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Abstract

Background

A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium

falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1

(PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria

infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with

high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect

on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63),

and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a

novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-eryth-

rocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-

related adhesive protein (TRAP)] to potentially enhance protection.
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Methodology

This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE

against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to

receive three monthly CA or CAT DNA priming immunizations, followed by corresponding

ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12

infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was

assessed by determining the differences in time to parasitemia as detected by thick blood

smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk

ratio of each treatment group and subtracting from 1, with significance calculated by the

Cochran-Mantel-Haenszel method.

Results

In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63

boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia

(mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasi-

temia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed

parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to

infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in

the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines

induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA

responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ
FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection.

Conclusions

This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective effi-

cacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen

(CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associ-

ated with increased frequencies of systemic AEs compared to the CA vaccine and, histori-

cally, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they

were transient and associated with increased vector dosing.

Introduction

In August 2019, the World Health Organization issued a report [1] from its Strategic Advisory

Group on Malaria Eradication calling for “transformative tools” in the fight against malaria,

encouraging research and development on vector control, chemotherapy and vaccines. Gene-

based vaccines are a promising approach for inducing the CD8+ T cell responses thought to

mediate protection against liver stage malaria in humans [2] and could provide such a trans-

formative tool. Although malaria vaccines based on DNA or adenoviruses alone have been

immunogenic, eliciting robust CD8+ T cell responses, they have demonstrated sub-optimal

protection in CHMI studies [3–5], while heterologous prime-boost strategies have proven

more immunogenic and protective [6–9].

In a prior clinical trial, a recombinant DNA plasmid-prime/recombinant human adenovi-

rus serotype 5 (HuAd5) boost vaccine encoding two pre-erythrocytic antigens, Plasmodium
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falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1

(PfAMA1) sterilely protected 4/15 (27%) subjects against controlled human malaria infection

(CHMI) [6]. Protection was significantly associated with CD8+ T cell responses [6], with effec-

tor memory CD8+ T cells targeting class I-restricted CSP and AMA1 epitopes identified as the

likely effector mechanism [10].

Although the vaccine efficacy (VE) generated by the DNA-prime/HuAd5 prime-boost regi-

men using PfCSP and PfAMA1 appeared promising. However, concerns regarding the safety

of HuAd5 [11], and effects of naturally-acquired neutralizing antibodies (Nabs) to HuAd5 on

HuAd5 vaccine immunogenicity [6, 12], led to development of an alternative adenovirus vec-

tor, chimpanzee adenovirus 63 (ChAd63), at the University of Oxford. Simian adenoviruses

including ChAd63 are not known to cause pathology or illness in humans and the ChAd63

vectors are replication-deficient [13]. Nabs to ChAd63 are low in human populations [7], do

not neutralize ChAd63 and are unlikely to affect ChAd63-induced immune responses [14].

The higher levels of protection seen with whole organism-based malaria vaccines [15, 16] as

compared with single-antigen subunit vaccines [17], suggest that multiple antigens will be

required if there is to be an effective subunit vaccine. We hypothesized that the addition of

PfME-TRAP to the PfCSP+PfAMA1 formulation would induce additive or synergistic T-cell

responses that would improve efficacy. A ChAd63 prime/modified vaccinia virus Ankara

(MVA) boost vaccine expressing the PfME-TRAP antigen (malaria multiple epitopes, ME,

fused to the Pf thrombospondin-related adhesion protein, TRAP) elicited monofunctional

CD8+ IFN-γ T cell responses that correlated with sterile protection in 3/14 (21%) subjects

[17].

We established a collaboration with the University of Oxford in which we replaced HuAd5

with ChAd63 to avoid neutralizing antibodies (Nabs) and repeated our study using the DNA/

ChAd63 two antigen (CSP, AMA1: CA) vaccine and a novel three antigen (CSP, AMA1,

ME-TRAP: CAT) vaccine. A DNA vector encoding the native sequence TRAP lacking the ME

component, similar to the codon-optimized DNA-TRAP vector used in this study, has been

studied in humans in the United States [5, 18, 19]. Two of the three DNA plasmids had been

previously assessed in the United States in the earlier HuAd5 trial (CSP and AMA1) [6], and a

TRAP plasmid (lacking the ME) was assessed in a multiple DNA plasmid trial [5]. The three

boosting vectors, ChAd63-CSP, ChAd63-AMA1, and ChAd63-ME-TRAP, have been studied

in the United Kingdom (UK) [7, 20–23]. The DNA priming immunizations were administered

via the Biojector12000 needle-free injection device (Inovio Pharmaceuticals, Inc., Plymouth

Meeting, PA), while the adenovirus-vectored vaccine was administered vis direct intramuscu-

lar (IM) injection via needle and syringe.

Methods

The Study Event Schedule and Procedures for this trial and supporting CONSORT checklist

are available as S1 File and S1 Checklist.

Objectives

The primary objectives were to assess (1) the safety and tolerability of a DNA vaccine prime

with ChAd63 vaccine boost encoding the CA antigens (DNA/ChAd63-CA), and (2) the safety

and tolerability of a DNA vaccine prime with ChAd63 vaccine boost encoding the CAT anti-

gens (DNA/ChAd63-CAT) in healthy malaria-naïve adults.

The secondary objectives were to assess: (1) VE of DNA/ChAd63-CA, and DNA/ChAd63-

CAT in healthy malaria-naïve adults subjected to CHMI with Pf3D7 sporozoites administered

by mosquito bites; (2) cellular immunogenicity by FluoroSpot assay; (3) humoral
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immunogenicity by enzyme-linked immunosorbent assay (ELISA) to CSP, AMA1 and TRAP

antigens; (4) humoral immunogenicity by immunofluorescence assay (IFA) against sporozoite

and erythrocytic stage parasites; (5) any association of Nab to HuAd5 with VE and humoral

and cellular immunogenicity; and (6) any degree of seroconversion to HuAd5 among subjects

after immunization with ChAd63.

Ethics

The study was conducted at the Naval Medical Research Center (NMRC) Clinical Trials Cen-

ter from 2018–2019; CHMIs were conducted at the Walter Reed Army Institute of Research

(WRAIR) secure insectary. The study protocol was reviewed and approved by the NMRC

Institutional Review Board (IRB) in compliance with all federal regulations governing the pro-

tection of human subjects. WRAIR and NMRC hold a Federalwide Assurance from the Office

of Human Research Protections (OHRP) under the Department of Health and Human Ser-

vices. NMRC also holds a Department of Defense/Department of the Navy Assurance for

human subject protections. All key personnel were certified as having completed mandatory

human subjects’ protection curricula and training under the direction of the WRAIR IRB and

Human Subjects Protections Branch (HSPB) or the NMRC IRB and Office of Research

Administration (ORA). All potential study subjects provided written, informed consent before

screening and enrollment and had to pass an assessment of understanding. This study was

conducted according to the Declaration of Helsinki as well as principles of Good Clinical Prac-

tices under the United States Food and Drug Administration (FDA) Investigational New Drug

(IND) application BB-IND 17572. This trial was performed under an IND allowance by the

FDA and was registered on ClinicalTrials.gov (NCT03341754).

