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ABSTRACT At present, the theory and application of fractional-order neural networks remain in the
exploratory stage. We study the asymptotic stability of fractional-order neural networks with Riemann-
Liouville (R-L) derivatives. For non-delayed and delayed systems, we propose an asymptotic stability
criterion based on the combination of the Lyapunov method and linear matrix inequality (LMI) method.
The highlights include the following: (1) for fractional-order neural networks with time delay, the existence
and uniqueness of solutions are proven by using matrix analysis theory and contraction mapping theorem,
and (2) based on the unique solution, a suitable Lyapunov functional is constructed. Based on the inequality
theorem and LMI method, two sets of asymptotic stability criteria for fractional-order neural networks are
proven, which avoids the difficulty of solving the fractional derivative by the Leibniz law. Finally, the results
are verified using numerical simulations.

INDEX TERMS fractional-order neural networks, time delay, asymptotic stability, Lyapunov, LMI

I. INTRODUCTION

IN recent years, neural networks have been used to solve
many scientific problems in image, speech processing,

combinatorial optimization, pattern recognition and other
fields. As an extension of general neural networks, fractional-
order neural networks have been widely used in intelligent
control, nonlinear equation solving, data analysis, associative
memory and optimization [1]–[3]. In contrast to general
neural networks, fractional-order neural networks have two
advantages. The first is that their infinite memory ability can
describe the system model more accurately. The second is
that the fractional-order system has more degrees of freedom,
which can increase the flexibility of system parameter selec-
tion [4]. Therefore, people devote increasing attention to the
combination of fractional-order calculus theory and neural
networks [5]–[8].

Since the end of the 20th century, the combination of
fractional-order calculus and neural networks has produced
many achievements. Kaslik and Sivasundaram first studied
the multiple dynamic properties of fractional-order Hopfield
neural networks, and then the study of fractional-order chaot-
ic neural networks was also carried out [9]–[12]. Research

on fractional-order chaotic neural networks mainly obtains
network parameters by numerical methods. At the same time,
the limit cycle and bifurcation of fractional-order chaotic
neural networks are also studied, and some valuable results
are obtained [13], [14]. In the early stages of the research on
fractional-order neural networks, only the global stability and
system without time delay were studied, and the criteria and
conclusions obtained exhibited strong limitations, such as
limited application scope of the criteria and overly complex
criteria expression.

With the development of fractional-order system theory,
scholars have carried out an increasing number of studies
on fractional-order neural networks, including global stabil-
ity, exponential stability, asymptotic stability, synchronous
stability, etc. The research system is also expanded from
non-delayed and non-leakage systems to delayed systems
and leakage systems and from linear systems to non-linear
systems.

In the field of industry, scholars have studied the Mittag-
Leffler stability, Lyapunov stability and asymptotic stabil-
ity of fractional-order systems without delay. However, at
present, the stability analysis of fractional-order neural net-
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works still faces many challenges, such as excessive parame-
ters of the stability criterion, strong limitations of the stability
criterion, complex calculations and so on. Therefore, it is
necessary to improve the relevant theories.

Many scholars have also studied the stability of fractional-
order linear or nonlinear systems, including finite time sta-
bility, Mittag-Leffler stability, Lyapunov stability, asymptotic
stability and uniform stability [15]–[18]. For example, in
[19], the Mittag-Leffler stability criterion of the fractional
Hopfield neural network is established. In [20], the glob-
al asymptotic stability of the improved Caputo fractional
derivative recurrent neural network is studied. The robust
stability of fractional-order memristor Hopfield neural net-
works with parameter perturbations is discussed in [21]. [22]
established the LMI stability criterion for fractional-order
nonlinear systems and applied it to the global Mittag-Leffler
stability analysis of fractional-order neural networks. [23]
uses the positive definite quadratic Lyapunov function, and
the global Mittag-Leffler stability condition with impulse
effect is obtained with LMI. Although these studies have
produced some achievements, the research on robust stability
has still not been fully discussed.

In the fractional-order neural network system, the de-
lay will not only reduce the speed of network information
transmission but also destroy the stability of the original
network [24]–[28]. Therefore, the study of time-delay sys-
tems is of great significance in the theoretical research and
practical application of fractional-order neural networks. To
date, some achievements have been made in the study of
the stability of fractional-order neural networks with time
delay. [29] gives the asymptotic stability criteria of time-
varying delay fractional-order neural networks. In [30], the
Gronwall inequality is applied to discuss the finite time
stability of neural networks with fractional delay. In [31], the
global asymptotic stability of memory-based complex neural
networks with fractional delay is studied. In [32], the global
stability of Hopfield neural networks with fractional delay
is studied. [33] studied the stability of nonlinear fractional-
order cellular neural networks with multiple delays.

