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Abstract: Smart cities connect people and places using innovative technologies such as Data Mining
(DM), Machine Learning (ML), big data, and the Internet of Things (IoT). This paper presents a
bibliometric analysis to provide a comprehensive overview of studies associated with DM technolo-
gies used in smart cities applications. The study aims to identify the main DM techniques used in
the context of smart cities and how the research field of DM for smart cities evolves over time. We
adopted both qualitative and quantitative methods to explore the topic. We used the Scopus database
to find relative articles published in scientific journals. This study covers 197 articles published
over the period from 2013 to 2021. For the bibliometric analysis, we used the Biliometrix library,
developed in R. Our findings show that there is a wide range of DM technologies used in every
layer of a smart city project. Several ML algorithms, supervised or unsupervised, are adopted for
operating the instrumentation, middleware, and application layer. The bibliometric analysis shows
that DM for smart cities is a fast-growing scientific field. Scientists from all over the world show a
great interest in researching and collaborating on this interdisciplinary scientific field.

Keywords: data mining; machine learning; smart cities; big data; bibliometrics

1. Introduction

The last few decades have observed an unprecedented trend of people moving to
live in urban areas, as cities accelerate time by compressing space [1]. The year 2008 was
a milestone when for the first time, the urban population surpassed that of rural areas;
it is foreseen that until 2050, two-thirds of the global population will be metropolitan
inhabitants [2,3]. This trend of people moving to cities causes immense pressure on city
infrastructures [4]. Ever since the first cities were built, they have been dependent on
technology to sustain life and produce ever more sophisticated technologies and tools [5].
Cities are like dynamic living organisms, and they constantly evolve [6].

The smart city is an innovation of the physical city with high integration of advanced
monitoring, sensing, communication, and control technologies, aiming to provide real-time,
interactive, and intelligent services to citizens [7]. In order to improve the city services, it is
very important to infer patterns and analyze citizen behavior [8] because a smart city must
focus on the needs of its inhabitants [9].

A city is a complex system to operate, and new methods are required to manage
it and use the massive amounts of data it generates [10]. City administrations can gain
knowledge that is hidden in large-scale data to provide better urban governance and
management by applying Information and Communication Technologies (ICT) solutions.
Such ICT solutions enable better transport planning, efficient water management, new
energy efficiency strategies, improved waste management, and effective risk management
policies for the city users.

Moreover, other important aspects of urban life, such as public health, air quality, and
pollution, and public security, can also benefit from these ICT solutions [11–15]. With the
fast development of ICT and ubiquitous mobile computing, large quantities of digital traces
that register individual human activities at both spatial and temporal axes have become
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available [16]. Smart cities administrators can collect information from many sources.
These include ambient and mobile device sensor data, as well as Social Media (SM) data.

Data can be tapped from city-wide sites, such as power grid status, transportation
grid status, vehicular networks, locations of emergency service providers, and the size
of crowds in locations throughout the region [17]. The acquired data are highly noisy
and redundant, and systematic use of Data Mining (DM) and Machine Learning (ML)
techniques can facilitate processing by extracting only relevant information [18]. Compared
to traditional processing methods, ML techniques have some distinct advantages in the
extraction and release of big data services. Moreover, with advanced manipulations, Deep
Learning (DL) and Reinforcement Learning (RL) techniques could achieve high data rate
and precision [7].

This study is a review of work associated with DM techniques used in the smart
cities’ context by using bibliometric analysis. We present a comprehensive overview of
the interdisciplinary smart cities research field. This review aims to answer the following
research questions:

1. Which are the main DM techniques used in the context of smart cities?
2. How can the knowledge base for the interdisciplinary field of smart cities and their

intellectual structure be identified?
3. How does the field of DM for smart cities quantitatively evolve over time, specifically

with regards to publication and citation counts?
4. What is the conceptual structure of data technologies for smart cities?
5. What is the social network structure of data technologies for the smart cities scientific

community?

The remainder of the article is structured as follows: Section 2 presents a conceptual
framework within the field of data technologies used in the smart cities’ context and some
background terminology. In Section 3, we describe the methodology of the study. In
Section 4, the results of the bibliometric analysis are presented and discussed. Finally, in
Section 5, conclusions are outlined, along with future research directions.

2. Conceptual Framework

The smart city concept is about a friendlier, greener, safer, and more sustainable life
for citizens. It lays in the explosive growth of ICT due to the advances in hardware and
software designs [19]. Revolutionary technologies such as the IoT, SM, and big DM are the
e-bricks for smart city development.

2.1. The Internet of Things (IoT)

The Internet changed the way we carry out many of our daily activities, which as-
sisted with efficiently using our significant resources and thereby improving our quality of
life [20]. The IoT came to transform physical objects into smart devices that can connect
and communicate over the Internet [21]. Demirer et al. [22] defines IoT as “an infrastruc-
ture which can interconnect animate and inanimate objects, and communicate with them,
connecting to the Internet, store data by collecting them through sensors in cloud systems
and provide real-time information to people or machines”. IoT is empowered by using
a few unique advances, including sensors, wireless communication, big data technolo-
gies, distributed computing, and DM techniques [23]. The main components of IoT are:
(1) hardware that consists of sensors, (2) middleware that provides communication between
different components, (3) data handling, and (4) data processing and visualization [24,25].

A report by Cisco [26] forecasts that until 2023, more than 14.7 billion Internet con-
nections will occur for IoT applications. According to the IoT paradigm, everything and
everyone can be part of the Internet. This vision redefines the way people interact with
each other and the objects they are surrounded by [27]. The recent adaptation of different
wireless technologies places IoT as the next revolutionary technology by benefiting from
the opportunities offered by Internet technology [28]. Just like water, electricity, gas, and
roads, IoT will become a new kind of infrastructure resource [29].
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The first step toward getting to a smart city is the integration of data collection mecha-
nisms into the system [30]. We use sensors to monitor and alert changes in environments,
such as temperature, weight, pressure, light conditions, noise levels, motion, humidity,
chemicals, and detect the size, position, and speed of an object [31]. Sensors are often em-
bedded in objects, such as machines or devices [32]. All these sensors provide information
that enables the detection of urban dynamic patterns [33]. Sensors can be either wired or
wireless. A sensor network connects sensors with one another and transmits signals [28].
The communication between devices and the Internet can be established by technologies
such as Bluetooth, ZigBee [34], Wi-Fi [35], RFID, DSL, LAN [31], LoRaWAN [36], LTE,
and 5G [37]. Wireless technologies reduce installation and maintenance costs, thus playing
a vital role in IoT advancement. Sensor nodes report their results to a small number of
special nodes, known as data sinks [25].

In a smart city ecosystem, hard (or dedicated) sensing is the primary sensing paradigm
in many applications, as it can be tailored to precisely meet application needs. On the other
hand, soft sensing includes various non-dedicated sensing paradigms, such as opportunis-
tic, participatory (i.e., crowdsensing), and social sensing, where citizens serve as sensing
nodes. Soft sensing uses smartphone connection capabilities (e.g., GSM, Bluetooth, Wi-Fi)
and built-in sensors, such as GPS, camera, accelerometer, gyroscope, and microphone [18].

2.2. Social Media (SM)

Cities are considered living organisms that dynamically change based on their inhab-
itants’ activities, and this is reflected on social networks and SM [38]. A social network
can be defined as a network of interactions of relationships, where the nodes are actors or
entities, and the ties (edges or links) represent relationships among them [39]. Nowadays,
SM is becoming increasingly popular [40], with the ability to allow people to connect,
communicate, and interact with other users [41] and share their perspectives on different
areas of urban life [42]. Thus, SM can be viewed as an important real-time source of local
information, where citizen opinions can be expressed. Social Media Analysis (SMA) can
reveal insights on current city conditions as “reported” by people moving around the
city areas [9]. The use of sensors can help identify “what” is occurring but is unable to
detect “why” and “how” such an event occurs. In this case, Souza et al. [43] suggest using
SM to capture the human perception of incidents, as perceptions of a city event are often
described through comments on SM.

SM can change the function of urban spaces, as the diffusion of information can
change the way citizens and visitors behave, act and live in the city. Cities are inclined
to be increasingly controlled and influenced by top-down and bottom-up organized data
platforms. Accessibility and use of such data platforms will most likely become key factors
for the city’s future success [39]. As Ju et al. state in the work of [44], citizen-centered
strategies that provide real-time insights into citizen behavior and public opinion, which is
increasingly created by digital devices such as sensor networks and SM platforms at the
individual citizen level, have significant potential value.

2.3. Smart Cities

In 2008, International Business Machines Corporation (IBM) proposed the new concept
of the smart city [45] as the potential solution to the challenges posed by urbanization [21].
The term “smart city” defines the new urban environment, one that is designed for per-
formance through ICT and other forms of physical capital [46]. The goal of a smart city
is to provide citizens with a promising quality of life by using technology to improve
the efficiency of services [47] and address inhabitants’ demands [48] by optimizing its
resources [49]. A smart city is conceived as an idealistic city, where the quality of life
for citizens is significantly improved by combining ICT, new services, and new urban
infrastructures [50].

