the chosen secret key for secure transmission in
the proof ofRC. The proof of each region consists of two parts: achievability and converse
parts. The converse proof follows by applying Fano’s inequality [26], and the conditional
version of EPI [27] doubly in two different directions. In the achievability part, the modified
typical set [11], giving the so-called Markov lemma for weak typicality, helps us show that
the error probability of the BIS vanishes since the so-called Markov lemma based on strong
typicality can not be applied to the case of continuous RVs. Though a more general version
of the Markov lemma for Gaussian sources, including lossy reconstruction, is shown in [28],
we found that the two properties of the modified typical set are handy tools for checking
all conditions in Definitions 1 and 2, and thus we provide our proof of the achievability
based on this set. To evaluate the secret-key, secrecy-leakage, and privacy-leakage rates, we
extend [29] (Lemma 4) to include continuous RVs so that the extended one can be used to
derive the upper bounds on conditional differential entropies of jointly typical sequences,
appearing in these evaluations.
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6. Conclusions and Future Work

We characterized the capacity regions of identification, secret-key, storage, and privacy-
leakage rates for both generated- and chosen-secret BIS models under Gaussian sources
and channels. We showed that an idea for deriving the capacity regions of the BIS with
HSM is to convert the system to another one, where the data flows of each user are in
one-way direction. We also gave numerical computations of three different examples for
the generated-secret BIS model, and from these results, it appeared that achieving high
secret-key and small privacy-leakage rates simultaneously is unlikely manageable.

For future work, a natural extension is to characterize the capacity regions of the
BIS with Gaussian vector sources and channels. In the scalar Gaussian case, we showed
that it suffices to use a single parameter to characterize the optimal trade-off of the BIS.
However, for Gaussian vector sources, the optimal trade-off regions is generally in the
form of the covariance matrix optimization problem, and solving the problem becomes
more challenging as one may need to use the enhancement technique, introduced in [30],
to characterize the capacity regions.

Another extension is to construct practical codes that can achieve the capacity regions.
In the BIS with a single user, convolutional and turbo codes that control the privacy-leakage
were investigated in [31] and applied to real-life application, Electroencephalograph, in [32].
In these studies, it was shown that by applying vector quantization at the encoder and soft-
decision at the decoder for Gaussian sources, a lower privacy-leakage rate was realizable.
However, to the best of our knowledge, there has not yet been any studies dealing with
practical codes for the BIS with multiple users. This remains as an interesting research topic.
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Appendix A. Proof of Equation (19)

In this appendix, we give the proof of the capacity region of the generated-secret BIS
model. Before proceeding to the proof, we review the definitions of the weakly typical and
modified typical sets, and some properties of these sets.

Appendix A.1. Weakly Typical Sets and Modified Typical Sets

The definition and property of weakly typical set hold for both discrete and continuous
RVs, but here we provide only the continuous version.

Definition A1. (Weakly ε-typical set for continuous RVs [26] (Chapter 8))
Let X1, X2, · · · , Xk be a sequence of continuous RVs drawn i.i.d. according to the joint

pdf fX1X2···Xk (x1, x2, · · · , xk). For small enough ε > 0, and any n, the weakly ε-typical set

A(n)
ε (X1X2 · · ·Xk) with respect to fX1X2···Xk (x1, x2, · · · , xk) is defined as follows:

A(n)
ε (X1X2 · · ·Xk) =

{
(xn

1 , xn
2 , · · · , xn

k ) :
∣∣∣∣− 1

n
log fSn(sn)− h(S)

∣∣∣∣ < ε, ∀S ⊆ {X1, X2, · · · , Xk}
}

, (A1)
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where sn ⊆ {xn
1 , xn

2 , · · · , xn
k } corresponding to RV S and fSn(sn) = ∏n

t=1 fSt(st).
Moreover, the conditional ε-typical set is defined as

A(n)
ε (Xk|xn

2 , · · · , xn
k−1) =

{
xn

k : (xn
1 , xn

2 , · · · , xn
k ) ∈ A

(n)
ε (X1X2 · · ·Xk)

}
.

The weakly ε-typical set A(n)
ε (·) has the following properties.

Lemma A1. (Some properties of weakly ε-typical set [26])

1. For ∀S ⊆ {X1, X2, · · · , Xk} and large enough n,

Pr{A(n)
ε (S)} ≥ 1− ε. (A2)

2. For ∀S, V ⊆ {X1, X2, · · · , Xk} (S ∩V = ∅), we have that

Vol(A(n)
ε (V|sn)) ≤ en(h(V|S)+2ε), (A3)

where Vol(·) denotes the volume of a set.
3. Fix k = 2. If (X̃n

1 , X̃n
2 ) are independent sequences with the same marginals as fXn

1 Xn
2
(xn

1 , xn
2 ),

then

Pr{(X̃n
1 , X̃n

2 ) ∈ A
(n)
ε (X1X2)} ≤ e−n(I(X1;X2)−2ε). (A4)

Moreover, for n large enough,

Pr{(X̃n
1 , X̃n

2 ) ∈ A
(n)
ε (X1X2)} ≥ (1− ε)e−n(I(X1;X2)+2ε). (A5)

Proof. See [26] (Section 15.2).

Next, we provide the definition of the modified ε-typical set. This set gives the
so-called Markov lemma for the weak typicality.

