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Abstract: The exponentially increasing occurrence of soft errors makes the optimization of reliability,
performance, hardware area, and power consumption one of the main concerns in modern embedded
processors. Since the design cost of hardware techniques aimed at improving the reliability of
microprocessors is quite expensive for resource-constrained embedded systems, software-level fault
tolerance mechanisms have been proposed as an attractive solution for soft error threats. However,
many software-level redundancy-based schemes are accompanied by considerable performance
overhead, which is not acceptable for many embedded applications. In this work, we have introduced
an ultra-low-cost soft error protection scheme for embedded applications, which works based on
source-code analysis and identifying critical variables. After identification, these vital variables are
adequately protected by placing runtime checks at critical points of execution. Our experimental
results based on several applications demonstrate that the proposed scheme can mitigate the failure
rate by 47% with negligible performance degradation.

Keywords: soft error; transient fault; fault tolerance; critical variable; embedded systems; protection
technique

1. Introduction

One of the primary sources of unreliability in modern processors is transient faults or
soft errors. Soft errors can be caused by external sources, such as neutrons, alpha particles,
and even cosmic rays, or internal events, such as power voltage noise Soft errors, can modify
the state of a transistor or a memory element in the microprocessor. Although several
masking effects at various levels have been introduced, ranging from the circuit level [1]
to the software level [2] in contemporary microprocessors, it has been projected that the
number of transient faults that can bypass the masking walls and change the final program
output will increase by 30× as technology scales down from 45 to 16 nm technology [3,4].

In order to mitigate the problem of soft errors, researchers have proposed fault-tolerant
mechanisms operating at several levels, including circuit level [5,6], microarchitectural
level [2], and software level [7–14]. Among them, software-only approaches are attractive
due to the ability to provide reliability without any hardware modifications [15] and
the flexibility in application, i.e., high reliability only when required, such as in safety-
critical systems.

Existing software-level soft error protection schemes can be classified into three broad
categories: (a) redundancy based, (b) control flow checking, and (c) vulnerability reduction
schemes. First off, the main idea behind the redundancy-based mechanisms [3,7–9,16–18]
is to compute the program (or a part thereof) redundantly and then check for differences in
the results. It has been shown that such a redundancy-based scheme can provide a high
level of fault detection but, usually, there is significant performance overhead. For instance,
the performance overhead of the state-of-the-art software-only full instruction duplication-
based scheme is more than 200% [18].

In control flow checking mechanisms [10], predefined values (signatures) are written
in a register at various points in the program. The register value is also checked at several
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points in the program to ensure that the execution flow is correct; else, an error is de-
clared. Control flow checking approaches have moderate (around 20%–60%) performance
overhead, but their fault coverage is very restricted and sometimes fails to protect [19].
The execution time of vulnerability reduction schemes changes the way a program executes
on the processor so that it can exploit some inherent error masking effects. For example,
in [12], the authors noted that the probability of fault masking in load and store instruc-
tions is higher than for other instructions. They labeled these instructions as critical and
proposed to protect the processor using an instruction scheduling technique to prioritize
the execution of critical instructions [12,13]. The current vulnerability reduction-based
schemes are not selective in reducing the soft error exposure time of instructions and do
not consider the criticality of the data. Therefore, they may reduce the soft error exposure
time for non-critical data and increase the soft error vulnerability of the critical data.

In this work, we find the critical variable using a gemV framework [20], which is
the vulnerability estimation toolset for microarchitectural components based on a cycle-
accurate gem5 simulator [21]. Since gemV returns the reliability for microarchitectural
components such as register file and memory, we have modified gemV to achieve the
criticality of source-level variables. We then analyzed the condition of vulnerable variables,
which are rarely updated but frequently read. For example, the variables that maintain the
size of dimensions in an image processing application can be considered soft error critical.
The reason is that if a soft error alters the value of such a variable, it will probably change
the program output significantly.