Del Casino [51] considers contemporary cities as repositories of images, movements,
flows, and representations. It is important to emphasize that what ultimately makes the
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city “smart” is not simply data availability but the process of “closing the loop” consisting
of sensing, communicating, decision making, and actuating [52]. D’ Aniello et al. [53]
consider the smart city as an adaptive system that can achieve two goals: support decision
making and enrich the city domain knowledge. They represent the smart city operation
in three phases, shown in Figure 1. During the first phase, real-time data streams are
generated by hard and soft sensing. These data should be processed in phase 2 to gain
useful information able to support decision making. During the third phase, knowledge is
transformed into actions in the city.
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A smart city rests on people, technology, and processes and how they connect with
various domains, including healthcare, education, transportation, telecom, tourism, utilities,
public safety, and buildings. The characteristics of a smart city could be summarized to
include six elements: Smart People, Smart Economy, Smart Mobility, Smart Living, Smart
Governance, and Smart Environment (Figure 2) [50,54,55]. Li et al. [29] state that economic
development, environmental issues, social equity, and sustainability for a smart city can be
achieved only if all these aspects are equally considered.
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The smart city is built on the infrastructure of the digital city. A digital city provides
a 3D geospatial framework for cities, while the IoT embedded in the ubiquitous sensor
network realizes real-time sensing, measuring, and data transmitting of still or moving
objects [29]. The interaction of computational and physical components, specifically the
use of cyber-physical systems, led to the advancement of such integration [30].

Williamson [56] uses the concept of “programmable city” as a prototypical code/space,
where city functions are delegated to computational systems, which then renovate how
they act. The term “code/space” articulates how the space phenomena translated into code
that then acts recursively to alter them. The digital and physical cities are linked by IoT,
thereby forming an integrated cyber-physical space. In this space, the state and changes in
the real world will be sensed automatically in real-time [45]. In general, a digital city is a
harmonious framework encompassing all kinds of information to ensure the city functions
smoothly and orderly. Moreover, a digital city, as a considerable version of our real world,
contains all the natural, social, and economic information related to the physical city [29].

The overall architecture of a smart city has a hierarchical structure of three layers [1],
as shown in Figure 3:

1. The “instrumentation” layer. The distributed sensor grid is embedded in infrastruc-
ture for acquiring and transferring real-time environmental and social data. Data
acquisition elements are responsible for collecting and locally storing external data. It
can capture any kind of information, including images, video, sound, temperature,
humidity, pressure, etc. The network elements are used for data transferring and
information routing between the distributed sensor layer and the service-oriented
middleware layer. In other studies [29,30,33,45], we find this layer as two separate
layers, sensors and network layer.

2. The service-oriented middleware layer takes charge of massive data storage, real-time
analysis, and processing. It is based on cloud computing, DM, and highly efficient
index services. The results can be used to support the decision making and effective
operation of smart city applications.

3. The application layer for end users applies tailored intelligence services to different
domains, and it is responsible for interacting directly with the user. It provides the
user with information in a comprehensible manner, such as graphical forms, tables,
or other presentation types, and facilitates interaction with the system.
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This architecture projects the trip of big data from their origin in raw structure until
valuable information and knowledge being extracted for the benefit of decision makers
and citizens [57].

2.4. Data Mining Technologies for Smart Cities

In a smart city application, the production of analytics can lead to advanced insights, a
better understanding of city phenomena, and supports the design of evidence-based urban
strategies and innovation [53,58]. Searching for interesting patterns and correlations [3] in
the public-service facilities of developed cities using a DM approach has gradually become
a significant area of research. The extracted patterns can be used to plan layouts or arrange
new facilities in cities [59]. Advancements of big DM technologies can support, explore
and discover environmental and societal changes, including how people go about their life,
behavior, and preferences; social trends, and public opinion [45,60]. DM and ML are vital
technologies for data-centric applications for smart cities.

DM is a broad field that includes many algorithms and techniques from statistics to ML
and information theory to extract information from data [57]. DM aims to build computer
programs that extract hidden, previously unknown, and potentially valuable information
from data [61]. The process must be automated or, more usually, semi-automated, and
the regularities or patterns discovered must be meaningful in a practical sense [62]. Big
DM needs to extend the entire process to the front and back end, under the characteristics
of big data. This involves processing and analysis of massive and heterogeneous data,
automatically discovering and extracting implicit, hidden patterns, rules, and knowledge,
and visualizing them in an easily understandable form [45].

ML is the study of how to build computer programs that improve their performance at
some tasks through experience [63] to address problems in which human expertise does not
exist or when it is difficult to express it [64]. With this technology, the algorithm is training
computers to learn from a past experience E regarding task T and some performance
measure P, if its performance improves on task T, with experience E, computed by P [62].

Essentially, ML is an application of AI that provides computers with the ability to
learn from data and provide relevant insights that increase operational performance from
experience from data without being programmed [65]. According to Din et al. [66], ML is
classified into four categories: supervised learning, unsupervised learning, semi-supervised
learning, and active learning [62]. Nef et al. [67] propose a typical ML pipeline (Figure 4)
that starts with the raw data as input, clustering to further preprocess the data before the
actual classification is performed. Finally, the computed results are displayed.
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2.4.1. Data Preprocessing

Smart city applications consume data about both physical and virtual system entities.
The prime goal of data collection is accurate and comprehensive data. These data obtained
by heterogeneous sources, including sensors, SM, even manually submitted by users,
are raw, noisy, and require processing by applications to be transformed into usable
information [68]. Entering raw data into the training model will not produce a reasonable
result, so data preprocessing is necessary for harnessing the data value.

In addition to dirty data, many kinds of data cannot be used directly for training, such
as weather conditions, time, and so on [69]. To prepare the input for processing, the raw
data must be enriched, cleansed, filtered, normalized, checked, and organized in a usable
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format [67,70]. Data fusion techniques combine multiple data sources to fix problematic
data while improving data reliability, increasing data completeness, and extracting higher-
level information from multiple data sources [71].

In recent years, several techniques have been proposed and implemented for the
improvement of data preparation methods [72]. There are thousands of features available
in real-world problems. The main goal of feature selection/extraction is the identification
of a feature subset that is more informative or predictive of a given response variable [73].
Bag of Words (BoW) is a standard feature descriptor. M. Sajjad et al. in the work of [74]
proposed a face recognition framework that uses BoW with the Oriented FAST and Rotated
BRIEF (ORB) feature extraction method.

Another frequently used method for data reduction is Principal Component Analysis
(PCA). PCA consists of reducing attribute overlap. This can be used to identify if some
attributes can be more relevant than others [75]. Applying dimensionality reduction
approaches, such as PCA, mitigates the requirement for large training data sets and reduces
the number of zeros in the feature matrix [76]. In order to model sensor observations,
measurements, and sensing device information and characteristics, D’Aniello et al. [53]
presented an ontological scheme named Semantic Sensor Network Ontology (SSNO). SSNO
allows putting together data and metadata provided by a sensing device or a virtual sensor
and represent them by using interoperable statements, able to be possibly integrated with
other additional domain knowledge.

2.4.2. Machine Learning (ML) Algorithms

ML algorithms are capable of handling a large amount of data, as well as providing
features such as frequent pattern mining [77], anomaly detection, predictive modeling,
and optimization that can lead to better situational awareness, more efficient, dynamic,
and adaptive control [78]. Depending on the characteristics of the specific application
and on the requirements of the use case, some algorithms perform better than others [34].
Some ML algorithms have aimed at improving matching time and accuracy, e.g., DL for
information retrieval and multimodal interaction [79].

Classification

Classification is perhaps the most familiar and most popular DM technique [80]. The
goal of classification algorithms is to find functions and models in order to identify to which
of a set of categories (sub-populations) a new observation belongs to, based on a training set
of data containing observations (or instances) whose category membership is known [58].
Classification is a paradigm of supervised learning. Supervised learning consists of two
main phases: (1) the training or construction phase in which the model learns from a
given set of labeled samples and (2) the classification phase, which outputs a label with the
maximum likelihood for a given sample. It is shown that classifier performance typically
increases as the volume of training data grows [81].

Decision Trees (DT) is a widely used technique that has been effective for regression
and classification. The DT predictive model represents observations in the branches and
conclusions about the target value in the leaves. In the first stage (construction), the DT
breaks down a data set into subsets by DTs, and later an associated DT is incrementally
developed [77]. In the second stage, pruning is carried out inside the nodes, replacing the
node, if necessary, with a regression plane [62]. DT is one of the most popular learning
techniques. It can naturally handle data of mixed types and missing values, which occur in
most data sets in a smart city application [82]. Some of the methods for DT construction
include Classification and Regression Trees (CART), ID3, C4.5 (J48), and T3 [83–87].

Random Forest (RF) is an ensemble learning model for classification and regression
that operates by developing a batch of DT at training time [75]. The output class is the
mean prediction (in regression problems) or mode of the classes (in classification) of the
individual trees. To make a prediction at a new point, random forests take the majority
vote among the outputs of the grown trees in the ensemble. The number of trees in the
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ensemble is selected through cross-validation [52]. RF runs very efficiently both on scaled
and not scaled data [88,89]. It can handle data sets with unbalanced classes and generates
strong predictive models, dealing well with the issue of overfitting. Two features make
RF an attractive prediction technique: its ability to achieve high prediction accuracy and
its usability of desired capabilities, such as daily electricity data consumed by various
appliances. These two characteristics make RF a unique and desired model for analyzing
smart city data [10].