Based on the above analysis, although there are many
research results on the stability of fractional-order neural
networks [34]–[39], the existing research results still face
many difficulties. For example, the practical application en-
vironment of fractional-order systems is not clear [34], [35],
the suitable field is not wide enough [36], [37], and there are
many constraints on the stability criteria [38], [39]. At the
same time, because the fractional calculus does not meet the
Leibniz law, as a result, the stability criterion of a fractional-
order system cannot be directly applied to the analysis of a
high-dimensional system [38]. To develop a more concise
and effective stability analysis method for fractional-order
neural networks, we need to further study new stability
criteria of fractional-order neural networks.

In this paper, we focus on asymptotic stability analysis
of nonlinear systems with time delay: several new stability
criteria of fractional-order neural networks with delay are

proposed, and the main idea is based on the combination of
the LMI method and Lyaponov functional. Based on the R-
L derivative, we study the asymptotic stability of two kinds
of fractional-order neural networks, including delay systems
and systems without delay. The basic idea is to extend the
general neural network theory to the fractional-order neural
network and further improve the stability analysis method of
the fractional-order neural network.

Compared with the existing methods, first, our method
can be used for robust stability analysis of complex nonlin-
ear systems, including the stability analysis of non-delayed
and delayed systems. Second, we use a more concise LMI
expression for the stability criterion and use the Lyapunov
direct method for theorem construction and proof. The proof
is more concise and clearer, and the conclusion is more
convincing. Finally, the obtained results have a wide range
of applications and fewer restrictions on the criterion.

Our motivation can be described as follows. (1) The LMI is
an effective method for the stability analysis of integer-order
systems and has been successfully extended to fractional-
order systems. In [34], [35], [38], LMI stability criteria for
fractional-order nonlinear systems are established and used
for analyzing the global Mittag-Leffler stability of fractional-
order neural networks [34]. By using a positive definite
quadratic Lyapunov function, the global Mittag-Leffler sta-
bility criterion with impulsive effects is obtained in LMI
form. Fractional-order neural network analysis based on LMI
has the advantages of clear expression, simple calculation
and strong practicability [35]. Therefore, the stability anal-
ysis of fractional-order systems based on LMI has received
increasing attention from experts in this field [38]. (2) The
Lyapunov direct method is a method that can determine the
equilibrium point and judge the stability of the system with-
out solving equations [29], [35]. It can be directly applied to
the stability analysis of fractional-order systems. Therefore,
this paper intends to combine the LMI method with the
Lyapunov direct method, take the fractional-order neural
network defined by the R-L derivative as the main object
to study the stability of two kinds of fractional-order neural
networks, and obtain some simple and practical stability
criteria of fractional-order neural networks for non-delay and
delay systems.

The main contributions of this paper are as follows: (1)
for a fractional-order neural network with delay and non-
delay, the existence and uniqueness of the system solution are
proven by using matrix analysis theory and the contraction
mapping theorem. (2) The Lyapunov correlation method is
extended, the suitable Lyapunov function is constructed, and
the selection range of the applicable function is expanded.
The difficulty of solving the fractional-order partial derivative
is avoided. By combining the Lyapunov functional with the
LMI technique, two sets of stability criteria for fractional-
order neural networks are proposed to avoid the difficulty
of fractional-order partial derivation. (3) The validity of the
criteria are proved by several numerical simulations.

The rest of this article is organized as follows. In Section
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II, the description of two types of fractional-order neural
network models is given first, and the related definitions and
lemmas that need to be used in this paper are given. Section
III proves the existence of the solution of the fractional-order
delay neural network and stability criteria based on the LMI
and Lyapunov functions. In Section IV, some mathematical
examples are given to verify the results, and the conclusion
is given in Section V.

