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Maintaining accuracy and robustness has always been an unsolved problem in the task of power grid branch parameter
identification. Therefore, many researchers have participated in the research of branch parameter identification. The existing
methods of power grid branch parameter identification suffer from two limitations. (1) Traditional methods only use manual
experience or instruments to complete parameter identification of single branch characteristics, but they are only used to identify a
single target and cannot make full use of the historical information of power grid data. (2) Deep learning methods can complete
model training through historical data, but these methods cannot consider the constraints of power grid topological structure,
which is equivalent to identifying connected power grid branches separately. To overcome these limitations, we propose a novel
multitask Graph Transformer Network (GTN), which combines a graph neural network and a multiattention mechanism to
construct our model. Specifically, we input the global features and topology information of branch nodes into our GTN model. In
the process of parameter identification, the multihead attention mechanism is used to fuse the branch feature information of
different subspaces, which highlights the importance of different branches and enhances the ability of local feature extraction.
Finally, the fitting and prediction of each branch feature are completed through the decoding layer. The experiment shows that our
proposed GTN is superior to other machine learning methods and deep learning methods and can still realize accurate branch
parameter identification under various noise conditions.

1. Introduction

Accurate identification of branch parameters is very im-
portant for the development of modern power systems [1].
Solving the problem of intelligent identification of steady-
state branch parameters of the power grid, realizing efficient
deployment of power grid regulation and control system, is
conducive to providing guarantee for online safe and stable
operation of large power grid [2]. Stable and effective man-
agement in power systems depends on accurate prediction of
future branch parameters in different time ranges. Most of the
existing power grid branch parameter identification methods
are mainly model-driven, with relatively low identification

accuracy and poor reliability. Reliable and effective power grid
branch parameter identification technology can be applied to
the online application of transmission systems such as state
estimation and power flow calculation, so as to improve the
reliability of power grid transmission and the credibility of
dispatching auxiliary decision-making and support the cor-
rectness of power grid analysis and decision-making. This
greatly improves the practical level of the whole application of
dispatching automation systems and is of great significance to
promote sustainable development and harmonious society.
For many years, researchers have put forward various
methods of branch parameter identification. These methods
are mainly divided into four categories. (1) Theoretical
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calculation method: in the long-term practical work, the line
parameters are obtained from the design manual and
product catalog according to the experience value or ap-
proximate calculation. However, due to environmental
factors and changes in operating conditions, theoretical
calculations cannot reflect the changes in the real parameters
of transmission lines. (2) Parameter measurement method:
the transmission line parameter measurement method is
used to test the transmission line on the spot by using
additional measuring devices in the state of power-on or
power-off. (3) Estimation of line parameters based on
SCADA (Supervisory Control and Data Acquisition): the
line parameter estimation based on SCADA uses the field
operation data, which is unified identification and estima-
tion of the line parameters of the whole network. However,
this method is difficult to measure the influence of mea-
surement errors at different locations on the estimation
accuracy of parameters of a single line and the mutual in-
fluence of parameter estimation results of different lines. (4)
Estimation of line parameters based on PMU (Phasor
Measurement Unit): the line parameter identification based
on PMU can decouple the line to be identified from other
elements of the power grid and then separate decoupling,
thus effectively identifying individual line parameters.
However, at present, the coverage of PMU devices is not
wide enough and the cost of PMU devices is too high, so this
method has not been popularized.

In the research of parameter identification, there are many
works combined with machine learning. In order to maintain
the stability of the power grid, Eskandarpour and Khodaei [3]
proposed to make use of knowledge discovery methods and
statistical machine learning for predicting the risk of failures for
components and systems. Wang et al. [4] chose Random Forest
(RF) as the basic classifier of AdaBoost to carry out feature
construction engineering, which improved the detection ac-
curacy of the model. Although machine learning approaches
have witnessed the progress of power system branch parameter
identification, there are some issues that need to be tackled in
ML-based parameter identification for the branch of power
systems. First of all, the robustness of the traditional least
square method is not reliable. When the input data contain too
much noise or introduce noise in the measurement process, the
identification result of the least square method will become
very poor. Secondly, methods like support vector regression
(SVR) increase the dimension of input data and carry out
predictive regression on input data in high-dimensional space.
However, SVR depends on the selection of parameters and
kernel function and is greatly affected by data. Finally, an
integrated method like RF, which determines the final pre-
diction result by voting of each tree, but when regression is
carried out, it is difficult to get the final prediction result, cannot
make predictions beyond the range of training set data, which
may lead to overfitting in some specific noise data modeling,
and this problem has been verified [5].

