
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract : Dynamic object detection, state estimation, and map-building are crucial for autonomous robot systems and intelligent
transportation applications in urban scenarios. Most current LiDAR Simultaneous Localization and Mapping (SLAM) systems
operate on the assumption that the observed environment is static. However, the overall accuracy and robustness of a SLAM
system can be compromised by dynamic objects in the environment. Aiming at the problem of inaccurate odometry estimation and
wrong mapping caused by the existing LiDAR SLAM method which cannot detect the dynamic objects, we study the SLAM
problem of robots and unmanned vehicles equipped with LiDAR traveling in the dynamic urban scenes. We propose a fast
LiDAR-only model-free dynamic objects detection method, which uses the spatial and temporal information of point cloud through
a convolutional neural network (CNN), and the detection accuracy is improved by 35% to 86% compared with methods that only
use spatial information. We further integrate it into a state-of-the-art LiDAR SLAM framework to improve the SLAM performance.
Firstly, the range image constructed by LiDAR point cloud is used for ground extraction and non-ground point clustering. Then, the
motion of objects in the scene is estimated by the difference between adjacent frames, and the segmented objects are further
divided into dynamic objects and static objects by their motion features. After that, the stable feature points are extracted from the
static objects. Finally, the pose transformation of adjacent frames is solved by matching feature point pairs. We evaluated the
accuracy and robustness of our system on datasets with different challenging dynamic environments, and the results show our
system has significant improvements in accuracy and robustness of odometry and mapping, while still maintain real-time
performance, which is sufficient for autonomous robot systems and intelligent transportation applications in urban scenarios.

Index Terms—SLAM, CNN, LiDAR odometry, Point cloud registration, Dynamic object detection, Range image segmentation.

I. INTRODUCTION1

Simultaneous Localization and Mapping (SLAM) is a
basic prerequisite for intelligent robots and a necessary
capability for driverless vehicles. Great efforts have been
made before. In many applications, the real-time 6
degree-of-freedom SLAM can be achieved using
vision-based [1] or LiDAR-based [2][3] methods. It can also
incorporate their advantages [4] or be used with other
auxiliary sensors (e.g. Inertial Measurement Unit (IMU) [5],
wheel odometry, Global Positioning System (GPS) [6]) for
better results.
Intelligent transportation system usually works in a

variable environment, even in the environment where offline
map has been established, there may still be a large number
of dynamic objects interfering with the map. Detecting
dynamic objects helps the carrier to realize the tasks of
real-time perception and prediction of the surrounding
environment, collision prediction and path planning, which
can also improve the robustness of vehicle pose estimation,
simultaneous localization and mapping in unknown

This work was supported in part by National Nature Science Foundation
of China (NSFC) under Grants No. 61671356, Science and Technology
Program of Shaanxi Province under Grants No. 2020GY-136 and
2019ZDLGY14-02-03.

Wenbo Liu is with the School of Aerospace Science and Technology,
University of Xidian, Xi’an, China(e-mail: wbliu1@stu.xidian.edu.cn).
Wei Sun, corresponding author, is with the School of Aerospace Science

and Technology, University of Xidian, Xi’an, China (e-mail:
wsun@xidian.edu.cn).

Yi Liu is with the School of Aerospace Science and Technology,
University of Xidian, Xi’an, China (e-mail: 714515894@qq.com).

environment [7]. Therefore, detecting dynamic objects in the
environment is the key to safe and reliable intelligent
transportation and automatic driving. Our motivation comes
from the urgent need for the robustness and accuracy of
SLAM systems works in dynamic scenarios for autonomous
robot systems and intelligent transportation applications.
One the on hand, in the real world, there are a lot of dynamic
objects, such as inevitable moving objects (e.g., pedestrians,
vehicles and multiple robots work together), unstable objects
in the environment (e.g., leaves, lawns), and even sudden
objects (e.g., animals rushing to the road, rocks flying up)
and so on. The existing methods can easily lead to the wrong
pose estimation and mapping results due to the wrong
correspondence of the feature points on dynamic objects. On
the other hand, in order to avoid the dangerous situation
caused the by disappearance of external information and
failure of auxiliary sensor, these subsystems must also work
independently [8]. Although the vision-based methods have
the advantages of fast detection frequency and good at
identifying loop-closure, their sensitivity to light intensity
and view changes will reduce the robustness of the SLAM
system. In contrast, LiDAR based methods work even at
night, and many high-resolution 3D LiDAR allow the
capture of fine details of the environment at a distance [9].
Therefore, in this paper, we focus on using 3D LiDAR to
deal with the challenge of SLAM in dynamic urban
environments.
Unfortunately, most LiDAR based SLAM methods

assume that the surrounding environment is static. These
methods are difficult to provide robust and accurate pose
estimation and build accurate static maps in dynamic
urban scenes. And there are few reliable LiDAR-only
SLAM systems. Obviously, we need to design a real-time

DLOAM: Real-time and Robust LiDAR SLAM System
Based on CNN in Dynamic Urban Environments

Wenbo Liu, Wei Sun,Member, IEEE, and Yi Liu

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

robust LiDAR-only SLAM system for these situations. The
main challenge of this work is to analyze the motion
information in the complex dynamic environment and
identify the dynamic objects. Specifically, our goal is not to
detect all theoretically movable objects, such as vehicles or
people, but to separate the actual moving objects (such as
driving cars) from static or non-moving objects (such as
buildings, parked cars, etc.).
Inspired by the above discussion, we propose a new r

LiDAR-only odometry and mapping method suitable for
dynamic environments, which not only realizes robust pose
estimation, but also builds a static map filtering out dynamic
objects in environments, which promotes the development of
dynamic object detection and LiDAR SLAM. Our dynamic
object detection method can accurately divide the scene into
dynamic and static objects, such as moving cars and parked
cars. In other words, it neither semantically segments the
point cloud, that is, predicts semantic categories, such as
vehicles, pedestrians, buildings, roads, etc., nor limits to
whether a point is dynamic. Specifically, our proposed
method takes the point cloud of the rotating 3D LiDAR as
input and the continuous point cloud range image as the
intermediate representation to obtain the motion label of the
objects in the scene. We use CNN and traditional 3D point
cloud processing methods to realize dynamic object
detection respectively. We compare the proposed approach
and system with several other state-of-the-art approaches
and systems that have shown excellent results in dynamic
urban environments, and the experimental results show that
in dynamic scenarios, the accuracy of dynamic object
detection is greatly improved compared with methods that
only use spatial information, and the odometry and mapping
accuracy are significantly improved. The proposed SLAM
system is mainly applied to autonomous robots, intelligent
transportation and automatic vehicles in dynamic urban
scenarios, but the method is not limited to these fields. To
sum up, the main contributions of this paper are as follows:

 We propose a fast model-free dynamic object
detection method based on the spatial and temporal
information of point cloud, which is realized by
CNN and traditional methods respectively.
Compared with only using semantic information to
remove all possible dynamic objects and dynamic
point detection method based on scene flow, this
method can detect dynamic objects more accurately
and is more suitable for urban dynamic scenes; We
also introduce a method based on Random Sample
Consensus (RANSAC) to deal with the
pseudo-static objects.

 We present a real-time LiDAR-only SLAM
framework suitable for both static and dynamic
environments, which is easy to be further expanded
and developed. By embedding the proposed
dynamic object detection module into a
state-of-the-art LiDAR SLAM framework, the
accuracy of odometry and mapping is greatly
improved in dynamic environments compared with
methods which are under the static-world
assumption.