Study design

This study was an open label, randomized controlled Phase 1 trial, assessing safety, tolerability,

and VE against CHMI in healthy, malaria naïve adults. It is an open label design as subjects

were aware if they were receiving a vaccine despite being randomized to either the CA or CAT

groups. The infectivity controls received the CHMI without prior immunizations and were

enrolled sequentially. Immunized subjects were randomly assigned (block randomization) to

one of the two vaccine groups and were blinded to their immunization group. The clinical

study team were aware of the subject assignments, but all laboratory support and microscopists

were blinded. The design of this study is summarized in S1 Fig in S2 File.

Forty subjects were to receive three DNA priming immunizations at weeks 0, 4, and 8 fol-

lowed by ChAd63 boosting immunizations on week 24. Four weeks after the boost, immu-

nized subjects and 12 infectivity controls were to receive CHMI by mosquito bite using the

Pf3D7 (a clone of PfNF54) strain used in previous NMRC clinical trials [24]. All subjects were

monitored for adverse signs and symptoms, laboratory abnormalities, and humoral and cellu-

lar immune responses. Giemsa-stained malaria blood smears were read by certified microsco-

pists on days 6 through 21 post-challenge, then every other day through day 28 in subjects

remaining smear negative. Subjects exhibiting positive results for malaria were promptly

treated as described below.

Study subjects and eligibility

Enrollment was limited to healthy malaria-naïve adults aged 18–50 years who passed screening

by medical history, physical examination, electrocardiogram, and laboratory testing. Cardiac

risk screening was conducted to identify and exclude individuals at moderate or high risk of

developing symptomatic coronary artery disease during the next 5 years [25].
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Vaccines

DNA vaccines. 3D7 PfCSP and PfAMA1 genes were identical to those used previously [5,

6] and the 3D7 PfTRAP gene was a codon-optimized version of that used previously [7] (S1

Table in S2 File, S2 Fig in S2 File). The expressed Pf proteins for the DNA prime and ChAd63

boost are similar (S2 Fig in S2 File). DNA priming immunizations were three separate doses 4

weeks apart in each deltoid muscle by Biojector1 2000 needle-free injection device (Inovio

Pharmaceuticals, Inc., Plymouth Meeting, PA). The D-CA component was administered at 2

mg (1 mg D-CA/mL), split into two 1 mL intramuscular injections each of 1 mg of D-C and 1

mg D-A plasmid DNA (pDNA) constructs. Each construct was vialed separately at 3 mg/mL,

0.5 mL/vial; 0.4 mL D-C and 0.4 mL D-A were combined then diluted with 1.6 mL of PBS and

mixed to formulate the D-CA vaccine in 2.4 mL, sufficient for 2 injections of 1 mg/mL of

D-CA (0.5 mg D-C and D-A per mL). The D-CAT component was administered at 3 mg (1.5

mg D-CAT/mL), split into two 1 mL intramuscular injections of 1 mg of D-C, 1 mg D-A, and

1 mg D-T pDNA products. Each construct was vialed separately at 3 mg/ml, 0.5 mL/vial, and

0.4 mL D-C, 0.4 mL D-A, 0.4 mL D-T were combined then diluted with 1.2 mL of PBS and

mixed to formulate the D-CAT vaccine in 2.4 mL, sufficient for 2 injections of 1.5 mg/mL of

D-CAT (0.5 mg each D-C, D-A, and D-T per mL).

ChAd63 vaccines. ChAd63-C, ChAd63-A, and ChAd63-ME-TRAP, were developed by

The University of Oxford and Okairos AG (Basel, Switzerland), and manufactured by the Clin-

ical BioManufacturing Facility (Oxford, UK) under UK Medicines and Healthcare products

Regulatory Agency GMP guidelines [26]. The CSP construct is based on Pf3D7, but unlike

DNA-CSP, has a longer deletion of the repeat region and an 11 amino acid (aa) deletion at the

C-terminus; the AMA1 construct is based on two divergent alleles of AMA1, Pf3D7 (ectodo-

main) and PfFVO (full length, but lacking the signal sequence), whereas DNA-AMA1 is based

only on Pf3D7; the ME-TRAP construct is based on the PfT9/96 strain and a string of 20 CD4

+ and CD8+ epitopes (ME) [27], whereas DNA-TRAP is based on Pf3D7 and has a slightly

shorter deletion approximately 200 aa from the C-terminus (S2 Fig in S2 File). The dose of the

ChAd63-CA vaccine component was 1.0 x 1011 viral particles (vp)/dose (5 x 1010 vp/con-

struct). Appropriate volumes of each of the products were combined and provided as 1 dose

containing 5 x 1010 vp of ChAd63-C and 5 x 1010 vp of ChAd63-A. The dose of ChAd63-CAT

vaccine regimen was 1.5 x 1011 vp/dose (5 x 1010 vp/construct). Appropriate amounts of each

product were combined and provided as 1 dose containing 5 x 1010 vp of each of the con-

structs, ChAd63-C, ChAd63-A, and ChAd63-ME-TRAP. These vaccines were administered

by intramuscular injection (IM) with needle and syringe into the deltoid muscle of the non-

dominant arm.

Dose justification

DNA dose selection was based upon the safety, immunogenicity, and protection data from the

DNA/HuAd5 Trial [6]. Although the use of a codon-optimized version of DNA-T was first in

humans, the native sequence DNA-T plasmid was safely administered at a dose of 0.5 mg

administered 3 times in humans in the United States as part of the MuStDO5 trial [5], and in

the UK at doses up to 2 mg [27, 28]. Based upon safety and immunogenicity data derived from

hundreds of healthy subjects across varied populations, the consensus optimal dosing for the

ChAd63-vectored components doses (5 x 1010 vp) [29, 30].

Sample size

The sample size was designed to demonstrate that the frequency of serious or severe vaccine-

related adverse events (AEs) was sufficiently low to allow continued testing in a larger number
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of subjects in the future. The predicted rates of serious or severe vaccine-related AEs in the

general population were determined using the exact binomial method (1-p) n = 1-c where p is

the probability that a subject has an event, n is the total number of subjects and c is the level of

confidence [4]. In addition, the sample size was powered to detect a two day mean delay in

patency in the immunized group compared to the infectivity controls (80% power, α = 0.05,

one-sided) [31, 32], as this delay indicates a reduction in liver parasite burden.

Controlled human malaria infection (CHMI)

CHMI was administered by five bites of P. falciparum 3D7-infected mosquitoes as previously

described [15, 16]. The presence of two parasites was required for a positive diagnosis, leading

to immediate antimalarial treatment. Four tablets of Malarone1 (250 mg atovaquone/100 mg

proguanil per tablet) administered orally once per day for 3 days was given as first line therapy.

Subjects diagnosed with parasitemia by thick blood smear (TBS) were monitored daily by

symptom checks and blood smears until two consecutive daily negative smears were docu-

mented. Subjects who remained negative for parasitemia were similarly monitored daily until

day 18 post CHMI, then approximately every other day until day 28.