Support Vector Machine (SVM) is a prominent supervised learning model that effi-
ciently performs data classification and thereby finds its applications in many real-world
scenarios, such as disease diagnosis [77], activity recognition [85], anomaly detection [34],
text classification [90], face recognition [74], electricity consumption prediction [91], and
finding available parking slots [92]. The SVM training algorithm seeks a separating hy-
perplane in the feature space that maximizes the distance of each input data point from
the hyperplane. The minimum overall distance is called margin [93]. Often, in real-world
data, the sample points are not linearly separable. For this reason, the original space is
mapped through a kernel function into a higher-dimensional space, where presumably
linear separation can be achieved [94]. Furthermore, we prefer a hyperplane that better
separates much of the data, even if it ignores a few misclassified samples [52]. To bridge
the gap between ideal assumptions and realistic constraints, Shen et al. [81] proposed the
secure SVM, which is a privacy-preserving SVM training scheme over blockchain-based
encrypted IoT data. When the classification is based on more than two classes, we can use
multi-class SVM, which classifies the output into more classes. Initially, SVM was mainly
proposed for binary classification, but later it tuned into multi-class classification due to
a variety of methods. Two methods are mostly used for multi-classification problems:
(1) by reducing it to multiple binary classification problems [47] and (2) one versus one [95].
Garcia-Font et al. in the work of [34] used One-Class SVM (OC-SVM), which is a special
case of semi-supervised SVMs that do not require labeled data. OC-SVMs build a frontier
to classify new samples as normal or outlier.

A Bayesian Network (BN) is a concise representation of the direct dependencies be-
tween a set of statistical variables formed in a directed acyclic graph and a set of node
probability tables [10]. In data modeling, a BN creates implicit assumptions about de-
pendencies between variables, though, in the real world, two variables are theoretically
never truly and fully independent. A Naïve Bayes (NB) classifier is technically a special
case of BN, using Bayes’ theorem in a naive way since it assumes every predictor variable
is conditionally independent on the class (i.e., attribute) label [96]. Hence, an NB is a
simple stochastic classifier based on applying Bayes’ theorem with strong independence
assumptions [10]. Brisimi et al. in the work of [93] deployed the Likelihood Ratio Test
(LRT), which is an NB classifier and assumes that individual features (elements) of a feature
vector x = (x1, . . . , xn) are independent random variables.

K Nearest Neighbors (KNN) is a simple regression model that estimates the output of
new samples based on the average output of its k nearest neighbors. Nearest neighbors are
found in the feature space [76]. To make a prediction, this technique aggregates the values
of the K “closest” examples in the training set, where K is an input parameter [97]. To
compute the distance among observations, we can use the Euclidean or Manhattan distance
measures. KNN is a type of instance-based learning, or lazy learning, in which the function
is only approached locally, and all calculations are postponed until classification [62].

The Artificial Neural Network (ANN) is a very popular technique, which relies on
supervised learning [92,98]. An ANN is a strong, nonlinear modeling tool that imitates the
operation of biological neurons. Training an ANN involves the tuning of the weights and
biases of the network. The objective is to maximize the network prediction performance,
which corresponds to minimizing the difference between all network outputs yk and
desired outputs or targets tk on validation data [94]. Using the Back Propagation (BP)
algorithm [99], the NN can learn relevant statistical information from a suitable amount of
training data, and the mathematical information learned can reflect the function mapping
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relation of the input-output data model [100]. An earlier ANN architecture is Multilayer
Perceptron (MLP), a Neural Network (NN) with a fully connected architecture. Generally,
MLP performs well and has been applied widely. A quicker-to-train but more memory-
intensive network is the Radial Basis Function (RBF) network [101], used by Olszewski
et al. in the work of [84] for building a regression model that considers many variables.
At present, many new architectures have been developed for ANN [102]. ANNs tend
to overfit, which means to be trained to fit the noise trend, but without producing a
suitable generalization, as expected by ANN. However, Bayesian Regularized ANNs
(BRANNs) tries to overcome the overfitting problem by incorporating Bayes’ modeling
into the regularization scheme [91]. Convolutional Neural Network (CNN) is now gaining
considerable attention leveraging its powerfulness in automatically learning the underlying
patterns from the data. A basic structure of CNN generally consists of two stages, namely
the feature learning stage and the classifier training stage [103,104]. The structure of a
CNN is more complicated than that of a traditional NN [100]. Recurrent Neural Networks
(RNNs) are feedforward NN with a recurrent loop. They are considered a powerful model
for sequential data by using past history [105], and they are applied to a wide variety of
problems involving time sequences of events and ordered data [92]. Long Short-Term
Memory (LSTM) is a three-layer particular type of RNN proposed to identify a correlation
between an input sequence and an output sequence. LSTM was used by Fenza et al. [105]
for energy consumption prediction and anomaly detection in a smart grid application.
To detect moving objects with maximum accuracy, [106] used a Counter-Propagation
Artificial Neural Network (CP-ANN). The CP-ANN has a three-layer architecture where
the first layer is an input layer, the second layer is a Kohonen layer, and the third layer is a
Grossberg layer.

While ANNs are capable of extracting and modeling the general behavior of the
system, Fuzzy Logic (FL) modeling can be used for approximate reasoning, modeling of
qualitative data for uncertainties [103] that inherently appear in data to ensure adaptable
control even in the presence of noisy, imprecise data [107]. FL also assists in easily incorpo-
rating expert domain knowledge into the control system by means of human interpretable
linguistic rules. [108] used a firmly structured network, an Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) formed by the combination of ANN and fuzzy systems. In order to
achieve near-optimal control, they used the Particle Swarm Optimization (POS) method.
Alternatively, Evolutionary Algorithms (EA) may be used for dynamically optimizing both
ANN and FL techniques as well as classical control methods. As EAs are inspired by the
process of natural selection, they provide the capability of optimizing complex real-world
problems [109] and converging on near-optimal results when the search space is too large
to be searched exhaustively [78].

Deep Learning (DL) derives from ANNs with many hidden perceptron layers that
can help to identify hidden patterns. The basic idea of DL is to replicate what the human
brain does in most cases [110]. The Deep Belief Network (DBN) was proposed in 2006 by
Hinton and has been widely used since then. DL not only changes traditional ML methods
but also affects our understanding of human perception [100]. DL has been applied to
several classification and regression problems. Part of its success is due to automatic feature
extraction at different levels of abstraction. This promotes the easy reutilization of models
on different domains without the intervention of a field specialist. Moreover, DL is capable
of the representation of nonlinear, complex city data. DL models have been used to achieve
state-of-the-art results in the field of computer vision and have also been applied to the
problem of time series forecasting [111].

Reinforcement learning (RL) asks users who are already involved in sensing and actu-
ation to reinforce and guide the system toward better accuracy and intuitive actuation [68].
The emerging Deep Reinforcement Learning (DRL) [112] can be considered as a promising
technology, which takes a long-term goal into account and can generate optimal control
actions to time-variant dynamic systems.
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Shamshirband et al. [108] argue that ensemble and hybrid models are the future trends
in ML. Ensemble meta classifiers adopt classification techniques where multiple classifiers
of a different or similar type are being trained over the same or subsets of a training
set [94]. Boosting is an ensemble supervised learning method that constructs a classifier as
a linear combination of simpler weak classifiers. Brisimi et al. [52] used AdaBoost decision
stumps as component classifiers. Moustafa et al. [113] applied three ML techniques of DT,
NB, and ANN to classify normal and attack records in their intrusion detection system.
The techniques are implemented as an ensemble method with the AdaBoost mechanism,
where each technique is considered a weak classifier, and its findings are not high enough
compared with the findings of the ensemble method. Other ensemble classifiers are bagging
and random committees [62]. In order to build scalable learning systems, Zhang et al. [69]
used XGBoost, a large-scale ML method. Hybrid ML models are shown to deliver higher
performance in modeling and prediction due to their optimized algorithms for higher
efficiency. Shamshirband et al. [108] proposed a hybrid model consisting of a neuro-fuzzy
inference system and POS.

Forecasting

Forecasting algorithms facilitate the process of making statements about events
whose actual outcomes (typically) have not yet been observed [58]. For instance,
Fernadez-Ares et al. [35] implemented a time series forecasting analysis with the adop-
tion of three different techniques, such as exponential smoothing state-space model (ETS),
ARIMA, and Theta. They also tried a control method (Mean), but they received worse
results. Badii et al. [92] used the Auto-Regressive Integrated Moving Average (ARIMA)
model as a forecasting method. ARIMA model is composed of two parts: Auto-Regressive
and Moving Average. The Auto-Regressive part (AR) creates the basis of the prediction
and can be improved by a Moving Average (MA) modeling for errors made in previous
time instants of prediction. The order of ARIMA models is defined by the parameters
(p; d; q): p is the order of AR model; d is the degree of differencing, and q is the order of the
MA part, respectively; and by the corresponding seasonal counterparts (P; D; Q). ARIMA
can be used for planning, as well, as it poses the basis to be used as an instrument for
early warning: that is, for detecting dysfunctions as unexpected patterns in the city users’
behavior [8]. The Markov forecasting model can be applied to make governance decisions
according to results generated by the ontology model, and a sequential evaluation model
can also be built to assess the effect of governance decisions, which effectually optimizes
the Markov forecasting model [44]. As there is a need for algorithms that have low-enough
computational complexity to run on the devices found in the smart city infrastructure,
Venkatesh et al. [68] leverage Taylor Expanded Analog Forecasting Algorithm (TESLA),
implementation a statistical learning model that can be fully generalized, as the data trans-
lation algorithm in their context engine. Tse et al. employed the Granger Causality Test
(GCT) in their study [42]. GCT is a statistical hypothesis test for determining whether one
time series has causal relationships with another.