II. RELATED WORKS
A. MODEL
In this paper, two models are considered, described as fol-
lows.

Model 1: The following fractional-order neural network
model is considered:

RL
0 Dα

t x(t) = −Bx(t) +Af(x(t)) + I, t ≥ 0, (1)

where x = [x1, · · · , xn]T ∈ Rn is the state vector, B =
diag{bi}, bi > 0 is a positive definite diagonal matrix, A =
[Aij ]n×n, C = [Cij ]n×n represents the connection weight
matrix, f(x(t)) = [f1(x1), f2(x2), · · · , fn(xn)]T , which is
the activation function, and RL

0 Dα
t is the type of fractional

differential of the representation.
The activation function satisfies the following conditions:

|f(x)| ≤ k|x|, (2)

where k > 0 is a known constant.
Model 2: The following fractional-order neural network

with delay is also considered herein:

RL
0 Dα

t x(t) = −Bx(t)+Af(x(t))+Cf(x(t−τ))+I, t ≥ 0,
(3)

where x = [x1, · · · , xn]T ∈ Rn is the state vector, B =
diag{bi}, bi > 0 is a positive definite diagonal matrix, A =
[Aij ]n×n, C = [Cij ]n×n represents the connection weight
matrix, f(x(t)) = [f1(x1), f2(x2), · · · , fn(xn)]T , fi(0) =
0, which is the activation function, τ > 0 represents the time
lag, and RL

0 Dα
t is the type of fractional differential of the

representation. The activation function satisfies eq.2.
There are two scalars ei and gi satisfying:

ei(η − v)2 ≤ [fi(η)− fi(γ)] · (η − v) ≤ gi(η − v)2. (4)

B. RELATED DEFINITIONS AND LEMMAS
Definition 1 [40]: The type of R-L fractional α-order inte-
grals of function f(x) is defined as:

t0D
−α
t f(t) =

1

Γ(α)

∫ t

t0

(t− s)α−1f(s)ds, t > 0, (5)

where α > 0, Γ(·) is the gamma function, and Γ(α) =∫ +∞
0

tα−1e−tdt.
Definition 2 [40]: Letting 0 ≤ m− 1 ≤ q < m,m ∈ Z+,

the R-L type of the function f(t) is defined as

RL
t0 D−qt f(t) =

1

Γ(q)

∫ t

t0

(t− s)q−1f(s)ds, t > 0. (6)

Definition 3 [40]: The Caputo fractional α-order integrals
of the function are defined as

CDα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1fm(s)ds, (7)

where 0 ≤ m− 1 ≤ α < m.
Lemma 1 [41]: Fractional calculus satisfies the nature of

linear operations:

aD
α
t (uf(t) + vg(t)) = uaD

α
t f(t) + vaD

α
t g(t), (8)

where u, v, α ∈ R and aD
α
t for any fractional differential

and integral under any definition.
Lemma 2 [41]: Letting x(t) : Rn → Rn be a differen-

tiable function vector and t ≥ t0, one has

RL
t0 Dq

t [x
T (t)Px(t)] ≤ 2x(t)PRLt0 Dq

tx(t), q ∈ (0, 1), (9)

where P ∈ Rn×n is a positive symmetrical square matrix.
Lemma 3: ∀x, y ∈ Rn, γ > 0, inequality 2xT y ≤ γxTx+

1
γ y

T y is established.
Lemma 4:∀x, y ∈ Rn, where Qn×n is a positive definite

matrix, inequality 2xT y ≤ xTQx+ yTQ−1y is established.

III. MAIN RESULTS
A. N -DIMENSIONAL FRACTIONAL-ORDER NEURAL
NETWORK
To facilitate the establishment of the main results, we make
the following assumptions.

H1: The neuron activation functions fi(.)(i =
1, 2, · · · , n) are Lipschitz continuous. That is, there ex-
ist positive constants Mi(j = 1, 2, · · · , n) such that
‖f(u)− f(v)‖ ≤M1‖u− v‖.

Theorem 1: If there are two positive definite matrices P
and Q,

Ω = −2PB +Q+ k2PATQ−1AP < 0, (10)

and the system (eq.1) is then asymptotically stable at the
equilibrium point.

Proof: First, the following Lyapunov function is construct-
ed:

V (xt) = 0D
−(1−α)
t (xT (t)Px(t)), (11)

where 0 < α < 1 and P is a positive definite matrix.
Owing to P > 0, V (xt) > 0, according to Definition 2

and Lemma 2, the derivative for V (xt) is

dV (xt)

dt
= RL

0 Dα
t (xT (t)Px(t)) ≤ 2xT (t)P0D

α
t x(t), (12)

and then

dV (xt)

dt
≤ −2xT (t)PBx(t) + 2xT (t)PAf(x(t)). (13)

According to Lemma 4,

2xT (t)PAf(x(t)) ≤xT (t)Qx(t)

+ fT (x(t))ATPQ−1PAf(x(t)).
(14)
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According to Lemma 4 and eq.2,

fT (x(t))f(x(t)) = |f(x(t))|2 ≤ k2|x(t)|2. (15)

Therefore, according to eq.14 and eq.15,

dV (xt)

dt
≤ xT (t)[−2PB +Q+ k2PATQ−1AP ]x(t).