In recent years, deep learning has developed rapidly.
Particularly, deep neural networks have made great progress
in the fields of computer vision, natural language processing,
and speech recognition [6]. The convolution kernel used in
the traditional deep neural network is Convolutional Neural
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Networks (CNN) [7], and the convolution method is shown
in Figure 1(a). The processed data are Euclidean data such as
image data [8] and speech data [9]. However, as far as the
power transmission system is concerned, the number of grid
nodes is numerous and irregular, and the data structure is
shown in Figure 1(b). For such non-Euclidean data, there are
few deep learning models that can be applied to deal with
this type of data. Researchers tried to use a fully connected
neural network (FCN) to deal with the task of power grid
branch parameter identification, thus incorporating massive
historical data to predict the development trend of power
grid branch parameters. However, the general FCN model
cannot consider the topological structure of transmission
systems, and with the increase of the number of layers, the
prediction results are easy to be overfitted, and the model
becomes difficult to train, which limits the performance of
the model and makes the prediction results inaccurate.

In this work, we aim to accurately identify the param-
eters of the power grid branches by adopting the latest graph
neural network model [10] and the multihead attention
mechanism [11]. Instead of stacking multiple hidden layers
between input and output, this work adopts the structure of
Graph Transformer [12]. This method can take the adjacency
matrix of graph structure data and graph data as input and
completely depends on the attention mechanism to describe
the relationship between input and output. The introduction
of an attention mechanism makes the proposed model pay
more attention to the global feature information and avoids
the repeated convolutional process of deep nets, leading to
the proposed model better expresses branch information.

The main contributions of this paper are as follows:

(i) We propose a novel multitask Graph Transformer
Network (GTN). The encoding layer of the network
is constrained by the grid structure, and the mul-
tiattention mechanism is used to consider the fea-
ture information of different branches. Based on
fusing global information, important feature in-
formation and node information are fully captured.
As far as we know, we are the first to use Graph
Transformer to capture features from power
transmission systems and apply them to the task of
power grid parameter identification.

(ii) The decoding layer uses the fully connected layers as
the decoding structure and decodes the branch
feature information fused in the coding layer
according to the task information of different
branches. The module can decode multiple branches
in the power grid loop at the same time. The ex-
perimental results of our proposed model have
higher accuracy and robustness because of the
combination of topology information and global
information.

(iii) Compared with the machine learning models and
deep learning models, the model we proposed has
better performance. In addition, the Graph Trans-
former structure performs well in the face of noise
and data loss.
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FiGure 1: Euclidean structured data and non-Euclidean structured data. (a) Schematic diagram of CNN convolution. (b) Graph structured

data.

The rest of this paper is arranged as follows. In Section 2,
we introduce the development history of the branch pa-
rameter identification in the past decades. In Section 3, we
introduced how to combine a graph neural network with the
multihead attention mechanism. In Section 4, we introduce
and analyze the experimental results. Finally, in Section 5, we
summarize the above work and point out the shortcomings
of this work.

2. Related Work

2.1. Method for Acquiring Transmission Line Parameters.
In the past decades, researchers have put forward various
methods to solve the problem of parameter identification of
the power grid branches. These studies can generally be
divided into the following four categories:

(1) Theoretical calculation method: the theoretical cal-
culation of line parameters is based on Carson’s
model [13]. The resistance, reactance, and suscep-
tance are calculated according to the formula by
using the physical parameters such as self-geometric
mean distance, mutual geometric mean distance, and
wire material of the line and combining with the
external environmental factors such as soil moisture
and air temperature. However, the electromagnetic
model of transmission lines is greatly simplified by
the theoretical calculation method, the influence of
uncertain factors such as temperature and wire sag
[14] does not be considered, and the calculation
results are inconsistent with the actual situation. In
addition, due to environmental factors and changes
in operating conditions, theoretical calculations
cannot reflect the changes in real parameters of
transmission lines.

