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Abstract—Fusion from a spatially low resolution hyperspectral
image (LR-HSI) and a spectrally low resolution multispectral
image (MSI) to produce a high spatial-spectral HSI (HR-HSI),
known as Hyperspectral super-resolution, has risen to a preferred
topic for reinforcing the spatial-spectral resolution of HSI in
recent years. In this work, we propose a new model, namely low-
rank tensor ring decomposition based on tensor nuclear norm
(LRTRTNN), for HSI-MSI fusion. Specifically, for each spectrally
subspace cube, similar patches are grouped to exploit both the
global low-rank property of LR-HSI and the non-local similarity
of HR-MSI. Afterwards, a joint optimization of all groups via the
presented LRTRTNN approximation is implemented in a unified
cost function. With the introduced tensor nuclear norm (TNN)
constraint, all 3D tensor ring factors are no longer unfolded
to suit the matrix nuclear norm used in conventional methods,
and the internal tensor structure can be naturally retained. The
Alternating Direction Method of Multipliers (ADMM) is intro-
duced for coefficients update. Numerical and visual experiments
on real data show that our LRTRTNN method outperforms most
state-of-the-art algorithms in terms of fusing performance.

Index Terms—Image fusion, Hyperspectral super-resolution,
hyperspectral imaging, multispectral image, tenson ring, tensor
nuclear norm, low-rank decomposition.

I. INTRODUCTION

Hyperspectral imaging is a rising modality where a camera
acquires images with tens or even hundreds of spectral bands
in wide-range spectral coverage from a scene across. Since
the materials usually have different reflectance for various
wavelengths, hyperspectral images (HSIs) capacitate an ex-
plicit discernment of the materials present within the scene,
which underlies a major amount of comprehensive applications
on anomaly detection [1], [2], remote sensing [3]–[8], and
classification [9], [10], etc. However, there is invariably a
certain compromise between the spectral dimension and spatial
dimension for existing cameras due to the quantity of the
incident energy is restricted in the optical remote sensing
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systems [11]. Since high spectral dimension is required in
HSIs, the spatial resolution is sacrificed due to the limitations
of equipment. On the contrary, the acquired MSIs have a
higher spatial dimension, but the spectral resolution is lower.
Therefore, it is an increasingly promising and economical
approach to generate the high spatial resolution HSI (HR-
HSI) by fusing a high spatial resolution MSI (HR-MSI) with
the corresponding low spatial resolution HSI (LR-HSI) of the
same scene.

The recent HSI-MSI fusion methods can be principally
categorized into four families: Pan-sharpening [12]–[15], deep
learning [16]–[19], matrix factorization (MF) based approach-
es [20]–[25], and tensor representation based approaches [26]–
[33]. The typical Pan-sharpening based Fusion methods at-
tempt to fuse a high-resolution panchromatic (PAN) image
with a low-resolution MSI for spatially resolution enhance-
ment. According to the spectral coverage of HSIs, Chen et al.
[14] separated the spectral channels into several groups, and
combined each spectra of MSIs with the corresponding band
of HSI following pan-sharpening scheme. Although this can
achieve better fusion results and have low computational cost,
the fused HSI often produces significant distortions once the
spatial dimensions of MSI and HSI is quite different.

With the prosperous application of deep learning in object
detection, pattern recognition, denoising, and inpainting prob-
lems, a large number of researchers have applied this technol-
ogy into HSI-MSI fusion problem. Qu et al. [16] presented
an unsupervised deep CNN model combining two encoders
with a shared decoder for HSI-MSI fusion, which inherits an
advantage of needless usage of the pretraining stage. Yuan
et al. [17] offered a multi-scale and multi-depth CNN for
pansharpening. Although deep CNN can achieve appealing
fusion effect, it is extremely complex and cumbersome to
evaluate the parameters in the network by using massive
amounts of training samples. Furthermore, the generalization
capability of those strategies is commonly restricted by the
specific model structure and the priori distribution of training
data.

The matrix factorization based HSI-MSI fusion can be
further categorized into two branches: sparse representation
and low-rank constraint. These approaches all unfold 3D HSI
into 2D matrix, and some of them factor the unfolded matrix
into a spectral basis matrix and a coefficient matrix for better
revealing the intrinsic structure. Dong et al. [20] proposed
a nonnegative over-complete dictionary learning method to
estimate the spectral basis from LR-HSI and used the sparse
property to learn the coefficient matrix. Simoes et al. [25]
applied the vertex component analysis (VCA) to HSI to extract
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the spectral dictionary and the spatial total variation constraint
was also applied to obtain the smooth coefficients. As for the
low-rank based approaches, Veganzones et al. [23] learned
the spectral base of HSI by dividing the whole image into
patches, which makes full use of the low-rank prior of HSI.
Wei et al. [24] first described the multi-band fusion as an
ill-posed inverse problem, then took consideration on both
the low-rank property of linear spectral mixing model and
the non-negativity resulting from inherent physical properties
of the abundance to solve the fusion problem. In practical
applications, although the matricization operation involved in
these methods would not change any values in the original 3D
data, it indeed breaks the spatial-spectral structure information
of HSIs and suffers from performance degradation.

In the last few years, tensor factorization has emerged rapid-
ly in the field of multi-frame image denoising, completion,
compressive sensing, and classification [10], [34]. Nowadays,
tensor factorization has become another hot scheme to handle
the HSI-MSI fusion problem. Dian et al. [11] divided the
HSI into smaller full-band cubes and clustered these patches
following the guided information from the HR-MSI. Since
that cubes in the same group share the same dictionaries,
they made full use of non-local self-similarities in HSIs.
Then, Li et al. [26] factorized the HSI as a sparse core
tensor and three dictionaries of different modes via proximal
altercating optimization, which was called coupled sparse
Tucker decomposition (CSTF) algorithm. In [31], Kanatsoulis
et al. used CANDECOMP/PARAFAC (CP) decomposition to
divide HR-HSI into three parts and then updated each part
iteratively. Chang et al. [29] also decomposed the HSI into a
core tensor multiplied by three matrices along with different
channels, whose advantage lies in the assignment of different
weights to the singular values (SV) of the core factor. In
[32], the authors formed 4D tensors from grouped clusters
for holding the intrinsic spatial-spectral structure. On that
basis, the tensor-train (TT) rank regularization was imposed
on the 4-D tensors. Subsequently, a new tensor nuclear norm
regularizer was further imposed to measure the correlation of
non-local similar image patches [28]. He et al. [27] applied
the tensor ring (TR) decomposition to get a core tensor with
high spectral resolution from HSI and two other factors with
high spatial resolution from MSI. Meanwhile, they penalized
matrix nuclear norm constraint on the spectral factor along
mode-2 for exploiting the globally spectral low-rank proper-
ty. Among all these tensor decompositions, tensor networks
based completion methods such as tensor train [35], tensor
tree [36], and tensor ring [27], [37]–[40] decompositions
achieve superior performance than the rest ones since they
can capture more inherent correlations. Numerically, for any
N th-order tensor, the space complexity of CP, TT, and TR
decompositions are linear with O(N), while the case of Tucker
decomposition grows exponentially with N . Besides, although
CP decomposition follows the same space complexity as TT
and TR decompositions, it is not easy to search for the best
latent tensors. Since TT constitutes the rank vector of factors
by a well-designed matricization scheme, it can better reveal
the global correlation of tensor elements. However, TT needs
rank-1 condition on the border factors and larger ranks for

the relatively middle factors, which ends up with restricted
representation ability and flexibility. Comparatively, TR can
be regarded as a linear combination of TT, which provides a
more powerful and generalized expression ability to alleviate
the shortcomings of TT. That is to say, TR not only has all
the dominant properties of TT, but also relaxes the constraints
of TT ranks. Moreover, since tensor ring has the rotation
invariance property of latent factors, its model constraints
are more flexible than TT. In practice, TR can enhance the
compression ability and also improve the interpretability of
latent factors. The minimization of TR rank has become a
hot research topic on the purpose of correctly discovering the
latent space of tensor ring factors. He et al. [27] introduced
the matrix nuclear norm to the third core tensor along mode-2.
Moreover, Yuan et al. [37] imposed low-rankness on each of
the TR factors. However, although acceptable performance can
be achieved from these algorithms, they all unfolded the tensor
core to mode-n matrix which may result in loss of optimality
in the representation.