Definition A2. (Modified ε-typical set [11] (Appendix A-A))
Consider that (X, Y, U) forms a Markov chain X − Y−U, i.e., fXYU(x, y, u) = fXY(x, y)

fU|Y(u|y). The modified ε-typical set B(n)ε (YU) is defined as

B(n)ε (YU) =
{
(yn, un) : Pr{Xn ∈ A(n)

ε (X|yn, un)|(Yn, Un) = (yn, un)} ≥ 1− ε
}

, (A6)

where Xn is drawn i.i.d. from the transition probability ∏n
k=1 fX|Y(xk|yk). In addition, define

B(n)ε (U|yn) = {un : (yn, un) ∈ B(n)ε (YU)} for all yn, and B(n)ε (U|yn)c denotes the complemen-
tary set of B(n)ε (U|yn).

The modified set induces two useful properties below.

Lemma A2. (Properties of the modified set [11] (Appendix A-A))

Property 1. If (yn, un) ∈ B(n)ε (YU) then also (yn, un) ∈ A(n)
ε (YU).

Property 2. Assume that (Un, Yn, Xn) ∼ fUnXnYn = ∏n
t=1 fXtYt fUt |Yt

. Then, for
ε ∈ (0, 1) and n large enough, ∑

(yn ,un)∈B(n)ε (YU)
PYnUn(yn, un) ≥ 1− ε.

Proof. See [11] (Appendix A-A).

Now we are at the position to present the detailed proofs of Equation (19).
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Appendix A.2. Achievability Part

Let 0 < α ≤ 1 and fix δ > 0 (small enough positive), the block length n, and the joint
pdf of (U, Y, X, Z) such that the Markov chain U −Y− X− Z holds. Let U ∼ N (0, 1− α),
Gaussian RV with mean zero and variance 1− α. As shown in Figure A1, based on the
converted system, consider that Yik = U + Φ, where Φ ∼ N (0, α), independent of U, is
Gaussian with mean zero and variance α. From (9) and (10) of the converted system, it
holds that

Xik = ρ1U + ρ1Φ + N′1, Zk = ρ1ρ2U + ρ1ρ2Φ + ρ2N′1 + N2. (A7)

Figure A1. Relation among RVs (U, Y, X, Z).

Hence, we readily see that

I(Y; U) =
1
2

log
(

1
α

)
, I(X; U) =

1
2

log

(
1

αρ2
1 + 1− ρ2

1

)
,

I(Z; U) =
1
2

log

(
1

αρ2
1ρ2

2 + 1− ρ2
1ρ2

2

)
. (A8)

Now set 0 < RI < I(Z; U), and

RS = I(Z; U)− RI − 2δ, RJ = I(Y; U)− I(Z; U) + RI + 6δ, (A9)

RL = I(X; U)− I(Z; U) + RI + 6δ, MI = 2nRI , MS = 2nRS , MJ = 2nRJ , (A10)

where the values of I(Y; U), I(X; U), and I(Z; U) are specified in (A8). Also, recall that
I = [1 : MI ],S = [1 : MS], J = [1 : MJ ].

Next we generate en(I(Y;U)+δ) sequences of un(s, j) i.i.d. from pdf fU , where s ∈ S and
j ∈ J .

Seeing yn
i (i ∈ I), the encoder finds un(s, j) such that (yn

i , un(s, j)) ∈ B(n)δ (YU),
denoting the modified set defined in Definition A2. If there are multiple pairs of such (s, j),
the encoder picks one at random. If there are no such pairs, it declares error. We denote the
chosen pair as (s(i), j(i)), where each element is a function of the index i. The helper j(i) is
stored in the helper DB and secret key s(i) is saved in the key DB at location i, respectively.

Observing zn, the noisy sequence of the identified user xn
w, the decoder looks for

un(s, j(i)) such that (zn, un(s, j(i))) ∈ A(n)
δ (ZU) for some i ∈ I and s ∈ S , whereA(n)

δ (ZU)

denotes the weakly δ-typical set. If a unique pair (i, s) is found, it outputs (ŵ, ŝ(w)) = (i, s),
or else it declares error.

Let (S(i), J(i)) denote the index pair chosen at the encoder based on Yn
i , i.e., (Yn

i , Un

(S(i), J(i))) ∈ B(n)δ (YU). Furthermore, we denote Un(S(i), J(i)) as Un
i for notational sim-

plicity. Note that the pair (S(i), J(i)) can determine the sequence Un
i precisely.

Next, we check all conditions in Definition 1 hold for a random codebook Cn = {Un(s, j), s ∈
S and j ∈ J }.
Analysis of Error Probability: For W = i, an error event possibly happens at the encoder is:

E1 : {(Yn
i , Un(s, j)) /∈ B(n)δ (YU) for all s ∈ S and j ∈ J },

and those at the decoder are:

E2 : {(Zn, Un
i ) /∈ A(n)

δ (ZU)},
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E3 : {(Zn, Un(s′, J(i))) ∈ A(n)
δ (ZU) for some s′ ∈ S , s′ 6= S(i)},

E4 : {(Zn, Un(s, J(i′))) ∈ A(n)
δ (ZU) for some i′ ∈ I , i′ 6= i, and s ∈ S}.