 In order to verify our method, we have done
detailed tests on challenging datasets. The results
show that the accuracy of dynamic object detection
is improved by 35% to 86% compared with

methods that only use spatial information, and the
accuracy and robustness of SLAM in these
scenarios are significantly improved.

The remainder of this paper is organized as follows:
related work is presented in Section II, the proposed methods
are described in Section III, quantitative evaluation and
analysis between our method and the state-of-the-art method
are showed in Section IV, followed by conclusions and
future works in Section V.

II.RELATEDWORK

We refer to the SLAM review article [10] and KITTI
odometry evaluation ranking [11], and we focuses on the
methods of recent years because they are more
representative of the most advanced methods and the latest
research directions.

A. LiDAR Odometry and Mapping
LiDAR-only odometry and mapping methods with good

performance are as follows. LOAM [2], no. 2 on KITTI
odometry evaluation ranking, has very low motion drift on
short-trajectory datasets and is largely responsible for the
growth of LiDAR SLAM. This method is novel in
partitioning SLAM problem into a high frequency but low
accuracy odometry algorithm and a low frequency but high
accuracy mapping algorithm. Pose estimation is realized by
matching feature points extracted from all points in adjacent
scans. The mapping algorithm realizes the fine odometry by
registering the feature points with the historical map and
registers the corrected point cloud into the map. However,
LOAM is unable to eliminates the continuous accumulation
of errors due to the absence of loop-closure detection,
therefore, significant errors may occur in the case of long
trajectories. More importantly, LOAM does not consider
dynamic objects, resulting in incorrect mapping in dynamic
scenarios. LeGo-LOAM [9] is carried on the optimization to
LOAM. It adds loop-closure detection to reduce the motion
drift, and adds clustering and segmentation modules to
remove the clusters with less than 30 points, so as to realize
the small object filtering and more reliable feature extraction
and matching in the environment. The original 6
degree-of-freedom pose estimation in one step was
optimized to a more reasonable two-step pose estimation.
However, its ground segmentation method is too rough (only
10° is selected as the ground segmentation standard), and it
is difficult to select the threshold value of noise filtering
point (if the threshold is too small, it will be difficult to
identify large dynamic objects and distant sparse dynamic
objects, if the threshold is too large, the map will be sparse
because the features used for registration will be reduced). [8]
improves odometry accuracy by detecting geometric
similarity between online 3D point cloud and prior offline
map, but SLAM problem is more applied in unknown
environments, and new objects in the scene will cause
inconsistency between the actual map and prior map, so this
kind of method which depends on prior information has
great limitations in unknown or highly dynamic

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

environments. IMLS-SLAM [29] presents a low-drift SLAM
algorithm based on Implicit Moving Least Squares surface
representation. S4-SLAM [28] proposes a suitable for
outdoor multi-scene applications with sparse features, highly
dynamic environments by a coarse-to-fine scan matching
strategy. But the two methods cannot achieve real-time
performance. LiTAMIN2 [30] proposes an ultra-light SLAM
method using geometric approximation applied with
KL-Divergence, and it has high computational efficiency
and similar accuracy to other state-of-the-art methods.
The list of related work is endless. They use different

methods to improve performance, but they either ignore the
dynamic objects problem or do not offer good solutions,
therefore, these methods have limitations in dynamic
environments. We can improve their performance by
combining dynamic object detection methods.

B. LiDAR Dynamic Object Detection
3D LiDAR provides more accurate distance

measurements than stereo cameras and more abundant
measurements than 2D LiDAR, which provides more
methods for dynamic object detection. The goal of most
existing 3D LiDAR based dynamic object detection
approaches is to clean up the point cloud map, and most of
these methods do not work online and rely on pre-built maps.
Since the algorithm will be embedded into a real-time
SLAM system, it has to be real-time and map-free.
To the best of our known, dynamic object detection

approaches that meet the requirements can be summarized as
object-based and object-independent methods. The
object-based methods attempt to extract part of feature
points from a certain cluster of points and uses the motions
of feature points to represent the motion of the object. [12]
compares the current scan with the oldest map in history in a
2D grid, marks obstacles that appear only in the new scan as
dynamic obstacles, and detects 3D obstacles by sudden
changes in inspection depth. [13] uses a combination of 3D
Kalman filter and Hungarian algorithm for state estimation
and data correlation to achieve fast motion estimation. The
object-independent approaches try to assign speed labels to
each point in the point cloud, and relying less on the
characteristics of the moving object. [14] extracted point
cloud semantic features through CNN, and integrated the
semantics into surfel to filter out moving objects, similarly,
[18][19] use CNN for semantic segmentation to detect
moving objects. [16] proposes a method called LiDAR-flow,
which provides robust estimation of dense scene flows by
fusing sparse LiDAR with stereo images. [17] and [20]
fusing temporal information to detect dynamic objects, they
use multi frame point cloud as input to regress the motion
behavior of objects on the aerial view through the network,
the advantage of this kind of method is to detect all moving
objects in the field of vision of LiDAR, including objects not
seen in the training set, which is of great significance to the
safety of robotics automatic driving.
Our goal is to identify dynamic objects in the dynamic

urban scenarios to improve the accuracy of the SLAM

system by avoiding extracting feature points from them.
Compared to other outdoor scenes, urban scenes usually
have a large number of different types of artificial objects
(buildings, streets) and different objects usually have clean
boundaries. Moreover, dynamic objects in the scene are
usually clearly demarcated from the background. Therefore,
it is easy to segment the point clouds obtained in urban
scenes. Obviously, the object-based approach is more
suitable for our system.

C. LiDAR SLAM in Dynamic Environments
Most current SLAM methods operate on the static-world

assumption, which limits the performance in dynamic
scenarios. Many scholars begin to consider and study the
SLAM problem in dynamic scenarios.
Many methods explicitly handle dynamic objects.

IMLS-SLAM [29] uses a specific sampling strategy and a
new scan to model matching. But it directly discards all
objects whose size makes it possible to be dynamic objects.
S4-SLAM [28]also perform a small object removal instead
of a dynamic object removal. It is difficult for these methods
to achieve robust and accuracy pose estimation and
map-building in dynamic environments. Some
mapping-based methods implicitly handle dynamic objects.
For instance, SuMa [14] filter dynamics and estimate the
pose transformation by a surfel-based map. In addition, some
methods realize dynamic SLAM by combining a CNN-based
dynamic object detection and a SLAM algorithm. [26] adds
CNN segmentation network to Laser-Inertial odometry and
mapping framework to realize robust SLAM in highway
environments. SuMa++ [27] improves SLAM accuracy by
adding dynamic filtering and semantic matching to SuMa. It
can be seen that the problem of LiDAR SLAM in dynamic
environment based has not been well solved.
This paper aims to realize real-time, high-precision and

robust SLAM in dynamic urban environments. We select the
mature LiDAR SLAM system LeGo-LOAM as the baseline
method. The odometry and mapping method used in this
paper come from LeGo-LOAM, and we have made some
optimization to make the system better adapt to the dynamic
environments. In order to reduce the accumulated error
caused by wrong feature points matching in odometry
module and mapping module, we use the difference of
adjacent range images to segment dynamic and static objects,
and only use the static features to estimate pose
transformation and to map. This idea of improving the
accuracy and robustness of a SLAM system in dynamic
environments by detecting and rejecting dynamic objects to
participate in odometry and map building is easy to be
applied to other SLAM systems.

III. PROPOSED SYSTEM
In this section, we will describe our proposed approach

and the data flow between the modules. We introduce the
dynamic object detection module in detail, while the
segmentation module, feature extraction module and LiDAR
odometry module in LeGo-LOAM [9] briefly. In addition,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

we highlight some optimization we made to integrate them.