In this study, to boost the HSI-MSI fusion performance,
a new tensor ring and subspace decomposition method is
proposed. Specifically, the spectral subspace from LR-HSI is
estimated by singular value decomposition, in which the full
band cubes with a given size can be partitioned and gathered.
For each separated cube, similar patches can be collected to
form a tensor group centered at the referred cube. On that
basis, all groups for different cubes would be jointly optimized
using the proposed LRTRTNN constraint. The main difference
of our method from several state-of-the-arts is threefold. First,
we handle the fusion problem in a patch-wise way for more
detailed information collection, instead of the treatment in
[26] and [27] directly on the whole image. Second, we
collect similar patches for each cube to take advantage of the
stricter low-rank property, rather than a simple clustering of
the divided cubes in [28]. More importantly, for better TR
representation capability, we impose tensor nuclear norm on
the 3D ring factors for capturing the internal structure of the
tensors, rather than the matrix nuclear norm used in [37] and
[27]. Generally speaking, our LRTRTNN method takes all the
existing issues into account and the primary contributions are
highlighted as follows.

1) A general framework combing both global spectral low-
rank and non-local spatial self-similarity is presented
for HSI-MSI fusion problem. Specifically, the singular
values decomposition of LR-HSI is used to learn the
spectral subspace at first. Thereafter, the non-local similar
patches are grouped for revelation of better spatially
low-rank prior. On that basis, our proposed tensor ring
decomposition under the tensor nuclear norm constraint
can be naturally adopted.

2) A new and compact tensor ring decomposition model
are proposed to describe the intrinsic spatial, spectral,
and non-local similarly simultaneously, in which the
tensor nuclear norm is imposed for all TR factors. The
popular alternating direction method of multiplier method
(ADMM) algorithm is exploited for model optimization.

3) The proposed method, namely Low-rank tensor ring de-
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composition based on tensor nuclear norm (LRTRTNN),
is applied to HSI-MSI fusion tasks. Numerical experi-
ments verify that the proposed method outperforms most
state-of-the-art approaches in terms of fusing perfor-
mance.

II. NOTATIONS AND PRELIMINARIES

In this section, we first briefly present the basic principles
of the fusion problem, then introduce the specific definitions
and properties of tensor ring decomposition and tensor nuclear
norm.

A. PROBLEM FORMULATION

In this work, all of the LR-HSI, HR-MSI, and HR-HSI are
denoted as 3D tensors. We seek to restructure the target HR-
HSI Z ∈ RW×H×S by fusing the acquired LR-HSI X ∈
Rw×h×S and the corresponding HR-MSI Y ∈ RW×H×s of
the same scene. Here W and H denote the spatial dimension
of HR-HSI and HR-MSI, w and h represent the spatial size of
LR-HSI. S and s are the band sizes of HR-HSI and HR-MSI,
respectively.

Note that W > w and H > h always hold, and LR-HSI X
could be downsampled from Z with regarding to the spatial
dimension, in which the relationship can be written as

X(3) = Z(3)BS (1)

where Z(3) ∈ RS×HW and X(3) ∈ RS×hw are the third
mode unfolded matrices of Z and X , respectively. The spatial
downsampling matrix S ∈ RWH×wh selects the correspond-
ing spectral pixels. The block circulant matrix B ∈ RHW×HW
that is diagonalized by fast Fourier transform (FFT) represents
the convolution blur, and denoted by

B = FKF−1 (2)

where the diagonal matrix K holds eigenvalues of B, F and
F−1 respectively denote the fast Fourier transform and its
inverse operation.

We can identify the same scene through multispectral imag-
ing sensors to obtain HR-MSI Y , and model the HR-MSI
as the downsampled version from Z with regarding to the
spectral dimension.

Y(3) = RZ(3) (3)

where Y(3) ∈ Rs×HW is the folding matrix of Y along the
third dimension. R ∈ Rs×S denotes the spectral response
matrix of MSI sensor.

B. Tensor-Ring Decomposition

The TR decomposition can rewrite a higher-order tensor
T ∈ RI1×I2×···×IN as the circular multilinear product-
s across a series of low-order latent core factors G :={
G(1), . . . ,G(N)

}
, in which G(n) ∈ RRn×In×Rn+1 with n =

1, 2, · · · , N . The syntax {R1, R2, . . . , RN} is the TR-rank
controlling the model complexity after TR decomposition.
Note the trace operation is adopted in TR decomposition and
all the core factors are set to be 3-order. Specifically, the

elementwise relationship of T with the core factor G can be
written by

T (i1, i2, · · · , iN ) = Tr
(
G(1) (i1) G(2) (i2) · · ·G(N) (iN )

)
(4)

where Tr(·) is the matrix trace operation and G(n) (in)
denotes the in-th lateral slice of G(n). According to the
characteristics of the trace operation, the product of these
slices is a square matrix. Benefiting from this operation, tensor
ring decomposition relaxes the rank constraint on the first and
last core of TT to R1 = RN+1, rather than the original
condition R1 = RN+1 = 1. A brief illustration of TR
decomposition is provided in Fig. 1. Next, we tend to present
two necessary characteristics of this operation.
Definition 1: (Tensor Multilinear Product [40]) Let G(n) and
G(n+1) denote two adjacent cores of tensor ring decomposi-
tion. The tensor multilinear product of the two nearby cores
is denoted by

G(n,n+1) ((jl − 1) In + ik) = G(n) (ik)G(n+1) (jl) (5)

for ik = 1, · · · , In, and jl = 1, · · · , In+1. From this
definition, we can obtain this product of all tensor cores

[G] =
N∏
k=1

G(k) = G(1,2,··· ,N) =
{
G(1),G(2), · · · ,G(N)

}
∈

RR1×I1I2···IN×R1 . Therefore, the TR decomposition (Eq. (4))
can be reexpressed as T = Φ[G], in which Φ represents the
tensor ring transformation operator converting the 3D tensor
[G] to tensor T , i.e., Φ : RR1×I1I2···IN×R1 → RI1×I2×···×IN .
Proposition 1: (Circular dimensional permutation invariance
[40] [41]) For the tensor T ∈ RI1×I2×···×IN , if

←−
T n ∈

RIn+1×···×IN×I1×···×In is represented as circularly moving the
dimensions of T by n, then we get

↼

T n = Φ
({

G(n+1), . . . ,G(N),G(1), . . . ,G(n)
})

(6)

Proposition 1 shows that TR decomposition holds the capac-
ity to reveal the correlation of elements in multiple dimensions,
therefore we could readily move the middle factors of TR to
the marginal position and analyze each factor separately.

C. t-SVD and TNN

In this subsection, we further introduce some definitions
about TNN and tensor singular value decomposition (t-SVD).
Note that tensors used in this subsection are all 3-order tensors.
Definition 2. (t-product [42]) For any two acquired tensors
A ∈ RW×H×S and B ∈ RH×l×S , the t-product C of A and
B is denoted as a tensor with size W × l × S, i.e.,

C = A ∗B = fold(bcirc(A) · unfold(B)) (7)

where · is the matrix product, bcirc(A) is a block circulant
matrix whose form can be written as

bcirc(A) =


A(1) A(S) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(S) A(S−1) · · · A(1)

 , (8)
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Fig. 1. Illustration of the proposed LRTRTNN method for the HR-HSI. The red box represents the TNN constraint on some TR factor.

and the unfold operator as well as its inverse operator are as
follows.

unfold(A) =


A(1)

A(2)

...
A(S)

 , fold(unfold(A)) = A. (9)

Indeed, t-product is homologous to the matrix product with
an added operation of circulant convolution, therefore Eq. (7)
can also be written in the Fourier domain as

C = A ∗B ⇐⇒ C̄ = ĀB̄, (10)

where the terms Ā, B̄, and C̄ are all block diagonal matrices
whose frontal slices are diagonal blocks, e.g., Ā is written as:

Ā = bdiag(Ā) =


Ā

(1)

Ā
(2)

. . .