(2) Parameter measurement method: the transmission line
parameter measurement methods are a group of
technologies to test the transmission line on the spot by
using additional measuring devices in the state of
power-on or power-off, which can be divided into
instrument methods, digital methods, and injection
measurement methods. Instrument methods realize
the measurement of various states of the line by using

various instruments such as voltmeter, ammeter,
power meter, and frequency meter under the power-oft
state and then calculating the parameters according to
the corresponding formula after manual reading. Crotti
et al. [15] proposed to establish a new measurement
framework, which was used to realize the traceability
measurement of PQ parameters in the power grid
system when there was interference from the power
grid system. However, due to the instrument problems,
it is still impossible to accurately identify the param-
eters. The principle of the instrument method is simple
and easy to operate, but there are inaccuracies in
human readings and environmental interference.
Digital methods improved the experimental data of
instrument method by using a single-chip micro-
computer and digital signal processing technology and
improved the measurement accuracy, but it does not
fundamentally change the shortcomings of traditional
measurement methods in actual voltage operation
environment. Injection measurement methods can be
implemented when the electrical powers are “oft” or
incomplete “on.” Based on the time pulse provided by
GPS, it measures the manually added synchronous
voltage and current signals and calculates the corre-
sponding parameters through the transmission line
model. Nezhadi et al. [16] proposed a new method to
use stationary wavelets to denoise current and voltage
signals. In the frequency range where signal energy is
greater than noise energy, accurate impedance esti-
mation can be realized by using signal injection. Ye
et al. [17] declared that asynchronous time should be
introduced into two-terminal fault record information,
and the asynchronous time should be solved by the
electric quantity constraint equation. Based on the
modified synchronized voltage and current phasors at
both ends, the steady-state parameters of the trans-
mission line were determined to achieve the result of
parameter identification. The injection measurement
method is complicated to operate, which requires
additional experimental devices, and it is difficult
to reflect the true conditions of line parameters
under different working conditions and operating
environments.



(3) Estimation of line parameters based on SCADA:

state estimation is an important part of the Energy
Management System (EMS), which often leads to
unsatisfactory estimation results due to inaccurate
parameters, so SCADA data is used to estimate line
parameters. It mainly includes two categories: aug-
mented state estimation and measurement residual
sensitivity analysis. Debs’s work [18] proposed a
recursive filtering type algorithm, which proved the
feasibility of parameter estimation in power systems.
Do Coutto Filho et al. [19] put forward an offline
processing method for branch parameters of the
suspicious power grid, which could complete branch
parameter identification by temporarily eliminating
the participation of suspicious parameters in the
process of state estimation until the suspicious pa-
rameters are corrected. Stacchini de Souza et al. [20]
proposed a method of network parameter estimation
and correction which is based on a genetic algorithm,
combined the genetic algorithm and branch power
to complete system state estimation. In Chen et al.
[21], a method based on long short-term memory
(LSTM) and autoencoder (AE) neural network is
introduced to assess sequential condition monitor-
ing data of the wind turbine. Parameter estimation
based on SCADA data uses the field operation data to
identify and estimate the line parameters of the
whole network uniformly. Because the dimension of
state quantity is increased, parameter estimation is
carried out by equation redundancy, which may lead
to numerical instability. In addition, measurement
configuration needs to be fully considered to satisfy
observability, and it is difficult to measure the esti-
mation accuracy of measurement errors at different
locations for a single line parameter.

(4) Estimation of line parameters based on PMU:

compared with theoretical calculation, traditional
measurement, and state estimation, PMU mea-
surement can decouple a single line from the whole
network and identify it independently. Ding et al.
[22] proposed the method of window sliding total
least squares, PMU data of sliding window are used
for parameter identification, and the influence of
white noise is effectively overcome by minimizing
the sum of squares of errors in the window. Zhao
et al. [23] developed and implemented an online
PMU-based transmission line (TL) parameter
identification system (TPIS), which could consider
transmission tower geometries, conductor dimen-
sion, estimates of line length, conductor sags, and so
on to improve the accuracy of parameter identifi-
cation. Asprou and Kyriakides [24] reported that a
methodology was proposed for identifying and es-
timating the erroneous transmission line parameters
using measurements provided by PMU and esti-
mated states provided by a state estimator. However,
in the process of practical application, there are
inevitable errors in PMU measurement data, and

Complexity

there is a certain gap between the identification
results and the theoretical values, which leads to the
problem of credibility and availability of the iden-
tification results. Therefore, the related factors af-
fecting the identification results need to be further
studied.

