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ABSTRACT Eye pupil tracking is important for augmented reality (AR) three-dimensional (3D) head-up
displays (HUDs). Accurate and fast eye tracking is still challenging due to multiple driving conditions with
eye occlusions, such as wearing sunglasses. In this paper, we propose a system for commercial use that can
handle practical driving conditions. Our system classifies human faces into bare faces and sunglasses faces,
which are treated differently. For bare faces, our eye tracker regresses the pupil area in a coarse-to-fine
manner based on a revised Supervised Descent Method based eye-nose alignment. For sunglasses faces,
because the eyes are occluded, our eye tracker uses whole face alignment with a revised Practical Facial
Landmark Detector for pupil center tracking. Furthermore, we propose a structural inference-based re-
weight network to predict eye position from non-occluded areas, such as the nose and mouth. The proposed
re-weight sub-network revises the importance of different feature map positions and predicts the occluded
eye positions by non-occluded parts. The proposed eye tracker is robust via a tracker-checker and a small
model size. Experiments show that our method achieves high accuracy and speed, approximately 1.5 and 6.5
mm error for bare and sunglasses faces, respectively, at less than 10 ms on a 2.0GHz CPU. The evaluation
dataset was captured indoors and outdoors to reflect multiple sunlight conditions. Our proposed method,
combined with AR 3D HUDs, shows promising results for commercialization with low crosstalk 3D images.

INDEX TERMS eye tracking, iris regression; eye position estimation; augmented reality (AR) display;
autostereoscopic three-dimensional display; head-up displays (HUDs)

I. INTRODUCTION

AUGMENTED reality (AR) three-dimensional (3D)
head-up displays (HUDs) are a promising technology

for next-generation assistive driving systems. AR HUDs have
been increasingly adopted in the automotive industry to show
visual contents, such as line-of-sight navigation arrows via
combiners or windshields [1], [2]. While two-dimensional
(2D) HUDs can cause additional distractions and visual
mismatches between real-world and virtual objects, AR 3D
HUDs can overlap 3D visual information directly on the
road after 3D depth adjustments [1], [2] (Figure 1a). In such
systems, an autostereoscopic 3D display [3]– [5] is important
to provide the user with a realistic sense of the image depth
without the need of 3D eyeglasses. However, traditional
autostereoscopic displays have some limitations, such as a
limited best-viewing zone and that the user needs to stay in

a restricted position to avoid 3D crosstalk artifacts. An eye-
tracking-based autostereoscopic 3D method overcomes these
limitations, allows a single-user seamless 3D experience, and
provides higher 3D resolution contents [3]– [5]. A prototype
AR 3D HUD with a 3D margin according to eye position
is shown in Figure 1a. With more accurate and faster pupil
tracking [6]– [8], 3D images with lower 3D crosstalk and
higher resolution can be provided in real-time, even when
the user’s head movements are fast. However, accurate real-
time pupil tracking while driving with an AR 3D HUD
is particularly challenging due to multiple real-world driv-
ing conditions, such as varying light conditions, head pose
changes, eyeglasses reflection, and eye occlusion caused by
wearing sunglasses (Figure 1b). These challenges become
even more difficult to overcome under limited vehicle system
resources.
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FIGURE 1. (a) Example of an AR 3D HUD system (upper panel) and eye-position margin in the x-direction of a 27-view autostereoscopic 3D display design. (b)
Challenging conditions for eye pupil center tracking while driving.

In this paper, we focus on pupil tracking while the user
is driving. The proposed system classifies human faces into
bare faces and sunglasses faces. It consists of a face detector,
eye–nose shape aligner, tracker-checker, and a switching
design between two tracking modes. Depending on the user
face conditions, corresponding shape aligners are applied
based on image classification. For bare faces, we extended
our previous studies [9], [10], which were based on the
fast Supervised Descent Method (SDM) [11] algorithm with
Scale-Invariant Feature Transform (SIFT) [12]. In this study,
we further increased precision by adding an iris regression
module, where pupil boundaries are regressed and the cor-
responding eye center positions are refined. Because our
previous method [9], [10] is not able to handle cases when the
user is wearing sunglasses, which are quite challenging due
to occluded eyes and sunlight reflection, we propose a new
method for sunglasses faces. To tackle such cases, we use
non-occluded areas to infer the pupil center with a revised
Practical Facial Landmark Detector (PFLD) network [13].
Furthermore, we propose a novel re-weight module design to

improve the pupil tracking system performance when dealing
with sunglasses occlusions. Our proposed method targets
to implement pupil tracking on commercial AR 3D HUD
systems. For commercial use, the pupil tracking module
should be fast, accurate, robust, and have a small model size.
Our system is designed to fulfill these four requirements with
the following strategies.
• Fast. We designed an optimized processing procedure

to ensure pupil center estimation is mainly performed in
tracking mode in a local image area. In this way, face
detection across the whole image in each frame, which is
time consuming, is not needed. Additionally, for bare and
sunglasses faces we utilize SDM [11] and PFLD [13], re-
spectively, as the base method. SDM and PFLD are both high
speed methods in terms of CPU time. Our proposed revisions
on SDM and PFLD require little additional computational
load while retaining their high speed characteristics. For bare
faces, it takes only 4 ms per 640x480 image frame, and for
sunglasses faces, it takes approximately 10 ms per 640x480
image frame, whereby only CPU calculations are required.
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These are desirable characteristics considering the limited
system resources available in actual automobiles.

• Accurate. Besides the inherited accuracy of the original
SDM and PFLD demonstrated in previous studies, we pro-
vide further modifications to adapt them to address the chal-
lenges of actual driving scenarios. For bare faces, we utilize
an SDM-based coarse-to-fine strategy that further improves
accuracy with an iris boundary regression algorithm. Despite
PFLD’s top performance on classical datasets compared to
other widely used methods [12], in our experiment PFLD
gives different positions on the feature map the same con-
fidence, which means occlusion influences it under certain
critical conditions. To address this problem, for sunglasses
faces we propose a new re-weight sub-network that revises
the importance of different feature map positions and then
the occluded part can be inferred by non-occluded parts. We
conducted intensive experiments to demonstrate the validity
of the proposed method. The mean error was < 1.5 mm for
bare faces and 6.5 mm for sunglasses faces, which are below
the 3D margins of our AR 3D HUD prototype.

• Robust. Our method includes a design to recover quickly
from tracking failure in order to ensure a robust system.
Specifically, we designed two fast tracker-checker modules.
For bare faces, we perform Support Vector Machine (SVM)
[14] with the extracted SIFT features around eyes and nose
to act as tracker-checker. Experiments show that both SIFT
and SVM are fast and robust. For sunglasses faces, because
image features around the eyes are not available, we de-
signed a new PFLD-based tracker-checker where we defined
a cross entropy loss of whole face landmark points for the
predicted tracking confidence. This tracker-checker shares
feature maps with previous landmark detection steps and
can characterize the representation ability of the current face
image directly. Experimental results demonstrate the valid-
ity of the proposed tracker-checker modules. For bare and
sunglasses faces, the tracker-checker took less than 1ms per
frame. With the proposed tracker-checker designs, the pupil
tracking can fulfill real-time requirements faster than 30 fps.