Ā
(S)

 , (11)

where Ā represents the result of Discrete Fourier transforma-
tion (DFT) of A, bdiag(·) turns tensor Ā into block diagonal
matrix Ā.
Definition 3. (t-SVD [42]) Any given tensor A ∈ RW×H×S
can be factorized as

A = U ∗ S ∗ VT (12)

where U ∈ RW×W×S , V ∈ RH×H×S are orthonormal tensors
and S ∈ RW×H×S is an f-diagonal tensor whose frontal slices
are diagonal matrices. The red box in Fig. 1 shows an example.
Through Eq. (10), t-SVD can also be written as

Ā
(i)

= Ū
(i)
S̄

(i)
(V̄

(i)
)T , i = 1, 2, . . . , S. (13)

Definition 4.(tensor tubal rank [43])The tensor tubal rank of
A ∈ RW×H×S , which is denoted as rankt(A), is the amount
of nonzero singular tubes of S,

rankt(A) = # {i,S(i, i, :) 6= 0} , (14)

where S is from the t-SVD of A.
Definition 5.(tensor nuclear norm [43]) For any tensor A ∈

RW×H×S , TNN is denoted as the summation of SVs of each
frontal slice of Ā

‖A‖∗ =
1

S

S∑
i=1

∥∥∥Ā(i)
∥∥∥
∗
. (15)

III. PROPOSED METHOD

In this section, we mainly introduce our unified HSI-MSI
fusion model which integrates the new tensor ring decom-
position based on tensor nuclear norm, global spectrum low-
rank, and non-local similarity priors in the same framework.
We first utilize the globally spectral low-rank prior of LR-
HSI to obtain the low dimensional subspace. Secondly, we
group similar image patches together from the HR-MSI to take
full advantage of non-local similarities. Finally, the new tensor
ring decomposition based on TNN is applied to explore the
low-rank prior. The whole process is shown in Fig. 1, which
sequentially consists of a subspace decomposition operation, a
group matching operation, and the tensor ring strategies based
on the tensor nuclear norm.

A. Globally low-rank property

Due to the fact that HSI often has a close correlation among
different bands, the globally spectral low-rank property is
a dominant prior for HSI super-resolution. Particularly, the
pixels located at the same spatial position but with different
spectral bands often live in a low dimensional subspace whose
ambient size is much less than that of the original one.
Therefore, we use the subspace decomposition technology for
HR-HSI to reveal the spectral low-rank property, i.e.,

Z = A×3D (16)

where D ∈ RS×L, L << S is the orthogonal basis matrix
which discovers the common subspace of different spectra
and the tensor A ∈ RW×H×L is the reduced image, where
A(i, j, :) denotes the coefficient of the spectral pixel Z(i, j, :).
Note that A ∈ RW×H×L used here is different from the
A ∈ RW×H×S used in Subsection II.C. For convenience, we
use symbol A to represent the reduced image in the rest of
the paper. Eq. (16) can also be rewritten as

Z(3) = DA(3) (17)
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where A(3) ∈ RL×WH is the unfolded matrix of A along
the third dimension. In this way, the fusion problem can
be converted into an learning problem of subspace D and
coefficients A from the given X and Y . LR-HSI and HR-
HSI can be regarded as living in the same spectral subspace,
because LR-HSI retains most of the spectral information from
HR-HSI. Therefore, we apply singular value decomposition
on LR-HSI to obtain the low-dimensional subspace, i.e.,

X(3) = U1Σ1V
T
1 (18)

where U1 and V1 are column-orthogonal matrices, and Σ1

is the diagonal matrix. We can obtain the low-dimensional
approximation of X(3) by reserving r largest singular values
from Σ1, i.e.,

X(3) = U1Σ1V
T

1 (19)

where U1 = U1(:, 1 : r) and V 1 = V1(:, 1 : r). Hence, the
learned subspace D can be acquired by

D = U1 = U1(:, 1 : r) (20)

When D is known, the coefficients A(3) can be learned by
tackling the following cost function:

min
A(3)

∥∥X(3) −DA(3)BS
∥∥2
F

+
∥∥Y(3) −RDA(3)

∥∥2
F

+λR(A)

(21)
where R(A) represents the regularization term on the coef-
ficient A, λ is the tradeoff parameter. The first two are data
fidelity terms. As we know, without the regularization term,
Eq. (21) may be an ill-posed inverse problem, therefore it
is crucial to employ various prior knowledge to shrink the
solution space in order to alleviate the indeterminacy of the
HSI-MSI fusion task.

B. Low-Rank Tensor Ring Approximation Based on TNN and
Non-Local Similarity Prior

The success of the HSI-MSI fusion strongly depends upon
whether we select proper prior constraint. From the perspective
of data format, we can divide the existing HSI-MSI fusion
methods into 1) sparse representation methods based on 1-
D vectors, 2) low-rank matrix restoration methods based on
2-D matrices, and 3) low-rank tensor methods based on 3-
D tensors. Nowadays, the tensor based HSI-MSI fusion has
become a hot topic due to its intrinsically preservation of
the original structure. Researchers have investigated a great
amount of tensor decomposition algorithms to solve this
problem. For instance, Dian et al. imposed the tensor-train
(TT) rank [32] and subsequently used low tensor multi-rank
prior on tensors [28]. Chang et al. [29] combined the weighted
low-rank tensor prior with the data fidelity term, and optimized
the cost function by merits of higher order SVD (HOSVD). On
the purpose of substantially preserving the intrinsic correlation
of 3D image, we also adopt the tensor form for the third term
in Eq. (21).

The discussion in Sec. I shows that tensor ring decomposi-
tion owns a more powerful capability to capture the inherent
correlation in tensors. The superiority of TR can also be
interpreted with the capacity of ensuring more abundant rep-
resentation. Taking a 4D data X ∈ RI1×I2×I3×I4 as example,

Tucker can discover the low-rank prior of one mode against the
remains, including matrices of X[I1, I2I3I4], X[I2, I3I4I1],
X[I3, I4I1I2], and X[I4, I1I2I3]. TT can factorize X into
a sequence of 3D factors with fixed order, which stress-
es the low-rank prior of X[I1, I2I3I4], X[I1I2, I3I4], and
X[I1I2I3, I4]. Benefiting from the trace operation, besides the
shown matrices in Tucker and TT, TR is capable of capturing
more low-rank prior for matrices such as X[I2I3, I4I1] and
X[I4I1, I2I3]. Note that in most real-world problems, it is em-
pirically verified that low-rank approximation usually reaches
state-of-the-art performance when the tensors are converted to
more size-balanced matrices [40].

As a result, we select tensor ring decomposition for the
subsequent operations. That is, the regularization term R(A)

in Eq. (21) can be modeled as
(
‖A− Φ[G]‖2F

)
. By finely

tuning an appropriate tradeoff parameter, the original fusion
problem can be formulated as follows.

min
A(3)

∥∥X(3) −DA(3)BS
∥∥2
F

+
∥∥Y(3) −RDA(3)

∥∥2
F

+

λ
(
‖A− Φ[G]‖2F

) (22)

The most original intuition in Eq. (22) is to minimize
the TR rank finding the low-rank structure of the data and
approximating the recovered tensor. Note that Ref. [35] and
[39] have imposed matrix nuclear norm on the TR factors.
Although acceptable restoration performance can be achieved
, they all unfold the tensor core G to mode-n matrix, which
may result in certain loss of optimality in the representation. In
order to maintain the original high-order structural correlation,
we instead impose the tensor nuclear norm on each of the TR
factors. Fig. 1 shows the tensor-ring decomposition based on
tensor nuclear norm. A TR factor, e.g., G(2) ∈ RR2×I2×R3 ,
is penalized by the tensor nuclear norm regularization. It is
worth noting that Fig. 1 only shows the process of imposing
the tensor nuclear norm on one TR factor. In fact, we have
carried out tensor nuclear norm constraint on all TR factors.
Based on this setting, Eq. (22) can be rewritten as follows.

min
A(3)

∥∥X(3) −DA(3)BS
∥∥2
F

+
∥∥Y(3) −RDA(3)

∥∥2
F

+(
λ‖A− Φ[G]‖2F + η

N∑
n=1

∥∥∥G(n)
∥∥∥
TNN

) (23)

where η is a tradeoff parameter, ‖·‖TNN is the TNN regular-
ization.