As usual, we use the random coding argument, and the ensemble average of the error
probability can be evaluated as

Pr{(Ŵ, Ŝ(W)) 6= (W, S(W))|W = i} = Pr{E1 ∪ E2 ∪ E3 ∪ E4}
≤ Pr{E1}+ Pr{E2 ∩ E c

1}+ Pr{E3}+ Pr{E4}, (A11)

where each of Pr{·} on the right-hand side denotes the conditional probability given W = i.
Now let us focus on bounding each term individually. The first term of (A11) can be

made arbitrarily small by a similar argument of [11] (cf. the analysis of First Term of Error
Probability in Appendix A-B). The rest can be analyzed as follows. For the second term, it
follows that

Pr{E2 ∩ E c
1} = Pr{(Zn, Un

i ) /∈ A(n)
δ (ZU) ∩ (Yn

i , Un
i ) ∈ B

(n)
δ (YU)}

≤ Pr{(Zn, Yn
i , Un

i ) /∈ A(n)
δ (ZYU) ∩ (Yn

i , Un
i ) ∈ B

(n)
δ (YU)}

=
∫∫
B(n)δ (YU)

fYn
i Un

i
(yn, un)Pr{Zn /∈ A(n)

δ (Z|yn, un)|(Yn
i , Un

i ) = (yn, un)}d(yn, un)

(a)
≤ δ

∫∫
B(n)δ (YU)

fYn
i Un

i
(yn, un)d(yn, un) ≤ δ, (A12)

where (a) follows from the definition of the modified δ-typical set due to the Markov chain
Z−Y−U. To bound Pr{E3}, due to the symmetry in the codebook generation, we can set
J(i) = 1 and have that

Pr{E3} = Pr{(Zn, Un(s′, 1)) ∈ A(n)
δ (ZU) for some s′ ∈ S , s′ 6= S(i)}

= ∑
s∈S

(
Pr{S(i) = s} · Pr{(Zn, Un(s′, 1)) ∈ A(n)

δ (ZU) for some s′ ∈ S , s′ 6= s|S(i) = s}
)

= ∑
s∈S

Pr{S(i) = s} · Pr

 ⋃
s′∈S\s

(Zn, Un(s′, 1)) ∈ A(n)
δ (ZU)

∣∣∣∣S(i) = s




≤ ∑
s∈S

Pr{S(i) = s} ·

 ∑
s′∈S\s

Pr
{
(Zn, Un(s′, 1)) ∈ A(n)

δ (ZU)

∣∣∣∣S(i) = s
}

(b)
= ∑

s∈S

Pr{S(i) = s} ·

 ∑
s′∈S\s

Pr{(Zn, Un(s′, 1)) ∈ A(n)
δ (ZU)}


≤ ∑

s∈S

Pr{S(i) = s} ·

 ∑
s′∈S\s

e−n(I(Z;U)−δ)


≤ MS · e−n(I(Z;U)−δ) ≤ e−nδ, (A13)

where (b) holds because the event {(Zn, Un(s′, 1)) ∈ A(n)
δ (ZU)}, s′ ∈ S\s and the

event {S(i) = s} are mutually independent, and the last inequality in (A13) follows as
RS < I(Z; U).

To evaluate Pr{E4}, we define two new events E ′4 = {(Zn, Un(S(i), J(i′))) ∈ A(n)
δ (ZU)

for some i′ 6= i, i′ ∈ I} and E ′′4 = {(Zn, Un(s′, J(i′))) ∈ A(n)
δ (ZU) for some i′ 6= i, i′ ∈ I
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and s′ 6= S(i), s′ ∈ S}. Because E ′ ∩ E ′′ = ∅, it follows that Pr{E4} = Pr
{
E ′4
}
+ Pr

{
E ′′4
}

.
For Pr

{
E ′4
}

, without loss of generality, we set S(i) = 1. Then, it follows that

Pr
{
E ′4
}
= Pr{(Zn, Un(1, J(i′))) ∈ A(n)

δ (ZU) for some i′ ∈ I , i′ 6= i}

≤ ∑
i′∈I\i

Pr{(Zn, Un(1, J(i′))) ∈ A(n)
δ (ZU)}

≤ ∑
i′∈I\i

e−n(I(Z;U)−δ) ≤ MI · e−n(I(Z;U)−δ) ≤ e−nδ, (A14)

where the last inequality in (A14) follows as RI < I(Z; U). For Pr
{
E ′′4
}

, due to the statistical
independence of Zn and Un(s′, J(i′)), we have that

Pr
{
E ′′4
}
= Pr{(Zn, Un(s′, J(i′))) ∈ A(n)

δ (ZU) for some i′ 6= i, i′ ∈ I and s′ 6= S(i), s′ ∈ S}

= Pr

 ⋃
i′∈I\i, s′∈S\S(i)

(Zn, Un(s′, J(i′))) ∈ A(n)
δ (ZU)


= ∑

s∈S

Pr{S(i) = s} · Pr

 ⋃
i′∈I\i, s′∈S\s

(Zn, Un(s′, J(i′))) ∈ A(n)
δ (ZU)

∣∣∣∣S(i) = s




≤ ∑
s∈S

Pr{S(i) = s} ·

 ∑
i′∈I\i

∑
s′∈S\s

Pr
{
(Zn, Un(s′, J(i′))) ∈ A(n)

δ (ZU)

∣∣∣∣S(i) = s
}

= ∑
s∈S

Pr{S(i) = s} ·

 ∑
i′∈I\i

∑
s′∈S\s

Pr{(Zn, Un(s′, J(i′))) ∈ A(n)
δ (ZU)}


= ∑

s∈S

Pr{S(i) = s} ·

 ∑
i′∈I\i

∑
s′∈S\s

e−n(I(Z;U)−δ)


≤ MI ·MS · e−n(I(Z;U)−δ) = e−nδ, (A15)

where the last equality in (A15) holds as 1
n log MI +

1
n log MS = I(Z; U)− 2δ. Hence, the

error probability is bounded by

Pr{(Ŵ, Ŝ(W)) 6= (W, S(W))|W = i} ≤ 4δ (A16)

for large enough n.
Before diving into the detailed analysis, we state lemmas that are important for the

rest of the evaluations.