Safety and tolerability

Women underwent pregnancy testing prior to each immunization. Subjects underwent fol-

low-up evaluations (S2 Table in S2 File) after each immunization: 30 minutes post-immuniza-

tion monitoring, telephone call on Day 1, and clinical follow-ups on day 2, day 7 and day 14

after immunization, day 28 and day 70 following the third immunization, and day 2, day 7 and

day 27 following the boosting immunization. All evaluations included AE monitoring, vital

signs, physical examination, blood procurement for safety laboratory tests, and at pre-defined

days for immunologic assays. AEs after each immunization evaluated safety, tolerability and

reactogenicity. Solicited AEs were recorded on days 0, 1, 2 and 7, unsolicited AEs on days 0, 1,

2, 7, 14 and 28 and laboratory tests (complete blood count, aspartate, aminotransferase [AST],

alanine aminotransferase [ALT], creatinine, and total bilirubin) on days 0, 2, 7 and 28 follow-

ing each immunization. Abnormal laboratory values were assessed until 28 days post immuni-

zations. Solicited AEs, consistent with previously reported systemic reactions [6], included

headache, fever (objective or subjective), chills, rigors, myalgia, arthralgia, nausea, vomiting,

diarrhea, abdominal pain, fatigue, malaise, headache, dizziness, cough, and a ’flu-like syn-

drome’. Unsolicited adverse events were collected by direct subject interview clarifying any

symptoms experienced beyond the solicited AEs at each encounter. Monitoring for serious

AEs (SAEs) was performed until the week 40 termination of the study.

Immunologic endpoints

Samples for measuring cell-mediated immunity (FluoroSpot assay) were collected pre-immu-

nization, 28 days after the third DNA (post-DNA) immunization, 112 days after the third

DNA immunization and within seven days prior to the ChAd63 boosting immunization (pre-

ChAd63), 27–28 days post-ChAd63 boosting immunization (1–2 days pre-CHMI), 35 days

post-CHMI and 90 days post-CHMI (final). Antibody levels (ELISA, IFA) were measured at

similar time points and at 14 and 28 days after each DNA immunization (S1 Fig in S2 File).

Nab to HuAd5 were measured [33] on the day of the ChAd63 boosting immunization, and 27

days post-boost (prior to CHMI).
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Enzyme-linked immunosorbent assay (ELISA) assay

The ELISAs using CSP and AMA1 were performed in the WRAIR Serology Laboratory [34,

35]: CSP repeat region (CSPrp), CS(NANP)6C, 0.25 μg/mL; CSP Full Length (CSPFL) 0.25 μg/

mL and CSP C-terminal region peptide (CSPf16) 2 μg/mL [36], AMA1 recombinant ectodo-

main 100 μg/mL [37, 38] plate antigens. The ELISA using plate antigen recombinant Pf3D7

TRAP ectodomain produced in HEK293 cells 1 μg/mL was performed at the University of

Oxford [39]. Antibody data are reported as end-point dilution at an optical density of 0.5

(CSP, AMA1) or IgG ELISA Unit (EU) titers (TRAP).

Immunofluorescence antibody assay (IFA)

IFAs used air dried PfNF54 sporozoites and Pf3D7 blood stages from the WRAIR Entomology

Branch. End-point titers were determined as the last dilution above the background that fluo-

rescent parasites were observed [40].

Neutralizing antibodies to HuAd5 (Nab)

Nabs to HuAd5 were measured as previously described [33].

Interferon-gamma FluoroSpot assay

Antigen-specific circulating peripheral blood mononuclear cells (PBMCs) secreting gamma-

interferon (INF-γ) were evaluated as previously described [6, 16]. Full length PfCSP and

PfAMA1 were covered by a series of 65 (PfCSP) and 153 (PfAMA1) 15mer amino acid (aa)

sequences overlapping by11 aa. PfCSP 15mers were combined into 9 individual peptide pools

(Cp1-Cp9), and PfAMA1 15mers were combined into 12 individual peptide pools (Ap1-

Ap12). Full length PfTRAP strain T9/96 (TT) and PfTRAP strain 3D7 (TD) were covered by

20mer peptides overlapping by 11 aa; 56 PfTRAP TT and TD peptides were combined into 6

individual peptide pools (TT1-TT6; TD1-TD6). PBMCs were stimulated with each individual

peptide pool in capture plates coated with both anti-IFN-γ and anti-Granzyme B, (whereas

ELISpot used plates coated with anti-IFN-γ alone), and activities expressed as spot forming

cells (sfc) secreting IFN-γ/106 PBMC. A positive response to each individual peptide pool was

defined as previously described [6]. A subject was considered positive to a particular antigen if

there was a positive response to one or more of the peptide pools for that antigen.

Statistical analyses

The ages in each group were analyzed using ANOVA followed by Tukey testing. Differences

in gender and race between groups was analyzed via Fishers exact test. Descriptive statistics

(percentage of study subjects, rate/immunization) were used to characterize the occurrence of

local and systemic solicited and unsolicited adverse events in immunized subjects. Measure-

ments with normal distributions expressed as means of continuous data (e.g., magnitude of

responses) were assessed using the Student’s t test (2-tailed), paired if pre-immunization values

were compared with post-immunization values, and unpaired if comparisons were made

between groups. For comparisons of the local and systemic AEs between each DNA vaccina-

tion and the ChAd63 boost, we utilized the exact McNemar’s test. The Mann-Whitney test was

used to compare times to parasitemia in the three subject groups.

Kaplan-Meier survival curves for each group showing the proportion of subjects remaining

free of parasitemia over time were tested for differences using the log-rank test. VE was

assessed by the log rank test, and by calculating the risk ratio of each treatment group and sub-

tracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. Of
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note, the proportional hazards assumptions were not satisfied excluding a hazards ratio calcu-

lation. A Mann-Whitney test was utilized to assess differences in the time to parasitemia in

non-protected subjects.

A mixed-effects linear model was used to compare geometric means for ELISA, IFA, and

FluoroSpot between different time points, adjusting for comparisons between the pre-

immune, pre-ChAd63 dose, and pre-challenge time points using Dunnette’s method. All anti-

body responses were log10 transformed. Univariate analysis was carried out to determine if

any of the immune measures were significantly different between protected and non-protected

subjects using a Shapiro-Wilk test for normality followed by a student’s t-test or Mann-Whit-

ney test. The Accelerated Failure Time model was used to determine the relationship between

immune measures and time to parasitemia (delay in onset of parasitemia indicating partial

protection), censoring the fully protected volunteers on day 28. Two-sided p = <0.05 was con-

sidered significant in all tests. Rank Spearman correlations [33] were used to examine the rela-

tionship of fold-changes of Nab titers and immune responses before and after ChAd63

immunization. A precise comparison between cellular immune responses in this trial and

those recorded in the prior HuAd5 trial could not be conducted because different assays were

used (FluoroSpot vs. ELISpot).

Results

Study flow

Participant flow is shown in Fig 1. Recruitment of vaccine recipients took place at the NMRC

Clinical Trials Center, Bethesda, MD between February–May 2018, and CHMI commenced

for vaccine recipients and for infectivity controls in October–November 2018. One hundred

and six healthy, malaria-naïve, civilian, and military adult men and women aged 18–50 years

were assessed for eligibility and 54 were excluded. The remaining 52 subjects who met all

screening criteria were randomly assigned to the CA vaccine group (n = 20), the CAT vaccine

group (n = 20) or the infectivity control group (n = 12). The demographics of each group were

approximately balanced in gender, age, and ethnic background, except age in the CA group

was significantly higher than in the CAT groups and infectivity controls (ANOVA followed by

Tukey testing) (p = 0.0123) (Table 1). Sixteen subjects each in the CA and CAT groups

received all scheduled immunizations and, with the 12 infectivity controls, were subject to

CHMI.