Spatially non-local self-similarity is also a mighty property
which can utilize not only the neighborhood entries but also
the far away entries with similar textures or appearances.
Therefore, we impose this prior on our model to capture
the intrinsic sparsity configurations. However, the HR-HSI
is unknown, we cannot directly group its patches. To solve
this problem, we group similar patches of HR-HSI based
on the learned spatial locations from the HR-MSI. For more
details, we divide the reduced image A into overlapping 3D
patches to capture the local information of HR-MSI. For
each patch B, we search the M (including B itself) most
similar 3D patches, measured by the Euclidean distance, in
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a relatively larger window. Then, by stacking the similar
patches in the i-th exemplar patch together, a third-order tensor
Ai ∈ RP 2×S×M can be formed, where P denotes the patch
size. Mathematically, we represent Ai = RiA as the extracted
3D tensor for each exemplar cubic at position i. Hence, the
cost function of LRTRTNN can further be regarded as

min
A(3)

∥∥X(3) −DA(3)BS
∥∥2
F

+
∥∥Y(3) −RDA(3)

∥∥2
F

+

∑
i

(
λ ‖RiA− Φ[Gi]‖2F + η

N∑
n=1

∥∥∥G(n)
i

∥∥∥
TNN

) (24)

In order to directly compare the practical performance of
applying different low-rank constraint on TR factors, we re-
spectively exhibit the experimental results of imposing matrix
nuclear norm, tensor nuclear norm, and the ones without any
regularization in Fig. 2. It can be seen from this figure that
imposing nuclear norm constraint on TR factors can greatly
improve the fusion effect. Moreover, the PSNR values of all
bands from tensor nuclear norm are all higher than those from
matrix nuclear norm, which demonstrates that tensor nuclear
norm constraint can faithfully retain the intrinsic information
of the tensor. Therefore, we choose to impose tensor nuclear
norm constraint on the model for better performance.

0 20 40 60 80

band

35

40

45

50

55

P
S

N
R

tensor nuclear norm
matrix nuclear norm
without any constraint

Fig. 2. PSNR values along with different spectral bands on Pavia city center
dataset. The blue, red, and cyan lines are regarding to tensor nuclear norm,
matrix nuclear norm, and the one without any constraint, respectively.

Compared with conventional MSI-HSI fusion model, the
proposed LRTRTNN has two evident advantages. On the one
hand, it learns the low dimensional subspace from HSI to
probe into the global spectral low-rank prior and extracts non-
local similar 3D patches from the reduced image to make full
use of spatial self-similarity. On the other hand, the format of
tensor ring approximation based on TNN can more faithfully
capture the structural correlation of the learned tensor.

C. Optimization Procedure

Although the cost function (24) is an unconstrained prob-
lem, it cannot be directly optimized due to the hybrid usage of
extraction operator Ri, the tensor ring decomposition Φ[Gi],
and the TNN constraint. We introduce the well-known ADMM
algorithm [44] to solve this model. By adopting the variable

J = A, {Mn
i }
N
n=1 = {Gni }

N
n=1, the following augmented

Lagrangian function shall be acquired:

L(A,J ,P1,P2,M,G) =∥∥X(3) −DA(3)BS
∥∥2
F

+
∥∥Y(3) −RDA(3)

∥∥2
F

+ µ1

2

∥∥∥J −A + P1

µ1

∥∥∥2
F

+ λ
∑
i

(
‖RiJ − Φ[Gi]‖2F

)
+

∑
i

N∑
n=1

(
η
∥∥∥M(n)

i

∥∥∥
TNN

+ µ2

2

∥∥∥∥M(n)
i − G(n)

i +
P(n)

2(i)

µ2

∥∥∥∥2
F

)
s.t.J = A, {Mn

i }
N
n=1 = {Gni }

N
n=1

(25)

where P1 and P2 are the Lagrangian multipliers, µ1 and µ2

are penalty parameters. On that basis, we can separate the min-
imization of problem (25) into several solvable subproblems:

1) For A(3)-subproblem:

A(3) ∈ argmin
A(3)

L(A,J ,P1)

= argmin
A(3)

∥∥X(3) −DA(3)BS
∥∥2
F

+
∥∥Y(3) −RDA(3)

∥∥2
F

+ µ1

2

∥∥∥J(3) −A(3) +
P1(3)

µ1

∥∥∥2
F
(26)

where P1(3) and J(3) are the unfolded matrices of P1 and J
along the third dimension, respectively. Due to the strongly
convexity of Eq. (26), the solution of A(3) has a unique
solution. Specifically, we can obtain a Sylvester-type equation
by forcing the derivative of (26) on A(3) to be zero.

H1A(3) + A(3)H2 = H3 (27)

where H1 =
[
(RD)

T
RD + µ1IL

]
is positive definite whose

eigenvalues are all positive values with IL ∈ RL×L being
identity matrix, H2 = (BS)(BS)T is semipositive, and
H3 = (RD)TY(3) + µ1

2

(
J(3) +

P1(3)

µ1

)
+ DTX(3)(BS)T .

By employing the properties of B and S, we can solve Eq.
(27) in a closed-from solution as described in [28], [45]. The
practical procedure is provided in Algorithm 1.

Algorithm 1: The solution of (27) for A(3)

Input: H1, H2, H3, B, S.
Output: A(3).

1 Eigen-decomposition of B: B = FKF−1;
2 K̃ = K (1d ⊗ 1wh);
3 Eigen-decomposition of H1: H1 = Q1ΛQ−11 ;
4 H̃3 = Q−11 H3F ;
5 for l= 1 to L do
6 ol =

λ−1l

(
H̃3

)
l
− λ−1l

(
H̃3

)
l
K̃
(
λldIn +

∑d
t=1 K

2
t

)
K̃T ;

7 end for;
8 Set A(3) = Q1OF T ;

In Algorithm 1, 1d ∈ Rd represent a vector with its elements
all ones, and d denotes the spatial degradation factor. The
diagonal matrix K ∈ RWH×WH decomposed from the blur
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matrix B is written as

K =


K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Kd

 (28)

We can acquire the unitary matrix Q1 and the diagonal
matrix Λ by the eigen-decomposition of H1, i.e., H1 =
Q1ΛQ−11 , where the columns of Q1 hold eigenvectors of H1

and Λ can be written as

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λL

 (29)

O can be computed as O = Q−1A(3)F =[
oT1 ,o

T
2 , . . . ,o

T
L

]T
, from which we can know that ol is

the l-th row of O.
2) For G(n)

i -subproblem: According to the work in [37],
assuming the size of each group is RiJ ∈ RI1×I2×···×IN
and for the n-th core tensor G(n), we have RiJ<n> =

G
(n)
i,(2)G

(6=n)
i,<2>, where RiJ<n> ∈ R

In×
N∏

i=1,i6=n
Ii

denotes

mode-n matricization ofRiJ , G(6=n)
<2> ∈ R

N∏
i=1,i6=n

Ii×RnRn+1

is
a mode-2 unfolded matrix generated by merging all the factor
matrices except the n-th core, and G

(n)
(2) ∈ RIn×RnRn+1 is

a n-th unfolded matrix. Because each of the core tensors is
independent, we can optimize them independently. By using
Eq. (25), the subproblem w.r.t. G(n)

i can be formed as

min
G(n)
i

(
λ

∥∥∥∥RiJ<n> − (G(n)
i,(2)

)(
G

( 6=n)
i,<2>

)T∥∥∥∥2
F

)
+µ2

2

∥∥∥∥∥∥M(n)
i − G(n)

i +
P(n)

2(i)

µ2

∥∥∥∥∥∥
2

F

 (30)

Eq. (30) is a least square problem, which has a closed-form
solution as follows:

G
(n)
i,(2) =

((
µ2M

(n)
i,(2) + P

(n)
2[i,(2)]

)
+ λRi J<n>G( 6=n)

i,<2>

)
(
λ
(
G

(6=n)
i,<2>

)T (
G

(6=n)
i,<2>

)
+ µ2I

)−1
(31)

where I is an identity matrix. Since the solution form of Eq.
(31) is a matrix, a folding operation is performed to convert
G

(n)
i,(2) into a tensor form G(n)

i .
3) For J -subproblem: The subproblem of J is

J ∈ argmin
J

L(A,J ,P1,G) = λ
∑
i

‖RiJ − Φ[Gi]‖2F+

µ1

2

∥∥∥∥J −A +
P1

µ1

∥∥∥∥2
F

(32)

The quadratic optimization problem (32) has an analytical
solution, provided by

J = (µ1I + λ
∑
i

RTi Ri)−1(λ
∑
i

RTi Φ[Gi] + µ1A−P1)

(33)
where λ

∑
i

RTi Ri denotes the number of overlapping cubics

that cover the pixel location, and λ
∑
i

RTi Φ[Gi] means the

sum value of all overlapping reconstruction cubics that cover
the pixel location.