• Small model size. Because our design adds little addi-
tional space, the system model size is small. For bare faces,
the model is approximately 500 KB, for sunglasses faces, the
model size is less than 1300 KB.

The main contributions of this study can be summarized as
follows:

1) We propose a new eye pupil tracking system that
can handle both bare and sunglasses faces with two differ-
ent strategies. The system optimizes the eye pupil tracking
process with multiple collaborative modules, such as face
detector, face classifier, facial landmark detector, and tracker-
checker, which allows it to run in a fast, accurate, and robust
manner. Additionally, we also propose an iris regression
method, which refines eye center locations by regressing
pupil centers and iris boundaries. By using a coarse-to-fine
strategy, pupil centers can be detected and tracked fast and
accurately.

2) For sunglasses faces, we infer the pupil in the sun-

glasses area with non-occluded areas, such as the nose and
mouth, with a structural inference-based re-weight method
and construct an end-to-end trainable network. When defin-
ing the weights, we consider both the feature for each specific
landmark and the structural relationship between landmarks.
Additionally, we add a small branch to the Convolutional
Neural Network (CNN) backbone when treating sunglasses
faces and use it as a tracker-checker. The tracker-checker
shares features with the CNN-based landmark detector and
can save computational time. Furthermore, we use the land-
mark prediction error as guidance to train the tracker-checker,
which can represent the failure condition of the tracker more
reasonably.

II. RELATED WORK
Facial Landmark Detection. Facial landmark localization
has been researched for decades. Before the advent of deep
learning methods, active shape [15], active appearance [16],
and cascaded regression [17] models were widely used. Some
researchers also utilized SDM for fast landmark detection
[11], [18]. However, the hand-crafted features fail to rep-
resent multiple complex facial appearance conditions. Re-
cently, deep learning-based methods have demonstrated more
powerful facial landmark detection abilities.

Deep learning, especially CNNs, can model the facial
appearances in multiple conditions by adopting a large num-
ber of learned parameters. TCDCN [19] utilizes auxiliary
attributes to pre-train the CNN and then uses the pre-trained
network to train the facial landmark detection model. Under
certain conditions, the images are captured by different cam-
eras and exhibit large style differences, which can cause a
severe domain shift problem. To address this problem, some
researchers integrate style transfer into facial landmark detec-
tion. As Generative Adversarial Networks (GANs) [20] are a
powerful for transferring image styles [21], many previous
works take advantage of GANs [22]. Previous methods first
obtain several image styles via clustering, and then train the
style transfer model with a GAN to obtain the aggregated
style. During testing, the aggregated style image is combined
with the original image and used as input to the network for
performance improvement. Qian et al. [23] decoupled the
shape and style of the image with an adversarial network
and used this network to generate more training samples
to introduce more sample variation. The loss function also
greatly influences detection performance. Feng et al. [24]
analyzed the influence of different prediction errors on loss
computation and proposed a wing loss [24]. By amplifying
small and medium errors, the loss function is more sensitive
to errors around zero, then accuracy is improved. Wang et al.
[25] further analyzed the influence of foreground and back-
ground on the loss computation in heat map-based methods
and proposed an adaptive wing loss, which can adapt the
shape to different ground truth heat map pixels.

Multi-Step Facial Landmark Detection. To improve the
detection speed, PFLD [13] uses MobileNet [26], [27] as
the backbone and achieves high speed on CPU mode. In
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FIGURE 2. Overview of our proposed pupil tracking method. The algorithm works in two different modes for bare and sunglasses faces.

this paper, we take PFLD as the base architecture of our
method and add a new stage to improve the model with a
re-weight module. Other methods also utilize multiple stages
for facial landmark detection [28]– [30], but generally they
extract the features from the original image or image patch
at each stage, which is time consuming. In contrast, the two
stages in our method share the same feature maps, which
significantly reduces time costs. Our method computes the
weights of different feature map locations with the re-weight
module. Wu et al. [31] also assessed the importance of
different feature map locations. However, they predicted an
edge map that requires a large time cost, whereas our method
achieves higher speed by sharing the feature maps across the
two stages.

Occlusion in Facial Landmark Detection. We propose
a re-weight module to address occlusion problems, such
as wearing sunglasses. Occlusion represents a significant

challenge in facial landmark detection, both [32] and [33]
utilized occlusion labels to perform occlusion inference.
However, in many datasets occlusion labels do not exist,
so this method is not suitable for certain conditions. Wu et
al. [31] imported the information propagation in the edge
map prediction to infer the occluded edge map, and used
the recovered edge map to address the occlusion problem.
As the information propagation is performed along a tree in
a bi-directional manner, more time is consumed compared
to our method. Our method infers confidence directly from
the complete feature appearance and shape. The relations
between different facial components that can be used to
infer the occlusion condition are embedded in the network.
Furthermore, the feature weight is also computed with an
attention mode, which allows more discriminative areas to
obtain larger weights, this, in turn, is useful for accuracy
improvement.
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FIGURE 3. Pupil center positions refined with the proposed iris regression method for bare faces. The top row shows the 4-step SDM-based 11-point eye-nose
regression. The bottom row shows further pupil position refinement via iris regression. The red dots in the center image of the bottom row indicate initial SDM
results, the green dot in the bottom right image indicates the refined pupil center obtained via iris regression.

III. METHODS
Our proposed method aims to provide a pupil tracking
tool for commercial assistive driving systems. In order to
be suited for commercial use, it is required that the tool
be fast, accurate, robust, and has a small model size. Our
method satisfies these four requirements in terms of design
and implementation. The basic components of our proposed
pupil tracker can be divided into two main stages: (1) face
detection from RGB webcam images and (2) position track-
ing of the pupil center from the detected face region. The
system flowchart is shown in Figure 2. As Figure 2 shows,
first, we perform face detection on a given RGB frame,
then we perform pupil center detection on the detected face
image. We use our previously developed error-based learning
(EBL) method to detect face regions [9], [10], where the
conventional cascaded Adaboost classifier [34], [35] with
multiblock local binary pattern (LBP) features [36] were
used. The EBL scheme trains only a small subset of detection
training image DBs with a large size in much shorter training
times, while accuracy is improved through three stages. Our
proposed detector is simple and practical requiring only a
CPU in AR 3D HUD systems, which adopt commercial
vehicle-embedded computing boards with limited GPU re-
sources. Details of the algorithms were published in [9],
[10] and are not repeated here. If eye center detection is
successful, the algorithm runs in tracking mode; if not, the
algorithm repeats the face detection stage. In this way, we

can achieve high speed with tracking mode while guaran-
teeing the algorithm’s robustness with failure recovery. As
bare faces are very different from sunglasses faces due to
occlusion, corresponding eye trackers are applied based on
image classification. Our system classifies human faces into
bare faces and sunglasses faces and performs pupil tracking
in two different ways accordingly.