Lemma A3. For given un and large enough n, we have that

Vol
(
B(n)δ (Y|un)

)
≤ Vol

(
A(n)

δ (Y|un)
)

. (A17)

Proof. This is a straightforward result from Property 1 of Lemma A2.

The following lemma plays an essential role in bounding the secret-key, secrecy-
leakage, and privacy-leakage rates of the BIS. Again recall that the index pair (S(i), J(i))
determines Un

i directly, and therefore Lemma A4 can be thought of an extended version
of [29] (Lemma 4) to incorporate continuous RVs. In [29], the lemma was proved by using
the strongly typical set [33], and the literature, e.g., [8,13] demonstrated that it could be
finely applied to establish the achievability part of the BIS under noisy enrollment for DMS
settings. However, when the sources of the BIS becomes Gaussian, it is not trivial whether
the claim of this lemma still holds or not. Here, we provide a full proof of the extended
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version of [29] (Lemma 4) for Gaussian RVs by using the connection between the modified
δ-typical set B(n)δ (·) and the weakly δ-typical set A(n)

δ (·).

Lemma A4. It holds that

h(Yn
i |S(i), J(i), Cn) ≤ n(h(Y|U) + δn), (A18)

h(Yn
i |Xn

i , S(i), J(i), Cn) ≤ n(h(Y|X, U) + δn), (A19)

where δn ↓ 0 as δ ↓ 0 and n→ ∞.

Proof. We first prove (A18). Define a binary RV T taking value 1 if (Yn
i , Un

i ) ∈ B
(n)
δ (YU),

and 0 otherwise. In the analysis of the error probability, it is guaranteed that PT(0) ≤ δ, i.e.,
(Yn

i , Un
i ) ∈ B

(n)
δ (YU) with high probability. The left-hand side of (A18) can be bounded as

h(Yn
i |S(i), J(i), Cn)

(c)
=h(Yn

i |Un
i , S(i), J(i), Cn)

(d)
≤ h(Yn

i |Un
i ) ≤ h(Yn

i , T|Un
i ) ≤ H(T) + h(Yn

i |Un
i , T)

≤1 + PT(0)h(Yn
i |Un

i , T = 0) + PT(1)h(Yn
i |Un

i , T = 1)
(e)
≤ nεn + h(Yn

i |Un
i , T = 1)

=nεn +
∫
Rn

h(Yn
i |Un

i = un, T = 1)dF(un)

= nεn +
∫
Rn

∫
B(n)δ (Y|un)

PYn
i |U

n
i ,T(y

n|un, 1) log
1

PYn
i |U

n
i ,T(yn|un, 1)

dyndF(un)

(f)
≤ nεn +

∫
Rn

log

(∫
B(n)δ (Y|un)

PYn
i |U

n
i ,T(y

n|un, 1)
1

PYn
i |U

n
i ,T(yn|un, 1)

dyn

)
dF(un)

= nεn +
∫
Rn

log
(∫
B(n)δ (Y|un)

dyn
)

dF(un)

= nεn +
∫
Rn

log
(

Vol
(
B(n)δ (Y|un)

))
dF(un)

(g)
≤ nεn +

∫
Rn

log
(

Vol
(
A(n)

δ (Y|un)
))

dF(un)

(h)
≤ nεn + n(h(Y|U) + δ))

∫
Rn

dF(un)

=n(h(Y|U) + δ + εn), (A20)

where

(c) follows as (S(i), J(i)) determines Un
i ,

(d) follows because conditioning reduces entropy,
(e) follows as h(Yn

i |Un
i , T = 0) ≤ h(Yn

i ) = n
2 log(2πe), and we define

εn = 1
n + δ

2 log(2πe),
(f) follows by applying Jensen’s inequality to the concave function φ(t) = −t log t,
(g) is due to (A17) in Lemma A3,
(h) is due to (A3) in Lemma A1.

Therefore, from (A20), we obtain that

1
n

h(Yn
i |S(i), J(i), Cn) ≤ h(Y|U) + δn, (A21)

where δn = δ + εn and δn ↓ 0 as n→ ∞ and δ ↓ 0.
Next, we briefly summarize how to show (A19). The left-hand side of the inequality

can be developed as h(Yn
i |Xn

i , S(i), J(i), Cn) = h(Yn
i |Xn

i , Un
i , S(i), J(i), Cn) ≤ h(Yn

i |Xn
i , Un

i ),
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where the equality and inequality follow due to the same reasons of (c) and (d) in (A20),
respectively. By the definition of the modified δ-typical set in Definition A2, it can be
concluded that Pr{(Xn

i , Yn
i , Un

i ) ∈ A
(n)
δ (XYU)} → 1 as n → ∞ due to the Markov chain

X − Y −U and (Yn
i , Un

i ) ∈ B
(n)
δ (YU) with high probability. This implies Pr{(Xn

i , Un
i ) ∈

A(n)
δ (XU)} → 1 and Pr{Yn

i ∈ A
(n)
δ (Y|xn, un)|(Xn

i , Un
i ) = (xn, un)} → 1 as n→ ∞ as well.

Based on this observation, the rest of the proof for (A19) can be done similarly by the
arguments seen in [29] (Appendix C), and therefore the details are omitted.