4) For Mi-subproblem: By keeping other variables fixed,
we can obtain Mi by

min
Mi

N∑
n=1

η∥∥∥M(n)
i

∥∥∥
TNN

+
µ2

2

∥∥∥∥∥∥M(n)
i − G(n)

i +
P(n)

2(i)

µ2

∥∥∥∥∥∥
2

F


(34)

Eq. (34) also has a closed-form solution by adopting the
tensor singular value thresholding (t-SVT) operator [43]

M(n)
i = SVT 1

η
(G(n)

i −
P(n)

2(i)

µ2
) (35)

The t-SVT operator is given as:

SVTτ (L) = U ∗ Sτ ∗ VT (36)

where Sτ = ifft
(
(S − τ)+, [], 3

)
with t+ representing the

positive part of t, i.e., t+ = max(t, 0). In other words, t-SVT
simply adopts a soft-thresholding rule to the SVs of S that

computed from the frontal slices of G(n)
i −

P(n)

2(i)

µ2
.

5) Update Lagrangian multipliers P1 and P2: According
to ADMM, the multipliers can be updated as:

P1 = P1 + µ1(J −A)

Pn
2(i) = Pn

2(i) + µ2(Mn
i − Gni )

(37)

The whole procedure to solve the proposed LRTRTNN
method is given in Algorithm 2.

D. Computational Complexity

For the acquired LR-HSI X ∈ Rw×h×S and HR-MSI
Y ∈ RW×H×s, the per-iteration cost of each group mainly lies
in the subproblems of updating Mn and Gn. For simplicity,
assuming the size of each group is RiJ ∈ RI×I×I and the
TR rank is set as R1 = R2 = R3 = R, the cost of updating Gn
in each iteration is O(R6 + I2R4 + I3R2). The computation
of Mn is dominated by the FFT transformation and

⌈
R+1
2

⌉
SVDs of R×I matrices, which costs O(R2IlogR+I2R2) and
is evidently less than that for Gn. Unfortunately, for images
with relatively larger spatial size, the computational cost of
the algorithm is very high. For computation alleviation, our
algorithm can be performed in a parallel way for different
groups. Moreover, subspace decomposition shrinks the spec-
tral dimensionality of HSI, which could further reduce the
computational cost.
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TABLE I
SETUP OF THE PARAMETERS IN THE EXPERIMENTS

NSSR CSTF UTV STEREO SC-LL1 LTMR LRTRTNN
Sub-dimension L / / / / / 10 10

Group size M / / / / / 100 150
Patch size P / / / / / 7 6
Step size s / / / / / 4 3

Tradeoff parameter [0.015,10−4] 10−5 [10−6, 10−8,
10−7, 103]

0.8 [0.005, 10−5,
10−4]

[0.03, 10−3] [1, 0.007]

Dictionary atoms 80 [300, 300, 12] [300, 300, 12] / / / /

Algorithm 2: ADMM for solving (24)
Input: HR-MSI Y ; LR-HSI X ; tradeoff parameter λ and

η; Randomly sampled Gn by distribution
N ∼ (0, 1); patch size P ; step size s; TR Rank
R; maximum iteration T .

Output: HR-HSI Z
1 Initialization:
λ = 1, η = 0.7, R = 11, T = 30, µ1 = µ2 = 10−3, P, s,
iter=0;

2 learn the orthogonal basis matrix D from X(3) via SVD;
while not converged do

3 iter=iter+1;
4 Update A(3) via (26);
5 For n = 1, · · · , N , Update Gn via (31);
6 Update J via (33);
7 For n = 1, · · · , N , Update Mn via (35);
8 Update Lagrangian multipliers P1 and P2 via (37);
9 end

10 Z = A×3D.

IV. EXPERIMENTS

We conduct the comparisons between LRTRTNN with
several state-of-the-art HSI-MSI fusion methods, including
NSSR (nonnegative structured sparse representation) [20],
CSTF (coupled sparse tensor factorization) [26], LTMR
(subspace based low tensor multi-rank regularization) [28],
UTV(Unidirectional Total Variation) [30], STEREO(Super-
resolution Tensor reconstruction) [31], and SC-LL1 (structured
coupled LL1 decomposition) [4]. Among the compared ap-
proaches, NSSR follows the matrix factorization mode, while
CSTF, LTMR, UTV, STEREO, and SC-LL1 are all tensor
factorization based methods. All the undetermined parameters
for the compared methods are optimally tuned to report their
best results. Unless otherwise specified, the used parameter
setting is given in Table I. The experiments are run using
MATLAB R2020a in Windows 10 and on hardware platform
with AMD R5-3600 and 16-GB memory.

A. Description of Data Sets

We employ four data sets to verify the performance of
LRTRTNN. The first dataset is Cuprite Mine in Nevada, which
was obtained by the NASAs Airborne Visible and Infrared
Imaging Spectrometer (AVIRIS) [46]. The original size of the
image is 256 × 256 × 224, and it covers the wavelength from
400nm to 2500nm with 10nm interval. For reasons connected

with the downsampling process, the used HSI is resized to be
with 200 × 200 × 103 tensor.

The second one is University of Pavia image obtained by the
reflective optics system imaging spectrometer (ROSIS) optical
airborne sensor over the area of the University of Pavia, Italy
[47]. Since some spectral bands of this dataset are heavily
contaminated by noise, we firstly remove a few bands of this
data. The finally used HSI has been resized to 256 × 256 ×
93.

The third dataset is Pavia city center dataset collected by the
reflective optics system imaging spectrometer (ROSIS-03)1.
The HSI consists of 610 × 340 pixels and 93 spectral bands
and we resize this HSI to 200 × 200 × 80 in our experiments.

The fourth one is Washington DC Mall dataset collected
by the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) [48]2. The original image contains 1208 × 307
pixels and 191 spectral bands. We use a subimage of size 256
× 256 ×103 in the experiment.

To build the whole process of MSI-HSI fusion, we first
apply IKONOS-like spectral reflectance response filter [49] to
obtain the four-band HR-MSIs of the size 200 × 200 × 4, 256
× 256 × 4, 200 × 200 × 4, and 256 × 256 × 4, respectively.
Afterwards, a 7 × 7 Gaussian blur with standard deviation 2 is
filtered to each band of HR-HSI, followed by a downsampling
operator mapping every four pixels to two spatial modes for
all data sets.

B. Quantitative Metrics

Five quantitative metrics, including mean peak signal-to-
noise ratio (MPSNR), mean structural similarity (MSSIM)
[50], spectral angle mapper (SAM), the relative dimensionless
global error in synthesis (ERGAS), and degree of distortion
(DD) are utilized to measure the comprehensive quality of the
generated results. They can be respectively defined as follows:

MPSNR =
1

S

S∑
i

10× lg
‖Ai‖2∞

1
WH

∥∥∥Âi −Ai

∥∥∥2
F

, (38)

MSSIM =
1

S

S∑
i

(2µAi
µÂi

+ C1)(2σAiÂi
+ C2)

(µ2
Ai

+ µ2
Âi

+ C1)(σ2
Ai

+ σ2
Âi

+ C2)
,

(39)

1 http://www.ehu.eus/ccwintco/index.php
2 https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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Fig. 3. PSNR results against different selections of (a) patch size P and step size s on Pavia city center, (b) patch size P and step size s on Washington
DC Mall, (c) tensor ring rank R, (d) tradeoff parameter η, (e) tradeoff parameter λ, (f) subspace dimension L, (g) group size on Pavia city center, and (h)
group size on Washington DC Mall.