(16)

By Theorem 1, it is known that

dV (xt)

dt
≤ λmax(Ω)|x(t)|2, (17)

where λ represents the maximum eigenvalue of Ω, and

Ω = −2PB +Q+ k2PATQ−1AP < 0. (18)

By using the Lyapunov direct method, the unique equilib-
rium point of the system (eq.1) is asymptotically stable.

Remark 1: In recent years, there have been many methods
to analyze the stability of fractional-order neural networks
[25]–[29]. Different from these methods, combined with
LMI, we construct a Lyapunov functional in the sense of an
R-L derivative and prove theorem 1. This criterion solves
the problem that fractional-order calculus does not satisfy
Leibniz’s derivative rule, and greatly reduces the calculation.

Remark 2: The asymptotic stability studied in this paper
is only related to the internal structure and parameters of the
system itself. External input has no effect on the stability of
the system.

B. N -DIMENSIONAL FRACTIONAL-ORDER NEURAL
NETWORK WITH DELAY
Theorem 2: If there are two positive matrices P,Q and two
constants β, γ, one has[

X11 X12

X12
T X22

]
< 0, (19)

where

X11 =− 2PB + P (
1

β
AAT +

1

γ
CCT )P

+ βk2In +Q+ATWA,

(20)

X12 = ATWAτ , X
T
12 = ATτWA, (21)

X22 = γk2In −Q+ATτWAτ , (22)

W = ATτ V Aτ , V = τX. (23)

Then, the system (eq.3) is asymptotically stable at the
equilibrium point.

Proof: First, prove the existence and uniqueness of the
system (eq.3) equilibrium point.

Let x∗ = (x∗1, x
∗
2, · · · , x∗n)T be the equilibrium point of

the system (eq.3),

−Bx∗ +Af1 (x∗) + Cf2 (x∗) + I = 0, (24)

let

D (x) =


f1(x1)
x1

0
f2(x2)
x2

· · ·
0 fn(xn)

xn

 . (25)

DefineE = diag

(
e1
−
, e2
−
, ..., en

−

)
,G = diag

(
−
g1,
−
g2, ...,

−
gn

)
.

Therefore, for the diagonal matrix E ≤ D ≤ G satisfying
D (x∗), according to eq.25, we can obtain:

−Bx∗ + (A+ C)D (x∗)x∗ + I =

[−B + (A+ C)D (x∗)]x∗ + I = 0.
(26)

Using matrix analysis theory and Brouwer’s fixed point
theorem, the only necessary and sufficient condition for the
existence of the equilibrium point can be obtained. The
theorem is described as follows:

Theorem 3: For any I and any nonlinear function f(.),
the necessary and sufficient condition for the existence of a
unique equilibrium point in the neural network (eq.3) is that
the matrix is non-singular for all D satisfied.

Proof: First prove the necessity by contradiction.
Suppose that for a certain D0 that satisfies E ≤ D0 ≤ F ,
−B+(A+B)D0 is singular, and the activation function can
be constructed as f(x): fi (xi) = di0xi, i = 1, 2, ..., n, the
system (eq.3) becomes:

RL
0 Dα

t x (t) = −Bx (t) +AD0x (t) + CD0x (t− τ) + I,
(27)

since the system has the equilibrium point, [−B +A+ CD0]
x∗ + I = 0 exists as a solution. −B +A+ CD0 is singular,
so it can be determined that the system (eq.3) may have
countless solutions or no solutions. Therefore, the system has
the only balance point contradiction, so the hypothesis does
not hold. −B + (A+B)D is non-singular.