We have exploited three protection schemes in order to protect such critical variables
without hardware modifications. Firstly, the most obvious way to protect such variables is
by using assertions at the high-level source code. However, one of the critical observations
of this work is that many high-level source code assertions fail to detect soft errors, affecting
processor registers which are holding critical variables. Since the memory subsystem, in-
cluding the caches, is effectively protected by error correction codes (ECC) in many modern
microprocessors, high-level assertions are not that effective. Secondly, we have used the
“volatile” keyword for critical variable protection. If a variable is defined with the volatile
keyword, the variable is excluded from the compiler optimization. Thus, the variable loads
the value from the ECC-protected memory when needed for the processor execution.

We also introduce a novel software-only technique that inserts useful assertions at the
assembly-level code. Notably, we find out which architectural registers hold the critical
values at each point of time and add our low-level assertions right before the value of
such registers become overwritten by other values or at the end of usage. Statistical fault
injection experiments show that source-level assertions, volatile keywords, and assembly-
level assertions can reduce the failure rate by 6%, 24%, and 47%, respectively, by just
sacrificing less than 2% performance overhead.

The rest of this paper is structured as follows. In Section 2, we introduce related
research regarding soft error protection techniques for embedded systems from the per-
spective of both hardware and software. Our solution, to choose the critical variable and
apply protection schemes, is described in Section 3, and experimental setup and observa-
tions are summarized in Section 4. Finally, Section 5 concludes this paper and outlines the
direction of future research.

2. Background and Motivation

With the advance of technology, embedded applications are becoming part of safety-
critical and mission-critical applications. For instance, image processing has been used for
obstacle detection and avoidance in autonomous vehicles. If an image processing algorithm
produces the wrong results, it may cause a catastrophe such as a car accident. Soft errors
or transient faults are one of the main reasons that can cause hardware malfunctions
and ultimately jeopardize the functional safety of an application. Background radiation
such as high-energy neutrons and protons are considered as the primary source of soft
errors. Historically, soft errors were considered as a reliability challenge for high-altitude
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applications such as spacecraft and airplanes [22]. However, due to driving transistors
being scaled down and near-threshold computing, soft errors threaten the reliability of
even ground-level applications. The latest FinFET technology reduces the soft error rate to
7-nm scaling, but the continuous scaling to the 5-nm increases the per-bit soft error rate
due to the critical charge [23]. Further, ITRS lists the soft error challenge as one of the most
challenging reliability problems for ground-level applications in the near future [24].

Several schemes have been proposed to protect embedded architecture against soft er-
rors, but they suffer from considerable overheads in terms of performance, area, and power
consumption. The modular redundancy technique is one of the most straightforward
techniques to protect systems against soft errors. The additional module performs precisely
the same operations as the original module, and validation logic compares results from
original and duplicated modules. If they are identical, there are no soft errors. If not, it can
detect soft errors. If there is one more additional module, we can not only detect but also
correct soft errors using the majority voting mechanism [25].

However, modular redundancy schemes need to modify hardware architecture, such
as additional modules and validation logic, so it is inappropriate for resource-constrained
embedded systems. Software-level redundancy schemes have been presented for soft error
protection without hardware modification [26]. For instance, instructions are duplicated,
and soft errors can be detected through additional “COMPARE” instructions before being
used. Instruction duplication schemes can handle soft errors without expensive hardware
area overheads but still suffer from the increasing number of instructions. Thus, they
can cause massive overhead in terms of hardware area and performance even if all other
variables are protected.

Fortunately, even if soft errors occur in microarchitectural components, they may not
affect the final program output in many cases due to several masking effects [1,2] and
OS-level soft error detection schemes [27]. For instance, a soft error can be masked if it
is overwritten before being used. If a soft error incurs system halt, such as segmentation
fault and page table fault, it can be detected by the operating system and an additional
watchdog processor [28]. When a soft error causes an infinite loop, it can also be detected
by cheap hardware protection.