Safety and tolerability

Solicited adverse events (AEs). Subjects in the CA and CAT groups received a total of

118 DNA and 35 ChAd63 immunizations and were all included in the safety analysis (Fig 2,

and Tables 2 and 3). During the 7 days after each immunization, the total of solicited local and

systemic adverse events (AEs) designated as definitely, probably, or possibly related to immu-

nization were 185 in the CA group and 204 in the CAT group. In both groups, total numbers

of local and systemic AEs were similar after the first two DNA immunizations and lower after

the third DNA immunizations but were higher and affected more subjects after ChAd63

immunizations, especially after the ChAd63 CAT immunization, largely due to increased sys-

temic AEs. All solicited AEs resolved during the 7 days follow up period.

Post-DNA immunizations. Local Grade 1 and Grade 2/3 AEs in the CA group (total 82, 1.37/

subject) were similar (not statistically different) to those in the CAT group (total 53, 0.91/sub-

ject), due to increased frequency of tenderness and pain at the vaccination site. Most AEs were

mild (Grade 1) with fewer moderate (Grade 2); none were above Grade 2. The most frequent
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local AEs were tenderness, pain, and ecchymosis at the injection site. Systemic Grade 1 and

Grade 2 AEs in the CA group (total 28, 0.47/subject) were similar to the CAT group (total 39,

0.70/subject). In both groups, the most frequent systemic AEs were fatigue and headache. Local

and systemic AEs were similar to those post-DNA AEs in the DNA/HuAd5 trial [6].

Fig 1. Flow diagram of immunized and control subjects. Fifty-two subjects met all eligibility criteria and were randomly

allocated to the CA group (n = 20), CAT group (n = 20) and infectivity controls (n = 12). CA group: Prior to the ChAd63

immunization, 1 subject withdrew for personal reasons; prior to CHMI, 3 subjects were withdrawn: 1 due to a laboratory

abnormality thought possibly related to the study interventions, 1 due to relocation, and 1 due to suicidal ideation requiring

inpatient admission (unrelated to the study intervention). CAT group: Prior to the third DNA immunizations, 2 subjects

withdrew: 1 subject due to an unrelated SAE and 1 subject due to a medical issue (commencing latent tuberculosis treatment);

prior to ChAd63 immunizations, 2 subjects withdrew, 1 subject due to pregnancy, and 1 subject due to a SAE grade 4 laboratory

abnormality (neutropenia) likely attributed to benign ethnic neutropenia but possibly to study intervention.

https://doi.org/10.1371/journal.pone.0256980.g001

Table 1. Forty volunteers were enrolled into the immunization groups (20 group CA and 20 group CAT). 16 in each group remained through CHMI. Infectivity con-

trols (12) were enrolled later, in time for CHMI on week 28.

Immunized Group CA n = 20 Immunized Group CAT n = 20 Infectivity Controls n = 12

Male 11 (55%) 14 (70%) 8 (66.7%)

Female 9 (45%) 6 (30%) 4 (33.3%)

Mean Age ± standard deviation 33.1 ± 9.50 27.0 ± 6.47 26.0 ± 3.95

White or Caucasian 9 (45%) 12 (60%) 8 (66.7%)

Black or African American 6 (30%) 5 (25%) 2 (16.7%)

Asian 3 (15%) 0 1 (8.3%)

Native Hawaiian or Other Pacific Islander 1 (5%) 0 0

American Indian or Alaska Native 0 0 1 (8.3%)

Unknown/Other 1 (5%) 3 (15%) 0

There were no significant differences between groups, except the mean age of the CA group was significantly (ANOVA followed by Tukey testing) higher than the

infectivity controls.

https://doi.org/10.1371/journal.pone.0256980.t001
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Post-ChAd63 immunizations. The incidence of local and systemic AEs was similar in both

groups: local AEs (CA 11%; CAT; 13%), systemic AEs (CA 30%; CAT 42%). The most frequent

local AEs were tenderness and pain at the injection site. The most frequent systemic AEs were

fatigue, fever, chills, and malaise. These frequencies were similar or lower to those reported

using ChAd63-ME-TRAP as the priming dose followed by MVA -ME-TRAP boost [7]. The

number of severe systemic (Grade 3) AEs in the CAT group (21, 13% all AEs) appeared more

frequent compared to the CA group (3, 2%) (Fig 2). Severe AEs in the CA group were one

each of fatigue, nausea and vomiting; in the CAT group these were myalgia (5), chills (4),

arthralgia (2), fatigue (2), flu-like illness (2), headache (2), malaise (2), rigors (1), fever (1).

The exact McNemar’s test showed that the rate of local AEs was significantly higher after

the second DNA vaccination than that after the ChAd63 boost vaccination in the CA group

(p = 0.0129), with a non-significant difference between the first and third DNA vaccination

and ChAd63 boosting vaccination (p = 0.5811 and 0.0963, respectively). There were no signifi-

cance differences in the rates of local AEs between each DNA vaccination and the ChAd63

boost vaccination in the CAT group (p = 0.5488, 0.6072, and 0.5811, respectively). The rates of

systemic AEs were significantly higher after the ChAd63 boost vaccination compared to each

Fig 2. CA and CAT groups: Post-DNA and post-ChAd63 local and systemic adverse events. Horizontal bars

represent percentage of subjects affected by Grade 1, 2 or 3 AEs after DNA and ChAd63 immunizations. This was

calculated by dividing the total occurrences of each AE after all 3 DNA immunizations, or after the ChAd63

immunization by the total numbers of subjects that received each immunization: CA group: 60 subjects received three

DNA immunizations, and 19 subjects received one ChAd63 immunization; CAT group: 58 subjects received 3 DNA

immunizations, and 16 subjects received one ChAd63 immunization. Most adverse events (AEs) were mild to moderate

and were similar after each DNA immunization but were more frequent after ChAd63 immunization, especially in the

CAT group. Grade 3 AEs in the CA group after ChAd63 were one each of fatigue, nausea, and vomiting. However, in

the CAT group Grade 3 AEs were more frequent.

https://doi.org/10.1371/journal.pone.0256980.g002
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of the three DNA vaccinations in both the CA group (p = 0.0074, 0.0034, and 0.001, respec-

tively), and the CAT group (p = 0.0018, 0.0018, and 0.0001, respectively). There were no signif-

icant differences of local or systemic AEs, or both, between the CA and CAT groups after the

DNA or ChAd63 immunizations.

Solicited AE’s post-CHMI. Finally, although not an a priori objective, in a post hoc analy-

ses we assessed for differences in the rates of malaria associated AEs between the vaccines and

infectivity controls to assess for any disease modifying effects of vaccination. In all significance

testing that follows we employed the unpaired two-tailed t-test with normality assumptions

satisfied. We observed similar rates of AEs (mean/standard deviation) [5.9 (4.4) in vaccinated

and 7.1 (4.3) in infectivity controls (p = 0.45)]. Using limiting analysis to those who were para-

sitemic, the rates of AEs were 6.9 (4.1) and 6.7 (4.3) respectively in vaccinated and controls

(p = 0.9). This is consistent with the non-significant difference in time to parasitemia in

Table 2. Immunized cohort CA (solicited AEs): Numbers of volunteers experiencing local, and systemic adverse events (days 0–7 post each immunization)1,2.

