
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

A Polynomial-Time Algorithm for Minimizing the
Deep Coalescence Cost for Level-1 Species

Networks
Matthew LeMay, Ran Libeskind-Hadas, and Yi-Chieh Wu

Abstract—Phylogenetic analyses commonly assume that the species history can be represented as a tree. However, in the presence
of hybridization, the species history is more accurately captured as a network. Despite several advances in modeling phylogenetic
networks, there is no known polynomial-time algorithm for parsimoniously reconciling gene trees with species networks while
accounting for incomplete lineage sorting. To address this issue, we present a polynomial-time algorithm for the case of level-1
networks, in which no hybrid species is the direct ancestor of another hybrid species. This work enables more efficient reconciliation of
gene trees with species networks, which in turn, enables more efficient reconstruction of species networks.

Index Terms—phylogenetics, reconciliation, deep coalescence, hybridization

F

1 INTRODUCTION

Reconstructing the evolutionary histories of a group of
species is a fundamental step in phylogenetic analysis.
While it is possible to infer trees from whole-genome
alignments or from concatenated alignments, a common
approach relies on first reconstructing individual gene trees,
then reconstructing a species tree from the gene trees. How-
ever, gene trees and species trees may be incongruent due to
various evolutionary processes, thus requiring reconciliation
methods that map a gene tree “within” a species tree and
explain topological differences by postulating a sequence
of evolutionary events, with different models allowing for
different types of events.

In the popular multispecies coalescent (MSC) model [1],
species are treated as populations of individuals, and in-
congruence is assumed to be caused by incomplete lineage
sorting (ILS) (Fig. 1a,b). Formally, two lineages may fail to
coalescence at their most recent opportunity, a phenomenon
known as deep coalescence. ILS occurs when one lineage
then coalesces with a lineage from a less closely-related
population [2].

Coalescent theory allows for computing the probabil-
ity of a gene tree topology given a species tree topology
and parameters such as population size and divergence
time [3, 4]. Thus, given multiple gene trees, it is possible to
infer a species tree using either probabilistic or parsimony
approaches (see Degnan and Rosenberg [2] for a review of
such methods). Probabilistic approaches rely on maximum
likelihood or Bayesian estimation, whereas a parsimony
approach chooses a species tree by minimizing deep coa-

• M. LeMay is with the Department of Mathematics, Harvey Mudd College,
Claremont, CA, 91711.

• R. Libeskind-Hadas and Y.C. Wu are with the Department of Computer
Science, Harvey Mudd College, Claremont, CA, 91711.

• Address correspondence to Y.C. Wu: yjw@cs.hmc.edu.

Manuscript received XXX; revised XXX.

lescences (MDC), which “minimizes the number of extra
lineages that had to coexist along species lineages” [1]. In
general, probababilistic approaches tend to be more accu-
rate, whereas parsimony approaches require only topologies
and are more efficient than probabilistic approaches, and
thus are more broadly applicable.

However, the MSC model commonly assumes that
species histories can be represented as a tree and therefore
cannot account for hybridization (Fig. 1c), in which sepa-
rate species exchange genetic information, either through
introgression or hybrid speciation [5, 6, 7]. Studies have
shown that hybridization can play a role in the evolution
of eukaryotic species [8, 9, 10, 11].

In the last decade, several algorithms have been de-
veloped to infer species networks by simultaneously mod-
elling ILS and hybridization. In a species network, species
branches can join together at hybridization nodes (also known
as reticulation nodes). As with the simpler MSC model, there
exist both probabilistic [12, 13, 14, 15, 16, 17, 18, 19] and
parsimony approaches [14, 20, 16] for inferring species
networks under these models. Many of the parsimony ap-
proaches rely on converting a species network to a multi-
labeled tree (MUL-tree), considering all mappings of alleles
sampled to the leaves of the MUL-tree, and finding the
mapping that yields the minimum number of extra lineages.
Because there can exist an exponential number of allele
mappings, such approaches may not scale to large numbers
of species or hybridizations.

Rather than model ILS and hybridization, some models
instead allow for ILS and horizontal gene transfer, often
with gene duplication and loss [21, 22]. However, such
models also assume the species history can be represented
as a tree and that gene transfers result in gene trees that
are incongruent with the species tree. In contrast, by relying
on a species network rather than a tree, hybridization allows
different segments of the gene tree to have different histories
naturally by using different edges leading to a hybridization

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

species tree

A B C D

reconciliation

A B C D
a b c d

(b)

gene tree

a b c d

(a)

reconciliation

A B C D
a b c d

species network

A B C D

(c) level-1 network

A B C D E F

level-2 network

A B C D E F

(d)

Fig. 1. Gene trees, species trees, and species networks. (a) A gene tree. (b) A species tree and reconciliation. Under the multispecies coalescent
model, the gene tree evolves within the species tree, and incongruence between the trees is due to ILS. (c) A species network and reconciliation.
The same gene tree evolves within the species network, and no ILS is necessary. (d) A level-1 species network and a level-2 species network.

node.
In parallel with these advances in ILS and hybridiza-

tion, To and Scornavacca [23] developed two algorithms
for reconciling gene trees and species networks that take
into account duplication and loss events. They studied two
variations: first, finding an optimal tree in a network such
that the reconciliation of the gene tree and the “displayed”
species tree has minimum cost, and second, finding a mini-
mum cost reconciliation between the gene tree and the full
species network. Interestingly, the time complexity of their
first algorithm depends not on the number of hybridization
events but on a parameter of the network called its level
[24], intuitively a measure of “how much the network
is ‘tangled”’ [23] or how densely its hybridization nodes
are distributed (Fig. 1d). This algorithm is fixed-parameter
tractable when parameterized by the level of the network
and the number of biconnected components in the network.
Their second algorithm is polynomial in the number of
hybridization nodes, the size of the gene tree, and the size
of the species network.

Despite these advances, there is currently no known
polynomial-time algorithm for inferring a reconciliation be-
tween a gene tree G and a species network S that minimizes
the deep coalescence cost. We address this challenge with
the following contributions:

1) We present a O(|G| · |S|4) algorithm for reconciling a
gene tree G and species network S when S has one
hybridization node. Like many parsimony approaches,
our algorithm relies on dynamic programming. Our key
insight is to introduce a new parameter of the reconcili-
ation, the signature, which specifies which hybridization
edges are used by different parts of the reconciliation.

2) We reduce the time complexity of the previous algo-
rithm to O(|G| · |S|) by generalizing the concept of
a single lowest common ancestor (LCA) in trees to
multiple LCAs in networks.

3) We present a O(|G|·|S|) algorithm for reconciling G and
S when S is a level-1 network. Intuitively, in a level-

1 network, no hybrid species is the direct ancestor of
another hybrid species. For a general level-k network,
the time complexity increases to O(4k · |G| · |S|), which,
while exponential, is still smaller than existing algo-
rithms that are exponential in the number of species
and hybridization nodes.

2 BACKGROUND

2.1 Preliminaries

We start by giving some basic definitions using notation
largely verbatim from To and Scornavacca [23]. A summary
of notation can be found in Supplemental Table S1.1.

A rooted phylogenetic network refers to a rooted directed
acyclic graph with a single root with in-degree 0 and out-
degree 2; additional internal nodes with either in-degree 1
and out-degree 2, called branch nodes, or in-degree 2 and
out-degree 1, called hybridization nodes; and one or more
leaves with in-degree 1 and out-degree 0. Edges leading
to hybridization nodes are called hybridization edges. Given
a network N , let V (N) denote its node set and E(N)
denote its edge set. Let L(N) ⊂ V (N) denote its leaf set,
I(N) = V (N) \ L(N) denote its set of internal nodes, and
r(N) ∈ I(N) denote its root node. For node v ∈ V (N),
let c(v) denote its set of children, p(v) denote its parent
(either a single node or a set of two nodes), and, if v has
a single parent, e(v) denote the edge (p(v), v). The size of
N , denoted by |N |, is equal to |V (N)| + |E(N)|. Given
v ∈ V (N), let Nv denote the subnetwork of N rooted at
v, i.e. the subgraph of N consisting of all nodes and edges
reachable from v.