Note that Equations (14) and (16) obviously hold from the parameter settings.
By applying Lemma A4, bounds on the secret-key and the secrecy-leakage rates can
be derived as follows:

1
n

H(S(i)|Cn) ≥ RS − 5δ =
1
n

log MS − 5δ,
1
n

I(S(i); J(i)|Cn) ≤ 5δ (A22)

for large enough n. For detailed discussions, the readers may refer to [14] (Proof of
Theorem 1).

Analysis of Privacy-Leakage Rate: From the left-hand side of (18), we have that

I(Xn
i ; J(i)|Cn) = H(J(i)|Cn)− H(J(i)|Xn

i , Cn)

≤ nRJ − H(J(i)|Xn
i , Cn)

= n(I(Y; U)− I(Z; U) + RI + 6δ)− H(J(i)|Xn
i , Cn)

= n(h(U|Z)− h(U|Y) + RI + 6δ)− H(J(i)|Xn
i , Cn). (A23)

The last term in (A23) can be further evaluated as

H(J(i)|Xn
i , Cn) = h(Yn

i , J(i)|Xn
i , Cn)− h(Yn

i |Xn
i , J(i), Cn)

= h(Yn
i , J(i)|Xn

i , Cn)− h(Yn
i |Xn

i , J(i), S(i), Cn)− I(Yn
i ; S(i)|Xn

i , J(i), Cn)

(i)
= h(Yn

i |Xn
i , Cn)− h(Yn

i |Xn
i , J(i), S(i), Cn)− H(S(i)|Xn

i , J(i), Cn)

(j)
= nh(Y|X)− h(Yn

i |Xn
i , J(i), S(i), Cn)− H(S(i)|Xn

i , J(i), Zn, Cn)

(k)
≥ nh(Y|X)− h(Yn

i |Xn
i , J(i), S(i), Cn)− H(S(i)|J, Zn, Cn)

(l)
≥ nh(Y|X)− h(Yn

i |Xn
i , J(i), S(i), Cn)− nδ′n

(m)
≥ nh(Y|X)− n(h(Y|X, U) + δn)− nδ′n
= n(I(Y; U|X)− δn − δ′n)

= n(h(U|X)− h(U|Y)− δn − δ′n), (A24)

where

(i) follows as J(i) and S(i) are functions of Yn
i for given codebook Cn,

(j) follows since (Yn
i , Xn

i ) are independent of Cn, and the Markov chain S(i)− (Xn
i , J(i))−

Zn holds,
(k) follows because conditioning reduces entropy and S(i) − (J(i), Zn) − J\J(i)

is applied,
(l) follows by applying Fano’s inequality since S(i) can be reliably reconstructed from

(J, Zn) for given codebook Cn, and δ′n ↓ 0 as δ ↓ 0 and n→ ∞,
(m) is due to (A19).
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From (A23) and (A24), we have that

1
n

I(Xn
i ; J(i)|Cn) ≤ h(U|Z)− h(U|X) + RI + 6δ + δn + δ′n

= I(X; U)− I(Z; U) + RI + 6δ + δn + δ′n
≤ RL + δ (A25)

for sufficiently large n.
Finally, by using the selection lemma [34] (Lemma 2.2), from, e.g., (A16) and (A25),

there exists at least one good codebook satisfying all the conditions in Definition 1 for large
enough n.

Appendix A.3. Converse Part

We consider a more relaxed case where W is uniformly distributed on I , and (13), (15),
(17) and (18) in Definition 1 are replaced by

Pr{(Ŵ, Ŝ(W)) 6= (W, S(W))} ≤ δ, (A26)
1
n H(S(W)|W) ≥ RS − δ, (A27)

1
n I(S(W); J(W)|W) ≤ δ, (A28)

1
n I(Xn

W ; J(W)|W) ≤ RL + δ, (A29)

respectively. Other conditions remain unchanged. We shall show that even for this case
the outer bound on RG coincides with its inner bound where there is no assumption of
the uniformity of W. A similar approach was also taken in [12]. We assume that a rate
tuple (RI , RS, RJ , RL) is achievable, implying there exists a pair of encoder and decoder
(e, d) such that conditions (14), (16), and (A26)–(A29) are satisfied for any δ > 0 and large
enough n.

Analysis of Identification and Secret-key Rates: The joint entropy of W and S(W) can be
developed as

H(W, S(W)) = H(W, S(W)|Zn, J) + I(W, S(W); Zn, J)
(a)
= H(W, S(W)|Ŵ, Ŝ(W), Zn, J) + I(W, S(W); J) + I(W, S(W); Zn|J)
(b)
≤ H(W, S(W)|Ŵ, Ŝ(W)) + I(W, S(W); J(W)) + I(W, S(W); Zn|J(W))

(c)
≤ nδn + I(W; J(W)) + I(S(W); J(W)|W) + I(W, S(W); Zn|J(W))

(d)
≤ n(δn + δ) + h(Zn|J(W))− h(Zn|J(W), S(W))

(e)
≤ n(δn + δ) + h(Zn)− h(Zn|J(W), S(W)), (A30)

where

(a) holds since (Ŵ, Ŝ(W)) is a function of (Zn, J),
(b) follows because conditioning reduces entropy, and only J(W) is possibly dependent

on Zn, S(W),
(c) is due to Fano’s inequality with δn = 1

n (1 + δ log MI MS),
(d) follows since (A28) is applied, and W is independent of other RVs,
(e) follows because conditioning reduces entropy.