2.2. Graph Neural Network. In recent years, graph neural
network (GNN) has demonstrated its efficiency in social
networking, link prediction, traffic flow prediction, and
other fields. To some extent, parameter identification of
transmission lines in power transmission systems can also be
regarded as a special graph node regression prediction. Zhou
et al. [25] showed that when dealing with graph structure
data, graph convolution neural network had unique ad-
vantages, which could consider both node features and node
topology, and aggregated the information of adjacent nodes
by using graph convolution kernel, and these convolution
kernels could extract local features by end-to-end training.
In other words, through the adjacency matrix constructed
previously, the graph convolution neural network can obtain
local features by aggregating the feature information of
neighboring nodes.

Graph convolution neural network was first proposed by
Scarselli et al. [26], in which the computation of graph
convolution is defined in Fourier domain, while Kipf and
Welling [10] proposed that first-order ChebShev polynomial
could be used to generate graph convolution kernel ap-
proximately, which greatly improved the computational
efficiency of graph convolution neural network. However,
the feature information obtained by these methods still
depends on Laplace feature related to a graph structure. In
recent years, GAT [27] (graph attention network),
GraphSAGE [28] (graph sample and aggregate), and other
graph neural networks had appeared one after another. They
have a common feature; that is, they assign different im-
portance to different nodes in the neighborhood by using the
attention mechanism and have achieved relatively good
results. In addition, when FCN is used to process data, the
number of layers of the model is too shallow to train and fit
the desired model effect, while the number of layers of the
model is too deep to easily lead to overfitting. This inspired
us to use the attention mechanism to create a model; that is
to say, we can use the attention mechanism to describe the
relationship between input and output completely instead of
traditional convolution. This can avoid overfitting of the
model due to too deep layers, and the attention mechanism
makes the model itself can pay attention to important nodes
and feature information through learning.

2.3. Multihead Attention Mechanism. The structure of the
multihead attention mechanism was first proposed by
Vaswani et al. [11], and it was applied in natural language
processing (NLP) [29, 30] firstly. Through the attention
mechanism, the network emphasizes the regions of interest
in the way of dynamic weighting and suppresses those re-
gions with irrelevant backgrounds at the same time. With
the weak improvement of CNN’s indicators in the fields of
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visual inspection and classification in recent years, the
multihead attention mechanism, as a convolution structure
different from CNN, shines brilliantly in the field of com-
puter vision. For example, Dosovitskiy et al. [31] put forward
the ViT model, abandoned the traditional CNN model, fully
utilized the attention mechanism, applied Transformer to
image classification, and achieved good classification results.
Carion et al. [32] combined the common CNN and trans-
former architecture, took CNN as the backbone to learn the
2D representation of the input image, then used the
transformer to supplement the position encoding of the
input image, and finally directly predicted the detection
results. Based on the above work, DETR (Detection
Transformer) model was proposed. Zheng et al. [33] pro-
posed a semantic segmentation model named Segmentation
Transformer (SETR), which used Vision Transformer (ViT)
as the encoder of images and then added a CNN decoder to
complete the prediction of semantic graphs. The above
papers show that dividing the model into multiple headers
and forming multiple subspaces can make the model pay
attention to different aspects of information. In other words,
multihead attention can make the network capture richer
feature information and finally combine the outputs by
concatenating. In this paper, the multihead attention model
can obtain different position information from multiple
subspaces to obtain more comprehensive information.

2.4. Multitask Learning. Multitask learning is a kind of
transfer learning, which aims to use the knowledge learned
from other tasks in the target task when doing multiple tasks,
so as to improve the effectiveness of the target task [34, 35].
Multitask learning can make the model adapt to multiple
task scenarios, which can effectively increase the anti-in-
terference ability of the model. There are two modes of
multitask learning, as shown in Figures 2(a) and 2(b). They
are hard sharing of hidden layer parameters and soft sharing
of hidden layer parameters, respectively.

(i) Hard sharing of parameters: multiple tasks share the
same hidden layer of the network but do different
tasks near the output of the network

(ii) Soft sharing of parameters: different tasks use dif-
ferent networks, but the network parameters of
different tasks use L1 regularization or L2 regula-
rization as constraints to encourage parameter
similarity

The model in this paper adopts parameter hard sharing,
which was beneficial to reduce the risk of overfitting [36].
When the tasks we learn at the same time are more, the
model we proposed can capture the same representation of
the more tasks, resulting in an overfitting risk. Through
multitask learning, we hope to predict the parameters of
multiple branches at the same time and avoid overfitting
through this learning method, so as to improve the ro-
bustness of the model.

3. Proposed Algorithm

In this section, we first define the branch parameter iden-
tification of transmission systems. Then, we introduce the
technical details of our proposed model.