Define ≤N (<N) to be the partial order on V (N), where
given two nodes u and v of N , u ≤N v (u <N v) if and
only if there exists a path in N from v to u (and u 6= v).
The partial order ≥N (>N) is defined analogously. In such
a case, u is said to be lower or equal to (lower than) v, and u
a (strict) descendant of v, and v a (strict) ancestor of u.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

Given two nodes u and v of N such that u ≤N v, a path
from v to u in N is a sequence1 of contiguous edges from v
to u in N . Note that if v = u, the path from v to u is empty.
As there can be multiple paths between pairs of vertices in
a network, let pathsN (v, u) denote the set of all paths from
v to u. Let paths(N) denote the set of all paths in network
N .

Let N̂ be the underlying undirected graph correspond-
ing to N . An undirected graph is said to be biconnected if
it remains connected when any single node is removed. A
subgraph of a graph N̂ is said to be a biconnected component
if it is a maximal biconnected subgraph of N̂ . If every bicon-
nected component of N̂ has at most k hybridization nodes,
we say that N is of level-k [25]. A rooted phylogenetic tree is a
rooted phylogenetic network with no hybridization nodes,
i.e. a level-0 network. In the remainder of this paper, we refer
to rooted phylogenetic networks and rooted phylogenetic
trees simply as networks and trees, respectively. We allow
trees to contain artificial nodes, i.e. nodes with in-degree and
out-degree 1, and origin nodes, i.e. nodes with in-degree 0
and out-degree 1. For trees with origin nodes, there exists
an edge between the origin node and root node, so the root
node has in-degree 1 and out-degree 2.

Let a species network S depict the evolutionary history of
a set of species, and let a gene tree G depict the evolutionary
history of a set of genes sampled from these species. To
compare a gene tree with a species network, let a leaf
mapping Le : L(G) → L(S) label each leaf of the gene tree
with the leaf of the species network from which the gene
was sampled. The mapping need not be one-to-one nor
onto.

2.2 Reconciliations

Definition 2.1 (Reconciliation). Given a gene tree G, a
species network S, and a leaf mapping Le, a reconciliation2

R for (G,S, Le) is a pair of mappings (Rv, Rp) where
Rv : V (G) → V (S) is a vertex mapping and Rp : V (G) →
paths(S) is a path mapping subject to the following con-
straints:

1) If g ∈ L(G), then Rv(g) = Le(g).
2) If g ∈ I(G), then for each g′ ∈ c(g), Rv(g′) ≤S Rv(g).
3) If g 6= r(G), then Rp(g) ∈ pathsS(Rv(p(g)), Rv(g)).

Otherwise, Rp(g) = ∅.
Constraint 1 asserts that Rv extends the leaf mapping Le.
Constraint 2 asserts that Rv satisfies the temporal con-
straints implied by S. Constraint 3 asserts that the vertex
mapping and path mapping are consistent.

The vertex mapping specifies which node of S a node of
G is mapped to, and the path mapping specifies a path in S
between a node of G and its parent. Note that if S is a tree, a
reconciliation can be specified by the vertex mapping alone,
and the paths between nodes in the species tree would be
implied. However, when hybridization is allowed, there can
exist multiple paths between nodes in the species network,
thus requiring the path mapping.

1. Though we have defined a path as a sequence, we will often use
set operators on these sequences when the context is clear.

2. When explaining topological incongruence through only deep
coalescence, a reconciliation is sometimes called a coalescent history [6].

It will be convenient to consider several variants of a
reconciliation. In the first, given g ∈ V (G), a reconciliation
Rg denotes the reconciliation R restricted to subtree Gg . In
the second, a reconciliation is restricted to a subnetwork
of the species network (that consists of a subset of nodes
and all edges between those nodes), and only the parts
of the gene tree that evolve within the subnetwork are
considered. In the third, a reconciliation is extended to a
forest of multiple gene trees, all of which evolve within the
same species network. Henceforth, the term reconciliation
encompasses these variants.

As typical in a multispecies coalescent process, evolution
in the species network is viewed backward in time, from the
leaves toward the root. Then, given a reconciliation R, one
can directly count the number of gene lineages “exiting”
each edge e of the species network. Specifically, given edge
e ∈ E(S),

LR(e) = |{g ∈ V (G) : e ∈ Rp(g)}| ,

and the number of extra lineages is

XLR(e) = max(0,LR(e)− 1).

Finally, the deep coalescence cost of a reconciliation is the
sum of extra lineages across all edges of the species network:

DCR =
∑

e∈E(S)

XLR(e).

This value is also known as the reconciliation cost. Given a
reconciliation R, the edgeset of R is the set of species edges
used in the path mapping:

edgeset(R) =
⋃

g∈V (G)

Rp(g).

Clearly, for e ∈ edgeset(R), XLR(e) = LR(e) − 1, and
thus, the following is an equivalent definition for the deep
coalescence cost:

DCR =
∑

e∈edgeset(R)

(LR(e)− 1).

Finally, we define the Most Parsimonious Reconciliation
Problem3:

Problem 2.1 (Most Parsimonious Reconciliation (MPR)).
Given G, S, and Le, the MPR problem is to find a recon-
ciliation with minimum cost.

When S is a tree, the MPR is unique (the LCA recon-
ciliation4) [26] and can be found in O(|G| · |S|) time [27].
However, when S is a network, the MPR is not necessarily
unique.

In this work, we consider the MPR Problem for the
special case of a binary gene tree and a level-1 species
network.

3. The term most parsimonious reconciliation is more popularly used
in the context of macro-evolutionary gene events, for example, to min-
imize duplications (D); duplications and losses (DL); or duplications,
horizontal transfers, and losses (DTL). In this work, we understand
MPRs to refer to reconciliations using the parsimony criterion of
minimizing deep coalescences (MDC).

4. Specifically, Rv is the LCA reconciliation, and Rp can be inferred
from Rv .

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

3 METHODS

In this section, we provide a polynomial-time algorithm
for inferring an MPR between a binary gene tree G and a
level-1 species network S with leaf mapping Le. Like many
parsimony approaches, our algorithm relies on dynamic
programming. For the sake of simplicity, we present only
the algorithm for minimizing the cost of a reconciliation.
By using standard annotation of the dynamic programming
table, we can subsequently perform a traceback and recon-
struct a reconciliation. A summary of notation can be found
in Supplemental Table S1.2. For brevity, proofs appear in
Supplemental Section S2.

In the remainder of this section, also for the sake of
simplicity, we often omit Le in our exposition and theorems,
with the understanding that given a gene tree G and species
network S, we are given a leaf mapping Le as well. We do
make the dependence on Le explicit in our algorithms.

3.1 Starting with a Simpler Problem

We start with the simpler problem of reconciling a gene tree
G and a species network S with one hybridization node vH .
For two nodes u and v of S, it can be easily shown that
there exists a single node, called the lowest common ancestor
(LCA) and denoted lcaS(u, v), that is the lowest element of
S that is an ancestor of both u and v. Let vL and vR denote
the left and right parents of vH , and let eL = (vL, vH) and
eR = (vR, vH) denote the left and right edges to vH . Let
vA = lcaS(vL, vR), called the split node, denote the lowest
common ancestor of vL and vR (Fig. 2a).