One model that deals with numeric variables is Linear Regression (LinR), where
a single linear formula represents the mapping from input to class values. Regression
analysis aims to model the relationship between a dependent variable and one or more
explanatory independent variables. Among linear regression models, Hashemi selected
Least Squares (LS) in the work of [76], which fits a linear model to the data by minimizing
the total squared error. Logistic regression (LogR) is a linear, fairly simple classifier widely
used in many classification applications. The basic idea is that for each instance, we model
the posterior probability of the actionable class as a logistic function with parameters that
weigh the features f and an offset β [52]. LogR is popular in the medical literature because
it predicts a probability of a sample belonging to the positive class [93]. If data have a large
number of features, we can also use a nonlinear regression technique, which complements
the linear regression method, the Support Vector Regression (SVR) [92]. Dynamic Time
Warping (DTW) is an algorithm for comparing two given (time-dependent) sequences
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that may vary in speed, applied to time series analysis video, audio, and graphics data
sequences [114].

Anomaly detection, also known as outlier detection or novelty detection, is an im-
portant research domain of data analysis. It aims to detect a few data patterns that do not
conform to the expected data characteristics [115]. An anomaly can be defined as unusual
or abnormal behavior [116]. To excavate the latent information of data and construct the
compact data representation, Sun et al. proposed a generative Dictionary Learning Model
(DLM) for anomaly detection [117], which jointly learns the latent representations and their
recombination basis. Dictionary learning aims to learn a set of basis vectors that can encode
all feature data into compact form with a linear combination. In the application of anomaly
detection, the maximum reconstruction error of test samples is calculated to discriminate
whether it is abnormal. The ability of this method to reveal the underlying structure of
data is the key to solve the problem of anomaly discrimination. Pena et al. [118] applied a
rule-based system to energy efficiency indicators and historical data to detect anomalies at
the energy building consumption.

Unsupervised Learning

Clustering is an unsupervised learning technique aiming at partitioning a collection
of data objects into groups (clusters), but unlike classification, the groups are not prede-
fined [80]. The grouping is implemented in a way that intra-cluster dissimilarity is low
(according to a set of metrics) and inter-cluster dissimilarity is high [58]. Clustering analysis
has been extensively used in problems where there is little prior information available about
the data [119], and in a wide range of applications, such as pattern recognition, market
research, and image segmentation [120]. In general, the existing clustering algorithms can
be broadly categorized into hierarchical clustering, partitioning clustering, model-based
clustering, density-based clustering, grid-based clustering, and so on. Hierarchical Clus-
tering (HC) techniques, used by Martinez-Espana et al. [62], define the cluster distance
between two clusters to be the maximum distance between their individual components.
At every stage of the clustering process, the two nearest clusters are merged into a new
cluster. However, these methods are static, and data objects assigned to a cluster cannot
move to a different cluster. Partitioning algorithms are dynamic, and data objects can move
from one cluster to another. They can incorporate knowledge about the shape or size of
clusters by using appropriate prototypes and distance measures [121].

K-means is a very popular [116] and simple partitioning clustering algorithm [105].
Because of its efficiency, the method is scalable in parallel and distributed systems for
big data set handling [49]. K-means assigns n points to k clusters using distance as a
similarity factor until there is no change to which point belongs to which cluster by
iteratively updating cluster centers. However, traditional K-means suffer from sensitivity
to the initial selection of cluster centers and difficulty in specifying the number of clusters
in advance [121]. Aydin et al. in the work of [31] used K-means for clustering two-
dimensional GPS position data. In [8], two clustering techniques have been adopted. The
first technique was a variance of K-means, Partitioning Around Medoids (PAM), which are
the most representative elements in the cluster instead of the centroid as with K-means. The
second approach is the model-based Expectation-Maximization algorithm or EM algorithm
(EM method). It is a generalization of K-means that uses an iterative process to find the
maximum likelihood.

Arribas-Bel et al. in the work of [39] used two very distinct techniques for clustering: K-
means and the more advanced Self-Organizing Map (SOM). Although their function in this
context is the same (grouping observations based on attribute similarity), the underlying
mechanics of both algorithms differ substantially: while K-means tries to optimize an
objective function that minimizes cluster variance, SOM employs an iterative approach
in which a feedforward NN learns the properties or find unknown relationships among
the set of variables that describe a problem, to later assign the original observations to
output neurons. The main property of SOM is that it makes a nonlinear projection from a
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high-dimensional data space on a regular, low-dimensional (usually 2D) grid of neurons.
Fernadez-Ares et al. conducted a study for monitoring real traffic and mobility scenarios
with the implementation of SOM [35].

Nesi et al. [122] adopted another technique for clustering, building a hierarchical tree,
represented as a dendrogram. They consider hierarchical clustering as a suitable choice
for their study in geographic localization since it does not a priori require the number
of clusters.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used in
the work of [24,123]. Yang et al. state that all existing clustering methods have the same
difficulty of parameter setting [123]. DBSCAN can find arbitrary-shaped clusters with only
one input parameter required and supporting the user in determining an appropriate value
for this input parameter [120].

Pournaras et al. in the work of [124] illustrate a generic, unsupervised, and highly
efficient collective learning algorithm designed to solve fully decentralized combinato-
rial optimization problems: I-EPOS1, the Iterative Economic Planning and Optimized
Selections. I-EPOS is applicable in the broader context of large-scale multi-agent systems.

Association Rules

Association Rules (AR) is one of the most popular methods [125] within the context
of extracting relationships among items hidden within data sets [126], as it has been used
in several smart city applications [44,77,127,128]. Agrawal and Strikant [129] presented
the Apriori algorithm for discovering all significant AR between items in a large database
of transactions. It uses the transcendental nature of frequent itemsets, i.e., all non-empty
subsets of frequent itemsets also being frequent [125]. It proceeds by identifying the
frequent individual items in the database and extending them into larger itemsets as long
as they appear sufficiently often in the database. The frequent itemsets can be used to
determine AR that reflect general trends. Some AR could be discovered when applying DM
techniques to a training set; then, the most meaningful one could be extracted from these
general AR by techniques such as Bayesian Net [44]. Pattern growth is a method of frequent
pattern mining that does not require candidate generation. It discovers the frequent single
items, then compresses this information into a frequent pattern tree. Honavar and Sami [23]
used PrefixSpan, which extends the pattern-growth approach to mine sequential patterns
instead. Its general idea is to examine only the prefix subsequences and project only their
corresponding postfix subsequences into projected databases.

Spatial Mining

A digital city, as a considerable representation of our real world, contains all the
natural, social, and economic information related to the physical real city. Particularly,
it consists of 2D digital maps, 3D digital city models as the city grows both horizontally
and vertically [130], 4D spatial-temporal databases, and points of interest [29]. Spatial
data are required for many smart city applications, such as to infer spatial rain fields from
streaming short text messages or to model spatially continuous fields, such as noise level,
air temperature, or pollution [131]. Geographic Information Systems (GIS) are used to store
information related to locations on the Earth’s surface [80,132]. The typical descriptor of
people flow analysis in the city is the Origin Destination (OD) matrix. It presents city zones
on both axes, while the single element (at the intersection) contains the number of people
(or the probability) of passing from the zone of origin to the zone of destination, in a given
time window, for a given kind of user, for a given day of the week [8].