A. FAST AND ACCURATE EYE TRACKING WITH IRIS
REGRESSION ON BARE FACES
For bare faces, we use a coarse-to-fine strategy to infer the
pupil center. First, we perform a SDM-based 11-point eye-
nose landmark alignment, a process that is fully described
in our previous study [9], [10]. In this paper, we propose an
additional module for pupil center position refinement: an iris
regression method that regresses both the pupil center and
iris circle (Figure 3). From the initial eye positions from the
SDM method, a regression-based pupil refinement algorithm
is executed to obtain the pupil center and iris circle on the
cropped eye areas. On the normalized eye images, the pupil
center and iris circle regressions are performed simultane-
ously, where they share the SIFT features to achieve high
speed. For each iteration, the SIFT features around the three
eye corners and center landmarks are extracted first, which
are concatenated to form a feature vector v. Then, we obtain
the new landmark positions and iris radius by performing a
regression on v. Assuming a regression matrix H , landmarks
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P ki at iteration k for i = 0, 1, and 2, and an iris radius r, the
new landmark and radius computation is defined as

P k0
P k1
P k2
r

 =


P k−10

P k−11

P k−12

0

+Hv. (1)

After experimenting with a different number of iterations,
k = 2 was determined. With the regressed iris boundary, we
can refine the pupil center by matching the estimated and real
boundaries. Additionally, by segmenting the iris area with the
regressed circle and center, we can utilize the iris information
to provide more functions, such as personal identification for
user-specific driving services.

B. RE-WEIGHTED NETWORK FOR EYE TRACKING ON
SUNGLASSES FACES
Sunglasses faces need to be treated differently than bare faces
as the features around the eyes are difficult to identify. Thus,
we cannot infer the pupil center as detailed as in the bare
faces case. To address sunglasses occlusion, we utilize the
features of the whole face to infer the pupil center. In this
paper, we utilize PFLD as the base architecture, which is a
fast and robust landmark detection method with MobileNetv2
as its backbone, to detect 98 whole facial landmarks. Be-
cause eyes are occluded by sunglasses, we estimate the pupil
positions from other shapes. There are tight relationships
between different facial landmarks, so we can infer the pupil
with non-occluded landmarks, such as the nose and mouth.
With PFLD, we take the whole face image as input and use
fully connection to regress the landmarks. In this way, the
connections between different facial components are encoded
into the feature maps.

However, with the original PFLD method, different facial
areas have the same importance in the prediction process.
As the non-occluded areas tend to provide more information
for landmark localization, it is better to give different areas
different weights. Moreover, because landmarks around the
nose and mouth can also be occluded at times, it is difficult
to know which facial components are occluded at any given
time. To address this problem, we designed a new re-weight
sub-network to automatically represent the importance of
different pixels on the feature map.

As shown in Figure 4, the proposed re-weight method
infers the pixel confidence on the feature map using both
the landmark appearance and the graphical structure between
landmarks, and the network can be trained end-to-end. The
confidence maps wstruc and wappear from the two types
of information (structural and appearance) are combined
via element-wise multiplication. Given feature map F , we
obtain a new feature map F ′ by performing an element-
wise multiplication on F and the combined confidence map.
Then, the landmark position is obtained by performing a fully
connected operation on F ′. With the new landmark, we can
compute the confidence map again in the next iteration. That

is, take the newly predicted landmarks as input to the re-
weight module and infer wstruc again. However, as more
iterations consume more time, we only perform the iteration
once in this paper. When some landmarks are occluded,
the features of these landmarks are corrupted and tend to
be predicted inaccurately. According to the graph formed
by the computed landmarks, we give smaller confidence to
inaccurately predicted landmarks. Moreover, different facial
component appearances have different discriminative abil-
ities. With this information, we can automatically select
more discriminative areas with wappear for the following
regression process.

The re-weighted network contains two steps. Step 1 can be
considered as the original PFLD. Here, we define loss 1 and
loss 2 in the same manner as the original PFLD loss. When
the head pose variation is not significant, pose estimation in
the loss can be omitted. To guide the inference of wstruc, we
add another loss to assign inaccurately predicted landmarks a
smaller weight, which represents Step 2. Here, we define the
ground truth confidence for landmark k in loss 3 as follows:

ek = exp
(
−β

∥∥∥α̃− αk
∥∥∥2

2

)
, k = 1, . . . ,K, (2)

where αk is the predicted landmark in Step 1 (the original
PFLD), α̃ is the landmark ground truth, and β is a constant
(β = 10 in this paper). Given the predictions in Step 1, we
compute the error for each landmark and use it to define
the landmark confidence (wstruc) for the re-weight module.
For convenience, we perform fully connection directly on
the concatenated 98 landmark locations, while the graphical
structure between landmarks is embedded in the concate-
nated locations.

For the proposed re-weighted sub-network, the three
multi-scale feature maps from the original PFLD [13] were
utilized, which have 1x1, 7x7, and 14x14 feature map sizes.
Because the top two layers, i.e., 1x1 and 7x7, have a small
feature map size, we only computed the combined weight on
the third 14x14 layer. The top two layers are concatenated
with the third layer directly. When computing wstruc, the
predicted landmark locations can be concatenated with the
feature map to act as the input. However, in order to reduce
time consumption, the feature map is not used as input for
wstruc in this paper.

C. TRACKER-CHECKER
At each frame, after eye center prediction finishes, the ini-
tial face region for the next frame tracking can be decided
using the aligned face points without face detection, which
takes additional time. The tracker-checker module assesses
tracking correctness by filtering out the misaligned and non-
facial areas. However, the proposed eye tracker restarts the
face detection processes from the start only when the tracker-
checker determines that final tracking has failed. To address
this problem, we propose to add tracker-checker modules
after the landmark prediction process. For bare faces, we
extract SIFT features around 11 landmarks and perform SVM
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FIGURE 4. Pupil center positions are refined with the proposed re-weight method for sunglasses faces. From the original PFLD method results (the bottom raw),
the re-weight method infers the pixel confidence on the feature map using both the landmark appearance and the graphical structure between landmarks as shown
in the top row.

to check if tracking succeeds, this process was described in
our previous study [9], [10].