A. Description and Definitions
The problem addressed in this work is how to use the point

cloud observed by 3D LiDAR to estimate its ego-motion and
build a global map for the traversed environment.
We define the received point cloud as P, LiDAR pose as X,

and global map as M. We use the upper right corner to
represent the time stamp, and define the kth point cloud as Pk,
where a point is ��

� , that is, �� � t��
����

�������� , ��
� �

���
����

����
���hT, where n is the size of point cloud, � � ��.

Under the above definition, the problem can be modeled
as: Given map ��−� and LiDAR pose ��−� at scan k-1, and
point cloud �� at scan k, to update �� and �� , as can be
shown in (1) and (2).

�� � � ��−���� � � ��−����������h . (1)
�� � t���−�������h � t ��−����������h . (2)

where ��� is the description of the real scene in the field of
vision at scan k. �� � ��������h is the sum of many
interference factors such as dynamic objects, sensor noise, or
abnormal measurement values. � is the unknown noise
function that transforms the real scene into the received point
cloud. Next, we define the set of outliers in point cloud
caused by� that are harmful to registration as ����, and the
remaining points form ��t, namely,

� � ���� ∪ ��t �� ���� . (3)
Details of function � and t can be found in baseline

method [9]. The core task of this paper is to find and
eliminate ���� to optimize the two functions.

B. System Overview

Fig. 1. The pipeline and data flow of the proposed system.
The pipeline and data flow of the proposed system are

shown in Fig. 1. The input of the system is 3D LiDAR point
cloud, and the output is 10Hz 6 degree-of-freedom pose
estimation and 2Hz global map of the traversed environment.
The whole system is divided into six modules. Grey modules
are original in LeGo-LOAM, orange modules represent the
ones we have optimized, and the green one is the part we
added. The first module is Segmentation. The point cloud of
a scan is projected onto the range image for clustering, which
is used to segment different objects. The second module is
dynamic object detection. The clustering results of the
Segmentation module are further divided into static clusters
and dynamic clusters by extracting motion labels of objects.

The static clusters are then sent to the Feature Extraction
module to extract edge points and surface points. Then, the
LiDAR Odometry uses feature points to solve the pose
transformation between adjacent frames. These features are
further processed in LiDAR Mapping, which registers the
point clouds without motion distortion into global map and
detects loops. Finally, the Transform Integration module
fuses the high frequency but low precision transform from
the Odometry module and the low frequency but high
precision transform results from the Mapping module to
obtain the final pose estimation. Compared to the original
frameworks in the LOAM and LeGo-LOAM, the system
aims to improve the robustness and accuracy of odometry
and mapping for robots or driverless vehicles in dynamic
environments. Details of these modules are described below.

C. Segmentation
The input of the segmentation module is an original 3D

LiDAR point cloud � � t����������� , where �� �
�����������hT . The output are m clusters t��� ���� ������� and
the corresponding cluster label vector � � �����������h ,
where �� � � − ���� � � , label -1 represents the point
belongs to the ground, and the positive integer represents the
serial number of non-ground clusters.
Point cloud �� is projected onto a range image ���h� ,

where ���h � t���h�� � ���
��
��Ϡ��

� � � , h � �����th�� � �� .
The row index h� of �� is shown in (4), and the column index
�� is shown in (5).

h� � � tan−� ��

��
����

�
� ��h�ϠhhϠ�h/�ht�h. (4)

�� � tan−� ��
��
/��Ϡ��. (5)

The value of the image is the distance from �� to the

LiDAR �� � ��
� � ��

� � ��
� , where ��Ϡ�� is the horizontal

resolution of the LiDAR, �ht�h is the vertical resolution of
the LiDAR, ��h�ϠhhϠ� is the minimum pitch of the LiDAR
beam, and ��th� is the number of LiDAR beams. After the
projection, a point �� and its coordinates can be uniquely
identified by the h� and ��, denoted by:

�� ≡ ����h� � �����h� �����h� �����h�h. (6)
Fig. 2 is an example of a point cloud projected onto a range
image.

Fig. 2. A 3D point cloud is projected onto a range image and clustered by
range image based segmentation method. Using this segmentation result

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

and the unique correspondence between the elements of two spaces, the
classification of a 3D point cloud can be deduced, in which different colors
represent different clusters, and yellow points represent the ground.
Then the ground is extracted from the range image ���� .

For points ���h�� and ���h, where h � ���
�
�
��th�� � �, if the

pitch of adjacent rows ��hh�h�� (as shown in (7)) are less than
10°, they are denoted as ground points.

��hh�h�� � tan−� ���h��−���h��

����h��−���hh������h��−���hh�
. (7)

Finally, the range image-based segmentation clustering
method [18] is applied to the range image to segment the
points into several clusters. Points from the same cluster are
assigned a unique label l.
After these processes, for each ��

� � ��, we get the ground
or non-ground label �� , row index h� , column index �� , and
distance �� , where � � �������t�� � � . �� is divided into a
ground point set and a non-ground point set, that is, �� �
�� ∪ �t� , and it is worth noting that both types of points
may contain outliers. The extraction of features from
non-ground points can reduce time-consuming of
registration and improve the accuracy of registration through
label matching and noise filtering. Note that the two sets will
continue to be filtered in the next (dynamic object detection)
module.

D. Pre-Registration and Dynamic Object Detection
The function of dynamic object detection module is to

identify any dynamic objects. This module receives the
clustered point cloud from segmentation model, and the
output is the motion label of the clustered point cloud, so as
to extract the feature points for registration only on the static
objects, where static objects are further divided into ground
and non-ground objects.
Given only one frame point cloud, it is almost impossible

to know which objects are moving. However, given two
consecutive frames, it is easy to find the moving objects by
their difference. Since we have obtained the range image and
corresponding clustering label in the segmentation module,
we use the difference of range images of adjacent frames to
get the speed matrix, so as to detect dynamic objects
according to their speeds.
But please note that we cannot directly difference two

point clouds at adjacent time. Because point cloud ��
contains the ego-motion (which is the change of LiDAR
pose between adjacent frames), motion distortion of point
cloud (which is caused by ego-motion), and the motion of
objects in the environment, we should firstly detect
ego-motion and point cloud distortion. A natural idea to
detect ego-motion is to use ICP-based method to align the
adjacent frames and find out the mismatched points, but the
computational amount of registration of complete point
cloud cannot meet the real-time requirements and the
dynamic objects will cause mismatches.
1) Pre-Registration
We are inspired by [22]. The basic idea is to estimate the

relative motion of static reference objects from adjacent
frames using geometric features. We aim at detecting static
vertical (pole-like and vertical planes) objects since our
system mainly runs in urban environments with lots of static
pole-like structures (such as trees, poles, fences, etc.) and
static vertical planes (house, wall, etc.).

Firstly, principal component analysis (PCA) is
performed for all clusters with more than NPCA points, we
define the eigenvalues from large to small as λ1, λ2, and λ3,
and the corresponding eigenvectors as e1, e2, e3 respectively.
Clusters whose e1 is approximately parallel to the normal of
the ground nground and λ1 is significantly larger than λ2 and λ3
are considered as pole-like objects, namely, we use
conditions (8) and (9) to detect pole-like objects,

�� > �� � ��� �� > ��� �� � ��. (8)
t�·���Ϡ���/ ���Ϡ��� > ��. (9)

While clusters whose e3 is approximately is perpendicular to
nground and λ3 is significantly larger than λ1 and λ2 are
considered as vertical planes, we use conditions (10) and (11)
to detect vertical planes.