Natural Language Processing

Natural Language Processing (NLP) is a core method for mining information from
human language [133]. The textual information is properly preprocessed to remove
noise by using techniques such as tokenization, normalization, stemming, and stop word
removal [54]. NLP techniques include lexical acquisition, word sense disambiguation,



Algorithms 2021, 14, 242 13 of 35

and part-of-speech (POS) tagging [107]. NLP involves translating natural language into
data (numbers) that a computer can use to learn about the world. This understand-
ing of the world is sometimes used to generate natural language text that reflects that
understanding [134]. Techniques for semantic analysis of textual content coming from
social networks can provide very interesting findings and improve the understanding of
psycho-social dynamics in a totally new way [89]. Qiu et al. [135] used two main techniques
to mine knowledge from text, the Latent Dirichlet Allocation (LDA) algorithm and the
Word2vec tool. The LDA algorithm considers each document as a mixture of a small
number of latent topics and that each word creates a contribution to one topic. When given
all words appearing in each document of the document set, LDA can infer the implied
topic distribution of documents [127]. Word2vec is a tool based on deep learning and was
released by Google in 2013. This tool adopts two main model architectures, Continuous
Bag-of-Words (CBoW) model and the continuous skip-gram model. Kaiser and Pozd-
noukhov [131] generated the dictionary with the topic of interest based on a text corpus
built from related sites, such as Wikipedia. The irrelevant tweets are generated based on
some recent news from the New York Times. Twitter messages were then generated using
a Markov chain trained on this corpus. Then, the incremental classification algorithm Pro-
jectron++ was trained using the bag-of-words feature representation and the known label
used at the simulation stage to classify the stream into the topic of interest. Tse et al. [42]
performed topic modeling on the whole data set using Non-negative Matrix Factorization
(NMF). NMF is a multivariate analysis algorithm where an input matrix with non-negative
elements is factorized into two other matrices with non-negative elements. Since NMF
clusters the columns of the input matrix, it can be applied for topic modeling and document
clustering. Costa et al. used in the work of [133] a multinomial NB classification model,
which is used to determine the contextual severity of an event. In general, the NB algorithm
has a high recall and precision while classifying textual data, being one of the most suitable
algorithms for this task. Nesi et al. used text mining and NLP algorithms for geographical
annotation [122]. They consider this technique as an important application for smart city
frameworks, aiming at helping citizens by providing different services and useful informa-
tion on publicly available Open Data (OD), including geographical information and spatial
location of Places Of Interest (POI), real-time traffic, and parking structures, as well as any
other kind of municipality resource that can be geolocated.

Sentiment Analysis

Sentiment Analysis (SA) infer the sentiment conveyed by a piece of text by relying
on (external) lexical resources, which map each term to a categorical (positive, negative,
neutral) sentiment score. As an example, terms such as wonderful, beautiful, and joy have
a positive sentiment score, while terms such as fear and sadness have a negative one [90].
SA techniques are applied to almost every social domain because opinions are critical
to almost all human behaviors [136]. Opinion mining and sentiment analysis methods
can be applied to the SM comments [137] to automatically identify issues that concern
citizens, as well as features they liked [138]. The task is rather unwieldy because each
word has to be treated separately [139]. The fuzzy nature of human emotion provides
data that contain a vast amount of uncertainty. Fuzzy systems are capable of addressing
this problem while achieving a suitable tradeoff between accuracy and performance [109].
The words that someone uses are not the only source of information emotion recognition.
Emotion recognition is closely related to Facial Expression Recognition (FER) [95]. FER-
based systems comprise three steps. In the first step, the face is detected in a video stream
and is cropped as region-of-interest for the next step. Then, it is resized into specified
dimensions so that all the images given to the model become of the same size. In the next
step, some low-level or high-level or both features are extracted from the cropped region.
In the last step, the features are classified using a classifier.
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User Interface and Visualization

As Ploennigs et al. argue, IoT applications will only be successful if it is usable by
everybody [65]. The operators and dwellers of smart cities are not data scientists, so they
have difficulty when applying ML techniques to their applications without experts [140].
Data analysis would be considerably simplified if one could visualize data graphically.
Information visualization uses graphic techniques to help people understand and analyze
data. Visual representations and interaction techniques take advantage of the human eyes’
broad bandwidth pathway into the mind to allow users to see, explore, and understand
large amounts of information at once [75]. The objective of the analysis and visualization
of data is to highlight useful information and support decision making with the lowest
degree of human intervention [140]. A frontend component should provide users with
comprehensive charts that visualize the information [9]. Therefore, interfaces should enable
users to intuitively understand the behavior of the system. The interfaces should be easy
to use, responsive, mobile, and abstract the complexity of the underlying processes. Once
the data from the sensors has been retrieved, it may be helpful for the city operator to have
tools available to create dashboards that show this data simply and intuitively [141]. Users
should be able to interact with the smart city application with a smart city dashboard that
represents the structure, real-time data, and key indexes on a city map [92]. The goal of the
dashboard is to provide the user with a set of tools to visualize and handle the aggregated
analysis results [90]. Thanks to quickly visualized data tools, identify correlations, and
conceive of innovative, unanticipated uses for existing information became easier [38].
Additionally, the integration of speech interfaces shows great potential to interact in natural
language with the operators. In addition, augmented reality interfaces are paving new
ways to seamlessly access sensors and systems data [65].

3. Methodology

To explore the DM for smart cities research field, we review results from quantitative
and qualitative methods, as follows:

• Quantitative method: a bibliometric analysis, and
• Qualitative method: a critical review of the 100 most cited articles.

3.1. Bibliometrics

As the number of publications continues to expand at increasing rates and publications
develop fragmentarily, the task of accumulating knowledge becomes more complicated [142].
The term “bibliometrics” first appeared in the literature in 1969. Until then, the relevant
research area was defined as the “application of mathematical and statistical methods
to books and other media of communication”, and the term bibliometrics was quickly
adopted and used, particularly in N. America. In contrast, at almost the same time, the
term “scientometrics” was widely used in Europe. Bibliometrics are applicable in the
research sub-areas of methodology research, scientific disciplines, and science policy [143].
Bibliometric studies tend to examine statistically the quantitative aspects of scientific
publications within a field [144]. Bibliometrics are often used as a measure of the quality of
the work produced by individual scholarly contributions, venues of production, individual
authors, groups and institutions, journals, etc. As a general indicator for measuring impact
across the sciences, E. Garfield invented the calculation of Impact Factor (IF), which remains
over half a century later the “gold standard” for journals [145].

3.2. Bibliometric Analysis Software

For the bibliometric analysis, we used the Bibliometrix library, developed in R, by
Aria and Cuccurulo [142]. Bibliometrix is an efficient tool for quantitative research in bib-
liometrics, distributed under GPL-3 license, performing bibliometric analysis and building
networks for co-citation, coupling, scientific collaboration, and co-word analysis [146].
Bibliometrix offers a web application developed with the help of the Shiny library, named
Biblioshiny. Biblioshiny supports scholars with data importing and filtering, analytics and
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plots for sources, authors, and documents, and analysis of the conceptual, intellectual, and
social structure of the research topic.

3.3. Information Retrieval

We exported article information from the Scopus database. Roemer and Borchardt [145]
consider Scopus as an authoritative and comprehensive online source for discovering
citation-based connections between scholarly articles. Scopus, published by Elsevier, was
established in 2004. We chose this source because it is the largest abstract and citation
database since it indexes content from 24,600 active titles and 5000 publishers. Its main
strength is that it offers the broadest coverage available for scientific, technical, medical,
and social sciences [143].

Aiming to index journal articles in English containing the keywords “data mining”
and “smart city” (or “smart cities”) in their abstracts, titles, and keywords [147], we posed
the following search query in the Scopus search form:

TITLE-ABS-KEY (“data mining” AND (“smart city” OR “smart cities”)) AND (LIMIT-
TO (LANGUAGE, “English”)) AND (LIMIT-TO (SRCTYPE, “j”)).

4. Results

The query was stated on 16 February 2021 and returned 197 records. The results were
exported in BibTex file format, which is compatible with the Bibliometrix library. As a response
to our query, Scopus returned 197 articles published within a period from January 2013
to February 2021, in 112 different journals, by 682 authors. There are 3.46 authors and
15.88 citations per document on average. Table 1 presents general information about our data.

Table 1. General information about our data.

Description Results

Timespan 2013–2021 (February)
Sources (Journals) 112
Documents 197
Average years from publication 2.61
Average citations per document 15.88
Average citations per year per doc 3.648
References 9761
DOCUMENT TYPES
Article 177
Conference paper 1
Editorial 6
Review 13
DOCUMENT CONTENTS
Keywords Plus (ID) 1537
Author’s Keywords (DE) 664
AUTHORS
Authors 682
Author Appearances 778
Authors of single-authored documents 10
Authors of multi-authored documents 672
AUTHORS COLLABORATION
Single-authored documents 10
Documents per Author 0.289
Authors per Document 3.46
Co-Authors per Document 3.95
Collaboration Index 3.59

4.1. Most Cited Articles

Table A1 in Appendix A presents the 100 most cited research documents in DM for
the smart cities topic. The table is sorted by the number of total citations each article has
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received. When an article is cited, it can be considered to impact someone else’s work. As
the simplest and most straightforward of the citation-based metrics, the number of citations
an article has received is the starting point for almost all bibliometric indicators, which have
become more sophisticated since the invention of advanced computing modeling [145].

4.2. Annual Scientific Production

Andres in the work of [143] states that, according to Prices’ law, science grows in a
multiplicative way over time and, according to this exponential function, the growth rate
will be proportional to the population size, i.e., the bigger the population is, the faster it
grows. Consequently, the number of productions also grows in a multiplicative way, as
shown in Table 2. It can be assumed that the exponential growth described by Price’s law is
acceptable within a logistic function, so this period of accelerated growth will be followed
by a stabilization phase. In the DM technologies for smart cities, we found an annual
growth rate of 73.33% in the period between 2013 and 2020. The most productive year was
2019, when 54 articles were published. Articles published in 2015 and 2017 received the
higher average number of total citations, but the latter achieved a higher score in the mean
total citation per year index because of their fewer citable years.

Table 2. Number of articles and means of citations per article and year.