3.1. Problem Statement. Given the features of the power grid
branch, the goal is to predict the true values of line sus-
ceptance b and branch conductance g of each branch. In this
paper, a multitask Graph Transformer Network is designed
to achieve that. By connecting the transformer nodes in the
power system, we construct a graph G(V, E) composed of
vertex set V and edge set E representing the connectivity
between points. Assuming that the power transmission
network has N transformer nodes, for line k, we express the
input features of the distribution system as follows:
(PK, Pk Qk, Qk Uk, Uk ¥¥) € X, in which i and j represent
the nodes at both ends of the k th branch, then P¥ and P*
represent the active power at both ends of the k- th branch,
and similarly, Q¥ and Q’J‘ represent reactive power at both
ends of the branch while U and Uk represent both ends of
the branch, and y* represents the susceptance to the ground
of the k-th branch. According to equations (1) and (2), which
are derived from 7m-type equivalent circuits, we can calculate
the label values of line susceptance b and branch conduc-
tance g.

(Pre P[P (ot ]
o )

k
g =

(1)
et o[t (e

(e emy e (o) T])
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The inputs of our proposed multitask Graph Trans-
former Network are feature matrix X € R™’ and adjacency
matrix A. The features of the input data contain N nodes,
and each node contains the above seven features. If a power
transmission system topology contains M branches, each
branch needs to calculate the true value of the corresponding
line susceptance b and branch conductance g.

3.2. Traditional Machine Learning Model. Traditional ma-
chine learning models can be used for parameter identifi-
cation of transmission system branches. The most typical
one is the linear regression method, which minimizes the
sum of squares of errors. Dividing the data into the training
set and the test set, calculate the sum of squares Q of the total
error of the training data and get the linear regression model.
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FIGURE 2: Two learning modes of multitask learning. (a) Hard parameter sharing for multitask learning. (b) Soft parameter sharing for

multitask learning.

The linear regression model is applied to the test set to verify
the quality of the model. As far as the linear regression
method is concerned, its effect is very close to the true value
without noise and other types of interference, such as node
data loss. However, as far as the actual transmission system is
concerned, noise interference and data loss often occur in
the process of collecting data. When this happens, the linear
regression model becomes unsuitable because of its poor
robustness. When there is a little noise in the data, the
prediction results will deviate greatly. In addition to the
linear regression method, we will compare with some
classical machine learning methods, including SVR (support
vector regression), RF (Random Forest), and deep learning
method FCN, to show the superiority of our proposed
model.

3.3. Overall Framework. Our goal is to learn more fusion
information by making full use of local and global structures,
so as to make the prediction results more robust and
accurate.

As shown in Figure 3, the multitask Graph Transformer
consists of two parts: the encoding part and the decoding
part. In Figure 3 encoding part, it takes the feature 4’ and
adjacency matrix A of graph structure data of power grid
topology nodes as inputs and pays attention to different
branch information and feature information in different
subspaces by using the multihead attention mechanism.
Finally, we concatenate these different subspaces, so that the
information learned before is fused and input into the
coding part. The structure of the coding part is shown by the
decoder in the figure, which is composed of m parallel two-
layer fully connected layers, and m represents m branches in
the distribution system, using the branch network of dif-
ferent branches to fit the characteristics of different branches
and achieve the purpose of accurate identification of branch
parameters.

3.4. Application of Multiattention Mechanism. The multi-
head attention mechanism has played an important role in
many fields, including NLP and computer vision. Therefore,
we consider applying the multihead attention mechanism to
the parameter identification of transmission system branches
combined with a graph neural network. The specific imple-
mentation of the multihead attention mechanism is shown in
the encoder part in Figure 3. Firstly, the node feature i’ and
the adjacency matrix A are considered as input data:

1 ( 1)
qc(z) _ch)hl +bc(q’ (3)
0 = WO + 5 @

1) 1)

" ik

(xc,ij 0) (5)
ZuéN(z <qcz > k >

VO = WO 1 50, ©)

According to equations (3)-(6), i’ is the output features
of each layer. When =0, h° is the original input data. In
order to introduce the input data into different subspaces,
firstly, the target node features are drvrded into source node
features h and pointing node features h'" accordlng to the
ad)acency matrix. The source node feature h and the
pointing node feature h are, respectively, converted into
the query vector q and the key vector k(l by using linear
wh Wcl,z, b l), and b") ok are

0.1 -
exp (q"k/V/d ) represents the ratio of dot product functrons
of gand k to Vd, d represents the number of hidden neurons

functions. In the above formula, W

all trainable weight coefficients. In equatron (5),<q

in each subspace (that is, the head), and (x represents the

attention coefficient of a branch relative to the central node
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in the c-th subspace. In addition, as shown in equation (6),
the node-pointing feature hj(»l) is transformed into a value

vector Vc(l]) by using a linear function.