For sunglasses faces, as the features around the eyes are
corrupted, the tracker-checker needs to use the features of
the whole face. The proposed tracker-checker utilizes the
feature maps obtained in PFLD. From the last feature map
for regressing the 98 landmarks points in PFLD, we directly
perform convolution on this feature map to obtain the score
representing the current tracking success confidence. In the
training stage, we define a cross entropy loss for the predicted
tracking confidence score. The error between the predicted
landmarks and the ground truth is utilized as the ground
truth for the defined cross entropy loss (Figure 5). In this
way, if the landmark prediction is bad, the confidence score
is small and the tracking is considered a failure. To train
the tracker-checker, we sample a number of face images
around the real face area as training samples. Because the
tracker-checker shares feature maps with PFLD, time con-
sumption can be significantly reduced. The time cost of

TABLE 1. Performance of the proposed method on various image DBs. The
training sample number, testing sample number, pupil center mean error, and
time consumption are shown.

Training Testing Precision Speed
image DB image DB (mm) (ms)

Bare faces (RGB) 11,000 20,000 1.5 4
Sunglasses faces (RGB) 37,000 5,000 6.5 10

the tracker-checker is small, less than 0.5 ms. Training the
proposed sunglasses tracker-checker utilizes the trained re-
weight model described in Section 3.2, and the re-weight
model weights remain unchanged during the tracker-checker
training process.

IV. EXPERIMENTAL RESULTS
The proposed algorithm was implemented with C++ and
tested based only on CPU computations on both a Windows
PC and a commercial embedded computing system running
Linux. It yielded successful tracking results on both bare
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FIGURE 5. Flowchart of the proposed PFLD-based tracker-checker for
sunglasses faces. The red arrows indicate the tracker-checker confidence
calculation process. The cross entropy loss for training is calculated with the
errors from the PFLD alignment.

FIGURE 6. Experimental results on bare faces with 11 eye-nose landmark
points with iris regression (top row), and sunglasses faces with 98 whole facial
points with eye position refinement via feature map re-weighting (bottom row).
For bare faces (top row), the greed dot inside the pupil circle indicates the
initial eye position from SDM and the red dot indicates the refined eye center
position using the proposed iris regression algorithm. For sunglasses faces
(bottom row), the red dots indicate the estimated pupil position and the green
dots indicate the remaining facial points.

(200 fps) and sunglasses (100 fps) faces on a 2.0 GHz
CPU. We evaluate our algorithm precision by calculating
the distances between the ground truth and the tracked pupil
centers, whereby the pixel distances were converted to phys-
ical distances based on the assumption that the inter-pupil
distance (IPD) was 65mm. In the experiment, our method
achieves high accuracy and speed, approximately 1.5 mm
error at less than 5 ms for bare faces and approximately 6.5
mm error at less than 10 ms for sunglasses faces on the 2.0
GHz CPU. These results are summarized in Table 1. The
training set contains 10,000 face RGB images from the public
Wider Facial Landmarks in-the-wild (WFLW) [31] DB and
27,000 captured RGB images from our own DB. All 25,000
images in the evaluation dataset (20,000 for bare faces and
5,000 for sunglasses faces) were captured both indoors and
outdoors to reflect multiple lighting conditions (Figure 6).

FIGURE 7. Examples of comparison of the predicted pupils from the
proposed algorithm and the ground truth points on sunglasses faces. All the
ground truths of eye positions were annotated as precisely as possible via
comparison with the corresponding bare face images (left). Yellow points
indicate the ground truth points of pupil center positions and red points
indicate the predicted pupil center positions by the proposed algorithm (right).

For sunglasses faces, all the ground truths of eye positions
for evaluation were annotated as precisely as possible via
comparison with the corresponding bare face images (Figure
7). Also different publicly available DB such as 300-W [37],
AFLW [38], and COFW [32] can be adopted in our algorithm
training and evaluation. The proposed method can detect
and track the pupil center accurately in real-time on both
bare and sunglasses faces from a RGB stereo camera. The
RGB camera image resolution was 640x480 with a capturing
speed of 60 fps, a 60x40° field-of-view, and the distance
between the camera and users ranged between 70–400 mm.
When considering the 12-mm 3D HUD crosstalk margin
and the limited system environment in vehicles, the accuracy
achieved by our system is determined to be quite suitable for
commercialization. The proposed algorithm processing time
for each frame gets correspondingly increased when using
higher resolution and wider field-of-view cameras, which
capture a wider area for detection and tracking.

A. EXPERIMENTAL RESULTS ON BARE FACES
We tested our method on various bare face datasets, including
synthetic, near infrared, high resolution RGB, and normal
resolution RGB eye images. Additionally, we also tested
our method on video sequences. To test the accuracy of the
proposed iris regression method, we added random noise to
three eye landmarks (outer corner, pupil center, and inner
corner). The noise conforms to a uniform distribution in the
range of [-3, 3 mm] for both the x and y coordinate. The noisy
landmarks were given as initial landmarks. For the videos,
we utilized the complete process, including face detection,
11-landmark SDM, pupil segmentation, and tracker-checker.

1) Eye Image DB Evaluation for Iris Regression
Synthetic eye images. To test the performance of our method
on synthetic eye images, we generated 5,000 eye images with
the Unity Eye tool and separated them into 4,000 training
samples and 1,000 testing samples. For synthetic eye images,
the annotation is accurate, which is useful for improving
the method’s performance. These results are shown in Table
2 and Figure 8a, where we can see that the proposed iris
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TABLE 2. Iris regression results on (a) synthetic eye images, (b) NIR eye
images, (c) high resolution RGB images (1920x1080) at 1-m distance, and (d)
normal RGB images (640x480) at 1-m distance.

Iteration Good Rate Mean Error Median Error Speed
(<3mm) (mm) (mm) (ms)

Synthetic NIR Synthetic NIR Synthetic NIR Synthetic NIR
4 100% 100% 0.31 0.57 0.27 0.54 3.16 3.17
3 100% 100% 0.31 0.55 0.27 0.53 2.78 2.65
2 100% 100% 0.34 0.54 0.31 0.51 2.09 2.09
1 100% 100% 0.67 0.74 0.62 0.68 1.54 1.58

regression method can achieve high accuracy on synthetic
eye images, despite varying textures and reflection occurring
within the pupil area. Furthermore, the regressed iris circle
is in agreement with the actual iris circle. This is useful
for other applications, such as iris recognition. Finally, our
method achieves a mean error of 0.317 mm after 4 iterations.

NIR eye images. To test our method on NIR eye images,
we constructed a NIR DB with 2,078 training samples and
500 testing samples. These results are shown in Table 2
and Figure 8b, where we can see that the detected pupil
center stays accurately within the pupil area, we also obtain
accurate regressed iris circles. In this case, the mean error
decreases sharply after the initial two iteration steps and
increases slightly later due to annotation errors. Thus, we set
the iteration times to 2 in all our experiments when handling
bare faces.