However, it cannot be detected if a soft error results in incorrect output without
OS-level error detection. We have analyzed the wrong outputs and realized that this is
the issue in most cases, and the error alerts to specific values of a program, which we
called critical values. Critical variables are the variables that are rarely overwritten but are
frequently read. Therefore, by protecting critical variables in embedded applications, most
of the undetectable failures can be covered without severe overheads.

Several types of research such as GVR [29], Rolex [30], RedThreads [31] proposed
the high-level APIs to protect the most critical parts of applications such as variables or
functions. However, they do not provide the way to find the most vulnerable parts of
programs. They assume that software experts can have a high understanding of programs
in order to define the criticality of variables and functions. However, it is challenging to
define the vulnerabilities of each variable even for expert software engineers due to a large
number of code lines nowadays. In this work, we have focused on the automated process
to define the criticality of applications from both hardware and software perspectives.

3. Our Solution

We have analyzed high-level source code in order to effectively protect embedded
applications without implementing hardware modifications. Our solution is to quanti-
tatively find critical variables, and we effectively protect just the critical variables using
software-based approaches. However, we encountered two main problems: (i) How can
we choose critical variables against soft errors? (ii) How can we protect the chosen critical
variables using software-only schemes?
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3.1. How to Choose Critical Variables

In this paper, we have implemented a framework to analyze the criticality of source-
level variables against soft errors as shown in Figure 1. First off, we use LLVM compiler [32]
to create an executable from the high-level source code. We also modified the LLVM
compiler to link the program-defined variables and physical registers. Then, we ran the
executable from the LLVM compiler on the gemV simulator to achieve the vulnerability of
physical registers. Lastly, our critical variable finder lists the vulnerability of all program-
defined variables.

Figure 1. Overview of the high-level variable vulnerability estimation framework.

Initially, gemV can return the vulnerability of microarchitectural components against
soft errors. Assume that a soft error flips the particular bit b in a microarchitectural
component at the specific time t. When soft errors into (b, t) incur system failures, it is
defined as vulnerable. If not (i.e., it returns the correct output without system malfunction),
it is defined as non-vulnerable. The vulnerability is the sum of these vulnerable periods
of microarchitectural components. Thus, the estimation can only show the hardware-
level vulnerability, such as physical registers, and not software-level vulnerability, such as
program-defined variables.

In order to link hardware-level registers and software-level variables, we have modi-
fied the LLVM compiler. We have assumed that all the source-level variables are stored
in memory when they are defined. Moreover, the memory value is loaded when the
variable is needed for computation in an application. Assume that we need to estimate the
vulnerability of variable “A” in the function F1 against soft errors. First, the variable A is
defined in function F1, and it is used for arithmetic computation. Then, the variable A is
called by function F2, and it is used for the loop in function F1.

When variable A is defined in a high-level source code, register 1 (R1) is stored in
memory address 0x0000. When used for the arithmetic computation, register 1 is vulnerable
since it is read by ADD instruction in assembly-level analysis. The variable A is exposed
based on high-level code analysis since the ADD instruction read the variable A. After the
function F2 is called, the value in memory address 0x0000 (variable A) is loaded to R4.
Since the number of registers is limited, R1 can be used in the function F2. Moreover, it
means that R1 does not hold the variable A anymore after the function call. Since R4 is
used for the loop in the function F1, R4 and variable are vulnerable.

Since the traditional definition of vulnerability is based on hardware-level components,
gemV returns the vulnerability for register files such as R1 and R4. However, we have
modified gemV in order to trace which register holds the specific variable at the particular
time. Thus, we can achieve vulnerability for software-level variables, and we define the
critical variables, which have more considerable vulnerabilities than other variables.

3.2. How to Protect Critical Variables

After identifying critical variables, the next question is how can we efficiently and
effectively protect such variables against soft errors? For example, assume that we need to
protect the variable “x_size” in a benchmark susan, especially from a function susan_corners,
as shown in Figure 2. Figure 2a shows the original source code, which does not have
protection schemes. The first and most common way to protect critical variables in a
program is using high-level assertions. For example, if the value of some critical variables
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should be larger than zero during the execution time, one can add assertions for protecting
such variables. Since the image size cannot be a negative value or zero, we can add an
assertion that checks x_size is larger than zero Figure 2b.