�� � �� > ��� �� � ��. (10)
t�·���Ϡ���/ ���Ϡ��� > ��. (11)

Secondly, select points belongs to pole-like objects or
vertical planes to form a feature point set defined as O.
Finally, perform Ncoarse times RANSAC steps to get coarse
transform ��������−h�� between Ok and Ok-1. In each iteration, we
use ICP to align two point clouds and discard the first 10%
points with the largest registration error. We set NPCA is to 30,
ξ1 to 0.85, ξ2 to 0.1, ξ3 to 0.95, ξ4 to 0.1, ξ5 to 0.05, and Ncoarse
to 5 empirically.
2) Remove motion distortion
After the above Pre-Registration steps, ��������−h�� can be

applied to Pk to remove the motion distortion of current point
cloud by using the linear interpolation of pose
transformation between adjacent frames as mentioned in
LOAM. Specifically, let h� be the stamp of a point ��

� � ��,
while h�hh�h and ht�� be the starting and ending time of
current scan �� respectively, the pose transform �� between
h�hh�h and h� can be computed by linear interpolation of
��������−h�� as:

�� � linear ��������−h�� � h�−h�hh�h
ht��−h�hh�h

��������−h��. (12)
Fig. 3 illustrates the linear interpolation.

Fig. 3. Illustration of linear interpolation of pose transformation between
the adjacent frames.
Let the point cloud with motion distortion removed be kp ,

{ | }i i
k
ip p p  1k -

ip T ,

where �� �
linear ���t�

�−h�� �for previous scan

linear ��������−h�� �for current scan
, and

���t�
�−h�� is the pose transform output of LiDAR odometry.
Because we already know the pose transformation ��−h��

(� � t���� − �� � ��) between the first k-1 scans at current
scan k , the transformation from the ath scan to the coordinate
frame of the bth (a<b<=k) scan is ���� � ∏��h��

� ��−h�� , and
the transformed point cloud is denoted as  -1a b a b kP T p→ ,
and we define ���� � ����−h.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

3) Dynamic Object Detection
We use CNN-based and traditional 3D point cloud

processing methods to realize dynamic object detection
respectively, which illustrates the feasibility of combining
the spatial and temporal information of the point cloud.

a) Traditional Two Frames Method
We project the adjacent point clouds into the coordinate

frame of the previous one, and then use (4) and (5) to
construct the two point clouds into range image,
namely, ���h�−h is constructed from undistorted -1kp and
���h� from ����−h. Finally, we can get the speed matrix by
their difference,
���h� � ���h� − ���h�−h � t���h�����h� � ��� − ���−� �

� � ��� ��
��Ϡ��

� � ��h � �����th�� � ��. (13)
We conduct secondary verification on current non-ground

points and ground points using speed matrix. Specifically,
for non-ground point set, compared with LeGo-LOAM,
which directly ignores the cluster with less than 30 points,
we will further obtain and check the speed label of each point
in the dynamic object detection module. We define the point
whose speed is less than the threshold vstatic as a static point.
And if a cluster contains less than α of its total points number
static points, it will be considered as a static cluster,
otherwise, it will be marked as a dynamic cluster. For ground
point set, compared with LeGo-LOAM, which select points
with adjacent rows ��hh�h�� less than 10° as ground points,
we make a second verification in the dynamic object
detection module. Only ground points with speed less than
the threshold vground are selected, and they are not used for
clustering.
The parameters are learned empirically, in this paper,

vground is 0.01m/s and vstatic is 0.03m/s, and α is 50%.
b) CNN-based Multi-Frames Method
Define the jth range image pair as ����h�−h����h�) at scan

k, where � � t����� � �� . Each range image pair is used to
calculate a speed matrix ���h� . We calculate the nearest m
speed matrices and package them and the current range
image into a range image bag, where the speed matrix
contains the motion information of the objects and the
current range image contains the position information of the
objects, and take it as the input of a CNN method. The output
of CNN is a binary image ���h

� , and each element
represents whether the corresponding point is dynamic or
static.
In order to contrast with the baseline method, we do not

change the structure of CNN but retrain it with new datasets.
Specifically, we feed a CNN with the range image bags, and
manually annotate the static and dynamic points in the scene
(mainly for the dynamic vehicles and pedestrians in the
urban environments), and we use the same loss function as
the base CNN method. The overall work flow of CNN-based
multi-frames method is shown in Fig. 4. We choose two
popular methods, RangeNet++ and SalsaNext to evaluate the
performance of the proposed dynamic object detection
method. Please refer to the original paper [18] and [19] for
details of the network architecture.

Fig. 4. Overall work flow of the CNN-based multi-frames method. The
input is a range image bag consist of a current range image and m recent
speed images, and the output is a binary image, where dynamic objects are
marked in red.
Here, we have been able to detect the dynamic points in

the current point cloud and put them into ����. Once again,
we only use static points in the adjacent frame for feature
extraction and feature points registration.

E. Feature Extraction
To match the same object between scans quickly, we use a

feature extraction method similar to that used in
LeGo-LOAM. Instead of extracting features from the
original point cloud, we extract features from ground points
and static clusters. We first evaluate the flatness ci of the
point pi,

t� � ����������� − ��h / � · �� , (14)
where S is a set of continuous points from the same row of
the range image, points in S are uniformly distributed on
both sides of pi, |S| is the number of points in S, and r is the
range value of points.
In order to extract features uniformly from all directions,

we divide the range image horizontally into Ndiv sub-images.
Then, we sorted the points in each row of the sub-images
according to the ci value, and called the points where c is
greater than the threshold value of cth as edge features, and
the points less than cth as plane features. Then the NFe edge
feature points with large c are selected from the static
non-ground points. NFp plane feature points with small c are
selected from all static points, and these feature points can be
marked as ground points or segmentation points. Let Fe and
Fp be sets of all edges and plane features of all sub-images
respectively. Then, feature selection is performed again. We
select the NFe edge features with the maximum ci from Fe.
Similarly, we select the NFp plane features of minimum ci
from Fp, which must be ground points. Define fe and fp as the
set of all the edges and plane features of this process, we
have fe ⊂Fe and fp ⊂Fp. The number of columns per
sub-image is 360°/(Ndiv* Rhori). |S|, Ndiv, Nfe, Nfp, NFe and NFp
are set to 6, 2, 4, 40 and 80 respectively. The schematic
diagram of feature point extraction and association is shown
in Fig. 5.

Fig. 5. The correspondence of feature points at adjacent frames. We divide
the complete point cloud into static points and dynamic points. The static
points include ground and non-ground objects, the green set includes the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

blue one, and the pink set includes the yellow one. The edge feature points at
scan k are matched in the edge feature points at scan k-1, and the plane
feature points are similar.

However, we have noticed a key problem. The static
clusters in the dynamic object module only represents that
the current moment is static, and its previous moment may
still be static or dynamic. We define the objects whose two
adjacent states as inconsistent pseudo-static objects, and they
are in the transition state of motion. Static objects can be
divided into two types, we call objects that change from
static to dynamic as the first type, and vice versa as the
second type. For the first type, since it participated in feature
extraction in the static state of the previous moment, but did
not participate in current moment, it can be found
corresponding at the previous moment. However, for the
second type, the current features cannot be found
corresponding to the previous moment, which will lead to a
wrong match. To solve this problem, we make two
optimizations. First, in the feature extraction module, double
feature points are selected from the sub-image where the
second kind of pseudo-static objects are located. The second
is to use a RANSAC based pseudo-static feature point
elimination method in LiDAR odometry module.