SAM(A, Â) =
1

WH

WH∑
i=1

arcos
âi
Tai

‖âi‖2‖ai‖2
(40)

ERGAS(A, Â) =
100

d

√√√√√ 1

S

S∑
i=1

MSE
(
Ai, Âi

)
µ2

(Âi)

, (41)

DD(A, Â) =
1

WHS
‖vec(A)− vec(Â)‖1 (42)

where Ai and Âi denote the i-th spectra of Ai ∈ RW×H×S
and the generated result Â ∈ RW×H×S , respectively. C1

and C2 are constants, σAiÂi
denotes the covariance matrix

between Ai and Âi, µAi
and µ

Âi
represent the average

values, σAi
and σ

Âi
are the standard deviation of Ai and

Âi, respectively. d represents the spatial downsampling factor
(DF), MSE (·) is abbreviated for the mean square error, µ(·)
is the symbol to compute the mean value, and ai and âi are
the ground truth pixel and the estimated one, respectively.

C. Parameters Analysis

In our method, several key parameters, i.e., patch size P ,
step size s, tensor ring rank R, tradeoff parameter η and λ,
subspace dimension L, and the number of grouped cubes M ,
need to be pre-determined in practical usage. Table I lists the
key parameter values in the experiment.

1) The influence of patch size P and step size s: Fig. 3(a)
and Fig. 3(b) report the quantitative metrics (MPSNR) against
different patch sizes and step sizes on datasets Pavia city
center and Washington DC Mall, respectively. The detailed
performance difference is compared through different depths

of the presented colors. It is well known that different patch
sizes and step sizes perform inconsistently to different datasets.
Given a fixed step size, our first observation from Fig. 3(a) and
Fig. 3(b) is that the performance fluctuates slightly against
varying patch sizes. Specifically, the best fusion results lie in
P = 6 and P = 8 on Pavia city center and Washington DC
Mall, respectively. Nevertheless, while P = 6 is clearly the
best setting for Pavia city center, the result on Washington DC
Mall from P = 9 is very close to that from P = 8. By taking
the running efficiency into account, P = 8 is decided to be
our final setting since it achieves well-balanced compromise
between patch size and patch number, which further makes it
run faster than P = 9. As for the step size, we can see that
it has lower impact on the fusion performance. In practice,
a smaller step size would lead to much more patches, which
further results in better performance due to deeper utilization
of spatial information. However, while the performance gain
is trivial, the running efficiency would evidently cut down.
For a well balance, we set s = 3 for Pavia city center and
s = 4 for Washington DC Mall. Since Cuprite Mine (Resp.
University of Pavia) shares the spatial dimension with Pavia
city center (Resp. Washington DC Mall), we simply set their
P , s pair as [6,3] and [8,4], respectively. Note again that the
best pair values are inconsistent concerning different datasets.
For practical usage, we suggest a preliminary attempt on pairs
[6,3] and [8,4]. Then the values around the winner can further
be tried for a better visual assessment.

2) Discussion of TR Rank R: R is an important parameter
since it determines how low rank the recovered tensors would
be. While a loose approximation using higher rank values is
relatively easier to determine, it would result in accuracy loss
and incremental computation due to involving of redundant
information. Conversely, when a much lower rank value is
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Fig. 4. The upper row gives the fused images by the competing methods for Cuprite Mine at band 20. The lower row gives the error images of the test
methods for Cuprite Mine at band 20.(a) LR-HSI. (b) NSSR. (c) CSTF. (d) UTV. (e) STEREO. (f) SCL11. (g) LTMR. (h) LRTRTNN. (i) Ground truth.

given, the performance degradation would be also remarkable
due to loss of the intrinsic information. For simplicity, we
assume the TR ranks for different factors are equal, i.e.,
R1 = R2 = · · · = RN . To seek a relatively tighter
representation, in Fig. 3(c), we illustrate the variations of
MPSNR values against with different settings of TR ranks on
Pavia city center and Washington DC Mall. From this figure,
one can observe that the experimental results have a sharp
rise as parameter R varies from 2 to 11. However, when the
peak value is surpassed, the performance declines rapidly as R
grows further. The clear trend on all datasets would evidently
relieve the tedious searching process of parameter R. In our
experiments, we set R as 11 due to its stability.

3) The influence of tradeoff parameters η and λ: η and
λ directly affect the solution of (35) and (31), respectively.
Given the searching span η ∈ [0.1, 1) ∗ 10−3, Fig. 3(d)
shows the generated results of LRTRTNN on Pavia city center
dataset. Note that when η = 0, the TNN penalty is eliminated
from the cost function, which turns into an ill-posed inverse
problem and the solutions are infinite. Conversely, when one
set η = ∞, then the fidelity term would contribute little to
the final solution. From Fig. 3(d), one can check that the
generated results are comparatively stable in the given span.
Although there would be certain fluctuations in efficacy and
efficiency in different scenarios or on various target data,
η = 0.7 ∗ 10−3 is suggested as the default value due to the
appealing performance with this setting in all our experiments.
The parameter λ controls the relative weight of tensor ring
decomposition. From Fig. 3(e), it can be observed that the
values of MPSNR get higher with the increasing λ on Pavia
city center dataset. However, when λ continues to increase, the
growth rate of MPSNR slows down, and the best results are
achieved when λ = 1. Based on these results, the empirical
setting λ = 1 is used in all experiments.

4) Analysis on different choices of atoms L: L controls the
reduced spatial dimension. In Fig. 3(f), we plot the MPSNR
curves against different L on Pavia city center and Washington
DC Mall. As can be seen, the MPSNR values have a rising
trend as L changes from 2 to 10. When L is greater than 10, the
performance tends to be stable and the value variation is trivial.
This phenomenon is reasonable since that a smaller dimension

is insufficient to support the subspace range. At least 10 atoms
should be retained to preserve the spectral information for the
used data.

5) Analysis of group size M : The results of MPSNR values
with M being searched in {50, 100, 150, 200, 250} are shown
in Fig. 3(g) and (h) on Pavia city center and Washington
DC Mall, respectively. In both of these two subfigures, the
performance is relatively stable along with different settings of
parameter M . Thus, the patch number is empirically set to 50
and 150 for Pavia city center (Cuprite Mine) and Washington
DC Mall (Pavia University), respectively.

D. Synthetic Data Experiments

In this subsection, we exhibit the generated results of all the
competing methods on the four selected datasets, i.e., Cuprite
Mine, Pavia University, Pavia city center, and Washington DC
Mall. The values of MPSNR, MSSIM, SAM, ERGAS, and DD
of the recovered HSIs for these datasets are given in Table II
to Table V, where the highest values are purposely shown in
bold face.

TABLE II
QUANTITATIVE METRICS (PSNR, SSIM, SAM, ERGAS, DD) OF

ALL COMPARED METHODS ON CUPRITE MINE

Image Method MPSNR MSSIM SAM ERGAS DD

Cuprite Mine

NSSR 37.9809 0.9647 1.6736 0.9734 2.5756

CSTF 39.5205 0.9751 1.5867 0.8049 2.1809

UTV 41.3791 0.9799 1.4537 0.7658 1.8645

STEREO 37.274 0.9513 2.3719 1.2419 3.0987

SC-LL1 42.6106 0.9859 1.2207 0.6465 1.5449

LTMR 42.7091 0.9866 1.2021 0.6416 1.5351

LRTRTNN 43.5868 0.9891 1.0908 0.5664 1.3787

For the Cuprite Mine dataset, LRTRTNN generates the best
results compared with other competing approaches in terms
of all quantitative metrics, which verifies the superiority of
our joint consideration of tensor ring decomposition and TNN
prior. Specific to MPSNR, the improvement of LRTRTNN
over NSSR, CSTF, UTV, STEREO, SC-LL1 and LTMR,
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Fig. 5. PSNR values against different spectral bands on four datasets. (a) Cuprite Mine, (b) Pavia city center, (c) Pavia University, and (d) Washington DC
Mall.

are 5.6059dB, 4.0663dB, 2.2077dB, 6.3128dB, 0.9762dB and
0.8777dB, respectively. Besides, on the purpose of visually
comparing the performance of LRTRTNN with the others,
some reconstructed images and the corresponding error maps
are shown in Fig. 4. Moreover, for better visual perception,
the representative areas of these images are magnified. Note
that the error map reflects the difference between the fusion
result and the ground truth, in which deeper blue denotes
less residuals. At first blush, all the competitors can roughly
learn the spatial details from HR-MSI, little difference can
be found with naked eyes. However, from the error maps,
especially in the magnified regions, one can easily find that our
proposed method tends to generate much bluer and smoother
results, which demonstrates that the fused HR-HSIs by NSSR,
CSTF, UTV, STEREO, SC-LL1, and LTMR are with more
flaws and scattered points. To exhibit the efficacy of our
method in the spectral dimension, Fig. 5(a) further shows
the band-wise PSNR values. We can see that LRTRTNN
is consistently superior to other methods in all bands. This
sub-figure together with the previous results demonstrates
the superior performance of our hybrid usage of non-local
similarity, global correlation, and TNN constrained tensor ring
decomposition.