Due to the uniformity of W on I , we have that

H(W, S(W)) = H(W) + H(S(W)|W) = log MI + H(S(W)|W). (A31)
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From (14), (A27), and (A30), it yields that

RI + RS ≤ h(Z)− 1
n

h(Zn|J(W), S(W)) + 3δ + δn. (A32)

Analysis of Storage Rate: From (16),

n(RJ + δ) ≥ log MJ ≥ max
w∈I

H(J(w)) ≥ H(J(W)|W)

= I(Yn
W ; J(W)|W)

(f)
= h(Yn

W)− h(Yn
W |J(W), W)

= h(Yn
W)− h(Yn

W |J(W), S(W), W)− I(S(W); Yn
W |J(W), W)

(g)
= h(Yn

W)− h(Yn
W |J(W), S(W))− H(S(W)|J(W), W)

≥ h(Yn
W)− h(Yn

W |J(W), S(W))− H(S(W)|W)

(h)
≥ h(Zn|J(W), S(W))− h(Yn

W |J(W), S(W)) + n(RI − (δn + 2δ)), (A33)

where

(f) holds as W is independent of Yn
W ,

(g) holds as W is independent of other RVs and S(W) is a function of Yn
W ,

(h) follows because h(Yn
W) = h(Zn) = n

2 log(2πe), and by combining (A30) and (A31),
we obtain that H(S(W)|W) ≤ h(Zn)− h(Zn|J(W), S(W))− n(RI − (δn + 2δ)).

Analysis of Privacy-Leakage Rate: From (A29),

n(RL + δ) ≥ I(Xn
W ; J(W)|W)

(i)
= h(Xn

W)− h(Xn
W |J(W), W)

= h(Xn
W)− h(Xn

W |J(W), S(W), W)− I(S(W); Xn
W |J(W), W)

≥ h(Xn
W)− h(Xn

W |J(W), S(W))− H(S(W)|J(W), W)

≥ h(Xn
W)− h(Xn

W |J(W), S(W))− H(S(W)|W)

(j)
≥ h(Zn|J(W), S(W))− h(Xn

W |J(W), S(W)) + n(RI − (δn + 2δ)), (A34)

where

(i) holds as W is independent of Xn
W ,

(j) follows because h(Xn
W) = h(Zn), and the same reason of (h) in (A33) is used.

For further evaluations of (A32)–(A34), we scrutinize a lower bound on h(Zn|J(W), S(W))
and an upper bound on h(Yn

W |J(W), S(W)) with fixed h(Xn
W |J(W), S(W)) by applying the

conditional EPI [27] (Lemma II). It is a key to set

1
n

h(Xn
W |J(W), S(W)) =

1
2

log
(

2πe(αρ2
1 + 1− ρ2

1)
)

(A35)

with some 0 < α ≤ 1. Indeed, this is a reasonable setting because 1
2 log(2πe) ≥

1
n h(Xn

W |J(W), S(W)) ≥ 1
2 log(2πe(1− ρ2

1)). The lower bound is obtained from 1
n h(Xn

W |J
(W), S(W)) ≥ 1

n h(Xn
W |Yn

W , J(W), S(W)) = 1
n h(Xn

W |Yn
W) due to the fact that (J(W), S(W))

is a function of Yn
W . For α = 0, it is not possible to achieve such point, and the reason will

be explained right after Equation (A40).
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In the direction from X to Z, by applying the conditional EPI [27] (Lemma II) to the
first equality in (10), it follows that

e
2
n h(Zn |J(W),S(W)) ≥ e

2
n h(ρ2Xn

W |J(W),S(W)) + e
2
n h(Nn

2 |J(W),S(W))

(k)
= ρ2

2e
2
n h(Xn

W |J(W),S(W)) + e
2
n h(Nn

2 )

= ρ2
2

(
2πe(αρ2

1 + 1− ρ2
1)
)
+ 2πe(1− ρ2

2)

= 2πe(αρ2
1ρ2

2 + 1− ρ2
1ρ2

2), (A36)

where (k) holds as Nn
2 is independent of (J(W), S(W)), and as a deduction,

1
n

h(Zn|J(W), S(W)) ≥ 1
2

log(2πe(αρ2
1ρ2

2 + 1− ρ2
1ρ2

2)). (A37)

In the opposite direction (from X to Y), again applying the conditional EPI [27] (Lemma II)
to (9), we have that

e
2
n h(Xn

W |J(W),S(W)) ≥ e
2
n h(ρ1Yn

W |J(W),S(W)) + e
2
n h((N′1)

n), (A38)

where the inequality holds as (N′1)
n is also independent of (J(W), S(W)), meaning that

2πe(αρ2
1 + 1− ρ2

1) ≥ ρ2
1e

2
n h(Yn

W |J(W),S(W)) + 2πe(1− ρ2
1) (A39)

and thus

e
2
n h(Yn

W |J(W),S(W)) ≤ 2πeα,
1
n

h(Yn
W |J(W), S(W)) ≤ 1

2
log(2πeα), (A40)

which is not derivable from the first equation in (1) of the original system. As previously
mentioned for the case in which α = 0, in (A40), since RV Y has unit variance, it is required
that the joint entropy H(J(W), S(W)) should be infinity, but this value is impossible to
achieve for finite sets S and J .