F. LiDAR Odometry
The input of LiDAR odometry module is the feature

points extracted from current point cloud, and output is pose
transform estimation. This module estimates the ego-motion
between adjacent scans by matching feature points.
Fig. 5 shows feature association process. We need to find

the corresponding features of the fek and fpk points in Fek-1

and Fpk-1. Then the constraint equation is constructed by
using distance of feature point pairs, and the equation is
usually solved by LM or other optimization algorithm [23].
A detailed process can be found in LeGo-LOAM [9].
LeGo-LOAM gives the feature point a weight si which is

inversely proportional to the distance between LiDAR and
the feature point. We also consider the influence of the point
cloud holes in the background caused by the occlusion of
dynamic objects on the stability of the system. Therefore, we
reduce the weight of the feature points in a certain range of
the yaw of the dynamic objects as:

��
tϠ�� � ��· � − ��Ϡ��/ � , (15)

where sicomp is the feature weight after compensation, rhori is
the horizontal resolution of LiDAR, θ is the minimum yaw
difference between feature points and dynamic objects.
Aiming at the problem of the second type of pseudo-static

objects, our inspiration comes from [24] and we propose a
method of eliminating pseudo-static objects based on
RANSAC. Firstly, the Npseudo times RANSAC iteration step
of are carried out, and part of the feature points are randomly
selected to calculate a pose Tpseudo, define the matching
points in accordance with this model are recorded as inliers,
otherwise they are recorded as outliers. Then the point
clouds are aligned according to Tpseudo, and the first β features
with large matching error are removed. Finally, the
remaining feature points are used for the next iteration.
When the number of outliers and the number of remaining
feature points are less than β, the iteration is terminated early.
In this way, the influence of the second kind of pseudo-static
objects on the result of feature extraction can be eliminated.

We set Npseudo to 5 and β to 10% empirically.

G. LiDAR Mapping
This module is consistent with LeGo-LOAM, please refer

to [9]. It is worth noting that we have obtained the accurate
odometry output here. In some offline methods or map based
methods, the known odometry can be used to precisely align
the point clouds of adjacent frames to accurately identify the
dynamic objects and remove them from the known map,
although it does not improve the accuracy of the odometry.
The purpose of our method is to improve the accuracy and
robustness of SLAM system, so we don't use this
post-processing method to clean up the map.

IV. EXPERIMENTS

All experiments were performed on a laptop equipped
with an Intel (R) Core (TM) i7-4700 4 cores @2.4GHz CPU,
and a NVIDIA Jetson TX2 with a CortexA57 CPU. The
algorithms are implemented in C++ and run on robot
operating system (ROS) [25]. The datasets include outdoor
scenarios and KITTI odometry scenarios. We selected
representative results to display in pictures, and the others
are listed in the form of data. The first representative
scenario is about 336 meters with 51 pedestrians and 3
vehicles collected by HDL-32 called Scenario 1 and the
second one is about 4268 meters with 45 vehicles collected
by HDL-64E called Scenario 2.
The selected experiments are to illustrate two key points.

Firstly, the proposed dynamic object detection method using
spatial and temporal information is better than the baseline
methods using only space information. Secondly, the
accuracy and robustness of SLAM system which combines
the proposed dynamic object detection method are greatly
improved in dynamic scenes. We claim that the proposed
method is not limited to the baseline method LeGo-LOAM,
and it is easy to be further expanded and developed. In
addition, the proposed SLAM system is mainly applied to
autonomous robots, intelligent transportation and automatic
vehicles in dynamic urban scenarios, but it is not limited to
these fields. We refer readers to see a video demonstration in
Scenario 1 at: https://youtu.be/rlmHGi-mA9g, and a demo in
Scenario 2 at: https://youtu.be/_R3wQqwKHFc, they illustrate
the details of odometry and mapping comparison between our
system and LeGo-LOAM.

A. Ablation Study w.r.t. Components and CNN
Three set of experiments on i7 platform are used to verify

the performance improvement of the proposed method.
The first group of experiments were carried out in two

representative dynamic scenes, which are Scenario 1(336
meters’ parking scene with 51 pedestrians and 3 moving
vehicles) and Scenario 2 (4268 meters’ highway scene with
45 moving vehicles at high speed), to evaluate the influence
on the results of the two components, which are weight
compensation and eliminating pseudo-static objects.
Pre-registration and the CNN-based dynamic object
detection method using RangeNet++[18] are available, and
all parameters are same. Table 3 shows the relative pose
error under different configurations. We can see that all
components have been proved to be effective in dynamic
scenes. Among them, eliminating pseudo-static objects

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

component improves the performance more obviously in
dynamic scenes similar to Scenario 1 with stop-and-go
objects, and weight compensation component improves the
performance more obviously in Scenario 2, because we find
that the features of highway scenes are sparse, Therefore, the
holes generated by a large number of moving objects are
very easy to affect the feature point matching of adjacent
frames. Weight compensation can solve this problem
effectively.

The second set of experiments is carried out to illustrate
the influence of the proposed traditional two frames method
and two different CNN methods on the dynamic object
detection accuracy, including the results with and without
Pre-registration component. We use Intersection over Union
(IoU) to measure the performance, where IoU of dynamic
object is defined as:

/ ()IoU TP TP FP FN   , (16)
where TP, FP, and FN represent the number of true positive,
false positive, and false negative detected dynamic objects
respectively. The results are shown in TABLE Ⅱ.

In the above configuration, multi frames with component
and SalsaNext achieves the best dynamic object detection
performance because it combines spatial and temporal
information, compared with the configurations that only uses
spatial information or a small amount of temporal
information. At the same time, we found that the
pre-registration process is necessary for dynamic object
detection. Because if the two point clouds are not aligned in
advance, the difference process will not work correctly.
In the third set of experiments, we select the best

performance configuration (proposed components + CNN
based + SalsaNext) for in-depth experiment to explore the
influence of m on IoU, and the results are shown in Fig. 6.

Fig. 6. Influence of speed matrix number m on IoU.
We can see that in the two scenes, m = 1 has made a great

improvement in the dynamic object detection performance.
At the same time, increasing m can further improve the
dynamic object detection performance, but this improvement
gradually flattens when m>5. Compared with methods that
only use spatial information (m=0), the detection accuracy is
improved by 35% at m=10 using SalsaNext and 86% at m=2
using RangeNet++. In addition, compared with the
high-speed dynamic scene, for the scene with low-speed
dynamic objects, the performance improvement is relatively
obvious by increasing m. This result is in line with the
expectation, because the motion state of low-speed objects is
relatively not obvious and needs more observation.
In the subsequent experiments, we will use the best

performing configuration, namely, the proposed components
plus SalsaNext with m=6.