TABLE III
QUANTITATIVE METRICS (PSNR, SSIM, SAM, ERGAS, DD) OF

ALL COMPARED METHODS ON PAVIA CITY CENTER

Image Method MPSNR MSSIM SAM ERGAS DD

Pavia city center

NSSR 43.1814 0.9921 2.5299 1.0353 1.2726

CSTF 45.5026 0.9943 2.5448 0.8662 1.0488

UTV 46.6649 0.9959 2.223 0.7017 0.8934

STEREO 45.6477 0.9948 2.544 0.7666 1.024

SC-LL1 46.9932 0.9967 2.0266 0.6462 0.8086

LTMR 47.5827 0.9968 1.9134 0.6439 0.7553

LRTRTNN 48.3645 0.9974 1.7581 0.5491 0.6844

As for the Pavia city center dataset, we can observe from
Table III that LRTRTNN again ranks at the first place con-
sistently for all quantitative metrics. Taking metric ERGAS
as example, the result of SC-LL1 that ranks the second place
lags behind ours by 0.0971. This improvement is quite re-
markable since all the competing methods have been reported
as achieving the state-of-the-art results in recent years. Taking

TABLE IV
QUANTITATIVE METRICS (PSNR, SSIM, SAM, ERGAS, DD) OF

ALL COMPARED METHODS ON PAVIA UNIVERSITY

Image Method MPSNR MSSIM SAM ERGAS DD

Pavia University

NSSR 40.5277 0.9767 2.4363 0.7384 1.6721

CSTF 44.0264 0.9896 1.8907 0.5074 1.1301

UTV 43.5311 0.9841 2.1483 1.0667 1.2813

STEREO 41.7181 0.9791 2.5621 0.9409 1.005

SC-LL1 44.505 0.99172 1.7261 0.6462 0.8086

LTMR 45.9688 0.9932 1.4591 0.7905 0.8325

LRTRTNN 45.9746 0.9931 1.4513 0.7928 0.8307

the 50th band as example, we show the fused images and
error maps in Fig. 6 for visual comparison. Similarly, we
magnify a representative region of each image (or map) for
easier observation. From the spatial perspective, the generated
results are all of sharp edges and clear surfaces. However,
part of methods still generates certain artifacts and whose
results suffer from the loss of texture details. For instance,
in Fig. 6 (b), the house roof in the magnified region is slightly
blurrier, while the ones from other methods are closer to
the ground truth. More evidently, from the error maps, we
can easily observe the difference. The maps generated by
LRTRTNN, SC-LL1 and LTMR have fewer residuals than
those produced by NSSR, CSTF, STEREO, and UTV. Among
these three, the map from LRTRTNN is significantly bluer.
Fig. 5(b) further shows the PSNR values along with different
spectral bands. Again, the curve of our method is clearly
higher than other competing methods, which together with
previous analysis illustrates the advantages of our method
both spatially and spectrally. Fig. 7 further shows the behavior
of spectral consistency on representative pixels. It is evident
that the profiles generated from CSTF, UTV, and STEREO
deviate from the original ones on the 40th channel to the
60th channel, while NSSR cannot perfectly capture the spectral
characteristics of 35th to 45th channels. SCL11, LTMR, and
LRTRTNN can capture the main spectral consistency. From a
deeper insight, the curves of our method are much closer to
the original one, which again demonstrates the superiority of
tensor ring decomposition based on non-local similarity and
tensor nuclear norm constraints.

The overall quantitative results and the PSNR values along
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Fig. 6. The first row gives the fused images by all competing methods on the 50th band of Pavia city center. The second row gives the error images of
all competitors on the 50th band of Pavia city center. (a) LR-HSI. (b) NSSR. (c) CSTF. (d) UTV. (e) STEREO. (f) SCL11. (g) LTMR. (h) LRTRTNN. (i)
Ground truth.
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Fig. 7. Spectrum of pixel (20,20) in Pavia city center. (a) NSSR. (b) CSTF. (c) UTV. (d) STEREO. (e) SCL11. (f) LTMR. (g) LRTRTNN.

TABLE V
QUANTITATIVE METRICS (PSNR, SSIM, SAM, ERGAS, DD) OF

ALL COMPARED METHODS ON WASHINGTON DC MALL

Image Method MPSNR MSSIM SAM ERGAS DD

Washington DC Mall

NSSR 37.7007 0.9747 3.6326 1.7767 2.7466

CSTF 39.8669 0.9821 3.8171 1.4413 2.2982

UTV 39.9599 0.9806 3.8765 1.4713 2.3601

STEREO 37.3332 0.9718 5.2696 1.9013 3.1418

SC-LL1 41.7423 0.98881 2.8578 1.1347 1.7204

LTMR 41.4686 0.9872 2.9819 1.1963 1.8349

LRTRTNN 42.1144 0.9894 2.6210 1.0914 1.6188

the spectral dimension for the Pavia University dataset are
given in Table IV and Fig. 5(c), respectively. In Table IV, the
generated values of our LRTRTNN are on par with LTMR.
Among the five metrics, our MSSIM is inferior to that from
LTMR, and our ERGAS and DD values are inferior to those
from SC-LL1. However, our MPSNR and SAM values are
cutting-edge. In Fig. 5(c), from the 45th to 55th bands,
the result from our method is ahead of that from LTMR.
Conversely, the curve of LTMR is slightly higher than ours
in the 65-75 bands. We consider that LRTRTNN, LTMR, and
SC-LL1 share the first place on this dataset since the numerical
difference is marginal. Lastly, for the Washington DC Mall
dataset, all numerical values of LRTRTNN are again much
higher than others from Table V. In Fig. 5(d), the PSNR values
along with all bands also confirm this result. This shows that
our LRTRTNN can not only preserve the spatial structure

but also maintain the spectral information. Taking SAM as
example, our average results on four datasets are ahead of
LTMR, SC-LL1, STEREO, UTV, CSTF, and NSSR by 0.159,
0.227, 1.457, 0.695, 0.702, 0.838, respectively. In general, all
the experimental results verify the superiority of our method
over other state-of-the-art HSI-MSI fusion methods, which
demonstrates the appealing property by combining the global
low-rank spectral structure and the spatially non-local self-
similarity in the HSI-MSI fusion problem.

E. Semi-real experiment

In order to further evaluate our method in more practical
scenarios, we apply our method to semi-real HSI and MSI
fusion, in which the spatial downsampling operator is given
while the spectral degradation function is unknown [51]. The
HSI and MSI datasets were initially published in [25] and
collected by the Hyperion and the Advanced Land Imager
instruments on board the Earth Observing-1 Mission satellite.
We treat the HSI which contains 72×72 pixels and 128 bands
as the reference image and the MSI whose size is 72×72×9 as
the spectrally low resolution image. To obtain the LR-HSI, the
reference image is downsampled at a ratio of 3. The spectral
response matrix R is learned from the observed images via
the approach presented in [25]. A visual assessment and the
SAM results for all competing methods are given in Fig. 8.
From the figure, our first observation is that NSSR fails in this
job. Compared with the original LR-HSI, the other methods
all significantly improve the spatial resolution. By digging
into the details, there are more artifacts and ghost lines in
the fused images from CSTF and UTV. The visual advantage
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of our method over STEREO, SCL11, and LTMR cannot be
easily judged by human eyes. However, the numerical results
provide a lower SAM value for our LRTRTNN, which verifies
its excellent performance over the other algorithms.