Now plugging (A35), (A37), and (A40) into (A32)–(A34), we obtain that

RI + RS ≤
1
2

log

(
1

αρ2
1ρ2

2 + 1− ρ2
1ρ2

2

)
+ 3δ + δn, (A41)

RJ ≥
1
2

log

(
αρ2

1ρ2
2 + 1− ρ2

1ρ2
2

α

)
+ RI − (3δ + δn), (A42)

RL ≥
1
2

log

(
αρ2

1ρ2
2 + 1− ρ2

1ρ2
2

αρ2
1 + 1− ρ2

1

)
+ RI − (3δ + δn). (A43)

Eventually, by letting n→ ∞ and δ ↓ 0, from (A41)–(A43), we can see that the capacity
region is contained in the right-hand side of (19).

Appendix B. Proof Sketch of Equation (20)

In this section, we highlight the proof of the chosen-secret BIS model. The parts that
follow directly from the same arguments in Appendix A are omitted.
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Appendix B.1. Achievability Part

The proof slightly differs from the one in Appendix A, in which the encoder and
decoder of the generated-secret BIS model are used as components inside the encoder and
decoder of the chosen-secret BIS model as shown in Figure A2. In order to avoid confusion
in the subsequent arguments, we define some new notation used only in this part. The pairs
(JC(i), SC(i)) and (JG(i), SG(i)) denote the helper and secret key for individual i generated
by the encoders of chosen- and generated-secret BIS models, respectively. To encode Yn

i for
i ∈ I , the component inside the encoder first generates (JG(i), SG(i)) and then uses SG(i)
to mask SC(i) by executing one-time pad operation SC(i)⊕ SG(i), where ⊕ denotes the
addition modulo MS. The helper data JC(i) is the combined information of JG(i) and the
masked data, i.e.,

JC(i) = (JG(i), SC(i)⊕ SG(i)). (A44)

Figure A2. Encoder and decoder of the chosen-secret BIS model for achievability proof.

For decoding the identified user W = i, it first uses the component decoder to estimate

(Ŵ, ŜG(W)) and then the secret key is retrieved from

ŜC(W) = SC(Ŵ)⊕ SG(Ŵ)	 ŜG(W), (A45)

where 	 denotes the subtraction modulo MS. This technique is also used in [8,11,13].

Analysis of Error Probability: For individual W = i, the operation at the decoder (A45) means

that (Ŵ, ŜC(W)) = (W, SC(W)) if and only if (Ŵ, ŜG(W)) = (W, SG(W)). In (A16), it is

revealed that Pr{(Ŵ, ŜG(W)) 6= (W, SG(W))|W = i} ≤ 4δ. Therefore, the error probability
of the chosen-secret BIS model can also be bounded by

Pr{(Ŵ, ŜC(W)) 6= (W, SC(W))|W = i} ≤ 4δ (A46)

for large enough n.

Analyses of Identification and Secret-key Rates: Equations (14) and (15) are straightforward
from the parameter settings.

Analysis of Storage Rate: From (A44), the total storage rate is bounded by

I(Y; U)− I(Z; U) + RI + 6δ︸ ︷︷ ︸
the rate of JG(i)

+ I(Z; U)− RI − 2δ︸ ︷︷ ︸
the rate of SC(i)⊕SG(i)

= I(Y; U) + 4δ

=
1
2

log
(

1
α

)
+ 4δ. (A47)
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Analysis of Secrecy-Leakage Rate: From the similar argument of [11] (Equation (48)), it was
shown that

I(JC(i); SC(i)|Cn) ≤ I(JG(i); SG(i)|Cn) + log MS − H(SG(i)|Cn), (A48)

and by substituting (A22) into (A48), the secrecy-leakage rate of the chosen-secret BIS
model is bounded by

1
n

I(JC(i); SC(i)|Cn) ≤ 10δ (A49)

for large enough n.

Analysis of Privacy-Leakage Rate: It can be proved that

I(Xn
i ; JC(i)|Cn) = I(Xn

i ; JG(i)|Cn). (A50)

To verify this, first one can easily see that

I(Xn
i ; JC(i)|Cn) = I(Xn

i ; JG(i), SC(i)⊕ SG(i)|Cn) ≥ I(Xn
i ; JG(i)|Cn). (A51)

Meanwhile, by the same analogy to the development of ([11] Equation (49)), it also
holds that

I(Xn
i ; JC(i)|Cn) ≤ I(Xn

i ; JG(i)|Cn). (A52)

From (A51) and (A52), (A50) clearly holds. By invoking the result of (A25), from
(A50), the privacy-leakage rate can also be made that

1
n

I(Xn
i ; JC(i)|Cn) ≤ RL + δ (A53)

for large enough n.
Finally, by using the selection lemma [34] (Lemma 2.2), there is at least one good

codebook satisfying all the conditions in Definition 2 for large enough n.

Appendix B.2. Converse Part

As seen in the converse proof of the generated-secret BIS model, we also consider
the case in which W is uniformly distributed on I . Suppose that a pair (RI , RS, RJ , RL) is
achievable and fix α such that the condition in (A35) is satisfied.

For the analyses of identification, secret-key, and privacy-leakage rates, the reader
should refer to the discussions around (A32) and (A34). We argue only the bound on RJ ,
which is different from the one seen in the generated-secret BIS model.