PO G0
hi" = CILZ (“c,ich,j) > (7)
jeEN;
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~(1
B =1, ©)
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In equation (7), || represents the operation of concate-
nating multiple subspaces. At first, the value vector Vc(l; is
multiplied by the attention coefficient, and then the infor-

mation pointing to the node feature j is transmitted to the
source node i according to the adjacency matrix A to form

=~
the source node feature /; ". Then, the source node feature

h" is transformed into the source node feature r” by using
a linear function in equation (8), and the source node feature

hi(l“) of the next layer is obtained by adding the new source

node features 7" and k" in equation (9). The above is the
realization process of the multiattention mechanism.

3.5. Multitask Regression Model. In our proposed GTN
model, we use a hard parameter sharing mechanism, and the
specific implementation of the multitask regression model is
shown in the decoder part in Figure 3. According to Figure 3,
we can find that the decoding part of the multitask Graph
Transformer Network model proposed in this paper realizes
decoding through multiple two fully connected layers. The
encoding layer in the figure fuses rich feature and semantic
information in different subspaces by taking the topology of
power grid and node feature information as input and fuses
the feature information of different subspaces by concate-
nating, which ensures that the encoding layer fuses global

information as the input of the decoding layer. As a branch
of the power grid system, each branch has its own char-
acteristics, which realize decoding through the fully con-
nected layers and complete the task of parameter
identification of power grid branches. Each branch network
can fit the branch characteristics according to the branch
characteristics, so as to achieve the purpose of accurate
prediction.

4. Experiment Result

4.1. Dataset. Our data set comes from the actual grid line
data collected by China Electric Power Research Institute,
and the collection frequency is once every minute. The data
set contains 8460 sets of data; there are 17 lines that need to
be identified. We selected data of seven days, including 6000
sets of data as our training data, 1000 sets of data as test data,
and the remaining 1460 sets of data as verification data.
Figure 4 shows the topology information of collected data,
which shows the connection mode between nodes.

4.2. Baseline and Noise Settings. In order to prove that our
model can simulate the branch parameters which are closest
to the real results under various error conditions, we added
three kinds of noises to the original data and compared the
identification results without noise and with noise as follows:
(1) Gaussian noise: according to the method proposed by
Brown [37], we added two kinds of Gaussian noises to the
node features, which made their SNR reach 50 dB and 30 dB,
respectively. (2) Node loss: in the actual distribution system,
there are often cases where a node line is damaged and data
cannot be collected. In order to simulate this problem in
model training, we decided to simulate the loss of grid nodes,
randomly select one node from each group of data, and set
its characteristics to 0. (3) Loss of node features: in the
process of collecting circuit data, it is common for a sensor to
be damaged, and it often happens that a branch current or
voltage cannot be collected. In order to simulate the



FiGure 4: Topological structure diagram of transmission system
power grid branch.

occurrence of this situation, we randomly select one of the
seven features of each group of data and set it as 0, so as to
compare the situation that no data can be collected during
the actual operation of the power grid.

In order to prove the validity of our proposed model, we
adopt the following methods as baselines:

(1) Linear regression: the least square method is usually
used as a common method in engineering. Because
of its simple principle and a small amount of cal-
culation, the least square method is often used in
engineering. However, because its parameters are
small and the global information cannot be con-
sidered, when a considerable amount of noise ap-
pears in the data set, the accuracy of parameter
identification by the least square method will drop a
lot, so its robustness is poor and it cannot achieve the
purpose of accurately identifying branch parameters.

(2) SVR: support vector regression machine is a machine
learning method for regression tasks based on a
support vector machine. Similarly, the kernel function
is used to map features to high-dimensional space and
regress them, but it partly depends on the integrity of
training data and the choice of the kernel function.

(3) RF: Random Forest is a classical algorithm in ma-
chine learning. It is a combination of multiple de-
cision trees and depends on each decision tree to
make a prediction about the target task. Finally, the
final average value is obtained by averaging the
predicted values of all decision trees. Its advantage is
that, for unbalanced data, it can balance errors and
maintain prediction accuracy when features are lost.
Similarly, when the Random Forest is faced with
noisy data, it will be overfitted, which cannot achieve
the purpose of accurate identification.