Let LR = {n, l, r,b} be a set of four symbols which will
be used to denote the hybridization edges in a set. Because
the species network has a single hybridization node, there
are four options: none, left edge, right edge, both edges. We
define the binary operator + over LR as follows:
• For each x ∈ LR, n+x = x + n = x.
• For each x ∈ LR, b+x = x + b = b.
• l+ l = l and r+ r = r.
• l+ r = r+ l = b.

We define a partial order < over LR as follows: n < l, r < b.
For a set of elements X , let P(X) denote the power set

over the elements. Then, for a set of edges E ∈ E(S), define
a function signature(E) : P(E) → LR that denotes the
hybridization edges in the set:

signature(E) =

n, eL, eR /∈ E

l, eL ∈ E, eR /∈ E

r, eL /∈ E, eR ∈ E

b, eL, eR ∈ E.

It is easily verified that given two subsets E1 and E2 of
E(S),

signature(E1) + signature(E2) = signature(E1 ∪ E2).

Given a reconciliation R, the signature of R, de-
noted signature(R), is defined to be the signature of
edgeset(R). Conceptually, the signature of a reconciliation
R denotes whether R uses neither edge, only the left edge,
only the right edge, or both edges leading to the hybridiza-
tion node.

Lemma 3.1 (Equivalent Edgesets). Given a gene tree G and
a species network S with one hybridization node, let R1 =
(R1

v, R
1
p) and R2 = (R2

v, R
2
p) denote two reconciliations between

G and S. If R1
v(r(G)) = R2

v(r(G)) and signature(R1) =
signature(R2), then edgeset(R1) = edgeset(R2).

Given a gene tree G, species network S, and reconcil-
iation R between G and S, the root of R is defined to be
Rv(r(G)). Recall that a reconciliation R between G and
S is said to be optimal if it has the minimum cost among
all reconciliations R′ between G and S. A reconciliation
R between G and S is said to be root-signature-optimal (rs-
optimal) if it has the minimum cost among all reconciliations
R′ between G and S such that R′v(r(G)) = Rv(r(G)) and
signature(R′) = signature(R).

Lemma 3.2 (Optimal Substructure Property). Given a gene
tree G and a species network S with one hybridization node, let
R∗ = (R∗v, R

∗
p) be an rs-optimal reconciliation between G and S.

Then for each g ∈ V (G), R∗,g is rs-optimal.

We are now ready to describe our dynamic program-
ming algorithm for reconciling G and S (Algorithm 1). Our
algorithm constructs a dynamic programming table ECrs,
where given any g ∈ V (G), s ∈ V (S), and x ∈ LR, entry
ECrs(g, s, x) is an ordered pair (E, c) for an rs-optimal
reconciliation R = (Rv, Rp) between Gg and S such that
Rv(g) = s and signature(R) = x. E ∈ P(E(S)) denotes
the edgeset of R, and non-negative integer c denotes the cost
of R. Note that by Lemma 3.1, all rs-optimal reconciliations
between Gg and S that have the same root s and signature
x share the same edgeset E but not necessarily the same
cost. Let cost(ECrs(·, ·, ·)) denote the cost component of
an entry.

In the base case, if g ∈ L(G), then, by Definition 2.1,
Rv(g) = Le(g) and Rp(g) = ∅. The reconciliation uses
neither of the two hybridization edges and has cost 0.
That is, for g ∈ L(G), our table is initialized with entries
ECrs(g, Le(g),n) = (∅, 0).

Otherwise, the algorithm considers g ∈ I(G) in post-
order and posits a (not necessarily rs-optimal) reconciliation
R between Gg and S. Let g1 and g2 denote the children of
g. By Lemma 3.2, if R is rs-optimal, it must extend some
rs-optimal reconciliation R1 between Gg1 and S and some
rs-optimal reconciliation R2 between Gg2 and S. Let s1, x1,
E1, and c1 denote the root, signature, edgeset, and cost of
R1, respectively, and similarly, let s2, x2, E2, and c2 denote
the respective components of R2. Note that R must have a
root s that is an ancestor of s1 and s2, and gene tree edges
(g, g1) and (g, g2) must be mapped to some path p1 from
s to s1 and some path p2 from s to s2, respectively, in S.
The signature x, edgeset E, and cost c of R is computed
using the components of R1 and R2 and paths p1 and p2.
To update ECrs(g, s, x), what remains is to retain only
the edgeset E and cost c for some reconciliation that is rs-
optimal with respect to a specific root s and signature x.

Note that once all entries ECrs(·, ·, ·) have been com-
puted, the optimal cost between G and S is simply
mins∈V (S),x∈LR cost(ECrs(r(G), s, x)).

Theorem 3.3. For each g ∈ V (G), s ∈ V (S), and x ∈ LR,
Algorithm 1 correctly computes ECrs(g, s, x).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

S

vH

vA

vL vR

eL eR

(a) (b)
Sl Sr

S(c)

R* R

Fig. 2. Species networks with one hybridization node. (a) Key nodes are labeled, including the hybridization node vH , the left and right parents
vL and vR of vH , the split node vA, and the left and right edges eL and eR to vH . (b) Tree Sl constructed from S with eR removed, and tree Sr

constructed from S with eL removed. (c) Two reconciliations R and R∗ between the same gene tree and species network. R∗ subsumes R.

Algorithm 1
1: function RECONCILESIMPLESNETWORK(G, S, Le)

input gene tree G, species network S with one hybridization node, leaf mapping Le
output mapping ECrs(g, s, x)

2: for each g ∈ V (G) and each s ∈ V (S) and each x ∈ LR do
3: Initialize ECrs(g, s, x) = (∅,∞).
4: for each g ∈ L(G) do
5: Set ECrs(g, Le(g),n) = (∅, 0).
6: for each g ∈ I(G) in post-order do
7: Set (g1, g2) = c(g).
8: for each (x1, x2) ∈ LR×LR do
9: for each (s1, s2) ∈ V (S)× V (S) do

10: for each s ∈ V (S) such that s1 ≤S s and s2 ≤S s do
11: for each (p1, p2) ∈ pathsS(s, s1)× pathsS(s, s2) do
12: Set (E1, c1) = ECrs(g1, s1, x1).
13: Set (E2, c2) = ECrs(g2, s2, x2).
14: Set E = E1 ∪ E2 ∪ p1 ∪ p2.
15: Set c = c1 + c2 + |E1 ∩ E2|+ |E1 ∩ p2|+ |E2 ∩ p1|+ |p1 ∩ p2|.
16: Set x = x1 + x2 + signature(p1) + signature(p2).
17: if c < cost(ECrs(g, s, x)) then
18: Update ECrs(g, s, x) = (E, c).
19: return ECrs.

Theorem 3.4. The time complexity of Algorithm 1 is O(|G| ·
|S|4).

3.2 Reducing the Time Complexity
Next, we present an approach for speeding up the computa-
tion of table ECrs by a factor of O(|S|3). Our approach re-
lies on the observation that many entries of ECrs will never
correspond to an rs-optimal reconciliation and thus need
not be considered in the dynamic program. Specifically, we
show that for g ∈ V (G) and x ∈ LR, the set of species
s ∈ V (S) that must be considered for entry ECrs(g, s, x)
can be restricted to a set of constant size that corresponds to
a generalization of the LCA.

Let Sl denote the tree constructed from S with eR

removed, and let Sr denote the tree constructed from S with
eL removed (Fig. 2b). We extend the definition of the LCA to
the left lowest common ancestor, denoted by llcaS(u, v), and
right lowest common ancestor, denoted by rlcaS(u, v), defined
as the lowest common ancestor of u and v in trees Sl and
Sr . Let BLCAS(u, v) denote the set containing both the left
and right lowest common ancestors.