B. Feature Extraction Comparison

Fig. 7. Dynamic object detection and feature extraction results of a scan
between the two methods were compared. The color of the point represents
the elevation change, and the green points represent edge feature points. We
use the red box to highlight the key points. (a) LeGo-LOAM extracts
features from all points. (b) We only extract stable features from static
objects.
Fig. 7 shows a scan (in color points) and the edge feature

points (in green) in Scenario 1 on i7 platform, including six
moving pedestrians (circled in red box), where the red
cylinder indicates the moving direction of LiDAR. Fig. 7(a)
shows the wrong feature extraction result of LeGo-LOAM.
It can be seen that edge feature points are distributed on all
points including unstable dynamic points belong to the
pedestrians. Fig. 7(b) is our result, which is more reasonable.
We detect dynamic objects and avoid extracting feature
points from them, so as to avoid the wrong odometry and
mapping results caused by mismatch of unstable feature
points. Feature extraction results of the two methods are
recorded at TABLE III. We define the feature points on
dynamic object as ineffective feature points and the rest as
effective ones. Note that the real dynamic points are found

TABLE I
RPE RESULT OF ABLATION STUDY W.R.T. TWO PROPOSED COMPONENTS

Component Scenario
Weight compensation
of feature points

Eliminating
pseudo-static objects 1 (Urban) 2 (Highway)

w/o w/o 0.72 3.15
w/o w. 0.56 1.26
w. w/o 0.60 1.02
w. w. 0.55 0.98

TABLE II
MEAN IOU OF ABLATION STUDY W.R.T. DIFFERENT DYNAMIC OBJECT
DETECTION METHODS (-: NOT AVAILABLE, FAIL: FAIL OR CLOSE TO 0)

Input
Component Method

Pre-registration Traditional RangeNet++[18]
SalsaNext

[19]
Single
frame Current frame

w. - 34.0 53.7
w/o - Fail Fail

Two
frames

Range image
pair with m=1

w. 56.8 59.5 65.4
w/o 12.7 22.1 20.9

Multi
frames

Range image
bag with m=2

w. - 63.2 68.4
w/o - 21.9 21.0

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

by coarse registration plus fine ICP registration. Firstly, we
record the number of feature points distributed on the object
in each scan, then count the points distributed on the static
objects into the effective feature point set, and finally
calculate the ratio of the number of effective feature points to
the total corresponding feature points. Each result is the
average of ten experiments. There are 51 pedestrians and 3
moving vehicles in Scenario 1, so the effective feature points
ratio of LeGo-LOAM is very low, which show that our
method has the advantage of extracting effective features in
dynamic environments.

We notice that the effective point ratio of all types of
feature points in our method is higher than LeGo-LOAM,
where the ratio of Fe, fe and Fp and is significantly higher
than the baseline, while the ratio of fp is slightly higher,
because fp is only extracted from ground points which are
rarely affected by dynamic objects. In addition, the ratio of
our method is close but not reached to 1, it is caused by
primary factor of defect of the ground extraction algorithm
in the segmentation module, that is, a small number of
ground points are wrongly distributed on objects, while
secondary factor is the missed detection of dynamic objects.

C. Odometry Comparison
In order to further evaluate the performance of LiDAR

odometry, we compare our proposed method with the most
advanced ones. For LOAM [3], SuMa [14], SuMa++ [27],
S4- SLAM [28], IMLS [29], we directly report their results
in the paper. Among them, S4-SLAM, IMLS cannot achieve
real-time performance, we only take their results as reference.

For the open source LeGo-LOAM, because their authors did
not publish the test results on the KITTI dataset, we use their
code for experiments. At the same time, we mainly compare
with LeGo-LOAM on the same platform to prove the
effectiveness of our proposed dynamic object detection
method for improving the accuracy and robustness of the
odometry. Again, we emphasize that our proposed dynamic
object detection method can be easily embedded into other
SLAM systems to improve their odometry accuracy and
robustness in dynamic environments.
Fig. 8 shows the odometry comparison results on i7

platform in Scenario 1 between LeGo-LOAM and our
method. The red one is the result of LeGo-LOAM and the
blue one is ours. It seems they have little difference in the
global perspective. However, as shown in the green box in
the center of the image, we choose the most illustrative
location (upper left corner) to show the contrast in detail. As
can be seen from the green box, the red curve has a distinct
jagged edge, which is exactly the wrong odometry
estimation caused by a large number of moving pedestrians,
while the blue one has no such problem, which is enough to
illustrate the advantage of our method in the odometry
estimation. This is because we detect dynamic objects and
avoid using them for registration, therefore, we can avoid the
influence of unstable points on odometry. We can see the
process of SLAM and the impact of dynamic objects on
SLAM through the video demonstration of Scenario 1.
Fig. 9 shows odometry comparison results on i7 platform

in Scenario 2, we can see from Fig. 9 (a) that the accuracy
can still be maintained in the long-distance loop-contained
scenes, and it is similar for other KITTI sequences. Fig. 10
show odometry and mapping comparison results between the
two methods. The wrong map in Fig. 10 (b) is caused by an
unstable dynamic vehicles driving at high speed, but our
method has no such problem because we detect the dynamic
objects and avoid extracting features from them, and we can
see clear differences between the red and green boxes. And
results on KITTI sequences 00-10 are showed in TABLE IV.

TABLE III
EFFECTIVE FEATURE POINTS EXTRACTION COMPARISON BETWEEN

LEGO-LOAM AND OURS

Scenario
Fe fe Fp fp

Ours LeGo
LOAM Ours LeGo

LOAM Ours LeGo
LOAM Ours LeGo

LOAM
1 0.96 0.47 0.97 0.45 0.97 0.75 0.97 0.91
2 0.95 0.62 0.97 0.58 0.97 0.51 0.98 0.89

TABLE IV
RELATIVE POSE ERROR RESULTS ON KITTI DATASETS WITH DYNAMIC OBJECTS BETWEEN DIFFERENT METHODS (BOLD: THE BEST AMONG REAL-TIME METHODS)

Se
qu
en
ce

D
is
ta
nc
e
(m
)

En
vi
ro
nm

en
t

Dynamic
Objects
Number

Method (*: with loop closure) &
Type of removed objects &

Equipment (CPU/ cores/ clock rate (GHz), -: unknown) &
Run time (s)

V
eh
ic
le

Pe
de
st
ria
n

Ours_
CNN*

LeGo-
LOAM*
[9]

LOAM
(Open

Source) [30]

LOAM
[3]

SuMa*
[14]

SuMa_
no movable*

[14]

SuMa++*
[27]

S4-SLAM*
[28]

IMLS-SLA
M
[29]

moving small none none none movable moving small small

TX2 i7 TX2 i7 TX2 i7 -/
2/2.5

i7-6700/
4/3.4

i7-6700/
4/3.4

W-2123/
8/3.6

i5-3210
2/3.0

-/
1/4.0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 1.25
00* 3714 Urban 2 9 0.90 0.71 1.16 0.73 1.78 1.25 0.78 0.68 58.0 0.64 0.62 0.50
01 4268 Highway 45 0 1.19 0.92 5.47 2.98 2.75 2.03 1.43 1.70 1.70 1.60 1.11 0.82
02* 5075 Urban Country 6 1 1.22 0.95 1.24 0.95 1.80 1.37 0.92 1.20 63.0 1.00 1.63 0.53
03 563 Country 1 0 0.97 0.95 0.97 0.96 1.49 1.26 0.86 0.74 0.67 0.67 0.82 0.68
04 397 Country 14 0 0.88 0.57 1.03 0.66 1.55 1.05 0.71 0.44 0.37 0.37 0.95 0.33
05* 2223 Urban 6 4 0.69 0.45 0.72 0.51 1.24 1.02 0.57 0.43 36.0 0.40 0.50 0.32
06* 1239 Urban 1 1 1.10 0.66 1.09 0.66 1.58 1.13 0.65 0.54 0.47 0.46 0.65 0.33
07* 695 Urban 7 3 0.75 0.64 0.79 0.68 1.15 1.08 0.63 0.74 0.34 0.34 0.60 0.33
08* 3225 Urban Country 8 22 1.44 0.98 2.10 1.16 2.52 1.71 1.12 1.20 32.0 1.10 1.33 0.80
09* 1717 Urban Country 8 1 0.99 0.69 1.02 0.74 1.61 1.17 0.77 0.62 45.0 0.47 1.05 0.53
10 919 Urban Country 5 0 1.19 0.80 1.30 0.87 1.75 1.29 0.79 0.72 19.0 0.66 0.96 0.55