Sign or Symptom DNA 1 (n = 20) (% of

vol’s)

DNA 2 (n = 20) (% of

vol’s)

DNA 3 (n = 20) (% of

vol’s)

ChAd (n = 19) (% of vol’s) Total AE’s (% of all AE’s)

Gr1 Gr2/3 Gr1 Gr2/3 Gr1 Gr2/3 Gr1 Gr2/3

LOCAL

Ecchymosis 3(15%) 0 4(20%) 0 4(20%) 0 2(11%)3 0 14(14%)

Induration 0 0 0 0 0 0 0 0 0

Pain 4(20%) 0 5(25%) 1(5%) 7(35%) 0 5(26%) 2(11%) 29(28%)

Parasthesia 0 0 0 0 0 0 0 0 0

Pruritus 1(5%) 0 2(10%) 1(5%) 2(10%) 0 0 0 6(6%)

Redness 0 0 0 0 0 0 0 0 0

Scaling 0 0 0 0 1(5%) 0 0 0 1(1%)

Swelling 0 0 0 0 0 0 0 0 0

Tenderness 9(45%) 0 11(55%) 1(5%) 7(35%) 0 9(47%) 2(11%)3 45(44%)

Warmth 2(10%) 0 3(15%) 0 1(5%) 0 0 0 7(7%)

Total Local AEs 24 0 33 3 22 0 16 4 102 (55%)

SYSTEMIC

Abdominal Pain 0 0 0 0 0 0 1(5%) 1(5%) 2(2%)

Arthralgia 1(5%) 0 0 0 0 0 1(5%) 1(5%)3 3(4%)

Chills 0 0 0 0 0 0 1(5%) 6(32%)3 8(10%)

Cough 2(10%) 0 0 1(5%) 2(10%) 0 1(5%) 0 7(8%)

Diarrhea 0 0 0 0 0 0 0 0 0

Dizziness 0 0 0 0 0 0 2(11%) 2(11%)3 4(5%)

Fatigue 0 1(5%) 2(10%) 1(5%) 0 0 4(21%) 6(32%)5 15(18%)

Fever 0 0 0 0 0 0 2(11%) 1(5%)3 3(4%)

Flu-like illness 0 0 0 1(5%) 1(5%) 1(5%) 1(5%) 3(16%)3 7(8%)

Headache 2(10%) 0 2(10%) 0 0 1(5%) 3(15%) 5(26%)3 14(17%)

Malaise 0 0 0 0 0 0 2(11%) 4(21%)3 6(7%)

Myalgia 2(10%) 1(5%) 0 0 0 0 1(5%) 3(16%)3 9(11%)

Nausea 1(5%) 0 0 0 0 1(5%) 0 1(5%)4 3(4%)

Regional adenopathy 0 0 0 0 0 0 0 0 0

Rigors 0 0 0 0 0 0 1(5%) 0 1(1%)

Vomiting 0 0 0 0 0 0 0 1(5%)4 1(1%)

Total Systemic AEs 11 4 4 3 3 3 21 34 83(45%)

Total All AEs 35 4 37 6 25 3 37 38 185(100%)

https://doi.org/10.1371/journal.pone.0256980.t002
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Table 3. Immunized cohort CAT (solicited AEs): Numbers of volunteers experiencing local, and systemic adverse events (days 0–7 post each immunization)1,2.

Sign or Symptom DNA 1 (n = 20) (% of

vol’s)

DNA 2 (n = 20) (% of

vol’s)

DNA 3 (n = 18) (% of

vol’s)

ChAd (n = 16) (% of vol’s) Total AE’s (% of all AE’s)

Gr1 Gr2/3 Gr1 Gr2/3 Gr1 Gr2/3 Gr1 Gr2/3

LOCAL

Ecchymosis 2(10%) 0 3(15%) 0 1(6%) 0 1(6%) 0 7(9%)

Induration 0 0 1(5%) 0 1(6%) 0 0 0 2(3%)

Pain 5(25%) 0 2(10%) 0 3(17%) 0 4(24%) 4(24%)4 20(25%)

Parasthesia 0 0 1(5%) 0 0 0 1(6%) 0 2(3%)

Pruritus 1(5%) 0 3(15%) 0 0 0 0 0 4(5%)

Redness 0 0 0 0 1(6%) 0 3(18%) 0 4(5%)

Scaling 0 0 0 0 0 0 0 0 0

Swelling 0 0 0 0 0 0 2(12%) 0 2(3%)

Tenderness 10(50%) 1(5%) 4(20%) 0 7(39%) 0 5(29%) 3(18%)4 34(43%)

Warmth 1(5%) 0 1(5%) 0 0 0 2(12%) 0 4(5%)

Total Local AEs 21 1 18 0 13 0 19 7 79(39%)

SYSTEMIC

Abdominal Pain 1(5%) 0 0 0 0 0 2(12%) 0 3(2%)

Arthralgia 0 0 1(5%) 0 0 0 0 6(35%)2 8(6%)

Chills 0 0 1(5%) 0 0 0 3(18%) 7(41%)2,6 13(10%)

Cough 0 0 1(5%) 0 1(6%) 0 1(6%) 2(29)3 5(4%)

Diarrhea 1(5%) 0 0 0 0 0 0 1(6%)3 2(2%)

Dizziness 0 0 0 0 0 0 0 1(6%)3 1(1%)

Fatigue 2(10%) 0 2(10%) 1(5%) 2(11%) 0 0 6(35%)5 15(12%)

Fever 0 0 1(5%) 0 0 0 1(6%) 5(29%)5 8(6%)

Flu-like illness 1(5%) 0 0 0 0 0 0 5(29%)5 7(6%)

Headache 4(20%) 0 1(5%) 0 2(11%) 0 3(18%) 8(47%)5 21(17%)

Malaise 1(5%) 0 1(5%) 0 2(11%) 0 0 6(35%)5 11(9%)

Myalgia 2(10%) 0 2(10%) 0 0 0 0 10(59%)5 15(12%)

Nausea 0 0 1(5%) 0 0 0 1(6%) 2(12%)3 5(4%)

Regional adenopathy 1(5%) 0 1(5%) 0 0 0 1(6%) 0 3(2%)

Rigors 0 0 0 0 0 0 1(6%) 2(12%)4 4(3%)

Vomiting 0 0 0 0 0 1(6%) 1(6%) 1(6%)3 4(3%)

Total Systemic AEs 13 0 14 4 7 1 15 71 125 (61%)

Total All AEs 34 1 32 4 20 1 34 78 204 (100%)

Solicited local and systemic adverse events were assessed starting on day of immunization (following receipt of vaccine) through 7 days post-immunization (Day 7).

AEs: Adverse Events; vols (volunteers); Gr (Grade) Severity classification for signs and symptoms: Gr1 = adverse event does not interfere with daily activities;

Gr2 = interferes with but does not prevent daily activities; Gr3 = prevents daily activities. All adverse events in the table are Gr1 (mild) unless noted otherwise.
1The local and systemic AEs are tabulated by subjects experiencing the AE according to their highest grade recorded in days 0–7 For those that experienced multiple

events for a specific AE at a specific dose, the most severe event was used.
2The total AE’s is the total number of all adverse events (i.e., subjects may have exhibited the same AE at a specific dose more than once).
3 = Gr2 (moderate);
4 = Gr3 (severe);
5 = both Gr2 and Gr3.

All local adverse events occurred in the arm ipsilateral to the injection site.
6 Includes an isolated grade 4 event (resolved).

https://doi.org/10.1371/journal.pone.0256980.t003
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subjects who exhibited parasitemia and suggests that the vaccine did not alter the clinical

expression of blood stage infection.

Laboratory AEs. There were few laboratory AEs related to immunization, as in the DNA/

HuAd5 trial (17). The numbers of laboratory AEs after ChAd63 immunizations were not sig-

nificantly different in both the CA (15) and CAT (11) groups compared to those after DNA

immunizations (S5 Table in S2 File).