(a) Original high-level source code (b) High-level assertion to protect
the variable x_size

(c) Volatile keyword to protect the
variable x_size

Figure 2. Our high-level protection schemes to protect critical variables.

However, it is hard to insert sufficient and efficient assertions for critical variables.
In the previous example, we have inserted an assertion to check whether x_size is larger
than zero. Assume that the original value of x_size is 50. If it is changed to −50, it can
be detected by the additional assertion. However, it cannot be detected if x_size value is
changed to 150 due to soft errors. This is because the value is still larger than zero, even
though it is corrupted. Further, we need to understand all the details of high-level source
code for effective assertions.

Secondly, we can protect critical variables by defining them with the “volatile” key-
word as shown in Figure 2c. The state-of-the-art compiler for embedded applications
optimizes the high-level source code in order to reduce the energy consumption and
performance overhead [33]. However, interestingly, compiler optimization can worsen
the reliability against soft errors. Since data access to the register file is much faster than
accessing cache or main memory, the compiler optimization tries to decrease the number
of memory operations. We can use ALU instructions by allocating values in the variable in
the register file with the optimization technique. However, it can easily be propagated to
other components if there are soft errors in the frequently accessed registers.

On the other hand, the variables defined with a volatile keyword always access the
memory when the values are required for computation. Since cache and main memory are
protected by error correction code, even in tiny embedded processors, load instructions
can load the correct values from the safe memory. Of course, the volatile keyword can
induce severe performance overhead if programmers apply these techniques for too many
variables. Based on our preliminary experiments, defining all variables with a volatile
keyword can increase the runtime more than twice.

Lastly, we present low-level assertion by using register reservation and critical variable
protection as shown in Figure 3. First off, we have compiled our protection target from
high-level source code to low-level assembly code as described in Figure 3a. However,
we cannot protect high-level variables from low-level assembly code since it has no link
between physical-level register and software-level variables. So then, we have exploited
the critical variable finder to link physical register index and software variables as depicted
in Figure 3b. For instance, the first line “r3 (j)” means that the physical register r3 contains
the variable j.

Then, we have applied low-level assertion from the assembly code by using register
reservation as shown in Figure 3c. Since many embedded applications are not elaborate,
they do not require many registers for execution. Moreover, several compilers, such as GCC
and LLVM, support register reservation by using simple flags, i.e., ffixed. Our preliminary
experiments show that the runtime is almost the same, even though we reserve one register
out of 16 user-level registers.

We can then use these reserved registers to copy the value of critical variables without
any hardware modifications. We have duplicated the value of critical variables by using
data move (“MOV”) instruction and reserved register r4 as depicted in the fourth line of
Figure 3c. Note that the physical register r4 is used only to maintain the critical variable
value in this protection. We have updated the value in the reserved register when the
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value of the critical value is changed. Then, we compare the original value of the data with
that in duplicated registers before the memory is updated (“STORE”). Otherwise, we also
compare the original value and duplicated one when they are used for the control flow
change (“BNE”). If they are not identical, we can detect soft errors.

(a) Original low-level assembly code (b) Pairing between physical regis-
ters and high-level variables

(c) Low-level assertion to protect the
variable x_size based on the register
reservation

Figure 3. Our low-level protection schemes to protect critical variables.

4. Experiments
4.1. Experimental Methodology

We have validated our methodology with three major experimental steps as shown
in Figure 4. The first step is finding critical variables in high-level source codes using
our critical variable finder based on the gemV framework [20]. We modified the gemV
framework to trace architectural behaviors of register files and memory, and we can
determine the vulnerabilities of variables in high-level C codes. Then, the critical variable
finder transports the high-level source code and critical variable lists to the LLVM compiler.

Figure 4. Our experimental setup to prove the efficacy of critical variable protection schemes.