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

It can be seen that in the dynamic scenarios, the relative
pose error performance of our method on TX2 and i7 laptop
is smaller than open-source LeGo-LOAM and LOAM, and
this improvement is more obvious in scenes with a large
number of dynamic objects such as sequence 01 and 08. This
is because we detect dynamic objects and refuse to use them
for registration, we can therefore avoid the impact of
unstable points on feature matching process, so as to
improve the accuracy and robustness of odometry and
mapping. Besides, except on 01 sequence, the results of
LeGo-LOAM are better than that of LOAM [25]. This is
because we observed that there are only fences, vehicles and
a large number of trees in the highway environment of
sequence 01, therefore, it is almost impossible to extract
effective edge feature points using LeGo-LOAM, which
leads to the mismatching of edge feature points between
adjacent frames. Compared with LeGo-LOAM, the problem
rarely occurs in LOAM which extracts feature points from
whole current point cloud. Of course, LOAM needs more
computation, therefore, it cannot achieve real-time
performance on 64-beams KITTI dataset. Specifically, many
of the LiDAR scans are skipped, so our test using the
open-source LOAM did not achieve real-time performance
and the similar accuracy as mentioned in [3].

Fig. 8. Odometry comparison results in Scenario 1 between the two
methods, the green box is enlarged to highlight the differences, where our
odometry curve is smoother than that of LeGo-LOAM because we detect
dynamic objects and avoid using them for registration.

Fig. 9. Results on KITTI 00. (a) Odometry comparison results. (b) Mapping
results, where color variation represents elevation change.

Fig. 10. Results in Scenario 2 (KITTI 01, a 4268m highway scenario with
45 moving vehicles at high speed). (a) Odometry comparison results. (b)
Wrong mapping results of LeGo-LOAM, where the red arrows highlight the
distorted parts caused by the feature points (colored in blue) extracted from
a vehicle at high speed. (c) Our mapping results. Compared with the red one,
feature extraction results shown in the green box are more reasonable,
where we detect dynamic objects and avoid extracting feature points from
them for registration, therefore, our map will not be affected by dynamic
objects (vehicles at high speed).

D. Mapping Comparison
The results of representative scenarios show that

LeGo-LOAM will produce wrong mapping results because
they do not consider dynamic objects, as shown in Fig. 11
and Fig. 12. Fig. 11 is the mapping result of Scenario 1 on i7
platform. The LiDAR begins to move from the lower right
and moves counterclockwise to the vicinity of the starting
point. Fig. 11 (a) is the LeGo-LOAM mapping result. The
residual shadow in the yellow solid line box are the points
left by pedestrians, which indicate the wrong mapping result,
while the residual shadow in the white solid line box are the
points left by vehicles. Fig. 11 (b) is the mapping result of
our method, in which the dotted line box is in sharp contrast
to that in Fig. 11 (a), which indicate the advantages of our
method w.r.t. mapping. fig8shows the details of the mapping
result of scene 1. Fig. 12 (a), (b), and (c) are the result of
incorrect mapping caused by incorrect feature extraction.
Dynamic pedestrians and vehicles participate in feature
extraction and are added to the map, leaving obvious residual
shadows. Among them, Fig. 12 (a) is the enlarged result on
the top of the map, and the residual shadow is the movement
track left by at least 3 pedestrians moving forward. Fig. 12 (b)
is a local enlarged image on the left of the map, the residual
shadow is the movement track left by an upward moving
vehicle. Fig. 12 (c) is a local enlarged image of the lower
right part of the map, the residual shadow is left by a moving
vehicle. Different from LeGo-LOAM, we first separate the
dynamic and static objects and focus on extracting features
from the static objects, so we have obvious advantages in
building dynamic scenes. However, there are still small
residual shadows in the map for two reasons. Firstly,
dynamic object detection is based on segmentation, while
the range image segmentation method is rough, because it
ignores some 3D information. Moreover, the experimental
results show that the point cloud which we think belongs to
one object is often divided into several objects (e.g. vehicles
are usually divided into several parts), which may be
obstructed by the noise of LiDAR or foreground objects.
Secondly, there are drifts in the results of LiDAR odometry,
and the accuracy of range image construction will be
affected by the errors of point cloud projection and
ego-motion detection, which will lead to the wrong speed
estimation of real dynamic objects.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 11

Fig. 11. The complete mapping result in Scenario 1. The color change of
map represents the elevation change, with the red track being the starting
point of the LiDAR motion and the purple track being the end point. (a) The
result of LeGo-LOAM, we can clearly see the shadow left by the moving
objects. (b) The result of our method, we get a clean map by detecting
dynamic objects and avoiding extracting feature points and mapping them.

Fig. 12. Detail comparison of the result of the two methods in Scenario 1.
(a), (b), and (c) are the results of LeGo-LOAM. (d), (e), and (f) are the
results of our method. We add arrows to highlight the differences, where red
arrows highlight the shadows (wrong mapping results) left by pedestrians
and vehicles, while the green arrows show the result of detecting dynamic
objects and refusing to use them for SLAM.

E. Runtime Comparison
Average running times for each module between our

method and LeGo-LOAM are shown in TABLE V.
Compared with overall time consumption, dynamic object
detection module takes relatively less time, so the runtime of
our system is basically same as that of LeGo-LOAM. Our
system still shows the real-time performance. In addition, we
show the specific time consumption of the proposed
components in TABLE VI.

TABLE V
RUNTIME COMPARISON OF MODULES BETWEEN LEGO-LOAM AND OURS

(ms)

Eq
ui
pm

en
t

Sc
en
ar
io Segmentation

Dynamic
Object

Detection

Feature
Extraction

LiDAR
Odometry

LiDAR
Mapping

Ours LeGo
LOAM Ours LeGo

LOAM Ours LeGo
LOAM Ours LeGo

LOAM Ours LeGo
LOAM

TX
2 1 26.4 26.2 52.6 N/A 12.5 13.9 27.9 25.4 295.2 292.7

2 35.0 34.7 54.3 N/A 14.3 16.0 31.2 27.1 307.0 305.5

i7

1 15.9 17.0 35.5 N/A 6.3 6.5 15.9 13.5 168.3 166.4
2 20.2 19.8 37.2 N/A 8.5 8.9 17.7 13.8 170.8 169.1

TABLE VI
RUNTIME OF DIFFERENT COMPONENTS (ms)

Eq
ui
pm

en
t

Sc
en
ar
io Pre-registration

Weight compensation
of feature points

Eliminating
pseudo-static objects

(Npseudo=5)PCA RANSAC
(Ncoarse=5)

TX
2 1 14.8 4.4 0.2 2.3

2 16.6 5.2 0.5 3.7

i7

1 11.0 3.3 0.2 2.2
2 12.5 3.7 0.4 3.5

V.CONCLUSION
We propose a fast dynamic object detection method

based on the difference between adjacent frames, which is
implemented by CNN-based method and traditional method
respectively. The experimental results show that the
accuracy and robustness of odometry and mapping of the
proposed SLAM system is greatly improved in dynamic
environments, which benefits from stable and fine features
extracted from static objects. Our system is real-time and can
meet the needs of autonomous robot systems and intelligent
transportation applications in urban environments.
The future works include further improving the

performance of the system in highly complex and dynamic
scenes by improving the accuracy of dynamic object
detection module, because we found our system will still
generate wrong results when there are many and dense
moving objects around the LiDAR. We notice that the recent
registration method TEASER [32], which can quickly and
stably register point cloud scans with a large number of noise
points, may be suitable for pre-registration or even directly
estimating the pose transformation in extremely dynamic
environments. Besides, we will also try to deploy the SLAM
system on multiple base stations to make up for the
deficiency of a single base station seriously blocked by
mobile objects by cooperative tasks, in addition, some of the
solutions to the robot kidnapping problem may be the
feasible solution.
Another problem worthy of discussion is how to deal with

objects that are temporarily stationary but may start to move
at any time, such as vehicles or pedestrians that are
temporarily stationary. The possible and inevitable solution
is to extract more semantic information from the scene to
make decisions. For example, we should remove the vehicle
waiting for the traffic lights in the middle of the road.
Therefore, we will further combine the semantic information
and motion information of the scene, which will provide a
new idea for the construction of semantic map in dynamic
scenes.