Given a gene tree G and a species network S with one
hybridization node, a reconciliation R between G and S is

said to be a BLCA mapping if, for each internal node g of G
with children g1 and g2, Rv(g) ∈ BLCAS(Rv(g1), Rv(g2)).
Note that if G has no internal nodes, then any reconciliation
between G and S is trivially a BLCA mapping.

Let R and R∗ be two reconciliations between G and
S. R∗ is said to subsume R if R∗v(r(G)) ≤S Rv(r(G)),
signature(R∗) ≤ signature(R), edgeset(R∗) ⊆
edgeset(R), and DCR∗ ≤ DCR (Fig. 2c).

Lemma 3.5. Given a gene tree G and a species network S
with one hybridization node, let R = (Rv, Rp) be a recon-
ciliation between G and S. If there exists an internal node
g ∈ I(G) with children g1 and g2 such that Rv(g) /∈
BLCAS(Rv(g1), Rv(g2)), then there exists some other recon-
ciliation R∗ = (R∗v, R

∗
p) between G and S such that for each

u ∈ V (G) where g ≤G u, R∗,u subsumes Ru.

Corollary 3.5.1. Given a gene tree G and species network S with
one hybridization node, then for any reconciliation R = (Rv, Rp)
between G and S that is not a BLCA mapping, there exists some
other reconciliation R∗ that is a BLCA mapping and subsumes R.

We are now ready to describe our revised dynamic
programming algorithm for reconciling a gene tree G and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

Algorithm 2
1: function RECONCILEBLCASIMPLESNETWORK(G, S, Le)

input gene tree G, species network S with one hybridization node, leaf mapping Le
output mapping candidates(g, x), mapping ECrs(g, s, x)

2: for each g ∈ V (G) and each s ∈ V (S) and each x ∈ LR do
3: Initialize ECrs(g, s, x) = (∅,∞).
4: for each g ∈ V (G) and each x ∈ LR do
5: Initialize candidates(g, x) = ∅.
6: for each g ∈ L(G) do
7: Set ECrs(g, Le(g),n) = (∅, 0).
8: Set candidates(g,n) = {Le(g)}.
9: for each g ∈ I(G) in post-order do

10: Set (g1, g2) = c(g).
11: for each (x1, x2) ∈ LR×LR do
12: for each (s1, s2) ∈ candidates(g1, x1)× candidates(g2, x2) do
13: for each s ∈ BLCAS(s1, s2) do
14: for each (p1, p2) ∈ pathsS(s, s1)× pathsS(s, s2) do
15: Set (E1, c1) = ECrs(g1, s1, x1).
16: Set (E2, c2) = ECrs(g2, s2, x2).
17: Set E = E1 ∪ E2 ∪ p1 ∪ p2.
18: Set c = c1 + c2 + |E1 ∩ E2|+ |E1 ∩ p2|+ |E2 ∩ p1|+ |p1 ∩ p2|.
19: Set x = x1 + x2 + signature(p1) + signature(p2).
20: if c < cost(ECrs(g, s, x)) then
21: Update candidates(g, x) = candidates(g, x) ∪ {s}.
22: Update ECrs(g, s, x) = (E, c).
23: return candidates, ECrs.

a species network S with one hybridization node (Algo-
rithm 2). In addition to ECrs, we construct a second table
candidates that limits the set of species that need to be
considered in completing ECrs. As in Algorithm 1, given
any g ∈ V (G), s ∈ V (S), and x ∈ LR, let R = (Rv, Rp)
be an rs-optimal reconciliation between Gg and S such that
Rv(g) = s and signature(R) = x. By Corollary 3.5.1, the
algorithm need only consider R that are BLCA mappings;
that is, for each internal node g with children g1 and
g2, R must satisfy Rv(g) ∈ BLCAS(Rv(g1), Rv(g2)). Let
entry candidates(g, x) denote the set of possible values
for Rv(g), that is, the set of species nodes to which g can be
mapped as part of some R. Then, for entry ECrs(g, s, x),
only entries for s ∈ candidates(g, x) need be computed.
As before, the tables candidates and ECrs can be com-
pleted via post-order traversal of the gene tree. Note that
once all entries candidates(·, ·) and ECrs(·, ·) have been
computed, the optimal cost between G and S is simply
minx∈LR,s∈candidates(r(G),x) cost(ECrs(r(G), s, x)).

Theorem 3.6. For each g ∈ V (G) and x ∈ LR, Algo-
rithm 2 correctly computes candidates(g, x). Furthermore, for
each s ∈ candidates(g, x), Algorithm 2 correctly computes
ECrs(g, s, x).

Lemma 3.7. In Algorithm 2, each set candidates(g, x) con-
tains at most two elements.

Theorem 3.8. The time complexity of Algorithm 2 is O(|G|·|S|).

3.3 Extending to Multiple Gene Trees
Next, we extend the previous results towards the ultimate
goal of allowing for reconciliations with a level-1 species

network.
Given a gene tree G and a species network S with one

hybridization node, the root of the gene tree may not be
mapped to the species in which the gene family originated,
for example, due to gene losses or missing samples. To
address this issue, we add an origin node o(G) and a root
branch (o(G), r(G)) to G.

We now consider the problem of reconciling G with an
origin node and S. Let R = (Rv, Rp) denote an rs-optimal
reconciliation between G and S such that Rv(o(G)) = r(S)
and signature(R) = x. Note that R is not restricted to be
a BLCA mapping. However, it is straightforward to show
that, to minimize the deep coalescence cost between G and
S, a reconciliation between Gr(G) and S is restricted to be a
BLCA mapping. Algorithm 3 describes how to update ECrs
accordingly via a simple modification of Algorithm 2.

Lemma 3.9. For each g ∈ V (G) and x ∈ LR, Algo-
rithm 3 correctly computes candidates(g, x). Furthermore, for
each s ∈ candidates(g, x), Algorithm 3 correctly computes
ECrs(g, s, x).

Lemma 3.10. The time complexity of Algorithm 3 is O(|G|·|S|).

Next, we consider the problem of reconciling a forest G
of gene trees with origin nodes and a species network S with
one hybridization node. We start by extending the definition
of a reconciliation to a forest of gene trees.

Definition 3.1 (Forest Reconciliation). Let G =
{G1, . . . , GK} denote a forest of gene trees with origin
nodes. A forest reconciliation for G and S is a pair of
mappings (Rv,Rp) and a set of subreconciliations
{R1, . . . , RK} subject to the following constraints:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

Algorithm 3
1: function RECONCILEORIGINSIMPLESNETWORK(G, S, Le)

input gene tree G with an origin node, species network S with one hybridization node, leaf mapping Le
output mapping ECrs(g, s, x)

2: Set candidates,ECrs = RECONCILEBLCASIMPLESNETWORK(Gr(G), S, Le).
3: for each x ∈ LR do
4: Initialize ECrs(o(G), r(S), x) = (∅,∞)

5: for each x1 ∈ LR do
6: for each s1 ∈ candidates(r(G), x1) do
7: for each p1 ∈ pathsS(r(S), s1) do
8: Set (E1, c1) = ECrs(r(G), s1, x1).
9: Set E = E1 ∪ p1.

10: Set c = c1.
11: Set x = x1 + signature(p1).
12: if c < cost(ECrs(o(G), r(S), x)) then
13: Update ECrs(o(G), r(S), x) = (E, c).
14: return ECrs.

1) For each k such that 1 ≤ k ≤ K, Rk is a reconciliation
between Gk and S.

2) For each g ∈ V (G), if g ∈ V (Gk), then Rv(g) = Rk
v(g)

and Rp(g) = Rk
p(g).

Constraint 1 asserts that each Rk is associated with Gk, and
Constraint 2 asserts that R extends each Rk.