High resolution RGB eye images. In our experiment,
we found that method performance is highly dependent on
image resolution. To test the method accuracy, we used two
RGB datasets, high and normal resolution RGB images. The
high RGB DB includes 11,832 training samples and 20,000
testing samples. Results show that, although the iris area is
occluded by eyelid and eyelash, our method is still able to
regress both the pupil center and iris circle accurately (Figure
8c). After two iterations we obtain a mean error of 0.417
mm. Based on these results, we determined that our method
is suitable for applications requiring high accuracy, such as
autostereoscopic 3D displays.

Normal resolution RGB eye images. For the normal
resolution RGB eye images we used the Samsung Advanced
Institute of Technology (SAIT) DB. We collected 2,044 train-
ing samples and 500 testing samples. The mean error after
two iterations is 1.03 mm, which means that accuracy is in-
deed influenced by image resolution. For the high-resolution
eye images, IPD is approximately 604 pixels, while it is only
74 pixels for normal-resolution images. High IPD causes
high annotation accuracy, and vice versa. Consequently, it
is hard to annotate the pupil center accurately for normal-
resolution eye images. For an IPD of 74, 1 mm is only 1
pixel. Nonetheless, our method achieves high accuracy under
low-resolution conditions (Figure 8d).

FIGURE 8. Iris regression results on (a) synthetic eye images, (b) NIR eye
images, (c) high resolution RGB images (1920x1080) at 1-m distance, and (d)
normal RGB images (640x480) at 1-m distance.

2) Face Video DB Evaluation for the Entire Pupil-Tracking
Process

We tested the iris regression method on two videos taken
while subjects were driving a vehicle. The results are shown
in Table 3 and Figure 9a. The mean error is relatively larger
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TABLE 3. Performance of the pupil-tracking s on two videos while driving on
bare faces with proposed iris regression algorithm.

DB Method Good Rate Mean Error Median Error
(< 3 mm) (mm) (mm)

DB #1 11-landmark SDM [9] 79% 2.19 2.21
Proposed method 87% 1.70 1.40
(iris regression)

DB #2 11-landmark SDM [9] 75% 2.17 2.13
Proposed method 87% 1.50 1.48
(iris regression)

FIGURE 9. Pupil-tracking results on bare faces videos (640x480 webcam)
using the complete tracking system in a vehicle (a) and in a room (b). The
green dots indicate the initial SDM eye alignment results and the red dots (and
green circle) show refined pupil position results via iris regression.

than on the normal resolution RGB eye images. This is
because the image styles differ greatly from the training set.
These results could be improved by re-training the model
on this image style. However, as Figure 9a shows, the pupil
center is still located within the iris area considering the iris
radius is approximately 3 mm (our method is 1.5 mm).
This could meet the requirements of assistive driving. Fur-
thermore, aided by the coarse-to-fine strategy, the proposed
iris regression method can obtain higher accuracy than only
using the 11-landmark SDM, as shown in Table 3. We also
tested a video taken in a room and compared the proposed iris
regression method with the 11 landmark points SDM (Figure
9b). In this case, the person moves his head to various poses.

TABLE 4. ION error comparison regarding the re-weight module on the
WFLW DB.

Method ION Mean Error
Original PFLD [13] 7.61

Proposed method with wstruc 7.52
Proposed method with wappear 7.53

Proposed method with wstruc and wappear 7.43

FIGURE 10. Proposed re-weighted PFLD algorithm results on sunglasses
faces from a public image DB, WFLW.

FIGURE 11. Proposed re-weighted PFLD algorithm results on sunglasses
faces that were collected for this study.

The proposed iris regression method can regress the pupil
center and iris circle accurately, while the 11-landmark SDM
obtains the pupil center departing from the real one to a large
extent. In the experiment, we also tested the tracker-checker.
We can observe that our tracker recovers easily from tracking
failure, e.g., frames 1342 and 1345 in Figure 9b.
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B. EXPERIMENTAL RESULTS ON SUNGLASSES
FACESS
We also tested our method on sunglasses faces. Here, we
infer the pupil centers with a revised PFLD method with the
re-weight algorithm. First, we compare our method with the
original PFLD to demonstrate the validity of the proposed
re-weight sub-network, then the experimental results on the
sunglasses faces image and video DBs are presented.

1) Validity of the Re-Weighted Network
We made an ablation experiment to test the validity of
the proposed re-weighted network by testing a public DB,
namely, WFLW. To improve the training efficiency, we first
train the original PFLD for 300 epochs and then use it as
a pre-trained model to train the re-weighted network for
another 48 epochs. We tested the effect of using different
re-weight strategies. These results are summarized in Table
4. We can see that using both wstruc and wappear obtains the
smallest Inter-Ocular Normalization (ION) mean error for the
98 points. With the re-weight module, our method assigns
more discriminative and more confident areas larger weights
and obtains better result. Using only either wstruc or wappear
also obtains better result than the original PFLD [13]. The
weight wstruc defines the feature map weight according to
the landmark prediction error. The occluded landmarks tend
to have large prediction errors and are consequently given
smaller weights according to the structural relationships
between landmarks. Non-occluded landmarks tend to have
accurate predictions, therefore, they are given larger weights.
In this way, we can infer the occluded landmarks with non-
occluded ones. The weight performs similar to an attention
model. It finds the most discriminative areas in the feature
map during the training process, which is useful to improve
accuracy. By combining wstruc and wappear, the proposed
re-weight module takes advantage of both of them and can
further improve the detection accuracy. Figure 10 shows
some results of our method of handling sunglasses faces from
the WFLW DB.

2) Results on the sunglasses faces image and video DBs
We also made experiments on image and video DBs that
were collected by us to demonstrate the validity of the pro-
posed network when handling sunglasses faces under various
circumstances. Among our collected RGB face image DB,
27,000 images were utilized for training with 10,000 WFLW
DB images. The remaining 5,000 images were used as the
testing set (Figure 11). When using the original PFLD 0.25X
algorithm trained on the WFLW DB, the mean pupil center
error on the evaluation dataset was 10 mm. The proposed
re-weighted method with training on both the WFLW DB
and our own image DB achieves a mean pupil center error
of 6.5 mm. When considering the 12-mm 3D HUD margin,
our proposed method is determined suitable for commercial
driving applications.