REFERENCES
[1] J. Zhang, M. Henein, R. E. Mahony, and V. Ila, “VDO-SLAM: A

Visual Dynamic Object-aware SLAM System,” in International
Journal of Robotics Research, 2020. [Online]. Available:
https://arxiv.org/abs/2005.11052.

[2] J. Zhang and S. Singh, “LOAM: LiDAR Odometry and Mapping in
Real time,” in Proceedings of Robotics: Science and Systems, 2014.

[3] J. Zhang and S. Singh, “Low-drift and real-time LiDAR odometry and
mapping,” in Autonomous Robots, 2017, vol. 41, no. 2, pp. 401-416.

[4] J. Zhang and S. Singh, “Visual-LiDAR odometry and mapping:
low-drift, robust, and fast,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), July 2015, pp. 2174-2181.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3109423, IEEE Open
Journal of Intelligent Transportation Systems

[5] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, D. Rus.
“LIO-SAM: Tightly-coupled LiDAR Inertial Odometry via
Smoothing and Mapping,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct. 2020, pp.
5135-5142.

[6] K. Koide, J. Miura, and E. Menegatti, “A Portable 3D LiDAR-based
System for Long-term and Wide-area People Behavior
Measurement,” in International Journal of Advanced Robotic Systems,
2019, vol. 16, no. 2.

[7] M. R. U. Saputra, A. Markham, N. Trigoni, “Visual SLAM and
Structure fromMotion in Dynamic Environments: A Survey,” in ACM
Computing Surveys, vol.51, no.2, pp. 1557-7341.

[8] D. Rozenberszki and A. L. Majdik, “LOL: LiDAR-only Odometry
and Localization in 3D point cloud maps,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), Paris, France, 2020,
pp. 4379-4385.

[9] T. Shan and B. Englot, “LeGo-LOAM: Lightweight and
Ground-Optimized LiDAR Odometry and Mapping on Variable
Terrain,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2018, pp. 4758-4765.

[10] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J.J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Towards the Robust-Perception Age,” in
IEEE Trans. on Robotics (TRO), Dec. 2016, vol. 32, no. 6, pp.
1309-1332.

[11] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2012, pp.
3354-3361.

[12] R. Kiimmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard,
“A navigation system for robots operating in crowded urban
environments,” in 2013 IEEE International Conference on Robotics
and Automation(ICRA), Karlsruhe, Germany, 2013, pp. 3225-3232.

[13] X.Weng, J. Wang, D. Held, K. Kitani, “3D Multi-Object Tracking: A
Baseline and New Evaluation Metrics,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct. 2020, pp. 7934-7943.

[14] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments.” in Robotics: Science and Systems,
2018.

[15] S. A. Baur, F. Moosmann, S. Wirges and C. B. Rist, “Real-time 3D
LiDAR Flow for Autonomous Vehicles,” in 2019 IEEE Intelligent
Vehicles Symposium (IV), June 2019, pp. 1288-1295.

[16] R. Battrawy, R. Schuster, O. Wasenmüller, Q. Rao and D. Stricker,
“LiDAR-Flow: Dense Scene Flow Estimation from Sparse LiDAR
and Stereo Images,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Macau, China, 2019, pp.
7762-7769.

[17] P. Wu, S. Chen, and D. Metaxas, “MotionNet: Joint Perception and
Motion Prediction for Autonomous Driving Based on Bird's Eye View
Maps,” in 2020 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 11382-11392.

[18] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Macau, China, 2019, pp. 4213-4220.

[19] T. Cortinhal, G. Tzelepis, and E.E. Aksoy, “SalsaNext:
Fast,Uncertainty-Aware Semantic Segmentation of LiDAR Point
Clouds,” in 2020 IEEE Vehicles Symposium (IV), 2020.

[20] A. F. Yandex, A. R. Yandex, and V. M. Google, “Any Motion
Detector: Learning Class-Agnostic Scene Dynamics from a Sequence
of LiDAR Point Clouds,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), Paris, France, 2020, pp. 9498-9504.

[21] I. Bogoslavskyi and C. Stachniss, “Fast Range Image-based
Segmentation of Sparse 3D LiDAR Scans for Online Operation,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2016, pp. 163-169.

[22] B. Yang, Z. Dong, F. Liang, and Y. Liu, “Automatic registration of
large-scale urban scene point clouds based on semantic feature
points,” in ISPRS Journal of Photogrammetry and Remote Sensing,
2016, vol. 113, pp. 43-58.

[23] J. Pan, N. Liu, S. Chu, and T. Lai, “An Efficient Surrogate-Assisted
Hybrid Optimization Algorithm for Expensive Optimization
Problems,” in Information Sciences, 2021, vol. 561, pp. 304-325.

[24] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision
LiDAR odometry and mapping package for LiDARs of small FoV,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France, 2020, pp. 3126-3131.

[25] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E.
Berger, R. Wheeler, and A. Ng, “ROS: An Open-source Robot
Operating System,” in IEEE ICRA Workshop on Open Source
Software, 2009.

[26] S. Zhao, Z. Fang, H. Li, and S. Scherer, “A robust laser-inertial
odometry and mapping method for large-scale highway
environments,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Macau, China, 2019, pp.
1285–1292.

[27] X. Chen, A. Milioto, E. Palazzolo, P. Giguere, J. Behley, C. Stachniss,
“SuMa++: Efficient LiDAR-based Semantic SLAM,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2019, pp.
4530-4537.

[28] B. Zhou, Y. He, K. Qian, X. Ma, and X. Li, “S4-SLAM: A real-time
3D LIDAR SLAM system for ground/watersurface multi-scene
outdoor applications,” in Autonomous Robots, 2021, pp. 77-98.

[29] J. Deschaud, “IMLS-SLAM: scan-to-model matching based on 3D
data,” in IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 2480–2485.

[30] M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “LiTAMIN2: Ultra
Light LiDAR-based SLAM using Geometric Approximation applied
with KL-Divergence,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), Xi’an, China, 2021.

[31] https://github.com/laboshinl/loam_velodyne.
[32] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Certifiable Point

Cloud Registration,” in IEEE Transaction on Robotics, 2020.

Wenbo Liu is currently pursuing his
master degree in control science and
engineering at Xidian University,
Xi’an, China. His current research
interests include 3D point cloud
processing and 3D LiDAR SLAM.

Wei Sun received the B.S. degree in
measuring and control technology and
the Ph.D. degree in circuit and system
from Xidian University, Xi’an, China,
in 2002 and 2009, respectively. He is
currently a professor with the School of
Aerospace Science and Technology,
Xidian University. His current research
interests include multi-UAV systems,
visual information perception, pattern

recognition, and embedded video systems.

Yi Liu is currently pursuing his master
degree in space engineering at Xidian
University, Xi’an, China. His current
research interests include 3D point
cloud registration and image
processing.