For convenience, we often refer to a forest reconciliation as
simply a reconciliation. To distinguish the two, we denote
forest reconciliations using calligraphic font R and (tree)
reconciliations using standard math font R. In the remainder
of this work, we include one additional constraint on all
R: For each Gk ∈ G, Rv(o(Gk)) = Rk

v(o(Gk)) = r(S).
This constraint will be necessary later when we combine the
forest of gene trees into a single tree. It is straightforward to
extend definitions of lineages, edgeset, signature, and cost
from (tree) reconciliations to forest reconciliations.

for e ∈ E(S),LR(e) = |{g ∈ V (G) : e ∈ Rp(g)}|
edgeset(R) =

⋃
g∈V (G)

Rp(g)

signature(R) = signature(edgeset(R))

DCR =
∑

e∈edgeset(R)

(LR(e)− 1)

Lemma 3.11 (Equivalent Edgesets for Forest Reconcilia-
tions). Given a forest G = {G1, . . . , GK} of gene trees with
origin nodes and a species network S with one hybridization
node, let Q and R denote two reconciliations between G and
S. If signature(Q) = signature(R), then edgeset(Q) =
edgeset(R).

Given a gene tree G with an origin node and a species
network S with one hybridization node, a reconciliation
R = (Rv, Rp) between G and S is said to be signature-
optimal (s-optimal) if it has the minimum cost among all
reconciliations R′ between G and S such that R′v(o(G)) =
Rv(o(G)) = r(S) and signature(R′) = signature(R).
Similarly, given a forest G of gene trees with origin nodes
and a species network S, a reconciliation R is said to
be signature-optimal (s-optimal) if it has the minimum cost

among all reconciliations R′ between G and S such that
signature(R′) = signature(R).

Now, define some (arbitrary) order on the trees in a forest
G. For each k such that 1 ≤ k ≤ K, let Gk = {G1, . . . , Gk}
denote the first k gene trees of G. Let Rk = {R1, . . . , Rk}
denote a reconciliation between Gk and S. It follows that
GK = G and RK = R.

Lemma 3.12 (Optimal Substructure Property for Forest Rec-
onciliations). Given a forest G = {G1, . . . , GK} of gene trees
with origin nodes and a species network S with one hybridization
node, let R∗ = {R∗,1, . . . , R∗,K} denote an s-optimal reconcili-
ation between G and S. Then, for each k such that 1 ≤ k ≤ K,
R∗,k and R∗,k are s-optimal.

We are now ready to describe our dynamic program-
ming algorithm for reconciling G and S (Algorithm 4). Our
algorithm constructs another table ECs. Given any Gk ∈ G
and x ∈ LR, entry ECs(Gk, x) is an ordered pair (E, c) for
an s-optimal reconciliation Rk between Gk and S such that
signature(Rk) = x. E ∈ P(E(S)) denotes the edgeset of
Rk, and non-negative integer c denotes the cost ofRk. Note
that by Lemma 3.11, all s-optimal reconciliations between
Gk and S that have the same signature share the same
edgeset but not necessarily the same cost. As with ECrs,
let cost(ECs(·, ·)) denote the cost component of an entry.

The procedure for completing table ECs (Algorithm 4) is
conceptually similar to the procedure for completing ECrs
(Algorithm 1) but relies on Lemma 3.12 on the substructure
for a forest reconciliation rather than Lemma 3.2 on the
substructure for a tree reconciliation. Once all entries have
been computed, the cost of reconciliation RK is returned.

Lemma 3.13. Algorithm 4 correctly computes the reconciliation
cost.

Lemma 3.14. The time complexity of Algorithm 4 is
O(

∑
Gk∈G |Gk| · |S|).

3.4 Putting the Pieces Together

In this section, we give an efficient algorithm for solving the
most parsimonious reconciliation problem for a gene tree

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 8

Algorithm 4
1: function RECONCILEFORESTSIMPLESNETWORK(G, S, Le)

input forest G of gene trees {G1, . . . , GK} with origin nodes, species network S with one hybridization node, leaf
mapping Le

output minimum reconciliation cost between G and S such that each origin node is mapped to r(S)
2: for each k from 1 to K and each x ∈ LR do
3: Initialize ECs(Gk, x) = (∅,∞).
4: for each k from 1 to K do
5: Set ECrs = RECONCILEORIGINSIMPLESNETWORK(Gk, S, Le).
6: if k = 1 then
7: for each x ∈ LR do
8: Update ECs(G1, x) = ECrs(o(G1), r(S), x).
9: else

10: for each (x1, x2) ∈ LR×LR do
11: Set (E1, c1) = ECs(Gk−1, x1).
12: Set (E2, c2) = ECrs(o(Gk), r(S), x2).
13: Set E = E1 ∪ E2.
14: Set c = c1 + c2 + |E1 ∩ E2|.
15: Set x = x1 + x2.
16: if c < cost(ECs(Gk, x) then
17: Update ECs(Gk, x) = (E, c).
18: return minx∈LR cost(ECs(GK , x)).

and a level-1 species network. This algorithm has some sim-
ilarities with Algorithm 1 of To and Scornavacca [23], which
finds an optimal switching5 of a level-k species network that
minimizes the duplication-loss cost between a gene tree and
the resulting species tree. We demonstrate that their general
approach of decomposing the gene tree and species network
can be applied to our problem of minimizing the deep
coalescence cost, where we reconcile each component of the
decomposition using our previously presented algorithms.

We are given as input a gene tree G, a level-1 species
network S, and a leaf mapping Le, and our goal is to com-
pute the minimum deep coalescence cost between G and
S. Our algorithm relies on several definitions and lemmas,
largely taken verbatim from To and Scornavacca [23] except
for minor modifications to notation.

We start by identifying and contracting all biconnected
components of the species network (Fig. 3a-b). As presented
in To and Scornavacca [23], let B be a biconnected compo-
nent of a network S.6 Then B contains exactly one node
without ancestors in B; let r(B) denote the root of B. If
B consists of more than one node, we can contract it by
removing all nodes of B other than r(B), then connect r(B)
to every node with in-degree 0 created by this removal.

Definition 3.2 (Tree bc(S); Fig. 3b; To and Scornavacca [23],
Definition 2). Given a network S, the tree bc(S) is obtained
from S by contracting all its biconnected components.

Next, we present notation for mapping between a net-

5. Per Definition 4 of To and Scornavacca [23], a switching chooses,
“for each hybridization edge, an incoming edge to switch on and the
other to switch off.”

6. For consistency with To and Scornavacca [23], we take some liber-
ties with the formal definition of biconnected components. In particular,
we omit biconnected components with only two vertices. Additionally,
we consider any single cut vertex not part of another biconnected
component to be a biconnected component, and we consider each leaf
to be a biconnected component.

work S, the biconnected components of S, and the con-
tracted tree bc(S).

Definition 3.3 (MappingM). Given a network S, letM be
a mapping from nodes of S to biconnected components of
S. For every s ∈ V (S), M(s) is the component to which s
contracts.

As in To and Scornavacca [23], let B̊ denote the node in
bc(S) that corresponds to a biconnected component B in S.
Given two biconnected components Bi and Bj , we say that
Bi ≤S Bj (resp. Bi <S Bj) if and only if B̊i ≤bc(S) B̊j

(resp. B̊i <bc(S) B̊j). In such a case, Bi is said to be lower
than or equal to (resp. lower than) Bj . We say that Bi is the
parent (resp. a child) of Bj if B̊i is the parent (resp. a child)
of B̊j in bc(S).

Our last step for processing the species network S is
to decompose it into disjoint networks based on its bicon-
nected components.