Our proposed method was also validated on a video DB
taken with a live webcam while wearing sunglasses, as shown

FIGURE 12. Eye-tracking results on sunglasses faces videos (640x480 stereo
webcam). The left column indicates the left camera views and the right column
shows the right camera views from the stereo webcam. The algorithm
calculates the 3D pupil coordinates from these two pupil points from the stereo
camera.

in Figure 12. The mean error is approximately 10 mm for a
640x480 stereo webcam. The eye positions from the stereo
camera were utilized for calculating the 3D eye coordinates
via stereo matching. The speed was less than 8 ms on a
Windows PC with a 2.9 GHz CPU. We also implemented
the algorithm on a Samsung Exynos-auto KITT with a 2.0
GHz CPU. As mentioned before, our algorithm only utilized
CPU. The performance on this computational environment
was the same 10-mm precision error with a speed of 10 ms
for a 640x480 stereo webcam. When considering the 12-mm
3D HUD margin, our achieved accuracy and speed are quite
suitable for commercial applications.

V. DISCUSSION
The proposed method demonstrated high accuracy and fast
speed regarding eye center position tracking when users were
with bare faces or wore sunglasses under various environ-
ments. Note that our system does not save images but extract
eye center coordinates from RGB cameras. In this way, the
proposed eye tracking method prevents privacy leakage. The
algorithm was evaluated on various image and video datasets,
including public datasets and our own captured datasets.
The indoor environment datasets target personal computer
monitors and tablets at home, as well as actual driving
conditions targeting AR 3D HUDs in vehicles. With a coarse-
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FIGURE 13. (a) A 3D content example with 3D crosstalk, and (b) the glow
effects added in the 3D content which decrease 3D crosstalk feeling.

to-fine strategy on bare faces, the proposed iris regression
algorithm refined its precision to a 1-mm mean error from
the 3-mm mean error of the initial SDM-based eye posi-
tion alignment. When the performances of our eye tracking
method for bare faces (1.5 mm mean error) and sunglasses
faces (6.5 mm mean error) are compared, the eye-tracker
aligner mean error precision for sunglasses faces decreased
from 1.5 to 6.5 mm. When the 3D margin (12 mm) of our
AR 3D HUD prototype was considered, the results generated
for both bare and sunglasses faces were still determined
to be reasonable for commercial applications. Additionally,
in our AR 3D HUD prototype, different graphic contents
were applied depending on whether the user was wearing
sunglasses or not. Because the sunglasses eye-tracking mode
has lower precision according to the smaller 3D margin than
the bare faces eye-tracking mode, head movements by the
user can cause 3D crosstalk (Figure 13a). To handle this
dynamic 3D crosstalk, glow effects were applied to the 3D
contents for the sunglasses eye-tracking mode, which lower
the 3D crosstalk effect, as shown in Figure 13b. Table 5
gives a detailed specification of our AR 3D HUD prototype
and the related 3D crosstalk experiments. When compared
to bare faces, pupil tracking for sunglasses faces showed
similar 3D crosstalk user experiences, i.e., almost no 3D
crosstalk feeling, when head movement speed is less than
250 mm/s. However, when head movements are greater than
or equal to 250 mm/s, users wearing sunglasses felt 3D
crosstalk when seeing the 3D content (Figure 13a). When
the glow effects were added to the 3D contents (Figure 13b
and Contents 2 in Table 5), users wearing sunglasses did
not feel the 3D crosstalk experience. These results highlight
the possibilities for AR 3D HUD commercialization, with
providing low crosstalk 3D image experience even when the
head movements of the users are greater than 250 mm/s.

A. COMPARISON WITH EXISTING APPROACHES
Compared to previously published works, the main devel-
opment of our method is user-condition aware, whereby
different eye trackers were applied according to user con-
ditions, such as bare faces and sunglasses faces. The pro-
posed method can be extended to various face occlusion

cases, such as wearing masks and hats if such cases are
properly trained. Additionally, to prevent erroneous tracking,
a novel tracker-checker idea was proposed. Different tracker-
checkers were utilized under different user conditions. For
bare faces, SVM is utilized as tracker-checker, which acts
on extracted SIFT features around predicted landmarks [9].
For sunglasses faces, we defined a new cross entropy loss
of 98 whole face landmark points for the predicted tracking
confidence. Experimental results demonstrated the validity of
the proposed tracker-checkers for bare and sunglasses faces,
which were faster than 1 ms per frame. With the proposed
tracker-checker methods, the eye tracking system runs in
real-time faster than 100 fps (10 ms) without performing face
detection on every frame.

Many studies attempted automatic facial landmark point
localization and tracking with state-of-the-art deep learning
techniques and achieved high accuracy. Even though state-of-
the-art deep neural network-based methods achieved signifi-
cant improvements recently, they suffer from increased com-
putational resource consumption, including Graphics Pro-
cessing Unit (GPU) and lower speed, especially in limited
resource systems, such as mobile devices and automobile
systems. This study is also based on facial landmark point
alignment techniques, but with explicit priority on pupil cen-
ter position accuracy. Previous methods achieved practical
pupil center position localization and tracking, whereby our
proposed methods are based on both classical and recent
deep learning-based methods. The proposed methods are
switchable depending on user conditions: classical SDM for
bare faces and deep learning-based PFLD for sunglass faces.
Both methods utilize only CPU computations, whereby the
bare and sunglasses faces modes require 10% and 20% CPU
usage, respectively. The performance comparison between
our proposed algorithm and state-of-the-art deep learning
techniques, specifically ESR [17], CFSS [39], DVLN [40]
and LAB [31], are listed in Table 6. For comparison pur-
poses, the original results in the papers were used. Our user-
conditional eye tracking algorithm achieved higher speed for
both bare and sunglasses faces with only CPU computations.
While LAB [31] showed higher precision than our method,
it requires 2.6 s with CPU or 60 ms with GPU for its
accurate landmark alignment algorithm. When considering
the increasing GPU computations of AR algorithms, our
proposed CPU method is important and highly beneficial
for AR 3D HUD systems even with the enhanced system
hardware resources in the future.

Figure 14 displays additional results obtained with a public
database, 300-W [37]. The faces include bare faces and
sunglasses faces under different poses, lighting conditions,
and expressions.

VI. CONCLUSION
In this paper, we propose a new pupil center tracking sys-
tem that handles both bare faces and sunglasses faces. For
bare faces, we propose a SDM-based iris regression method
and utilize a coarse-to-fine strategy. The iris center and iris
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TABLE 5. AR 3D HUD prototype specification and the 3D crosstalk experiments with the proposed eye-tracking algorithms on bare and sunglasses faces.

Bare Face Eye-tracker (eye-nose) Sunglasses Face Eye-tracker (whole face)
Tracked Shape Points 11 Eye Nose Points 98 Whole Face Points
Pupil Precision (mm) 1.5 6.5

Distance between camera and users (cm) 80 to 120 80 to 120
Speed (ms) 4 10
HUD HW AR 3D HUD prototype

System Samsung Exynos-auto (2.0 GHz CPU)
Camera S640x480 @100 fps Stereo-camera

Contents 1 3D Arrow Contents (no Glow Effects)
when head movements < 250 mm/s 3D crosstalk (x) 3D crosstalk (x)
when head movements ≥ 250 mm/s 3D crosstalk (x) 3D crosstalk (o)

Contents 2 3D Arrow Contents with Glow Effects
user head movements < 250 mm/s 3D crosstalk (x) 3D crosstalk (x)
user head movements ≥ 250 mm/s 3D crosstalk (x) 3D crosstalk (x)

TABLE 6. Performance comparison between previous studies and the proposed algorithm on the WFLW test set (98 landmarks). For the proposed method for bare
faces, we used 11 landmarks for evaluation.