According to eq.26:

x = −[−B + (A+ C)D(x)]
−1
I, (28)

mapping:

T (x) = −[−B +A+ CD (x)]
−1
I, (29)

then

‖T (x)‖ ≤ ‖[−B +A+ CD(x)]−1‖ · ‖I‖. (30)

According to eq.4, with eq.30 bounded, let

Ω = {x |‖x‖ ≤M } ,
M = max

E≤D≤F

∥∥∥[−B + (A+ C)D]
−1
∥∥∥ ‖I‖ , (31)

then ∃x∗ ∈ Ω, so that

T (x∗) = x∗ = −[−B + (A+ C)D (x∗)]
−1
I, (32)

so the equilibrium point exists.
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Supposing that there are two different equilibrium points
x? and y?, x∗ 6= y∗ satisfies:

−Bx∗ + (A+ C)f (x∗) + I = 0, (33)

−By∗ + (A+ C)f (y∗) + I = 0, (34)

(eq.33)-(eq.34):

[−B + (A+ C)D (x∗ − y∗)] (x∗ − y∗) = 0, (35)

then

D (x∗ − y∗) =
f1(x

∗
1)−f1(y

∗
1 )

x∗
1−y∗1

0
f2(x

∗
2)−f2(y

∗
2 )

x∗
2−y∗2

...

0
fn(x

∗
n)−fn(y

∗
n)

x∗
n−y∗n

 ,
(36)

according to eq.4:

E ≤ D (x∗ − y∗) ≤ F, (37)

then −B + (A + C)D(x∗ − y∗) is non-singular. Therefore,
x∗ − y∗ = 0 contradicts the assumption.

The above proves that the equilibrium point exists and is
unique.

The following Lyapunov function is constructed:

V (xt) = V1(xt) + V2(xt) + V3(xt), (38)

V1(xt) =0D
−(1−α)
t (xT (t)Px(t))

+

∫ t

0

∫ s

s−τ
ẋT (α)ATτ XAτ ẋ(α)dαds,

(39)

V2(xt) =

∫ 0

−τ

∫ t

t+β

ẋ(α)ATτ XAτ ẋ(α)dαdβ, (40)

V3(xt) =

∫ t

t−τ
xT (α)Qx(α)dα. (41)

Letting ẋ(t) = Ax(t) +Aτx(t− τ) and 0 < α < 1, P,Q
are two positive definite matrices.

Owing to P > 0, Q > 0, V (xt) > 0, according to the
Definition 2 derivative for V (xt),

dV1(xt)

dt
= 0D

α
t [xT (t)Px(t)] +

∫ t

t−τ
ẋ(α)ATτ XAτ ẋ(α)dα,

(42)

dV2(xt)

dt
= ẋ(t)ATτ V Aτ ẋ(t)−

∫ t

t−τ
ẋ(α)ATτ XAτ ẋ(α)dα,

(43)

dV3(xt)

dt
= xT (t)Qx(t)− xT (t− τ)Qx(t− τ), (44)

one has
dV (xt)

dt
=
dV1(xt)

dt
+
dV2(xt)

dt
+
dV3(xt)

dt
=0D

α
t x

T (t)Px(t)

+ ẋT (t)ATτ V Aτ ẋ(t)

+ xT (t)Qx(t)− xT (t− τ)Qx(t− τ),

(45)

according to Lemma 3;

0D
α
t x

T (t)Px(t) ≤2xT (t)P0D
α
t x(t)

=− 2xT (t)PBx(t)

+ 2xT (t)PAf(x(t))

+ 2xT (t)PCf(x(t− τ)),

(46)

according to Lemma 4; and

fT (x(t))f(x(t)) = |f(x(t))|2 ≤ βk2|x(t)|2, (47)

γfT (x(t− τ))f(x(t− τ)) = γ|f(x(t− τ))|2

≤ γk2|x(t− τ)|2.
(48)

From the above,

dV (xt)

dt
≤xT (t)[−2PB + P (

1

β
AAT +

1

γ
CCT )P

+ (β + γ)k2In +Q+W ]x(t)

+ xT (t− τ)[γk2In −Q+AWτ Aτ ]x(t− τ)

+ATxT (t)WAτx(t− τ)

+ATτ x
T (t− τ)WAx(t)

≤
[
x(t)
x(t− τ)

]T [
X11 X12

XT
12 X22

] [
x(t)
x(t− τ)

]
,

(49)

where

X11 =− 2PB + P (
1

β
AAT +

1

γ
CCT )P

+ βk2In +Q+ATWA,

(50)

X12 = ATWAτ , X
T
12 = ATτWA, (51)

X22 = γk2In −Q+ATτWAτ , (52)

W = ATτ V Aτ , V = τX. (53)

By Theorem 1, it is known that

dV (xt)

dt
≤ λmax(Ω)|x(t)|2, (54)

where λ represents the maximum eigenvalue of Ω, and[
X11 X12

X12
T X22

]
< 0. (55)

Then, the system (eq.3) is asymptotically stable at the
equilibrium point.