Unsolicited AEs. Three possibly vaccine-related Grade 1 AEs were reported in the CA

group, one after the third DNA immunization (ecchymosis not at injection site) and two sys-

temic AEs post-ChAd63 (S6 Table in S2 File). Two possibly vaccine-related Grade 2 systemic

AEs post-ChAd63 were reported in the CAT group (S6 Table in S2 File). All resolved rapidly

without sequelae.

Vaccine efficacy (VE)

Eleven of 12 infectivity controls developed parasitemia detected by blood smear between days

9 and 14 (mean 11.7 days, standard deviation 1.7 days), comparable to previous trials [4, 6, 38];

the twelfth control remained parasite-free and was treated presumptively on day 29 post

CHMI. In the CA group, one of 16 (6%) immunized subjects did not develop parasitemia dur-

ing 28 days of follow-up (Table 4; Fig 3). The remaining 15 subjects became parasitemic

between days 10 to 17 (mean 12.0 days), a similar prepatent period to that of the DNA/HuAd5

CA trial [6]. In the CAT group, 5 of 16 (31%) immunized subjects did not develop parasitemia,

and the remaining 11 subjects became parasitemic between days 11 to 17 (mean 12.9 days), an

interval similar to that seen in the parasitemic subjects in the CA and infectivity control groups

(Table 4, Fig 4). There was statistically significant protection in the CAT group compared to

the infectivity controls (p = 0.0406) (Fig 4) and to the CA group (p = 0.0229) (log rank test)

(Fig 3), whereas the CA group was not different from the controls. There were no significant

differences in the three groups in time to parasitemia in those subjects that developed parasite-

mia (Mann-Whitney test).

VEs for each vaccine group calculated as 1 minus the risk ratio are shown in Table 4. VE in

the CAT group was 25% (95% CIs: -8.8 to 48.3, p-value: 0.0746] and in the CA group was -2%

(95% CIs: -26.5 to 17.3, p = 0.835).

Table 4. Microscopic smear results through day 28 post-CHMI.

CA

(N = 16)

CAT

(N = 16)

Infectivity Control

(N = 12)

Positive Blood

Smears, n (%)

15 (94%) 11 (69%) 11 (92%)

Negative Blood

Smears, n (%)

1 (6%) 5 (31%) 1 (8%)

Time to 1st

Positive Smear

(Days)

10.1, 10.9, 10.9, 10.9, 11.2, 11.8,

11.9, 11.9, 11.9, 12.0, 12.0, 12.5,

13.8, 13.9, 14.0

10.0, 10.9, 11.1, 11.8, 12.5,

13.4, 13.8, 13.9, 14.0, 14.5,

17.0

8.8, 9.9, 10.9, 10.9, 10.9,

11.0, 11.9, 11.9, 13.9. 13.9,

13.8

Mean (SD) 11.98 (1.16) 12.98 (1.98) 11.62 (1.68)

Median 12.99 13.42 11

Vaccine Efficacy

(VE), % (95% CI)

-2% (-26.5–17.3) 25% (-8.8–48.3) NA

p-value: 0.8352 p-value: 0.0746 NA

VE = (1—Relative Risk).

P-values were calculated by Cochran-Mantel-Haenszel method.

CI: Confidence Interval.

https://doi.org/10.1371/journal.pone.0256980.t004
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Immunogenicity

Enzyme-linked immunosorbent assay (ELISA). CSP: Post-DNA geometric mean CA

and CAT responses to full length CSP (CSPFL) and CSP repeat region (CSPrp) were low (Fig

5, S7-S9 Tables in S2 File), significantly rose post-ChAd63, were similar in both groups; and

significantly dropped by 90 days post-CHMI. One protected subject in the CA group had high

pre-immunization activities to the CSP terminal region (CSPf16), but not CSPFL or CSPrp,

that were unchanged post-DNA and post-ChAd63, and its significance is unknown. AMA1:

post-DNA geometric mean CA and CAT responses were low (Fig 6; S10 Table in S2 File), sig-

nificantly rose post-ChAd63 and dropped non-significantly by 90 days post-CHMI. TRAP:

post-DNA geometric mean CAT IgG EU titers were low (Fig 4, S11 Table in S2 File), signifi-

cantly rose post-ChAd63 and significantly dropped by 90 days post-CHMI (Fig 6; S11 Table in

S2 File). Post-ChAd63 responses of the CA and CAT groups to CSP and AMA1 were statisti-

cally similar (Mann-Whitney U Test), suggesting that the addition of TRAP to the CAT group

did not cause immune interference with these responses.

Immunofluorescence antibody assay (IFA). Sporozoites. Post-DNA geometric mean CA

and CAT responses to PfNF54 sporozoites were low (Fig 7; S12 Table in S2 File), significantly

Fig 3. Kaplan-Meier curve (CAT and CA). K-M curves depicting the CAT and CA groups.

https://doi.org/10.1371/journal.pone.0256980.g003
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rose post-ChAd63, and were higher (but not significantly) in the CAT group than the CA

group pre-CHMI. CA responses significantly and CAT responses non-significantly dropped

by 90 days post-CHMI.

Blood stages. Post-DNA geometric mean CA and CAT responses to Pf3D7 blood stages

were low (Fig 7; S10 Table in S2 File) and non-significantly rose post-ChAd63; responses sig-

nificantly rose by 35 days post-CHMI due to increases only in non-protected subjects likely

derived from transient blood stages expressing AMA1 (Fig 7; S13 Table in S2 File).

Using the Accelerated Failure Time model, there were no statistical associations (p =

>0.05) between ELISA (CSPFL, CSPrp, CSPF16, AMA1, and TRAP) or IFA (sporozoite and

blood stage) antibody levels and VE, similar to the lack of association between antibody levels

and VE for CSP and AMA1 in the DNA/HuAd5 CSP/AMA1 trial [6]. Two protected subjects

in the CAT group (v12, v24) exhibited the highest post-ChAd63/pre-CHMI ELISA responses

to AMA1, and v12 exhibited the highest responses in IFA to both sporozoites and blood

stages.

Fig 4. Kaplan-Meier curve [CAT and infectivity controls (IC)]. K-M curves depicting the CAT and infectivity controls (IC) group. In both K-M

curves data was censored at day 28. Parasitemia was based on microscopic examination of peripheral blood smears.

https://doi.org/10.1371/journal.pone.0256980.g004
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Cellular ex vivo FluoroSpot IFN-γ activities to CSP, AMA1 and TRAP

CA group. CSP pooled peptides. Post-DNA geometric mean responses (Fig 8; S14 Table in

S2 File) were similar in both CA and CAT groups, non-significantly rose and dropped pre-

ChAd63, and significantly rose post-ChAd63. Responses post-ChAd63 were similar in both

groups but more subjects were positive in the CAT group. Responses significantly dropped by

90 days post CHMI. Numbers of positive subjects rose post-DNA prime (3 doses), declined

pre-ChAd63, rose post-ChAd63 (10/16, 63%), and declined 90 days post-CHMI.

AMA1 pooled peptides. Post-DNA prime geometric mean responses (Fig 8; S15 Table in S2

File) significantly rose, were higher than CSP, were similar in both CA and CAT groups,

dropped pre-ChAd63, significantly rose post-ChAd63 and dropped by 90 days post CHMI.