Year Number of Articles Mean TC Per Article Mean TC Per Year Citable Years

2013 1 47 5.87 8
2014 1 18 2.57 7
2015 7 43.14 7.19 6
2016 19 25.05 5.01 5
2017 25 44.32 11.08 4
2018 36 13.81 4.60 3
2019 54 10.91 5.45 2
2020 47 1.89 1.89 1
2021 7 0.29 - 0

4.3. Sources

The 10 most productive sources on the topic appear in Table 3. According to Bradford’s
law of scattering, “the bulk of articles on a given topic is concentrated in a small set of
core journals and then scattered across other journals to such a degree that, if the set of
relevant articles is subdivided into groups or zones containing the same number of items
as the core, an exponentially increasing number of journals will be required to fill the
succeeding zones” [148]. Thus, Bradford’s law is widely used in bibliometrics to survey
journal productivity. As observed in Figure 5, a small number of journals are the core
sources of the total number of publications on the topic, whereas increasing numbers of
journals publish fewer articles on the topic [143]. Figure 6 illustrates the top-5 related
sources’ growth for the period from 2013 to 2021 (February).

Table 3. Most relevant sources.

Sources Articles

IEEE Access 19
Sensors 14

Future Generation Computer Systems 7
Sustainability 7

IEEE Internet of Things Journal 6
Information Systems 5
Cluster Computing 4

Multimedia Tools and Applications 4
Sustainable Cities and Society 4

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4
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The Impact Factor (IF) of a journal is “a citation measure of its average article’s citation
score over a relatively short period. It is computed for a given year through the division
of the number of citations received, in the processing years by the overall number of
“citable” items (research articles, reviews, and notes) issued by the journal during the
same years” [148]. For instance, when we say that a journal has an impact factor of three,
we mean that in the last two years, this journal averaged three citations per published
article [145]. With the IF, we can identify publications that have a strong impact during a
given period. The journal IF has practical importance either for libraries to decide which
journals to purchase or for authors to choose where to submit their articles. As a rule,
journals with high IF are seen to be more prestigious [143]. De Bellis [148] considers
that the higher the IF of the journals listed in the publication records of the units under
assessment, the greater the candidate’s chance of outperforming all the other applicants in
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a competition for promotion, tenure, or funding allocation. The Hirsch index, also known
as the h-index, measures quantity and impact through a single indicator. The h-index is
defined by Andres [143] as follows: “a scientist has index h if h of his or her N papers have
at least h citations each and the other (N–h) papers have ≤h citations each”. One of the most
popular improvements of the h-index is the g-index, which considers the weight of citations
received by the top articles of a scientist, and the total number of documents does not limit
the value of the index [149]. M-index is computed as the median of citations received by
papers ranking smaller than or equal to the Hirsch core h [150]. Table 4 summarizes the
impact measures of the 10 most relevant journals.

Table 4. Source impact.

Source h-Index g-Index m-Index Total Citations Articles PY Start

IEEE Access 9 19 1.5 652 19 2016
Sensors 8 14 1.14 239 14 2015
Future Generation Computer System 5 7 0.62 134 7 2014
Sustainability 4 7 0.8 107 7 2017
IEEE Internet of Things Journal 4 6 1 95 6 2018
Information Systems 3 5 0.43 39 5 2015
Cluster Computing 2 4 0.67 16 4 2019
Multimedia Tools and Applications 2 4 0.33 21 4 2016
Sustainable Cities and Society 4 4 0.8 65 4 2017
Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 3 4 0.75 43 4 2018

4.4. Authors

Table 5 shows the 10 most productive authors. As De Bellis states, there is a reasonably
suitable correlation between the eminence of a scientist and his productivity of papers [148].
In Figure 7, top author productivity over time appears.

Table 5. Most productive authors.

Authors Articles Articles Fractionalized

Barnaghi P. 5 1.34
Liu Y. 4 0.75
Song H. 4 0.64
Gunopulos D. 3 0.45
Honarvar Ar. 3 1.50
Katakis I. 3 1.29
Li S. 3 0.70
Li X. 3 0.83
Liu X. 3 1.00
Tian Z. 3 0.57

Lotka’s law assesses patterns in author productivity. It is also known as the inverse
square law on author productivity. The law predicts how many authors would have
published x studies according to the number of authors who have contributed to a single
study [143]. Lotka’s law determines “the degree scientists of different caliber, involved
in the struggle for life on the forefront of scientific communication, contributed to the
advancement of knowledge” [148]. Figure 8 visualizes the frequency distribution of
scientific productivity (Table 6) through Lotka’s law.
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Table 6. Author productivity through Lotka’s law.

Documents Written No. of Authors Proportion of Authors

1 607 0.890
2 58 0.085
3 14 0.021
4 2 0.003
5 1 0.001

Citation analysis is often used to obtain information about the impact and, more
often, the quality of a publication, a source, or an author [143]. Published articles are read
and assessed by the community of peers, who recognize their value by citing them in
their studies. The bibliographic citation, therefore, has been considered as an elementary
building block of a scientific reward system [148]. Table 7 summarizes the impact measures
of the 10 most productive authors.
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Table 7. Author impact.

Author h_Index g_Index m_Index TC NP PY_Start

Barnaghi P. 5 5 0.714 104 5 2015
Liu Y. 3 4 0.600 71 4 2017
Song H. 3 4 0.600 54 4 2017
Gunopulos D. 2 3 0.333 10 3 2016
Honarvar Ar. 2 3 0.333 21 3 2016
Katakis I. 2 3 0.286 10 3 2015
Li S. 2 3 0.500 34 3 2018
Li X. 2 3 0.667 11 3 2019
Liu X. 1 2 0.167 4 3 2016
Tian Z. 2 3 0.500 36 3 2018

From all the studies we examined, it is observed that China was the most productive
country, followed by the USA. The productivity of the 10 most relevant countries is pre-
sented in Table 8. Table 9 includes the 10 top-cited countries. Articles from China have
received 473 citations in total, while articles from the USA have received 357 and Spain 341.

Table 8. Country scientific production.

Country Frequency

China 129
USA 55
India 27
Spain 23
U.K. 22
Greece 19
Brazil 17
Italy 17
Pakistan 17
Saudi Arabia 17

Table 9. The most cited countries.

Country Total Citations Average Article Citations

China 473 11.26
USA 357 25.50
Spain 341 26.23
Malaysia 276 276.00
Korea 184 20.44
Canada 113 37.67
Brazil 62 12.40
United Kingdom 59 11.80
Greece 55 9.17
Singapore 40 13.33

4.5. Content

The frequency of words in a text can be studied by Zipf’s law, which has been consid-
ered as a generalization of both Lotka’s and Bradford’s laws [143]. According to Zipf’s law,
at its simplest, the vast majority of text words appear only a few times, and a limited num-
ber are extremely frequent [148], as shown in Figure 9. As presented in Table 10, the most
frequent terms that appeared as “keywords plus” in the articles are “data mining”, “smart
cities”, “internet of things”, and “big data”. Keywords plus are words or phrases that
frequently appear in the titles of an article’s references but are not included in the title of the
article itself in order to augment the power of cited-reference searching [151]. At first, the
text analysis we performed returned as a result various terms relating to common concepts
(such as “city”—“cities” or “Internet-of-Things (IoT)”—“Internet of Things”), so after the
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data set retrieval from the Scopus database, we had to do some preprocessing work such
as lemmatize the words, ignore numbers, and disregard case sensitivity. Figure 10 shows
the word cloud constructed by the terms. Word dynamic graph (Figure 11) can help us see
the trends on a research topic, as it illustrates growth or decline for each keyword [152].
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Table 10. Most frequent words.

Words Occurrences

data mining 168
smart cities 106
internet of things 76
big data 45
learning system 21
data handling 20
decision making 19
machine learning 18
forecasting 17
data analytics 16
artificial intelligence 15
semantics 15
automation 13
classification 13
clustering algorithms 13
energy use 13
intelligent buildings 12
extraction 11
social networking (online) 11
support vector machine 11
cloud computing 10
deep learning 10
information management 10
urban transportation 10
human 9
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Figure 11. Word dynamic graph.