Analysis of Storage Rate:

n(RJ + δ) ≥ log MJ ≥ max
w∈I

H(w) ≥ H(J(W)|W)

(a)
= I(Yn

W , S(W); J(W)|W) = I(S(W); J(W)|W) + I(Yn
W ; J(W)|W, S(W))

≥ I(Yn
W ; J(W)|W, S(W))

(b)
= h(Yn

W)− h(Yn
W |J(W), S(W))

(c)
≥ n

2
log(2πe)− n

2
log(2πeα) =

n
2

log
(

1
α

)
, (A54)

where

(a) follows since J(W) is a function of (Yn
W , S(W)),

(b) follows as W is independent of other RVs and S(W) is chosen independently of Yn
W ,

(c) follows because (A40) is applied.
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Then, we have that

RJ ≥
1
2

log
(

1
α

)
− δ. (A55)

By letting n → ∞ and δ ↓ 0, the capacity region of the chosen-secret BIS model is
contained in the right-hand side of (20).

Appendix C. Convexity of the RegionsRG andRC

Here, we only verify that the regionRG is convex as the proof forRC follows similarly.
We begin with the case in which ρ2

1ρ2
2 > 0. We first define η = 1

αρ2
1ρ2

2+1−ρ2
1ρ2

2
, and then it

follows that α = 1
ρ2

1ρ2
2

(
1
η − (1− ρ2

1ρ2
2)
)

. Therefore, the constraints of RJ and RL in (19) can

be transformed as follows:

RJ ≥
1
2

log

 1
ρ2

1ρ2
2

(
1
η − (1− ρ2

1ρ2
2)
)

ρ2
1ρ2

2 + 1− ρ2
1ρ2

2

1
ρ2

1ρ2
2

(
1
η − (1− ρ2

1ρ2
2)
)

+ RI

=
1
2

log

(
ρ2

1ρ2
2

1− (1− ρ2
1ρ2

2)η

)
+ RI

= −1
2

log
(

1− (1− ρ2
1ρ2

2)η
)
+ log |ρ1ρ2|+ RI , (A56)

and

RL ≥
1
2

log

 1
ρ2

1ρ2
2

(
1
η − (1− ρ2

1ρ2
2)
)

ρ2
1ρ2

2 + 1− ρ2
1ρ2

2

1
ρ2

1ρ2
2

(
1
η − (1− ρ2

1ρ2
2)
)

ρ2
1 + 1− ρ2

1

+ RI

=
1
2

log

(
ρ2

2
1− (1− ρ2

2)η

)
+ RI

= −1
2

log
(

1− (1− ρ2
2)η
)
+ log |ρ2|+ RI . (A57)

Since 0 < |ρ1|, |ρ2| < 1, and 0 < α ≤ 1, it holds that 1−ρ2
2

αρ2
1ρ2

2+1−ρ2
1ρ2

2
<

1−ρ2
1ρ2

2
αρ2

1ρ2
2+1−ρ2

1ρ2
2
< 1,

indicating the values of 1− (1− ρ2
1ρ2

2)η and 1− (1− ρ2
2)η are positive. Now the region

in (19) can also be expressed as follows:

RG =
{
(RI , RS, RJ , RL) : RI + RS ≤

1
2

log η,

RJ ≥ −
1
2

log
(

1− (1− ρ2
1ρ2

2)η
)
+ log |ρ1ρ2|+ RI ,

RL ≥ −
1
2

log
(

1− (1− ρ2
2)η
)
+ log |ρ2|+ RI ,

RI ≥ 0, RS ≥ 0 for some 1 ≤ η <
1

1− ρ2
1ρ2

2

}
. (A58)

Suppose that the rate tuples R1 = (R1
I , R1

S, R1
J , R1

L) and R2 = (R2
I , R2

S, R2
J , R2

L) are
achievable tuples for η1 and η2, respectively. Without loss of generality, we assume
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that 1 ≤ η1 ≤ η2 < 1
1−ρ2

1ρ2
2
. Next, let us consider linear combinations of these tuples.

For 0 ≤ λ ≤ 1, we have that

λ(R1
I + R1

S) + (1− λ)(R2
I + R2

S) ≤
1
2
(λ log η1 + (1− λ) log η2)

(a)
≤ 1

2
log(λη1 + (1− λ)η2)

(b)
=

1
2

log η′, (A59)

where

(a) follows as log x (x > 0) is a concave function,
(b) holds as we define η′ = λη1 + (1− λ)η2.

Now take a look into the bound on the storage rate

λR1
J + (1− λ)R2

J ≥ −λ
1
2

log
(

1− (1− ρ2
1ρ2

2)η1

)
− (1− λ)

1
2

log
(

1− (1− ρ2
1ρ2

2)η2

)
+ log |ρ1ρ2|+ RI

(c)
≥ −1

2
log
(

1− (1− ρ2
1ρ2

2)(λη1 + (1− λ)η2)
)
+ log |ρ1ρ2|+ RI

= −1
2

log
(

1− (1− ρ2
1ρ2

2)η
′
)
+ log |ρ1ρ2|+ RI , (A60)

where (c) follows because f (x) = − log(1− x) (x < 1) is a convex function. Likewise, we
can also show that

λR1
L + (1− λ)R2

L ≥ −
1
2

log
(

1− (1− ρ2
2)η
′
)
+ log |ρ2|+ RI . (A61)

From (A59)–(A61), we see that there exists an η′, where η1 ≤ η′ ≤ η2, that satisfies
λR1 + (1− λ)R2 ∈ RG.

For the other case (when ρ2
1ρ2

2 = 0), the right-hand sides of each constraint in RG
become simpler forms, and it is easier to check that both regions are convex by applying
Jensen’s inequality to the logarithmic function. Accordingly, this concludes that the region
RG is convex.
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