Fig 5. CA and CAT cohorts: ELISA antibody responses to CSP. The box plots (see Statistical Analysis section for description) represent anti-CSP by ELISA

for all challenged subjects. The time points on the x-axis are described in Methods. Protected subjects are shown as larger, color-coded dots.

https://doi.org/10.1371/journal.pone.0256980.g005

Fig 6. CA and CAT cohorts: ELISA antibody responses to AMA1 and TRAP. The box plots (see Statistical Analysis section for description) represent anti-

AMA1 titers and anti-TRAP activities by ELISA for all challenged subjects. The time points on the x-axis are described in Methods. Protected subjects are

shown as larger, color-coded dots.

https://doi.org/10.1371/journal.pone.0256980.g006
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The numbers of subjects with positive responses were higher than CSP at all time points, espe-

cially post-ChAd63 (16/16, 100%).

All subjects had post-ChAd63/pre-CHMI responses to one or both antigens, but these were

low (<100 sfc/m) in 6/16 (38%) subjects. The single protected subject (v90) had the highest

responses to AMA1 at all time points, particularly post-ChAd63 (2549 sfc/m).

CAT group. CSP pooled peptides. Geometric mean responses were like the CA group;

post-DNA prime geometric mean responses were low (Fig 9; S14 Table in S2 File), but more

subjects had positive responses than the CA group; responses significantly rose post-ChAd63

and fell by 90 days post-CHMI. Numbers of positive post-ChAd63 (12/16, 75%) subjects were

slightly higher than the CA group.

Fig 7. Antibody responses by IFA to PfNF54 sporozoites and Pf3D7 blood stages. The box plots represent

responses to PfNF54 sporozoites and Pf3D7 blood stages. Responses of protected subjects are color-coded; not

protected (NP) subjects are open circles.

https://doi.org/10.1371/journal.pone.0256980.g007

Fig 8. CA cohort: IFN-γ FluoroSpot responses to CSP and AMA1. Ex-vivo T-cell activities by FluoroSpot Assay for

CSP and AMA1. The box plots represent CSP and AMA1. Summed IFN-γ T-cell responses against peptide pools are

spot forming cells per million PBMCs for all challenged subjects.

https://doi.org/10.1371/journal.pone.0256980.g008
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AMA1 pooled peptides. Geometric mean responses were also like the CA group; post-DNA

prime geometric mean responses (Fig 9; S15 Table in S2 File) were low, but more subjects had

positive responses in the CAT group, significantly rose post-ChAd63; and declined non-signif-

icantly by 90 days post-CHMI. As in the CA group, numbers of subjects with positive

responses to AMA1 were higher than CSP, post-ChAd63 (15/16, 94%).

TRAP pooled peptides. The DNA-T vaccine contained the Pf3D7 sequence, whereas the

ChAd63-T vaccine contained the PfT9/96 sequence. Responses to 3D7 TRAP and T9/96

TRAP were measured after the DNA and ChAd63 immunizations. Geometric mean responses

and numbers of subjects with positive responses to 3D7 TRAP (Fig 6B; S16 Table in S2 File)

were like T9/96 TRAP at all time points.

Responses to T9/96. Post-DNA prime geometric mean responses (Fig 9; S16 Table in S2

File) remained low, rose significantly post-ChAd63, and were almost unchanged post-CHMI.

Numbers of subjects with positive responses rose post-DNA, rose further post-ChAd63 (12/

16, 75%), and were almost unchanged post-CHMI.

Responses to 3D7. Post-DNA prime geometric mean responses (Fig 9; S16 Table in S2 File)

remained low, rose significantly post-ChAd63 as observed with T9/96, and were almost

unchanged post-CHMI. Numbers of positive subjects were also like Pf T9/96, including post-

ChAd63 (13/16, 81%).

One protected subject in the CAT group, v12, had the highest responses to CSP at all time

points including pre-CHMI. A second protected subject, v24, had the highest responses to

AMA1 at pre-CHMI. Protected subject v24 also had high responses to T9/96 and 3D7 TRAP,

but one non-protected subject had much higher responses.

Fig 9. CAT cohort: IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP. Ex-vivo T-cell activities by FluoroSpot

Assay for CSP, AMA1 and TRAP. The box plots represent CSP, AMA1 and TRAP (Pf9/96 and Pf3D7). Summed IFN-γ
T-cell responses against peptide pools are spot forming cells per million PBMCs for all challenged subjects.

https://doi.org/10.1371/journal.pone.0256980.g009
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There was no statistical association between FluoroSpot responses to CSP, AMA1 and

TRAP and VE (Accelerated Failure Time model, p =>0.05), mirroring the lack of association

of antibody levels, and unlike our previous DNA/HuAd5 CA trial [6] where there was an asso-

ciation between ELISpot responses to AMA1, but not CSP, and protection. The accelerated

time to failure model did not identify significant differences in cellular and antibody responses

controlling for the age variations shown in Table 1.

There were no significant differences in responses to CSP and AMA1 at any time point in

the CA and CAT group (using Mann-Whitney), and we conclude there was no evidence of

immune interference when TRAP was added to CSP and AMA1.

Effect of Nab responses to HuAd5 on immunogenicity

Geometric mean Nab titers to HuAd5 (S17 Table in S2 File) before and after ChAd63 were sta-

tistically similar (p = 0.36), confirming that cross reaction between HuAd5 and ChAd63 is low

or absent [14]. Nabs to HuAd5 did not show significant correlations with any immune mea-

sure (S18 Table in S2 File). In addition, there was no association between Nab titers prior to

ChAd63 boosts and protection (S3 Fig in S2 File), unlike the DNA/HuAd5 trial where all pro-

tected subjects had low (<1:500) Nab responses to HuAd5 [6].

Discussion

Our hypothesis for this trial was that adding a third antigen, ME-TRAP (CAT), to our original

two antigen (CA) formulation would increase efficacy, and this was achieved. The CAT formu-

lation provided significant protection against CHMI (p = 0.0406) compared to controls, with a

VE of 25%. The CAT group was significantly protective relative to the CA group as well

(p = 0.0229). Surprisingly, the CA formulation did not provide protection relative to the con-

trols, with a VE of -2%. In addition, there were no significant differences in time to parasitemia

in the parasitemic subjects in the three groups, indicating that vaccination had not affected

parasite multiplication rates in the blood. Others have suggested [41] that a delay to parasite-

mia is related to the per cent reduction in liver stage parasites and is therefore another indica-

tor of vaccine effectiveness. This suggests that protection in the CAT group appeared to be

based entirely on successfully eliminating the pre-erythrocytic (sporozoite and liver) stages of

the parasite. This is consistent with the proposed mechanism of protection, CD8+ T cells rec-

ognizing parasite antigens expressed on the surface of infected hepatocytes.

VE at the group level was not significantly associated with FluoroSpot IFN-γ responses to

CSP, AMA1 or TRAP, unlike our DNA/HuAd5 CA trial where we found a significant associa-

tion with ELISpot IFN-γ responses to AMA1, though not CSP. In the earlier ChAd63/MVA

ME-TRAP trial conducted in the UK, VE was associated with CD8+ T cells secreting IFN-γ,

though not ELISpot IFN-γ [17]. In the current trial, however, we generally observed compara-

ble overall geometric mean immune responses (ELISA, IFA, FluoroSpot) in the CA and CAT

groups, despite differences in VE.