The word co-occurrences are a measure of the different poles of interests that subserve
to build the structure and the dynamics of a scientific field. Two words, Wi and Wj, co-occur
in the corpus if there is at least one document containing both Wi and Wj. The strength of
the link between Wi and Wj is given by the number Cij of documents in which the couple
(Wi, Wj) appears [148]. A word co-occurrence network (Figure 12) can be considered
as a concept map [144] that facilitates the understanding of the knowledge components
and cognitive structure of a research field by examining the structure of the map [152].
Each node in the network represents a semantic concept, and the size of a node shows
the frequency of each concept. The weight of the edge between two nodes represents the
strength of the relationship between the concepts. When word co-occurrence analysis
is used for mapping a research topic, clusters of keywords, as shown in Figure 13, and
their links are obtained. These clusters can be considered as themes. In a theme, the
keywords and their interconnections portray a network graph called a “thematic network”
(Figure 14). Each theme obtained in this process is indicated by two parameters, centrality,
which represents the relevance degree in the horizontal axis, and density, which represents
the development degree in the vertical axis [152].
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4.6. Social Structure

Co-citation analysis is a common analysis in bibliometrics. It employs citation counts
as a measure of similarity between documents, authors, and journals [142]. As de Belis
states, “Co-citation analysis rests on the premise that if two documents are cited by a third
document, it is likely that some kind of structural relationship between them does exist,
the strength of the relationship depending on how many times they are co-cited in a given
corpus of literature. The more two documents are co-cited, the more likely it is that their
repeated co-link has something to say about the sociocognitive structure of the subject
area to which the papers belong. Consequently, their position is represented by nearby
points on the surface of the map” [148]. These networks aim to quantify interdependencies
and scholarly influence among the entities at different levels of detail, including between
authors, journals, subject categories, institutions, and countries [144]. Figure 15 illustrates
the co-citation network of the selected set of articles in our study.
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A scientific collaboration network (Figure 16) is one of the most well-documented
forms of scientific collaboration. It is a network where the nodes represent the authors,
and the links represent the collaboration between authors, namely co-authorships [142].
The size of each node shows the centrality of a role in a cluster, and the edge weight how
strong is the relationship between them, based on the number of articles published in
co-authorship [143]. Collaboration serves social networks development and knowledge
building. Collaboration network analysis is mainly prevalent in interdisciplinary domains,
where authors from different areas contribute to scientific development and progression
growth. Such networks support interpreting the behavioral characteristics of scientists in
multiple domains, presenting the phenomenon of knowledge flows [144].
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Figure 16. Collaboration network.

Figure 17 shows the visual representation of the collaboration network between coun-
tries. We posed the analogous query considering a threshold of two or more collaborative
papers for each country relationship. We can see that the strongest edge appears between
China and the USA, which are the most productive countries in the research domain. The
most productive countries appear with deep blue color. The 10 strongest relationships
between countries are presented in Table 11. As Waheed et al. [144] state, the number of in-
ternational co-publications shared between two regions indicates the extent of collaboration
between those regions, implying knowledge flows.
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Table 11. Country collaboration frequency.

From To Frequency

China USA 15
China Australia 5
Spain United Kingdom 4
USA Australia 4
China Canada 3
Germany Ireland 3
Pakistan Korea 3
Pakistan Saudi Arabia 3
United Kingdom Germany 3
United Kingdom Ireland 3
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5. Conclusions

Constructing a smart city is a systematic process, which is conducted over time,
step by step. The design and implementation of smart city applications are extremely
complex actions, and the choice and use of the appropriate DM techniques and tools for
the communication between real and digital worlds have a crucial role in operation success.
This study aimed to provide a comprehensive view of research published in the literature
associated with DM algorithms for smart cities, based on bibliometric analysis using Scopus
data from 2013 to February 2021.

The study has indicated that DM algorithms for smart cities are an evolving and fast-
growing research field as they grew multiplicatively in the last 8 years. The topic has been
most popular among researchers in China, the USA, India, Spain, the U.K., and Greece and
has emerged as a fertile field for collaboration among researchers from different countries,
especially between China and the USA. The research landscape was also explored by means
of bibliometric analysis, at various levels, including investigation of prominent articles,
sources, and authors.

The most frequent terms that appear in the articles are “data mining”, “smart cities”,
“internet of things”, and “big data”. The word dynamic graph (Figure 11) showed that the
growth of the appearances of the most frequent words follows the trend of the research
topic. The word co-occurrence network, the topic dendrogram, and the thematic map
(Figures 12–14) represent the conceptual structure of the research field, as they illustrate
not only the most frequent terms of the articles but also the connections between them.

The critical review of the selected articles highlighted the wide range of DM techniques
employing the development of smart cities. The integration of different technologies used
in smart city applications and services remains the most challenging issue to overcome
due to the volume, heterogeneity, and complexity of the collected data [153]. The develop-
ment of advanced data-driven infrastructure and techniques that scale well and facilitate
the interoperability of smart city applications and services can be a promising field for
future work.
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Abbreviations

The following abbreviations are used in this manuscript.

AI Artificial Intelligence
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Networks
AR Association Rules
ARIMA Auto-Regressive Integrated Moving Average
BN Bayesian Network
BoW Bag of Words
BP Back Propagation
BRANN Bayesian Regularized Artificial Neural Network
CBoW Continuous Bag of Words
CNN Convolutional Neural Network
CP-ANN Counter-Propagation Artificial Neural Network
DBN Deep Belief Network
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DL Deep Learning
DLM Dictionary Learning Model
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DM Data Mining
DRF Deep Reinforcement Learning
DSL Digital Subscriber Line
DT Decision Trees
DTW Dynamic Time Warping
EA Evolutionary Algorithms
EM Expectation—Maximization algorithm
ETS Exponential Smoothing State-Space Model
FER Facial Expression Recognition
FL Fuzzy Logic
GCT Granger Causality Test
GIS Graphic Information System
GSM Global System for Mobile communications
GPL General Public License
HC Hierarchical Clustering
ICT Information and Communication Technologies
I-EPOS Iterative Economic Planning and Optimized Selections
IF Impact Factor
IoT Internet of Things
KNN K Nearest Neighbors
LDA Latent Dirichlet Allocation
LinR Linear Regression
LogR Logistic Regression
LRT Likelihood Ratio Test
LS Least Squares
LSTM Long Short-Term Memory
LTE 3GPP Long-Term Evolution
ML Machine Learning
MP Multilayer Perceptron
NB Naïve Bayes
NLP Natural Language Processing
NMF Non-Negative Matrix Factorization
OC-SVM One-Class Support Vector Machines
OD Open Data
OD matrix Origin Destination matrix
PAM Partitioning Around Medoids
PCA Principal Component Analysis
POI Places Of Interest
PY Publication Year
RBF Radial Basis Function
RF Random Forest
RFID Radio Frequency Identification
RL Reinforcement Learning
RNN Recurrent Neural Networks
SA Sentiment Analysis
SMA Social Media Analysis
SOM Self-Organizing Map
SSNO Semantic Sensor Network Ontology
SVM Support Vector Machine
SVR Support Vector Regression
TC Total Citations
TESLA Taylor Expanded Analog Forecasting Algorithm
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Appendix A

Table A1. The 100 most cited journal articles in DM for the smart cities research topic.

Total
Citations Author(s) Publication

Year Title

1 276 Marjani et al. 2017 Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges

2 149 Lin et al. 2017 A Survey of Smart Parking Solutions

3 129 Khan et al. 2015 Towards Cloud Based Big Data Analytics for Smart Future Cities

4 98 Yassine et al. 2017 Mining Human Activity Patterns from Smart Home Big Data for Health Care
Applications

5 97 Manic et al. 2016 Building Energy Management Systems: The Age of Intelligent and Adaptive Buildings

6 93 Yang et al. 2017 Utilizing Cloud Computing to Address Big Geospatial Data Challenges

7 78 Liang et al. 2018 A Survey on Big Data Market: Pricing, Trading and Protection

8 69 Chen et al. 2018 Tripimputor: Real-Time Imputing Taxi Trip Purpose Leveraging Multi-Sourced Urban Data

9 68 Moreno et al. 2017 Applicability of Big Data Techniques To Smart Cities Deployments

10 60 Osman 2019 A Novel Big Data Analytics Framework for Smart Cities

11 60 Din et al. 2019 The Internet of Things: A Review of Enabled Technologies and Future Challenges

12 60 Sun and Axhausen 2016 Understanding Urban Mobility Patterns with a Probabilistic Tensor Factorization Framework

13 55 Moustafa et al. 2019 An Ensemble Intrusion Detection Technique Based on Proposed Statistical Flow Features
for Protecting Network Traffic of Internet of Things

14 54 Garcia-Font et al. 2016 A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor
Networks

15 52 Li et al. 2015 Big Data in Smart Cities

16 51 Pena et al. 2016 Rule-Based System to Detect Energy Efficiency Anomalies in Smart Buildings, a Data
Mining Approach

17 47 Khan et al. 2017 Smart City and Smart Tourism: A Case of Dubai

18 47 Anatharam et al. 2015 Extracting City Traffic Events From Social Streams

19 47 Li et al. 2013 Geomatics for Smart Cities-Concept, Key Techniques, and Applications

20 45 Coelho et al. 2017 A GPU Deep Learning Metaheuristic Based Model for Time Series Forecasting

21 45 Nef et al. 2015 Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily
Living from Smart Home Ambient Data

22 37 Liu et al. 2017 Exploring Data Validity in Transportation Systems for Smart Cities

23 36 Perez-Chacon et al. 2018 Big Data Analytics for Discovering Electricity Consumption Patterns in Smart Cities

24 35 Lau et al. 2019 A Survey of Data Fusion in Smart City Applications

25 34 Sun et al. 2018 Learning Sparse Representation with Variational Auto-Encoder for Anomaly Detection

26 34 Massana et al. 2017 Identifying Services for Short-Term Load Forecasting Using Data Driven Models in a
Smart City Platform

27 34 De Gennaro et al. 2016 Big Data for Supporting Low-Carbon Road Transport Policies in Europe: Applications,
Challenges, and Opportunities

28 31 Li et al. 2019 IoT Data Feature Extraction and Intrusion Detection System for Smart Cities Based on
Deep Migration Learning

29 31 Chui et al. 2017 Disease Diagnosis in Smart Healthcare: Innovation, Technologies and Applications

30 30 Qiu et al. 2018 Automatic Non-Taxonomic Relation Extraction from Big Data in Smart City

31 29 Yao et al. 2017 A Co-Location Pattern-Mining Algorithm with A Density-Weighted Distance
Thresholding Consideration

32 29 Xu et al. 2017 A Latency and Coverage Optimized Data Collection Scheme for Smart Cities Based on
Vehicular Ad-Hoc Networks

33 29 Kim and Chung 2017 Depression Index Service Using Knowledge Based Crowdsourcing in Smart Health

34 28 Fernadez-Ares et al. 2017 Studying Real Traffic and Mobility Scenarios for a Smart City Using a New Monitoring
and Tracking System

35 28 Cerrruela Garcia et al. 2016 State of the Art, Trends and Future of Bluetooth Low Energy, Near Field Communication
and Visible Light Communication in the Development of Smart Cities
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Table A1. Cont.