Remark 3: In Theorem 2, the asymptotic stability criterion
of fractional-order neural networks with time delay (eq.3) is
established. This criterion is simple and clear and is described
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by LMI. On the one hand, it reduces the amount of calcula-
tion in the stability analysis; on the other hand, it fully reveals
the logical relationship between network parameters.

Remark 4: In [29], Lyapunov function is constructed
by fractional Razumikhin theorem. In [35], Lyapunov func-
tion is considered by applying a positive definite quadratic
function V (t) = xT (t)Px(t). However, In the proof of
Theorem 2, Lyapunov functional is composed of positive
definite quadratic and functional with delay and nonlinear
term. It is easy to see that the Lyapunov functional simplifies
the amount of calculation and effectively solves the constant
time delay problem of the fractional-order neural network.
In addition, compared with the algebraic criterion in [34]–
[37], the stability condition based on LMI in Theorem 2 is
less conservative and has great application value in solving
simple practical engineering problems.

Remark 5: As we all know, LMI approach is a simple
and intuitive tool to analyze system stability. In [34], the
LMI stability condition of an uncertain fractional-order linear
system under 1 < α < 2 is proposed. In [35], the global
stability condition of the fractional-order neural network is
given by using the LMI method, but the time delay is not
discussed. In [38], the state estimation of FOBAM neural net-
work is studied by using fractional Lyapunov direct method
and LMI method. Inspired by [34]–[36], Theorem 2 combines
Lyapunov method with LMI method to propose a stability
criterion for fractional-order neural network with time delay.

Compared with [34], [35], Theorem 2 has simple condi-
tions and is suitable for high-dimensional systems. Moreover,
the criteria proposed in this paper can be extended to other
types of fractional-order neural networks, such as the BAM
neural network in [38].

IV. ILLUSTRATIVE EXAMPLES
To verify the correctness of the theoretical results in this
paper, some numerical simulations are presented.

Example 1: Consider the R-L fractional neural networks
described by

B=

 4 0 0
0 6.5 0
0 0 5

 , A=

 5 1 −1.5
−1 2.5 2
−2.5 2 −1.5




Dαx1(t) =− 4x1(t) + 5f(x1(t)) + f(x2(t))

− 1.5f(x3(t))

Dαx2(t) =− 6.5x2(t)− f(x1(t)) + 2.5f(x2(t))

+ 2f(x3(t))

Dαx3(t) =− 5x3(t)− 2.5f(x1(t)) + 2f(x2(t))

− 1.5f(x3(t))

,

(56)
where x = (x1, x1, x3)T and activation function f(.) =
tanh(.) to meet system eq.1. The system has a unique equi-
librium point (x?1, x

?
2, x

?
3) = (2.7243,−0.2312,−1.1346),

and it is known that the conditions in eq.2 are satisfied.

FIGURE 1. Trajectories of state variable x(t) of neural networks (eq.56) with
α = 0.9, (x1, x2, x3) = (−8, 8, 8).

FIGURE 2. Trajectories of state variable x(t) of neural networks (eq.56) with
α = 0.4, (x1, x2, x3) = (−8, 8, 8).

Letting k = 0.1 > 0, P = diag{1, 1, 1}, Q =
diag{1, 1, 1}, according to Theorem 1,

−2PB +Q+ k2PATQ−1AP = −6.6650 −0.0375 −0.1175
−0.0375 −11.8875 −0.0050
−0.1175 −0.0050 −8.8750

 < 0.

Thus, the unique equilibrium point of the system is asymp-
totically stable. Then, the system initial values (x1, x2, x3) =
(−8, 8, 8) under different fractional-order conditions α =
0.9, 0.4 as shown in Figs. 1 and 2 are considered.

Remark 6: In [35], the numerical example results show
that the convergence speed is affected by the order of the
fractional-order system. As the fractional order α increases,
the convergence speed becomes faster. For numerical exam-
ple 1, different orders are selected to verify the validity of the
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FIGURE 3. Trajectories of state variable x1(t) of neural networks(eq.57) with
α = 0.8 under different initial conditions.

stability criterion. It can be seen from Figs. 1 and 2 that the
convergence speed of α = 0.9 is faster than α = 0.4, which
is consistent with the conclusion of [35].