Detailed examination of individual subjects may prove more revealing. In the prior DNA/

HuAd5 CA trial [10], three of the four protected subjects had the highest post-HuAd5/pre-

CHMI ELISpot and CD8+ T cell IFN-γ activities to either CSP or AMA1, or both antigens,

and one protected subject had the highest anti-AMA1 antibody concentration. In the current

DNA/ChAd63 trial, we found that the single protected subject in the CA group had the highest

post-ChAd63/pre-CHMI responses to AMA1, and two protected subjects in the CAT group

had the highest responses to CSP or AMA1, with one also showing high responses to TRAP.

However, three of the five protected subjects in the CAT group did not have noticeably higher

FluoroSpot IFN-γ responses to any antigen. Therefore, we are planning to determine the
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genetic restriction of responses to these antigens that may reveal differences between protected

and non-protected subjects. It is also possible that protective mechanisms in these subjects

may not be measured by FluoroSpot. In the DNA/HuAd5 trial, we identified CD4+ responses

to CSP in one protected subject that did not have elevated ELISpot responses. We plan to use

other methods, including flow cytometry/intracellular cytokine staining, to better investigate

their responses.

Therefore, based upon our prior clinical evidence with the DNA/HuAd5 vaccine that that

protection involved HLA-restricted class-I epitopes, we will investigate whether recognition of

Class I-restricted epitopes in CSP, AMA1 or TRAP are associated with protection, via predic-

tion of the binding affinities of CSP, AMA-1 and TRAP epitopes using the NetMHCpan algo-

rithm followed by confirmation of activity using multi-parameter FluoroSpot to analyze

cellular IFN-γ responses [10].

The absence of protection in the CA group was surprising, as the two-antigen formulation

had been protective in the prior trial. Replacing HuAd5 with ChAd63 may have adversely

affected immunogenicity, possibly reflecting differences in the level of innate immunity trig-

gered by the two different adenovirus vectors, with resulting effects on acquired, antigen-spe-

cific T cell responses [42–44]. We also considered differences in the antigenic inserts in the

recombinant DNA plasmids and ChAd63 vectors, which were not identical, unlike the DNA/

HuAd5 trial. We used the same DNA plasmids as before; however, the ChAd63 vectors were

provided by the University of Oxford and had minor differences compared to the DNA plas-

mids affecting the size of amino acid deletions in the repeat and C-terminal regions and the

addition of an FVO allele in the ChAd63 AMA1 insert. However, post-DNA and post-

ChAd63 antibody responses were similarly low using the 3D7 allele as the ELISA capture

antigen.

There were differences in the kinetics of FluoroSpot responses in the DNA/ChAd63 trial

and the kinetics of ELISpot responses in the DNA/HuAd5 trial. The FluoroSpot assay was

adapted from the ELISpot assay, but batches of peptides were manufactured separately, and

used slightly different capture plates (see Methods). We generally observed that overall geo-

metric mean FluoroSpot responses in the CA and CAT groups were low after DNA immuniza-

tions but were significantly boosted by the ChAd63 immunizations. In the DNA/HuAd5 trial,

post-DNA and post-HuAd5 ELISpot responses were similar and not significantly different

than pre-immunization responses. However, pre-immunization ELISpot responses measured

in the DNA/HuAd5 trial [6] were higher than pre-immunization FluoroSpot responses mea-

sured in the DNA/ChAd63 trial and may have biased the interpretation of post-immunization

boosting responses. Geometric mean post-DNA and post-ChAd63 FluoroSpot responses and

post-HuAd5 ELISpot responses were similar, but more subjects in the DNA/ChAd63 trial had

positive FluoroSpot responses to CSP and AMA1 in the CA, and CAT groups; this was particu-

larly the case of post-DNA responses, suggesting that re-manufacturing the DNA plasmids did

not adversely affect immunogenicity. In addition, the range of FluoroSpot responses to TRAP

(3D7 and T9/96) were like those reported previously [17]. We also found that there was no

antigenic competition when TRAP was added to the two-antigen CA vaccine. Therefore, we

suggest that differences in VE between the DNA/HuAd5 CA trial (27%) and the DNA/

ChAd63 CA trial are probably not related to potency of the vaccines, but rather differences in

HLA alleles expressed by subjects in both trials. This subunit vaccine approach requires opti-

mization of HLA-restricted CD8+ T cell responses. Therefore, the optimal approach to these

vaccines requires integrating genetically HLA restricted epitopes in different antigens to

ensure sufficient coverage in a genetically-diverse population.

Local and systemic AEs after DNA immunizations were similar between groups and those

in the DNA/HuAd5 trial [6]. However, after the ChAd63 boost, there was an increase in both
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the number and severity of AEs in the CAT group as compared to the CA group and as com-

pared to AEs after the HuAd5 boost [6]. Prior dosing regimens used the ChAd63 vector at

ranges between 1x108 to 2x1011 vp and the median numbers of AEs increased with dose [7].

The dose used in the CAT group (1.5x1011 vp) was higher than the CA group (1.0x1011 vp)

and is the most likely associated with the observed increase in AEs. Vaccine-induced immune

thrombotic thrombocytopenia (VITT) has been observed after widespread use of the

COVID19 ChAd0x1 vaccine [45], but this study used ChAd63 and there have been no reports

of VITT in clinical trials using this vector, although their future use may require scrutiny for

VITT.

The levels of pre-existing Nabs to HuAd5 were low (<1:500) in most subjects in the CA

and CAT groups and were not significantly boosted by the ChAd63 vaccine, confirming an

absence of cross-reactivity between HuAd5 and ChAd63. There was no association between

Nabs and effects on pre- and post-ChAd63 immune responses or with VE, demonstrating that

replacing the HuAd5 vector with ChAd63 effectively eliminated the concerns of potential dele-

terious effects of pre-existing Nabs observed in the DNA/HuAd5 trial [6].

How could the CAT vaccine be further improved? Since HLA-restricted responses are cru-

cial in determining protection using gene-based vaccines, we could rapidly screen sequences

of other antigens for possible protective epitopes and identify other antigens that could be

added to the CAT vaccine. We have previously used this approach of predicting T cell epitopes

that were confirmed in T cell assays for malaria epitopes [46]. It is also being used to success-

fully identify SARS-CoV-2 virus T cell specific peptides that were tested using PBMCs from

COVID-19 convalescent or acute respiratory distress syndrome (ARDS) patients [47] or SARS

[48, 49].

Prime-boost vaccines based on DNA and chimpanzee adenovirus constructs designed to

elicit protective T cell responses are being actively developed for a variety of cancers [50] and

infectious diseases including COVID-19 [51], Ebola [52–55], influenza [56], rift valley fever

[57], hepatitis C [58], Chikungunya [59], MERS [60] and HIV-1 [61]. It should be possible to

do the same for malaria, albeit the parasite has a much larger proteome and complexity of life

cycle, and a higher number of antigens may need to be included. We suggest that subunit

malaria vaccine approaches allow targeted immunization by confirming protective HLA-

restricted Class I epitopes that elicit host protective immunity.

Limitations

This study is limited by the small sample size. Future studies should aim to replicate these find-

ings with a large sample size and well-balanced baseline characteristics. T cell IFN-γ responses

were low or negative in many non-protected subjects probably due to genetic-restriction of

responses to these three antigens, indicating that the addition of more antigens to broaden

HLA-coverage may increase protection. Identification of suitable antigens may require screen-

ing of matched HLA-restricted epitopes to increase vaccine coverage of diverse HLA alleles.
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