Method Precision (ION Mean Error) Speed (per frame)
ESR [17] 11.13 15 ms (CPU)

CFSS [39] 9.07 40 ms (CPU)
DVLN [40] 10.84 15 ms (CPU)
LAB [31] 5.27 2.6 s (CPU)

5.27 60 ms (GPU)
Proposed method (sunglasses faces) 7.43 10 ms (CPU)

Proposed method (bare faces) 1.71 4 ms (CPU)

FIGURE 14. Qualitative results on several challenging faces on a public DB, 300-W, obtained with our proposed user-conditional eye-tracker. The red dots indicate
the eye centers and the green dots indicate other shape points. The top row shows the bare faces results and the bottom row shows the sunglasses face results.

circle are regressed at the same time with our method. For
sunglasses faces, we added a re-weight module to the original
PFLD network and can identify the pixel importance on the
feature map effectively. This is useful for dealing with sun-
glasses occlusion. A new cross entropy loss-based tracker-
checker is also provided, which is robust and fast. Besides
these contributions, we also construct an eye tracking system
with face detection, face type classification, facial landmark
detection, and tracker-checker modules. Our system is fast,
accurate, robust, and has a small model size, which are all
requirements for AR 3D HUD commercialization.

Despite its many advantages, our study has a few limita-
tions. While our proposed method can handle cases where the
pupil’s shape is obstructed, such as when the user is wearing
sunglasses, our method requires two different eye-tracking

models, which exhibit different performances. Specifically,
the sunglasses face eye-tracker has decreased eye center
tracking precision and speed when compared to the bare faces
eye-tracker. The sunglasses faces eye-tracker speed could
be increased by using the deep neural network compression
method or by pruning and quantization [41], [42], among
other methods. Additionally, wearing sunglasses yielded lim-
ited precision in eye alignments because pupil locations were
estimated with other shapes owing to the invisibility of the
pupils. In our study, different types of sunglasses such as po-
larized lenses and anti-reflective lenses were included in the
training and testing database. However, the algorithm was not
examined on various types of sunglasses. Further study on
the eye tracking approaches for various sunglasses is needed.
To increase the instances at which the sunglasses faces eye-

VOLUME X, 2021 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110644, IEEE Access

D. Kang et al.: Real-Time Eye Tracking for Bare and Sunglasses-wearing Faces for Augmented Reality 3D Head-Up Displays

tracker can be used with satisfactory results, personalized
pupil tracking technologies will be studied in future work.
Also, privacy-preserving crowdsensing in vehicular networks
scheme [43]– [46] can be combined with our algorithm
in eye tracker model training update way, by aggregating
various challenging cases in real driving. By outsourcing
various challenging cases from each driver through a privacy-
preserving network, the bare and sunglasses face eye tracker
can handle various challenging cases by retraining the mod-
els with the additional image datasets in the platform layers.
Finally, a deep study on parameter optimization in deep
learning-based methods may provide a more robust study for
eye tracking.

REFERENCES
[1] Cho, Y.H. and Nam, D.K., “Content visualizing device and method,” U.S.

Patent 10573063B2, Feb. 25, 2019.
[2] GMartinez, L.A.V. and Orozoco, L.F.E., “Head-up display system us-

ing auto-stereoscopy 3d transparent electronic display,” U.S. Patent
20160073098, March. 10, 2016.

[3] Nam, D., Lee, J., Cho, Y.H., Jeong, Y.J., Hwang, H. and Park, D.S.,
“Flat Panel Light-Field 3-D Display: Concept, Design, Rendering, and
Calibration,” Proc. IEEE, vol. 105, no. 5, pp. 876–891, Apr. 2017.

[4] Lee, S., Park, J., Heo, J., Kang, B., Kang, D., Hwang, H., Lee, J., Choi,
Y., Choi, K. and Nam D., “Autostereoscopic 3D display using directional
subpixel rendering,” Opt. Express, vol. 26, no. 16, pp. 20233–20233, Aug.
2018.

[5] Dodgson, N. A., “Autostereoscopic 3D displays,” Computer, vol. 38, no.
8, pp. 31–36, Aug. 2005.

[6] Meng Liu, Youfu Li, and Hai Liu, “3D Gaze Estimation for Head-Mounted
Eye Tracking System With Auto-Calibration Method,” IEEE Access, vol.
8, pp. 104207-104215, Jun. 2020.

[7] Andronicus A. Akinyelu and Pieter Blignaut, “Convolutional Neural
Network-Based Methods for Eye Gaze Estimation: A Survey,” IEEE
Access, vol. 8, pp. 142581-142605, Jul. 2020.

[8] Wenyu Li et al., “Training a camera to perform long-distance eye tracking
by another eye-tracker,” IEEE Access, vol. 7, pp. 155313-155324., Oct.
2019.

[9] Kang, D. and Heo, J., “Content-Aware Eye Tracking for Autostereoscopic
3D Display,” Sensors, vol. 20, no. 17, pp. 4787, Aug. 2020.

[10] Kang, D., Heo, J. et al., “Pupil detection and tracking for AR 3D under
various circumstances,” in Electron. Imaging, San Francisco, CA, USA,
2019, pp. 55-1-55-5.

[11] Xuehan X. and De la Torre, F., “Supervised descent method and its
applications to face alignment,” in IEEE Conference on Computer Vision
and Pattern Recognition, Portland, OR, USA, 2013, pp. 532–539.

[12] Lowe, D.G., “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91-110, Aug. 2004.

[13] Guo, X., Li, S., Yu, J., Zhang, J., Ma, J., Ma, L., Liu, W. and
Ling, H, “PFLD: A practical facial landmark detector,” arXiv preprint
arXiv:1902.10859, Feb. 2019.

[14] Cortes C. and Vapnik, V., “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[15] Cootes, T.F., Taylor, D., Cooper, D. and Graham, J., “Active shape models-
their training and application,” Comput. Vis. Image Underst., vol. 61, no.
1, pp. 38–59, Jan. 1995.

[16] Cootes, T., Edwards, G. and Taylor, C., “ Active appearance models,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 681–685, Jun. 2001.

[17] Cao, X., Wei, Y., Wen, F. and Sun, J., “ Face Alignment by Explicit Shape
Regression,” International Journal of Computer Vision, vol. 107, no. 2, pp.
177–190, Dec. 2014.