Definition 3.4 (Elementary network; Fig. 3a; To and Scor-
navacca [23], Definition 3). Given a network S, each bi-
connected component B that is not a leaf of S defines an
elementary network, denoted by S(B), consisting of B and
all edges (u, v) such that u ∈ V (B).7

Note that because S is a level-1 network, each elementary
network of S is either a binary tree or a network with one
hybridization node. While we have presented algorithms for
reconciling one or more gene trees with a species network
with one hybridization node, it is straightforward to modify
each of our previous algorithms to instead reconcile one or
more gene trees with a species tree (Supplemental Algo-
rithms S1, S2, S3). The proofs of correctness and complexity

7. To and Scornavacca [23] defines S(B) as “consisting of B and all
cut-edges coming out from B”.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 9

(a)

H I

S

B1

A B C D

B2

E F G

B3 B4

S(B1)

S(B2) S(B3) S(B4)

H I

bc(S)

A B C D E F G

(b)

a c e f g h

G

B2

B1

B3

B1

B1

(c)

a c e f g h

B2

B1

B2 B3

B3

B3 B4

B1

B1

GS
B1

(d)

Fig. 3. Annotated species networks and gene trees. (a) A level-1 species network S with four biconnected components Bi and four elementary
networks S(Bi), where 1 ≤ i ≤ 4. (b) The tree bc(S) where, for each i such that 1 ≤ i ≤ 4, node B̊i in bc(S) corresponds to biconnected component
Bi in S. (c) A gene tree G along with its mapping B(·). (d) The tree GS along with its mapping B(·) and subgraphs GBi

, where 1 ≤ i ≤ 4. Artificial
nodes are circled (if added from the Definition 3.6, normal font) or boxed (if added from Definition 3.6, bold font). Figures and caption adapted
from To and Scornavacca [23].

are analogous to those of the corresponding algorithms and
are therefore omitted.

Our next step is to similarly decompose the gene tree
G into disjoint forests that evolve within each elementary
network (Fig. 3c-d). We make some minor modifications to
the definitions and lemmas of To and Scornavacca [23] to re-
quire origins for each decomposed gene tree (modifications
in bold).

Definition 3.5 (Mapping B; Fig. 3c; To and Scornavacca [23],
Definition 6). Given a tree G and network S, let B be a map-
ping from nodes of G to biconnected components of S. For
every u ∈ V (G), B(u) is the lowest biconnected component
B of S such that L(Sr(B)) contains {Le(v) | v ∈ L(Gu)}.8

Definition 3.6 (Tree GS ; Fig. 3d; Modified from To and
Scornavacca [23], Definition 7). The tree GS is obtained
from G as follows: For each internal node u in G with
child nodes u1 and u2 such that there exist k biconnected
components Bi1 >S . . . >S Bik strictly below B(u) and

8. To and Scornavacca [23] denoted this mapping as B and phrased
the definition in terms of leaf labels. We use B(·) to distinguish the
mapping from a biconnected component B.

strictly above B(u1), we add k artificial nodes v1 > . . . > vk
on the edge (u, u1), and we fix B(vj) to Bij . We do the same
for u2. Then, for each non-root, non-artificial internal node
u in G such that B(u) 6= B(p(u)), we add an artificial
node v on the edge (p(u), u), and we fix B(v) to B(u).
Furthermore, we add an origin node v above u = r(G),
and we fix B(v) to B(u).

Definition 3.7 (Subgraph GB ; Fig. 3d; To and Scornavacca
[23], Definition 8). Let B be a biconnected component of S
that is not a leaf. Then GB is the set of all maximal connected
subgraphs H of GS such that B(u) = B for every u ∈ I(H).

Lemma 3.15 (Modified from To and Scornavacca [23],
Lemma 2). Let B be a biconnected component of S that is not a
leaf. Then we have the following:

(i) for every H ∈ GB , H is either a binary tree with an origin
node or an edge whose upper extremity is an artificial node.
Moreover, for every leaf u of H , B(u) is a child of B.

(ii) if B = B(r(G)), then GB consists of one binary tree with
an origin node.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 10

Algorithm 5
1: function RECONCILE(G, S, Le)

input gene tree G, level-1 species network S, leaf mapping Le
output minimum reconciliation cost between G and S with Le

2: Compute tree bc(S) and mappingM(·).9

3: Compute tree GS and mapping B(·).
4: Compute subgraph GBi for each biconnected component Bi of S that is not a leaf.
5: Initialize c = 0.
6: for each biconnected component Bi of S that is not a leaf do
7: for each leaf g ∈ L(GBi) do
8: Set LeBi(g) = r(B(g)).
9: if S(Bi) is a tree then

10: Set ci = RECONCILEFORESTSTREE(GBi
, S(Bi), LeBi

).10

11: else
12: Set ci = RECONCILEFORESTSIMPLE SNETWORK(GBi

, S(Bi), LeBi
).

13: Update c = c + ci.
14: return c.

It can be easily shown that adding artificial nodes and an
origin node to G does not change the minimum reconcilia-
tion cost between G and S.

Next, we extend the definition of subsume, previously
defined for reconciliations with a species network with one
hybridization node, to reconciliations with a level-1 species
network. Let R and R∗ be two reconciliations between a
gene tree G and a level-1 species network S. R∗ is said
to subsume R if R∗v(r(G)) ≤S Rv(r(G)), edgeset(R∗) ⊆
edgeset(R), and DCR∗ ≤ DCR (Fig. 4c).

Lemma 3.16. Given a gene tree G and a level-1 species network
S, let R = (Rv, Rp) be a reconciliation between G and S. Given
a mappingM and a mapping B, if there exists an internal node
g ∈ I(G) with children g1 and g2 such thatM(Rv(g)) 6= B(g),
M(Rv(g1)) = B(g1), and M(Rv(g2)) = B(g2), then there
exists some other reconciliation R∗ = (R∗v, R

∗
p) between G and

S such that R∗ subsumes R.

Given a gene tree G, a level-1 species network S, a map-
ping M, and a mapping B, a reconciliation R between G
and S is said to be consistent withM and B if, for each inter-
nal node g of G with children g1 and g2,M(Rv(g)) = B(g).
Note that if G has no internal nodes, then any reconciliation
between G and S is trivially consistent.

Corollary 3.16.1. Given a gene tree G, a level-1 species network
S, a mapping M, and a mapping B, then for any reconciliation
R = (Rv, Rp) between G and S that is not consistent with M
and B, there exists some other reconciliation R∗ that is consistent
withM and B and subsumes R.

We are now ready to describe an algorithm for reconcil-
ing a binary gene tree G and a level-1 species network S
(Algorithm 5, Fig. 4). Let R denote an optimal reconciliation
between G and S. By Corollary 3.16.1, we need only con-
sider reconciliations R that are consistent with M and B.
That is, for each g of G, R must satisfy M(Rv(g)) = B(g).
Our algorithm relies on independently considering each

9. Note that while M is not explicitly used in the algorithm, it
is implicitly used to determine B, GS , and, for each biconnected
component Bi, GBi

.
10. See Supplemental Algorithm S3.

biconnected component Bi of S, reconciling the correspond-
ing gene subgraph GBi

and species subnetwork S(Bi), and
adding together the reconciliation costs of the independent
components.

Theorem 3.17. Algorithm 5 correctly computes the minimum
reconciliation cost between G and S with leaf mapping Le.

Theorem 3.18. The time complexity of Algorithm 5 is O(|G| ·
|S|).