(a) (b) SAM=9.13 (c) SAM=9.06 (d) SAM=9.08

(e) SAM=10.05 (f) SAM=8.97 (g) SAM=8.26 (h) SAM=8.05

Fig. 8. Visual and numerical comparison of all competing methods on semi-
real scenario. (a) LR-HSI. (b) NSSR. (c) CSTF. (d) UTV. (e) STEREO. (f)
SCL11. (g) LTMR. (h) LRTRTNN.

F. Analysis and Discussion

1) Convergence behavior: Taking Pavia city center and
Washington DC Mall as example, Fig. 9 depicts the relative
error of the successively restored image At+1 and At, i.e.,
‖At+1−At‖F /‖At‖F , against the increasing iterations. From
the curves, we can observe that the relative error drops sharply
at the initial phase. Then, it keeps decreasing with a mild trend
until the relative changes approach to zero. This empirically
demonstrates the strong convergence behavior of LRTRTNN.
Since the tolerant threshold would be reached with large
probability when the number of iterations is 25. It is suggested
as the default setting in all experiments.
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Fig. 9. Relative error of ‖At+1−At‖F /‖At‖F versus increasing iterations
on Pavia city center and Washington DC Mall.

2) Running efficiency: To compare the computational cost
of all approaches, Fig. 10 reports the elapsed time (in seconds)
on Pavia city center dataset. Unfortunately, as can be seen from
the figure, our method runs much slower than the others. The
computational bottleneck lies in the sequentially searching of
non-local patches and the joint optimization for all grouped
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Fig. 10. The elapsed time (in seconds) of all compared approaches on Pavia
city center dataset.

cubes. Some more efficient optimization schemes or the relief
of neighborhood searching are worthy of further in-depth
study.

3) The roles of TR and TNN: To demonstrate the ef-
fectiveness of our TNN constrained TR decomposition, an
ablation experiment is designed measuring the role of different
components. The quantitative results on Pavia city center are
shown in Table VI. Taking the final version of LRTRTNN as
the baseline, the competing models include the one with matrix
nuclear norm, the one without any regularization, and the one
without the TR decomposition (setting both λ = η = 0).
Thanks to the spectrally subspace decomposition operation,
the model could still work without any regularization or any
decomposition. However, the performance of this bald model
deviates far away from the acceptable results. The introduction
of TR evidently contributes to better efficacy. Moreover, a
rank minimization constraint, whatever with a matrix or a
tensor manner, would further enhance the performance. Be-
tween these two, TNN behaves consistently better than the
counterpart in terms of all quantitative metrics, which supports
the motivation of our usage of the TNN constrained TR model.

TABLE VI
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS ON

PAVIA CITY CENTER

PSNR SSIM SAM ERGAS DD

LRLRTNN 48.3645 0.9974 1.7581 0.5491 0.6844

With matrix NN 47.8754 0.990 1.8481 0.5968 0.7317

Without constraint 41.9079 0.9883 4.0787 1.3024 1.7146

Without TR 37.2683 0.96561 6.3497 2.2778 2.9547

V. CONCLUSION

We centre around the problem of recovering the HR-HSI
by fusing the LR-HSI with HR-MSI in the same scene. In
particular, a newly proposed HSI-MSI fusion method, namely
Low-rank TR decomposition based on TNN (LRTRTNN), is
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presented that involves three main merits, including spec-
tral subspace learning, similar patches grouping, and the
penalization of TNN prior on all tensor ring factors, which
jointly considers the inherent correlation along with the s-
patial, spectral, and non-local modes. For the solving of the
complex cost function, ADMM provides a theoretically solid
and computationally efficient solution for a high-quality HSI
with super-resolution both in spatial and spectral dimension.
Extensively experiments results demonstrate that LRTRTNN
can resoundingly enlarge the spatial resolution for the LR-
HSIs with spectral dimension holding the same as the original
ones, which exceeds most state-of-the-art approaches both
visually and numerically.

In the near future, we aim to extend the method in three
directions. First, for efficacy improvement, since the intensities
of the HSI are naturally non-negative, we consider to impose
non-negative constraint on the tensor factorization. Second,
for lighter model selection, we attempt to adaptively estimate
the intrinsic low-rank prior and incorporate it into model
optimization. Finally, for efficiency promotion, the faster im-
plementation of each subproblem, the easier search of similar
patches, and different clustering schemes are also worthy of
in-depth study.
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tsson, and K. Árnason, “Exploiting spectral and spatial information in
hyperspectral urban data with high resolution,” IEEE Geoscience and
Remote Sensing Letters, vol. 1, no. 4, pp. 322–326, 2004.

[48] R. W. Basedow, D. C. Carmer, and M. E. Anderson, “Hydice system:
Implementation and performance,” in Imaging Spectrometry, vol. 2480,
pp. 258–267, International Society for Optics and Photonics, 1995.

[49] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J.-Y. Tourneret, “Hyperspec-
tral and multispectral image fusion based on a sparse representation,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 7,
pp. 3658–3668, 2015.

[50] J.-L. Wang, T.-Z. Huang, X.-L. Zhao, T.-X. Jiang, and M. K. Ng, “Multi-
dimensional visual data completion via low-rank tensor representation
under coupled transform,” IEEE Transactions on Image Processing,
vol. 30, pp. 3581–3596, 2021.

[51] R. A. Borsoi, T. Imbiriba, and J. C. M. Bermudez, “Super-resolution
for hyperspectral and multispectral image fusion accounting for seasonal
spectral variability,” IEEE Transactions on Image Processing, vol. 29,
pp. 116–127, 2020.

Honghui Xu received the B.E. degree from Zhe-
jiang University of Technology, Hangzhou, China
in 2018. He is currently pursuing the Ph.D. degree
in the School of Computer Science and Engineer-
ing, Zhejiang University of Technology, Hangzhou,
China. His current research interests include image
processing and optimization algorithm.

Mengjie Qin received the B.Eng. degree in infor-
mation management and information system from
Guangdong Ocean University, Zhanjiang, China, in
2017. She is currently working toward the Ph.D.
degree with the College of Computer Science and
Engineering, Zhejiang University of Technology,
Hangzhou, China. Her current research interests in-
clude image and video enhancement, pattern recog-
nition, and machine learning.

Shengyong Chen (Senior Member, IEEE) received
the Ph.D. degree in computer vision from the City
University of Hong Kong, Hong Kong, in 2003. He
worked with the University of Hamburg, from 2006
to 2007. He is currently a Professor with the Tianjin
University of Technology and the Zhejiang Univer-
sity of Technology, China. He has published over
100 scientific articles in international journals. His
research interests include computer vision, robotics,
and image analysis. He is also a Senior Member
of CCF and a Fellow of IET. He has received the

fellowship from the Alexander von Humboldt Foundation of Germany. He has
also received the National Outstanding Youth Foundation Award of China, in
2013.

Yuhui Zheng (M’15) was born in Ruicheng, Shanxi,
China, in 1982. He received the B.S. degree in
chemistry and the Ph.D. degree in computer science
from the Nanjing University of Science and Technol-
ogy, Nanjing, China, in 2004 and 2009, respectively.
From 2014 to 2015, he was a Visiting Scholar with
the Digital Media Laboratory, School of Electronic
and Electrical Engineering, Sungkyunkwan Univer-
sity, Suwon, South Korea. He is currently a Professor
with the School of Computer and Software, Nanjing
University of Information Science and Technology,

Nanjing. His current research interests include inverse problems in image
processing, scientific computing, data mining, and pattern recognition.

Jianwei Zheng received the B.E. degree in electron-
ic and computer engineering and the Ph.D. degree in
control theory and control engineering from the Zhe-
jiang University of Technology, Hangzhou, China,
in 2005 and 2010, respectively. He is an Associate
Professor with the College of Computer Science and
Technology, Zhejiang University of Technology. His
research interests include machine learning and data
analysis. He has published more than 70 academic
papers in reputable journals and conferences, in-
cluding IEEE Trans. Image Processing, IEEE Trans.

Neural Networks and Learning Systems, IEEE Trans. Geoscience and Remote
Sensing, IEEE Trans. Industrial Informatics, Pattern Recognition, and so on.