Total
Citations Author(s) Publication

Year Title

36 26 Musto et al. 2015 Crowdpulse: A Framework for Real-Time Semantic Analysis of Social Streams

37 24 Fotopoulou et al. 2016 Linked Data Analytics in Interdisciplinary Studies: The Health Impact of Air Pollution in
Urban Areas

38 23 Moustaka et al. 2018 A Systematic Review for Smart City Data Analytics

39 23 Waheed et al. 2018 A Bibliometric Perspective of Learning Analytics Research Landscape

40 23 Ju et al. 2018 Citizen-Centered Big Data Analysis-Driven Governance Intelligence Framework for
Smart Cities

41 23 Liu et al. 2016 A Cloud-Based Taxi Trace Mining Framework for Smart City

42 22 Yang et al. 2019 A Model of Customizing Electricity Retail Prices Based on Load Profile Clustering Analysis

43 21 Soomro et al. 2019 Smart City Big Data Analytics: An Advanced Review

44 21 Bermudez-Edo et al. 2018 Analyzing Real World Data Streams with Spatio-Temporal Correlations: Entropy vs.
Pearson Correlation

45 21 Gomede et al. 2018 Application of Computational Intelligence to Improve Education in Smart Cities

46 21 Giatsoglou et al. 2016 Citypulse: A Platform Prototype for Smart City Social Data Mining

47 20 de Souza et al. 2019 Data Mining and Machine Learning to Promote Smart Cities: A Systematic Review from
2000 to 2018

48 20 Semanski et al. 2017 Spatial Context Mining Approach For Transport Mode Recognition From Mobile Sensed
Big Data

49 19 Huang et al. 2016 An Energy-Efficient Train Control Framework for Smart Railway Transportation

50 19 Liang et al. 2020 A Research on Remote Fracturing Monitoring and Decision-Making Method Supporting
Smart City

51 18 Xhafa and Barolli 2014 Semantics, Intelligent Processing and Services for Big Data

52 16 Kolozali et al. 2019 Observing the Pulse of a City: A Smart City Framework for Real-Time Discovery,
Federation, and Aggregation of Data Streams

53 16 Shirowzhan, and
Sepasgozar 2019 Spatial Analysis Using Temporal Point Clouds in Advanced GIS: Methods for Ground

Elevation Extraction in Slant Areas and Building Classifications

54 16 Lin et al. 2017 Analyzing the Relationship Between Human Behavior and Indoor Air Quality

55 15 Jia et al. 2018 Data Driven Congestion Trends Prediction of Urban Transportation

56 15 Lei et al. 2016 Robust K-Means Algorithm with Automatically Splitting and Merging Clusters and its
Applications for Surveillance Data

57 14 Alkhatib et al. 2019 An Arabic Social Media Based Framework for Incidents and Events Monitoring in Smart
Cities

58 14 Gaber et al. 2019 Internet of Things and Data Mining: From Applications to Techniques and Systems

59 14 Eirinaki et al. 2018 A Building Permit System for Smart Cities: A Cloud-Based Framework

60 14 Costa et al. 2018 Twittersensing: An Event-Based Approach for Wireless Sensor Networks Optimization
Exploiting Social Media in Smart City Applications

61 14 Nesi et al. 2016 Geographical Localization of Web Domains and Organization Addresses Recognition by
Employing Natural Language Processing, Pattern Matching and Clustering

62 13 Chammas et al. 2019 An Efficient Data Model for Energy Prediction Using Wireless Sensors

63 13 Leung et al. 2019 AI-Based Sensor Information Fusion for Supporting Deep Supervised Learning

64 13 D’Aniello et al. 2018 An Approach Based on Semantic Stream Reasoning to Support Decision Processes in
Smart Cities

65 13 Honavar and Sami 2016 Extracting Usage Patterns from Power Usage Data of Homes’ Appliances in Smart Home
Using Big Data Platform

66 12 Chen et al. 2019 Visualization Model of Big Data Based on Self-Organizing Feature Map Neural Network
and Graphic Theory for Smart Cities

67 12 Khadam et al. 2019 Digital Watermarking Technique for Text Document Protection Using Data Mining Analysis

68 12 Gonzalez-Vidal et al. 2018 BEATS: Blocks of Eigenvalues Algorithm for Time Series Segmentation

69 12 Tse et al. 2018 Social Network Based Crowd Sensing for Intelligent Transportation and Climate Applications
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Total
Citations Author(s) Publication

Year Title

70 12 Olszewski et al. 2018 Solving “Smart City” Transport Problems by Designing Carpooling Gamification Schemes
with Multi-Agent Systems: The Case of the So-Called “Mordor of Warsaw”

71 12 Zear et al. 2016 Intelligent Transport System: A Progressive Review

72 11 Rawashdeh et al. 2020 A Knowledge-Driven Approach for Activity Recognition in Smart Homes Based on
Activity Profiling

73 11 Kong et al. 2019 CoPFun: an Urban Co-occurrence Pattern Mining Scheme Based on Regional Function
Discovery

74 11 Bellini et al. 2017 Wi-Fi Based City Users’ Behaviour Analysis for Smart City

75 11 Oralhan et al. 2017 Smart City Application: Internet of Things (IoT) Technologies Based Smart Waste
Collection Using Data Mining Approach and Ant Colony Optimization

76 11 Wang and Li 2016 Traffic and Transportation Smart with Cloud Computing on Big Data

77 10 Ammer et al. 2019 Comparative Analysis of Machine Learning Techniques for Predicting Air Quality in
Smart Cities

78 10 Zou et al. 2018 A Novel Network Security Algorithm Based on Improved Support Vector Machine from
Smart City Perspective

79 10 Tausif et al. 2017 Towards Designing Efficient Lightweight Ciphers for Internet of Things

80 10 Souza et al. 2016 Using Big Data and Real-Time Analytics to Support Smart City Initiatives

81 9 Pasupa et al. 2019 Thai Sentiment Analysis with Deep Learning Techniques: A Comparative Study Based
on Word Embedding, POS-Tag, and Sentic Features

82 9 Noura et al. 2019 Automatic Knowledge Extraction to Build Semantic Web of Things Applications

83 9 Qiu et al. 2017 A Data-Driven Robustness Algorithm for the Internet of Things in Smart Cities

84 8 Kumar et al. 2020 A Strong and Efficient Baseline for Vehicle Re-Identification Using Deep Triplet Embedding

85 8 Serrano and Bajo 2019 Deep Neural Network Architectures for Social Services Diagnosis in Smart Cities

86 8 Pan, Hariri, and Pacheco 2019 Context Aware Intrusion Detection for Building Automation Systems

87 8 Liang et al. 2019 Search Engine for the Internet of Things: Lessons from Web Search, Vision, and Opportunities

88 8 Puschmann et al. 2019 Using LDA to Uncover the Underlying Structures and Relations in Smart City Data Streams

89 8 Zuhairy and Al Zamil 2018 Energy-Efficient Load Balancing in Wireless Sensor Network: An Application of
Multinomial Regression Analysis

90 7 Duan et al. 2020 Operating Efficiency-Based Data Mining on Intensive Land Use in Smart City

91 7 Bosse and Engel 2019 Real-Time Human-In-The-Loop Simulation with Mobile Agents, Chat Bots, and Crowd
Sensing for Smart Cities

92 7 Wang et al. 2019 Next Location Prediction Based On An Adaboost-Markov Model of Mobile Users

93 7 Bracco et al. 2018 Advancing Climate Science with Knowledge-Discovery Through Data Mining

94 7 Zaree and Honarvar 2018 Improvement of Air Pollution Prediction in a Smart City and its Correlation with
Weather Conditions Using Metrological Big Data

95 6 Hassib et al. 2019 An Imbalanced Big Data Mining Framework for Improving Optimization Algorithms
Performance

96 6 Tsai et al. 2018 Data Analytics for Internet of Things: A Review

97 6 Chen and De Luca 2018 Technologies for Developing a Smart City in Computational Thinking

98 6 Zhang and Yuan 2017 The GPS Trajectory Data Research Based on the Intelligent Traffic Big Data Analysis Platform

99 5 Visvizi and Lytras 2020 Sustainable Smart Cities And Smart Villages Research: Rethinking Security, Safety,
Well-Being, And Happiness

100 5 Anchal and Mittal 2019 Data Mining Techniques for IoT Enabled Smart Parking Environment: Survey
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