3.5 Beyond Level-1 Networks
Algorithm 5 can be extended for general species networks
S of level-k. To do so, Algorithms 2, 3, and 4 are easily
extended to take species networks with up to k hybridiza-
tion nodes. Such a modification requires tracking k separate
signatures, one for each hybridization node. As there are
four possible values for each signature, the time complex-
ity of each extended algorithm would gain an additional
factor of 4k, resulting in an overall time complexity of
O(4k · |G| · |S|) for Algorithm 4. Since the complexity of
Algorithm 4 dominates the complexity of Algorithm 5, the
extended version of Algorithm 5 would then also have a
time complexity of O(4k · |G| · |S|). Although this time
complexity is exponential in the level of the network, we
might expect k to be small for most phylogenies. Thus, the
algorithm could still be practical in most cases.

4 DISCUSSION

In this work, we have presented a polynomial-time al-
gorithm for inferring a most parsimonious reconciliation
between a gene tree and a level-1 species networks that ex-
plains topological incongruence through hybridization and
ILS. Our dynamic program required several developments.
First, we introduced the concept of a reconciliation signa-
ture, which specifies which hybridization edges are used
by different parts of the reconciliation. Next, we showed
that the number of candidate species to consider in the
dynamic program can be restricted to a set of constant size
that corresponds to a generalization of the LCA. Finally,
we decomposed the gene tree and species network using

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 11

E F G
e f g

(a)

S(B2)

S(B3)

S(B4)

S(B1)

B1

B2 B3 B3 B4

B1

B1
B1

B1

A B C D

B2

E F G

B3

H I

B4

H I
h

a c

B2

B2

e f g

B3

B3

B3

h

B4

A B C D E F G H I
a c e f g h

(b)

A B C D E F G H I
a c e f g h

u

s3

s1

s2

(c)

A B C D
a c

A B C D
a c

Fig. 4. Reconciliation algorithm. (a) Continuing the example from Fig. 3, optimal reconciliations R∗
i between subgraphs GBi

and S(Bi), where
1 ≤ i ≤ 4. (There exist two optimal reconciliations R∗

2 .) R∗
1 induces 1 extra lineage, and R∗

2 , R∗
3 , and R∗

4 each induce 0 extra lineages. (b) The
full optimal reconciliation R∗ between G and S. (c) A different reconciliation R between G and S such that R∗ subsumes R. Note that for node
u, B(u) = B2. In R∗, u is mapped to R∗

v(u) = s3 so that M(R∗
v(u)) = M(s3) = B2. In contrast, in R, u is mapped to Rv(u) = s1 so that

M(Rv(u)) =M(s1) = B1. Furthermore, R∗ is consistent withM and B whereas R is not consistent withM and B. Compared to R∗, R induces
an additional extra lineage to exit s2 into s1.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 12

biconnected components and reconciled each component
independently. While we have focused on level-1 networks,
our algorithm can be extended to level-k species networks,
though the time complexity is exponential in k.

We believe that our algorithm can be applied in several
contexts. When the gene tree and species network are fixed,
the algorithm can be used directly to infer reconciliations.
Perhaps more interesting applications include incorporating
the algorithm as part of a larger pipeline. For example,
if the species network is considered known but the gene
trees must be reconstructed from gene alignments that lack
phylogenetic signal, reconciliation can be used to correct
errors in gene tree topology [28, 29]. On the other hand,
given a set of reconstructed gene trees, there exist several
methods for species network inference using a parsimony
criterion [14, 20, 16]. However, since more complex net-
works (with more hybridization) can better fit data (yielding
reconciliations with equal or smaller numbers of extra lin-
eages), methods are needed to balance this classic trade-off
between complexity and fit. While there exist information
criteria such as AIC and BIC for model selection when mea-
suring fit through likelihood, no similar metrics exist when
measuring fit through parsimony. Perhaps more troubling,
species tree inference by minimizing deep coalescence is
inconsistent [30], and similar consistency issues are likely to
arise for species network inference using the MDC criterion.
But promisingly, parsimony and probabilistic approaches
can sometimes reconstruct the same species network [20].

There are numerous directions for future work. There
can exist multiple MPRs for a fixed gene tree and
species network, and reconciliations are sensitive to user-
defined event costs. While several papers have investi-
gated the space of MPRs under the duplication-transfer-
loss model [31, 32] and the duplication-loss-coalescence
model [33, 34], we believe that similar problems can be
explored under a joint hybridization and ILS model. Sim-
ilarly, several reconciliation algorithms have been extended
to handle non-binary gene trees [35, 36] or to incorporate
macro-evolutionary events such as gene duplication, loss,
and transfer [23, 37]. While hybridization and gene transfer
may result in similar types of incongruence, more investi-
gation is needed to see how we might disentangle the two
signals. Finally, theoretical analysis has shown that the MPR
problem under a hybridization and ILS model is NP-hard in
general, e.g. for level-k species networks for arbitrary values
of k [38]. Similar analysis might address whether there
exist approximation algorithms or fixed-parameter tractable
algorithms.

ACKNOWLEDGEMENTS

This work was supported by the Department of Computer
Science and the Dean of Faculty of Harvey Mudd College.
This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1751399 to YW and
IIS-1905885 to RLH.

REFERENCES

[1] W. P. Maddison, “Gene trees in species trees,” Syst Biol,
vol. 46, no. 3, pp. 523–536, Sep. 1997.

[2] J. H. Degnan and N. A. Rosenberg, “Gene
tree discordance, phylogenetic inference and the
multispecies coalescent,” Trends Ecol Evol, vol. 24, no. 6,
pp. 332–340, Jun. 2009.

[3] J. F. C. Kingman, “On the genealogy of large
populations,” J Appl Probab, vol. 19, pp. 27–43, Aug.
1982.

[4] J. Wakeley, Coalescent Theory: An Introduction. W. H.
Freeman, 2008.

[5] R. A. Folk, P. S. Soltis, D. E. Soltis, and R. Guralnick,
“New prospects in the detection and comparative anal-
ysis of hybridization in the tree of life,” Am J Bot, vol.
105, no. 3, pp. 364–375, May 2018.

[6] R. A. L. Elworth, H. A. Ogilvie, J. Zhu, and L. Nakhleh,
“Advances in computational methods for phylogenetic
networks in the presence of hybridization,” in Bioinfor-
matics and Phylogenetics: Seminal Contributions of Bernard
Moret, T. Warnow, Ed. Cham: Springer International
Publishing, 2019, pp. 317–360.

[7] A. Runemark, M. Vallejo-Marin, and J. I. Meier,
“Eukaryote hybrid genomes,” PLos Genet, vol. 15,
no. 11, p. e1008404, Nov. 2019.

[8] J. Mavárez, C. A. Salazar, E. Bermingham, C. Salcedo,
C. D. Jiggins, and M. Linares, “Speciation by hybridiza-
tion in heliconius butterflies,” Nature, vol. 441, no. 7095,
pp. 868–871, Jun. 2006.

[9] M. C. Fontaine, J. B. Pease, A. Steele, R. M. Waterhouse,
D. E. Neafsey, I. V. Sharakhov, X. Jiang, A. B. Hall,
F. Catteruccia, E. Kakani, S. N. Mitchell, Y.-C. Wu,
H. A. Smith, R. R. Love, M. K. Lawniczak, M. A.
Slotman, S. J. Emrich, M. W. Hahn, and N. J. Besansky,
“Extensive introgression in a malaria vector species
complex revealed by phylogenomics,” Science, vol. 347,
no. 6217, p. 1258524, Jan. 2015.

[10] F. Racimo, S. Sankararaman, R. Nielsen, and E. Huerta-
Sánchez, “Evidence for archaic adaptive introgression
in humans,” Nat Rev Genet, vol. 16, no. 6, pp. 359–371,
Jun. 2015.

[11] S. Lamichhaney, F. Han, M. T. Webster, L. Andersson,
B. R. Grant, and P. R. Grant, “Rapid hybrid speciation
in darwin’s finches,” Science, vol. 359, no. 6372, p. 224,
Jan. 2018.