Example 2: Consider the R-L fractional neural networks
described by

B =

[
1.2 0
0 2.3

]
, A =

[
0.5 −0.7
0.3 0.2

]


Dαx1(t) =− 1.2x1(t) + 0.5f(x1(t))

− 0.7f(x2(t))

Dαx2(t) =− 2.3x2(t) + 0.3f(x1(t))

+ 0.2f(x2(t))

, (57)

where α = 0.8 and activation function f(.) = cos(.) to
meet system eq.1. The system has a unique equilibrium point
(x?1, x

?
2) = (−0.3167, 0.3852). Letting k = 1.5 > 0, P =

diag{1, 2}, Q = diag{1, 2}, according to Theorem 1 one has

−2PB +Q+ k2PATQ−1AP =[
−0.7363 −1.4400
−1.4400 −2.6100

]
< 0.

Therefore, the unique equilibrium point of the system
is asymptotically stable. Considering the different sys-
tem initial values (x1, x2) = (−0.5, 0.2), (x1, x2) =
(−0.4, 0.3), (x1, x2) = (−0.2, 0.4), (x1, x2) = (−0.1, 0.5),
as shown in Figs. 3 and 4, the unique equilibrium point
(x?1, x

?
2) in system (eq.57) can be obtained based on different

initial values.
Remark 7: In [14], [19], the results of numerical examples

show that the fractional-order neural network is affected
by the choice of activation function and has a longer con-
vergence time. For numerical example 2, different initial
conditions are selected to verify the validity of the stability
criterion. It can be seen from Figs. 3 and 4 that the selection
of the activation function is more suitable for fractional-order
neural network systems, and the convergence time is shorter.

FIGURE 4. Trajectories of state variable x2(t) of neural networks(eq.57) with
α = 0.8 under different initial conditions.

Example 3: Consider the R-L fractional delayed neural
networks described by

B=

[
0.7 0
0 0.6

]
, A=

[
−0.5 0.2
−0.4 0.3

]
,

C=

[
0.1 0.1
0.2 0.2

]
, I=

[
1
1

]


Dαx1(t) =− 0.7x1(t)− 0.5sin(x1(t)) + 0.2sin(x2(t))

+ 0.1arctan(x1(t− τ))

+ 0.1arctan(x2(t− τ)) + 1

Dαx2(t) =− 0.6x2(t)− 0.4sin(x1(t)) + 0.3sin(x2(t))

+ 0.2arctan(x1(t− τ))

+ 0.2arctan(x2(t− τ)) + 1

,

(58)
where α = 0.8 to meet system eq.2. Letting k = 0.1 >
0, P = diag{1, 1}, Q = diag{1, 1}, β = 10, γ = 3, τ = 0.2
and

Aτ =

[
0 −0.1
−0.1 0.2

]
,

according to Theorem 2 one has[
X11 X12

X12
T X22

]
=

−0.2633 0.0389 2.0000 −4.6000
0.0398 −0.0478 −2.2000 5.2000
2.0000 −2.2000 −0.9699 −2.4000
−4.6000 5.2000 −2.4000 −0.9694

 < 0.

The eigenvalues are λ = {−0.2706,−0.0411,−0.9693,
− 0.9700}, so the unique equilibrium point of the system is
asymptotically stable.Considering the different system initial
values are depicted in Figs. 5 and 6. Moreover,the state
trajectories of system (eq.58) under different fractional-order
conditions α = 0.4, 0.8, 1.0 are depicted in Figs. 7 and 8.

Example 4: Consider the R-L fractional delayed neural
networks described by
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FIGURE 5. Trajectories of state variable x1(t) of neural networks(eq.58) with
α = 0.8, τ = 0.2 under different initial conditions.

FIGURE 6. Trajectories of state variable x2(t) of neural networks(eq.58) with
α = 0.8, τ = 0.2 under different initial conditions.

FIGURE 7. Trajectories of state variable x1(t) of neural networks(eq.58) with
different order conditions.

FIGURE 8. Trajectories of state variable x2(t) of neural networks(eq.58) with
different order conditions.