(4) FCN: fully connected neural network is one of the
most commonly used neural networks in deep
learning. It can constantly update the weights of its
neurons by training and learning to identify different
branch parameters. But for fully connected neural
networks, overfitting is a fatal weakness. In the face
of missing data or loud noise, the performance of the
model cannot be fully developed.

4.3. Evaluation Indicators and Parameter Settings. In the
model evaluation, it is usually necessary to determine the
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evaluation index to measure the quality of the model ex-
periment. In order to evaluate the quality of our model,
considering that our task is a kind of linear regression, we
decided to use MAE, MSE, and RMSE as evaluation indexes
of the model.

MAE is also called mean absolute error, and its calcu-
lation formula is as follows:

. (10)

LR TGP
MAE = m Z|ytelst = Fres
i=1

MSE is also called mean square error, and its calculation
formula is as follows:

m
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RMSE is also called root mean square error, and its
calculation formula is as follows:
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where m represents the number of test sets, yfe’gt represents
the true value of the i-th branch in the test set, and 7,
represents the predicted value of the i-th branch in the test
set. In the comparison diagram of model training in Figure 5,
we choose MAE and RMSE as evaluation indicators.

The parameters of the model are set as follows: (1)
LinearRegression: as a basic algorithm commonly used in
parameter identification, it will be included in the basic
model. (2) SVR: the radial basis convolution kernel (RBF) of
SVR is set with C=100 and y = 0.1 and SVR in the scikit-
learn library [38] in python is used to realize the support
vector regression machine in this paper. (3) RF: the number
of trees is set to 300, the minimum sample number of each
leaf is set to 35, and the minimum sample number required
for splitting is set to 3. After five cross-verifications, we
determined the superparameters of SVR and RF. (4) FCN: as
the most commonly used baseline model in deep learning, in
order to prevent overfitting, our fully connected neural
network has two layers, and its hidden neurons are 512 and
256, respectively. In the FCN model, we use the linear ac-
tivation function (ReLU) as the activation function.

RMSE is used as the evaluation index in Tables 1 and 2.
By comparing the experimental data table and combining
the model training diagram, we can find the following.

When there is no noise or little noise, the least square
method performs well and is simple and easy to use.
However, the actual situation is often not ideal. We can find
that the accuracy of the linear regression method drops
rapidly when the noise is added to the experimental data;
especially when the signal-noise ratio reaches 30dB, the
effects of other models become rather poor. As for other
machine learning algorithms, although some models per-
form well in some of the above tasks, the accuracy of these
models is not up to our requirements, which is due to the
limitations of the machine learning model itself. However,
on the basis of considering the relationship between
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FiGuRe 5: Fitting curves of FCN and GTN on target parameters under different noise correction conditions. RMSE and MAE are selected by
indicators. (a-f) Line susceptance b. (g-i) Branch conductance g. (f) The superposition of noise 50 dB, dropNode, and dropData online
susceptance b. (i) The superposition of noise 50 dB, dropNode, and dropData on branch conductance g.

TaBLE 1: Experimental results of grid dataset on index line susceptance b.

Line susceptance b None 50 dB 30dB dropData dropEdge 50dB + DD + DE
LinearRegression 0.0006 0.1339 0.4402 0.1273 0.1862 0.2569
SVR 0.1329 0.2161 1.4923 0.1181 0.1780 0.2399
RF 0.0785 0.1558 0.2298 0.1795 0.1898 0.2335
XGBoost 0.0856 0.1732 0.2431 0.2124 0.2373 0.2542
lightGBM 0.1324 0.1988 0.3562 0.3122 0.3242 0.3541
KNN 0.0943 0.1524 0.2345 0.2462 0.2145 0.2451
Bagging 0.0541 0.1451 0.2331 0.2143 0.2364 0.2442
FCN 0.6314 0.7603 0.8430 0.8129 0.8724 0.8133
GTN 0.1413 0.1658 0.1992 0.1696 0.1652 0.2188

Here we choose RMSE as the comparative index. The highest values for the different metrics are highlighted in bold.
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TaBLE 2: Experimental results of grid dataset on index branch conductance g.