[12] C. Meng and L. S. Kubatko, “Detecting hybrid
speciation in the presence of incomplete lineage
sorting using gene tree incongruence: A model,” Theor
Popul Biol, vol. 75, no. 1, pp. 35–45, Feb. 2009.

[13] L. S. Kubatko, “Identifying hybridization events in the
presence of coalescence via model selection,” Syst Biol,
vol. 58, no. 5, pp. 478–488, 2009.

[14] Y. Yu, C. Than, J. H. Degnan, and L. Nakhleh, “Coales-
cent histories on phylogenetic networks and detection
of hybridization despite incomplete lineage sorting,”
Syst Biol, vol. 60, no. 2, pp. 138–149, 2011.

[15] Y. Yu, J. H. Degnan, and L. Nakhleh, “The proba-
bility of a gene tree topology within a phylogenetic
network with applications to hybridization detection,”
PLos Genet, vol. 8, no. 4, p. e1002660, Apr. 2012.

[16] Y. Yu, N. Ristic, and L. Nakhleh, “Fast algorithms and
heuristics for phylogenomics under ils and hybridiza-
tion,” BMC Bioinf, vol. 14, no. 15, p. S6, Oct. 2013.

[17] Y. Yu, J. Dong, K. J. Liu, and L. Nakhleh, “Maximum

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3105922, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 13

likelihood inference of reticulate evolutionary
histories,” Proc Natl Acad Sci USA, vol. 111, no. 46, p.
16448, Nov. 2014.

[18] D. Wen and L. Nakhleh, “Coestimating reticulate phy-
logenies and gene trees from multilocus sequence
data,” Syst Biol, vol. 67, no. 3, pp. 439–457, 2017.

[19] C. Zhang, H. A. Ogilvie, A. J. Drummond, and
T. Stadler, “Bayesian inference of species networks from
multilocus sequence data,” Mol Biol Evol, vol. 35, no. 2,
pp. 504–517, 2017.

[20] Y. Yu, R. M. Barnett, and L. Nakhleh, “Parsimonious
inference of hybridization in the presence of incomplete
lineage sorting,” Syst Biol, vol. 62, no. 5, pp. 738–751,
2013.

[21] M. Stolzer, H. Lai, M. Xu, D. Sathaye, B. Vernot, and
D. Durand, “Inferring duplications, losses, transfers
and incomplete lineage sorting with nonbinary species
trees,” Bioinformatics, vol. 28, no. 18, pp. 409–415, 2012.

[22] Y.-b. Chan, V. Ranwez, and C. Scornavacca, “Inferring
incomplete lineage sorting, duplications, transfers and
losses with reconciliations,” J Theor Biol, vol. 432, pp.
1–13, 2017.

[23] T.-H. To and C. Scornavacca, “Efficient algorithms for
reconciling gene trees and species networks via dupli-
cation and loss events,” BMC Genomics, vol. 16, no. 10,
p. S6, Oct. 2015.

[24] C. Choy, J. Jansson, K. Sadakane, and W.-K. Sung,
“Computing the maximum agreement of phylogenetic
networks,” Theor Comput Sci, vol. 335, no. 1, pp.
93–107, May 2005.

[25] ——, “Computing the maximum agreement of
phylogenetic networks,” Theor Comput Sci, vol. 335,
no. 1, pp. 93–107, May 2005.

[26] T. Wu and L. Zhang, “Structural properties of the rec-
onciliation space and their applications in enumerating
nearly-optimal reconciliations between a gene tree and
a species tree,” BMC Bioinf, vol. 12, no. 9, p. S7, Oct.
2011.

[27] C. M. Zmasek and S. R. Eddy, “A simple algorithm to
infer gene duplication and speciation events on a gene
tree,” Bioinformatics, vol. 17, no. 9, pp. 821–828, Sep.
2001.

[28] Y.-C. Wu, M. D. Rasmussen, M. S. Bansal, and
M. Kellis, “TreeFix: Statistically informed gene tree
error correction using species trees,” Syst Biol, vol. 62,
no. 1, pp. 110–120, Jan. 2013.

[29] M. S. Bansal, Y.-C. Wu, E. J. Alm, and M. Kellis,
“Improved gene tree error correction in the presence of
horizontal gene transfer,” Bioinformatics, vol. 31, no. 8,
pp. 1211–1218, Apr. 2015.

[30] C. V. Than and N. A. Rosenberg, “Consistency prop-
erties of species tree inference by minimizing deep
coalescences.” J Comput Biol, vol. 18, no. 1, pp. 1–15,
Jan. 2011.

[31] M. S. Bansal, E. J. Alm, and M. Kellis, “Reconciliation
revisited: Handling multiple optima when reconciling
with duplication, transfer, and loss,” J Comput Biol,
vol. 20, no. 10, pp. 738–754, Sep. 2013.

[32] R. Libeskind-Hadas, Y.-C. Wu, M. S. Bansal,
and M. Kellis, “Pareto-optimal phylogenetic tree
reconciliation,” Bioinformatics, vol. 30, no. 12, pp.

i87–i95, Jun. 15, 2014.
[33] H. Du, Y. S. Ong, M. Knittel, R. Mawhorter, N. Liu,

G. Gross, R. Tojo, R. Libeskind-Hadas, and Y.-C.
Wu, “Multiple optimal reconciliations under the
duplication-loss-coalescence model,” IEEE/ACM Trans
Comput Biol Bioinformatics, pp. 1–1, 2019.

[34] R. Mawhorter, N. Liu, R. Libeskind-Hadas, and
Y.-C. Wu, “Inferring pareto-optimal reconciliations
across multiple event costs under the duplication-loss-
coalescence model,” BMC Bioinf, vol. 20, no. 20, p. 639,
Dec. 2019.

[35] Y. Yu, T. Warnow, and L. Nakhleh, “Algorithms for
MDC-based multi-locus phylogeny inference: Beyond
rooted binary gene trees on single alleles,” J Comput
Biol, vol. 18, no. 11, pp. 1543–1559, Nov. 2011.

[36] M. Kordi and M. S. Bansal, “Exact algorithms
for duplication-transfer-loss reconciliation with non-
binary gene trees,” IEEE/ACM Trans Comput Biol Bioin-
form, vol. 16, no. 4, pp. 1077–1090, Jul. 2019.

[37] P. Du, H. A. Ogilvie, and L. Nakhleh, “Unifying
gene duplication, loss, and coalescence on phylogenetic
networks,” in Bioinformatics Research and Applications,
Z. Cai, P. Skums, and M. Li, Eds. Cham: Springer
International Publishing, 2019, pp. 40–51.

[38] M. LeMay, Y.-C. Wu, and R. Libeskind-Hadas, “The
most parsimonious reconciliation problem in the pres-
ence of incomplete lineage sorting and hybridization
is np-hard,” in Workshop on Algorithms in Bioinformatics
(WABI 2021), Virtual due to COVID-19, Aug. 2–4, 2021.

Matthew LeMay received the BS degree in Mathematics from Harvey
Mudd College in 2021.

Ran Libeskind-Hadas received the AB degree in Applied Mathematics
from Harvard University in 1987, and the MS and PhD degrees in Com-
puter Science from the University of Illinois at Urbana-Champaign in
1989 and 1993, respectively. He is the R. Michael Shanahan Professor
of Computer Science with Harvey Mudd College.

Yi-Chieh Wu received the BSEE degree from Rice University in 2007,
and the SM and PhD degrees in Electrical Engineering and Computer
Science from the Massachusetts Institute of Technology in 2009 and
2014, respectively. She is an Associate Professor of Computer Science
with Harvey Mudd College.