B=

[
0.9 0
0 1.1

]
, A=

[
0.4 −0.4
0.6 0.1

]
,

C=

[
−0.3 −0.4
0.1 0.5

]
, I=

[
0
0

]


Dαx1(t) =− 0.9x1(t) + 0.4tanh(x1(t))

− 0.4tanh(x2(t))− 0.3cos(x1(t− τ))

− 0.4cos(x2(t− τ))

Dαx2(t) =− 1.1x2(t) + 0.6tanh(x1(t))

+ 0.1tanh(x2(t)) + 0.1cos(x1(t− τ))

+ 0.5cos(x1(t− τ))

,

(59)
where α = 0.4 to meet system eq.2. Letting k = 0.02 >
0, P = diag{1, 1}, Q = diag{1, 1}, β = 100, γ = 200, τ =
0.5, and

Aτ =

[
−0.2 −0.3
−1 0.2

]
,

according to Theorem 2 one has[
X11 X12

X12
T X22

]
=

−0.6826 −0.0645 −0.0442 −0.0476
−0.0645 −1.0656 0.0085 0.0714
−0.0442 0.0085 −0.8622 0
−0.0476 0.0714 0 −0.8534

 < 0.

The eigenvalues are λ = {−0.6461,−1.0938,−0.8793,
− 0.8534}, so the unique equilibrium point of the system is
asymptotically stable.Considering the different system initial
values are depicted in Figs. 9 and 10. Moreover,the state
trajectories of system (eq.59) under different fractional-order
conditions α = 0.2, 0.5, 1.0 are depicted in Figs. 11 and 12.

Remark 8:According to [32], for the case of α = 1,
system (eq.3) is simplified to an integer-order neural network
with time delay. In order to verify the validity of the stability
criterion, choose different orders in numerical example 3 and
example 4, and compare them with α = 1. It can be seen from
Figs. 7 and 11 that the conclusion is consistent with [32].
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FIGURE 9. Trajectories of state variable x1(t) of neural networks(eq.59) with
α = 0.4, τ = 0.5 under different initial conditions.

FIGURE 10. Trajectories of state variable x2(t) of neural networks(eq.59)
with α = 0.4, τ = 0.5 under different initial conditions.

FIGURE 11. Trajectories of state variable x1(t) of neural networks(eq.59)
with different order conditions.

FIGURE 12. Trajectories of state variable x1(t) of neural networks(eq.59)
with different order conditions

TABLE 1. Comparison of convergence time of different literatures under
different orders.(Through the comparative analysis of numerical examples in
[14], [19], [32], [35], it is concluded that the convergence time can be an
important comparison index.Therefore, under the same initial conditions,
different fractional orders are selected for comparison.)

Convergence time α = 0.4 α = 0.9 α = 1
Hai et al. [14] 110.35s 16.01s 6.3s

Zhang et al. [19] 53.49s 3.78s 1.97s
Wang et al. [32] 431s 6.95s 2.8s
Zhang et al. [35] 42.1s 3.42s 2.01s

Example 3 (eq.58) 62.15s 9.63s 4.55s

In addition, we can obtain the asymptotic stability criterion
of integer-order neural networks with time delay from the
results of this paper. Therefore, the stability criterion of this
paper is the improvement and promotion of the classical
integer-order neural network with time delay.

Based on the comparison results of the above numerical
examples, it is found that the convergence time is an im-
portant index that can be used to compare the stability of
fractional-order neural networks. Therefore, combined with
Remark6,Remark7 and Remark8, Tab. 1 is obtained through
experimental verification for system (eq.58) under the same
initial conditions. According to Tab. 1, the convergence of
fractional order neural networks with time delay can be
obtained intuitively.

V. CONCLUSION
In this paper, the asymptotic stability of two fractional-
order neural networks with and without time delay in the
sense of the R-L derivative is studied. Our contributions in-
clude: (1) the existence and uniqueness of equilibrium points
for fractional-order neural networks are proven, and (2) by
constructing the Lyapunov functional and combining the
Lyapunov method and LMI method, two sets of asymptotic
stability criteria are given. (3) Numerical examples verify the
effectiveness of the results.

However, the stability criterion of the fractional-order sys-
tem proposed by Lyapunov and LMI has some limitations:
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(1) this criterion can only be applied to the case in which
the equilibrium point of the fractional-order neural network
exists and is unique. If the system contains multiple equilib-
rium points, the criterion will not hold. (2) Theorem 2 is not
applicable to fractional-order neural networks with variable
delays.

In this paper, we focus on the theoretical analysis of
fractional-order neural networks. If the Lyapunov functions
are chosen via the viewpoint of practical application, the
choice of the Lyapunov function should be more flexible.
For example, to facilitate the calculation, we can choose the
approximate function of the theoretical function or discretize
the function by numerical calculation, which will be our
future work.
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