The second step is applying protection schemes to the critical variable found from the
first step. The high-level source code protection such as high-level assertion and volatile
keyword can be easily applied to the high-level source code. We have modified the LLVM
compiler to protect critical variables based on the low-level assertion. Our modified LLVM
compiler reserves the additional register to protect critical variables and copies the value.

The last step is validating the performance and fault coverage of our software-based
approaches, such as in terms of high-level assertion, volatile keywords, and low-level
assertion. First off, we can estimate the performance based on the runtime from gem5
simulator. In this step, we also have performed statistical fault injection campaigns [34] for
original applications and protected applications by high-level assertion, volatile keywords,
and low-level assertion. We have injected 300 faults (i.e., soft errors) in the register file
since errors on the register file can be propagated to other components.

After we have injected faults into microarchitectural components, we classify them as
shown in Figure 5. If a program returns the correct output without any system malfunctions,
it is defined as masked. If an application halts (e.g., segmentation fault, page table fault,
system-defined exceptions, and etc.) due to the soft error, it is defined as system halt. If the
runtime of an application exceeds double that of the original, we define it as infinite loop.
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These two types of system failures can be easily captured by hardware-based protection
schemes such as Watchdog timers [35].

Figure 5. Our experimental setup to prove the efficacy of critical variable protection schemes.

Secondly, soft errors can result in the same output by varying the execution time
slightly. If the deadline of applications is not essential, this type of system failure can be
ignored. Our preliminary experimental results show that most timing failures vary the
runtime within 10% compared to original execution. Further, even though applications
need to meet the deadline, this type of system failure can be handled by Watchdog timers
and scheduling approaches [36].

Lastly, soft errors can produce different program outputs without any symptoms of
failures such as infinite loop and system halts. This type of system failure is called silent
data corruption (SDC) since they are hardly found until programs finish. In the real world,
silent data corruption can result in severe data loss and can require months of debugging
time [37,38].

In order to estimate the fault coverage of fault detection mechanisms, we have only
counted the number of SDCs. First off, we do not have to be concerned about masked
faults since they do not affect the application. Furthermore, since the operating system
can detect system halts and infinite loops, they are also excluded from the failure of error
detection schemes. However, SDCs cannot be detected by OS or other hardware and
software protections, so we need to decrease them using fault-tolerant techniques [39].
Further, we also consider the runtime overhead of our critical variable protection schemes
since the it can increase the exposure to soft errors. Thus, we scale the number of silent
data corruptions by multiplying it with the execution time which is normalized by the
original application for fair comparison [40].

4.2. Experimental Results

What are critical variables? Our first set of experiments is the vulnerability estima-
tion for variables of benchmarks in MiBench suite [41]. For a benchmark susan (corners),
the variable max_no in the function susan_corners is most vulnerable.

From the set of experiments, we have found the condition of critical variables. First off,
the critical variable should be used in the majority of the runtime. For instance, the function
susan_corners takes the runtime of the benchmark susan (corners). Although a variable is
critical in the function, which takes up 1% of the execution time, the maximum vulnerability
is less than 1%.

Secondly, the critical variable should rarely be updated (or never updated). For in-
stance, main function in the susan (corners) passes the the variable max_no to the function
susan_corners. Then, the a value in max_no variable is fixed since it is used as the threshold
in the loop. Even though there are soft errors in the register data, they are overwritten due
to write operations.

Lastly, the critical variable should be frequently read. For instance, the variable max_no
is used as the threshold value in the susan_corners function. Thus, the variable is read at
every loop execution. If processors read the corrupted value in registers, the corrupted
data can be propagated to the other components. Thus, the vulnerability should be large if
there are many read accesses to the variable in the source code.

What is the benefit of protecting critical variables? Figure 6a shows the normalized
runtime and number of SDCs by them of original applications (no protection) for a bench-
mark susan when we protect the most critical variable max_no. The high-level assertion,
volatile keywords, and low-level assertion (register reservation) increase the runtime by
about 2%. However, the reduction in failure rate depends on the protection techniques.
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Using high-level assertion can decrease the SDC failures by only 6% as compared to the
unprotected application. Through register reservation, volatile keywords and low-level
assertion can decrease the SDC failures by 24% and 47%, respectively.