[18] Gou, C., Wu, Y., Wang, K., Wang F.Y. and Ji, Q., “Learning-by-Synthesis
for Accurate Eye Detection,” in 2016 23rd International Conference on
Pattern Recognition (ICPR), Cancun, 2016, pp. 3362-3367.

[19] CZhang, K. et al., “Joint face detection and alignment using multitask
cascaded convolutional networks,” IEEE Signal Process. Lett., vol. 23, no.
10, pp. 1499–1503, Oct. 2016.

[20] Goodfellow, I., Pouget-Abadie, J., Mirza, M.; Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A. and Bengio, Y., “Generative adversarial nets,” in

Advances in Neural Information Processing Systems, Montreal, Canada,
2014, pp. 2672-2680.

[21] Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W. and Webb, R.,
“Learning from simulated and unsupervised images through adversarial
training,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, Honolulu, HI, USA, 2017, pp. 2107-2116.

[22] Dong, X., Yan, Y., Ouyang, W. and Yang, Y., “Style aggregated network
for facial landmark detection,” in IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 379–388.

[23] Qian, S., Sun, K., Wu, W., Qian, C. and Jia, J., “Aggregation via separation:
Boosting facial landmark detector with semi-supervised style translation,”
in IEEE International Conference on Computer Vision, Seoul, South
Korea, 2019, pp. 10153–10163.

[24] Feng, Z.H., Kittler, J., Awais, M., Huber, P. and Wu, X.-J., “Wing loss for
robust facial landmark localisation with convolutional neural networks,” in
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 2018, pp. 2235–2245.

[25] Wang, X., Bo, L. and Fuxin, L., “Adaptive wing loss for robust face
alignment via heatmap regression,” in IEEE International Conference on
Computer Vision, Seoul, South Korea, 2019, pp. 6971–6981.

[26] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W. and
Weyand, T., “Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861., 2017.

[27] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C., “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conference
on Computer Vision and Pattern Recognition, SSalt Lake City, UT, USA,
2018, pp. 4510-4520.

[28] Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos, E. and Zafeiriou,
S., “Mnemonic descent method: A recurrent process applied for end-to-
end face alignment,” in IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 2016, pp. 4177-4187.

[29] Sun, Y., Wang, X. and Tang, X., “Deep convolutional network cascade
for facial point detection,” in IEEE Conference on Computer Vision and
Pattern Recognition, Portland, OR, USA, 2013, pp. 3476-3483.

[30] Lv, J., Shao, X., Xing, J., Cheng, C. and Zhou, X., “A deep regression
architecture with two-stage re-initialization for high performance facial
landmark detection,” in IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 2017, pp. 3317-3326.

[31] Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y. and Zhou, Q., “Look at
boundary: A boundary-aware face alignment algorithm,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 2018, pp. 2129-2138.

[32] Burgos-Artizzu, X.P., Perona, P. and Dollár, P., “Robust face landmark
estimation under occlusion,” in IEEE Conference on Computer Vision and
Pattern Recognition, Portland, OR, USA, 2013, pp. 1513-1520.

[33] Kumar, A., Marks, T.K., Mou, W., Wang, Y., Jones, M., Cherian, A.,
Koike-Akino, T., Liu, X. and Feng, C. LUVLi, “Face Alignment: Estimat-
ing Landmarks’ Location, Uncertainty, and Visibility Likelihood,” in IEEE
Conference on Computer Vision and Pattern Recognition, San Francisco,
CA, USA, 2010, pp. 8236-8246.

[34] Viola, P.; Jones, M.J. ”Robust real-time face detection,” Int. J. Comput.
Vis, vol. 57, no. 2, pp. 137-154, May 2004.

[35] Viola, P.; Jones, M.J. ”Rapid object detection using a boosted cascade of
simple features,” in IEEE Conference on Computer Vision and Pattern
Recognition, Kauai, HI, USA, 2001, pp. I-511-I-518.

[36] Zhang, L., Chu, R., Xiang, S., Liao, S., and Li, S. Z ”Face detection
based on multi-block lbp representation,” in International conference on
biometrics, Seoul, Korea, 2007, pp. 11-18.

[37] Sagonas, C., Tzimiropoulos, G., Zafeiriou, S. and Pantic, M., “300 faces
in-the-wild challenge: The first facial landmark localization challenge,” in
IEEE Conference on Computer Vision and Pattern Recognition, Portland,
OR, USA, 2013, pp. 397-403.

[38] Kostinger, M., Wohlhart, P., Roth, P. M. and Bischof, H., “Annotated
facial landmarks in the wild: A large-scale, real-world database for facial
landmark localization,” in IEEE international conference on computer
vision workshops, Barcelona, Spain, 2011, pp. 2144-2151.

[39] Zhu, S., Li, C., Loy, C.C. and Tang, X., “Face alignment by coarse-to-fine
shape searching,” in IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 2015, pp. 4998–5006.

[40] Wu W. and Yang, S., “Leveraging intra and inter-dataset variations for
robust face alignment,” in IEEE Conference on Computer Vision and
Pattern Recognition Workshop, Honolulu, HI, USA, 2017, pp. 150–159.

14 VOLUME X, 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110644, IEEE Access

D. Kang et al.: Real-Time Eye Tracking for Bare and Sunglasses-wearing Faces for Augmented Reality 3D Head-Up Displays

[41] Han, S., Pool, J., Tran, J. and Dally, W., “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems, Montreal, Canada, 2015, pp. 1135–1143.

[42] Han, S., Mao, H. and Dally, W.J., “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149., 2015.

[43] Y. Liu, H. Wang, M. Peng, J. Guan and Y. Wang, “An Incentive Mechanism
for Privacy-Preserving Crowdsensing via Deep Reinforcement Learning,”
IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8616-8631, 15 May,
2021.

[44] Y. Liu, T. Feng, M. Peng, J. Guan and Y. Wang, “DREAM: Online
Control Mechanisms for Data Aggregation Error Minimization in Privacy-
Preserving Crowdsensing,” IEEE Transactions on Dependable and Secure
Computing, 2020, doi: 10.1109/TDSC.2020.3011679.

[45] W. Quan, N. Cheng, M. Qin, H. Zhang, H. A. Chan and X. Shen, “Adaptive
Transmission Control for Software Defined Vehicular Networks,” IEEE
Wireless Communications Letters, vol. 8, no. 3, pp. 653-656, June 2019.

[46] W. Quan, Y. Liu, H. Zhang and S. Yu, “Enhancing Crowd Collaborations
for Software Defined Vehicular Networks," in IEEE Communications
Magazine,” IEEE Communications Magazine, vol. 55, no. 8, pp. 80-86,
Aug. 2017.

VOLUME X, 2021 15