Branch conductance g None 50dB 30dB dropData dropEdge 50dB + DD + DE
LinearRegression 0.0052 0.0134 0.1019 0.2138 0.2922 0.3481
SVR 0.0985 0.1097 0.1583 0.0885 0.3196 0.3110
RF 0.0710 0.0714 0.1258 0.0769 0.3232 0.3192
XGboost 0.0754 0.0983 0.1642 0.1013 0.1257 0.1343
lightGBM 0.1043 0.1342 0.1871 0.1222 0.1465 0.1543
KNN 0.0951 0.1011 0.1498 0.1228 0.1028 0.1435
Bagging 0.0772 0.0992 0.1345 0.1173 0.1274 0.1371
FCN 0.0706 0.0777 0.2494 0.0723 0.0751 0.0751
GTN 0.0672 0.0682 0.0680 0.0678 0.0680 0.0681

The order of RMSE index used by branch conductance g is 10~7. Here, we choose RMSE as the comparative index. The highest values for the different metrics

are highlighted in bold.

topological structure and multisource data, the accuracy of
the proposed model does not decrease a lot because of in-
creasing noise. It is robust to resist the influence of noise. In
addition, by comparing with FCN, we can find that the
gradient of our proposed model drops rapidly and tends to
converge after the 10th generation epoch, and the accuracy
has not changed much, which shows the superiority of our
model in deep learning-based parameter identification
algorithms.

4.4. The Practical Application of Our Proposed Method. In the
actual power grid transmission operation, parameter iden-
tification, as the basis of power grid regulation and control
systems, has always been a hot topic of research. Most of the
existing power grid branch parameter identification
methods are model-driven, which have low identification
accuracy and poor reliability and perform poorly when there
is noise in actual power grid operation. From the experi-
mental comparison results, it can be found that the model
proposed by us has high prediction accuracy, excellent
performance, and good robustness in the case of adding
various noises, because of considering the topological
structure constraints of power grid branches and paying
attention to key branches and feature information by
multihead attention mechanism. Compared with the tra-
ditional parameter identification method, the effect is im-
proved. If the predicted model is deployed to the terminal of
the power grid dispatching center, the predicted results of
the model can effectively solve the problem of intelligent
identification of steady-state branch parameters of the power
grid, improve the reliability level of the analysis results of the
dispatching system, and more effectively guarantee the
online safe and stable operation of the large power grid.

4.5. Discussion. Number of headers in Graph Transformer:
the number of headers in Graph Transformer represents the
number of subspaces predicted by the model. The larger the
number of subspaces, the richer the information of model
fusion, but the more parameters of the model, the slower the
process of model training. Choosing an appropriate number
of heads is a problem that needs to be solved. At present,
only an appropriate number of heads is selected through
multiple experiments. In addition, because there are too
many parameters in Graph Transformer, the model

parameters can be reduced by model pruning or neural
network architecture search in future research, which makes
the model lighter while ensuring the accuracy of the model.
This is more conducive to the deployment of the model to
the terminal of power grid dispatching center and improves
the reliability and real-time performance of power grid
branch prediction.

How to identify branch parameters of different mag-
nitude? As far as the branch parameter identification task in
this paper is concerned, the order of magnitude of line
susceptance b and branch conductance g is quite different. If
the simple method of loss function addition is adopted, the
model will ignore the accuracy of branch conductance g and
mainly focus on the accuracy of line susceptance b; therefore,
we adopted the approach that separately identified the two
targets to avoid this situation. In future research, we can set a
dynamic weight value to give different weight values to the
line susceptance b and branch conductance g of the same
line. By training an attention-based neural network, we can
suppress a large number of targets and promote a small
number of targets. This method will be able to identify
different levels of branch parameters at the same time.

5. Conclusion

In this work, we propose a novel multitask Graph Trans-
former Network (GTN) to identify the branches of the power
grid. GTN uses Graph Transformer to construct the input of
graph data and abandons the traditional convolution while
model learning features, and fully makes use of attention
mechanism to realize the aggregation of branch features.
Specifically, in the training process, the model can fuse rich
global information by setting different subspaces. In addition,
the attention mechanism can enhance the extraction of local
information, highlight the importance of different neighbor
nodes, and increase their influence by giving relatively im-
portant branches and high weights features. GTN aims to
complete the task of power grid parameter identification by
using the topological constraints and connections of the
power grid structure. Experiments on the actual data collected
by China Electric Power Research Institute show that our
proposed GTN model can cope well under different noise
conditions because of the integration of global information.
Compared with the traditional model, the robustness of the
model is improved, and the identification accuracy is also
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improved, which provides a comprehensive guarantee for
power grid operation and dispatching.
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