(a) Normalized runtime and number of SDCs to unpro-
tected applications

(b) Failure rate and its distribution with and without
critical variable protection schemes

Figure 6. Our protection method, which picks a critical variable, is effective in terms of performance
and SDC coverage.

Further, our method of critical variable protection is especially effective in mitigating
SDC failures, which the operating system or hardware cannot catch. As we described in
Section 4.1, the type of failures can be classified as silent data corruption (SDC), infinite
loop (InfiLoop), and system halt (Halt). The failure rate from fault injection campaigns
can be easily measured by dividing the number of total failures by the number of total
injections. Figure 6b shows the failure rate and its distribution with and without applying
critical variable protection schemes. Interestingly, the failure rate is similar regardless of
applying protection techniques as shown in Figure 6b. However, the portion of each failure
type varies upon the type of protection techniques as depicted in Figure 6b. For example,
in the original application, SDC failure makes up 18% of total failures. On the other hand,
only 14% and 10% of total failures are SDC failures with volatile keyword and low-level
assertion protection schemes. This is because we chose the protection target from high-level
source code rather than hardware-level components.

In order to show the availability of our critical variable protections, we have performed
the fault injection campaigns with an increasing number of critical variables and various
benchmarks as shown in Figure 7. First off, Figure 7a shows the normalized runtime and
SDCs when we apply the low-level assertions for more critical variables. For example,
if the system permits 15% performance overhead compared to the original application, we
can reduce the 60% of SDCs by protecting five critical variables. Interestingly, the SDC
coverage becomes worse when we protect two critical variables compared to the one
variable protection. This is because two critical variable protection requires more execution
time due to more reserved registers, but SDC coverage is similar to one variable protection.
Since we have used the number of scaled SDC, which multiplies execution time and number
of SDCs as described in Section 4.1, the fault coverage of two critical variable protection is
worse than one critical variable.

Figure 7b shows the normalized runtime and SDC coverage as compared to original
ones when we protect the most critical variable for various benchmarks. Note that e
have chosen just one variable for each benchmark for simplicity, but we can increase the
reliability by selecting more variables. On average, our low-level assertion reduces almost
30% of SDCs with just 1% runtime overhead. However, in the case of a benchmark susan
(corners), the runtime overhead is 4% since the most critical variable is chosen from the loop
threshold, which contributes the majority of the runtime. Thus, the efficacy of our critical
variable protection depends on the characteristics of applications, but it still mitigates
at least 15% of SDCs with the negligible performance overhead for a benchmark susan
(smoothing).
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(a) Normalized runtime and number of SDCs to unpro-
tected applications when we increase the number of
critical variables

Benchmarks Runtime SDC

ADPCM 100.12 58.53
FFT 100.74 74.84
IFFT 102.49 79.99

susan (corners) 104.06 55.09
susan (edges) 100.80 67.20

susan (smoothing) 100.12 85.50
Average 101.39 70.19

(b) Normalized runtime and number of SDCs to un-
protected applications when we apply low-level as-
sertions to various benchmarks

Figure 7. Our critical variable protection can have availability in terms of the number of critical
variables and characteristics of applications.

5. Conclusions

Since soft errors are one of the most critical design concerns at the early design phase
due to aggressive technology scaling and near-threshold computing, several protection
schemes have been proposed to address them. However, soft error protection is not
cheap in terms of performance, hardware area, and power consumption. In order to
protect resource-constrained embedded systems, we proposed software-implemented
schemes by choosing critical variables in the high-level source code. First, we estimated the
criticality of software-level variables quantitatively by exploiting vulnerability estimation
for microarchitectural components. Then, we protected just the critical variables using
volatile keywords, assertion, and register reservation. Our experimental results show that
we can decrease the failure rate by up to 47% with almost negligible overhead (<2%).
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