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Abstract—1t is vital to visually inspect pressure vessels
regularly in the oil and gas company to maintain their in-
tegrity. Compared with visual inspection conducted by sending
engineers and ground vehicles into the pressure vessel, utilising
an autonomous Unmanned Aerial Vehicle (UAV) can overcome
many limitations including high labour intensity, low efficiency
and high risk to human health. This work focuses on enhancing
some existing technologies to support low-cost UAV autonomous
navigation for visual inspection of oil and gas pressure vessels.
The UAV can gain the ability to follow the planned trajectory
autonomously to record videos with a stereo camera in the
pressure vessel, which is a GPS-denied and low-illumination
environment. Particularly, the ORB-SLAM3 is improved by
adopting the image contrast enhancement technique to locate
the UAV in this challenging scenario. What is more, a vision
hybrid Proportional-Proportional-Integral-Derivative (P-PID)
position tracking controller is integrated to control the move-
ment of the UAV. The ROS-Gazebo-PX4 simulator is customised
deeply to validate the developed stereo vision-based autonomous
navigation approach. It is verified that compared with the ORB-
SLAM3, the numbers of ORB feature points and effective
matching points obtained by the improved ORB-SLAM3 are
increased by more than 400% and 600%, respectively. Thereby,
the improved ORB-SLAMS3 is effective and robust enough for
UAV self-localisation, and the developed stereo vision-based
autonomous navigation approach can be deployed for pressure
vessel visual inspection.

I. INTRODUCTION

Pressure vessels are major assets in oil and gas companies
and have a wide range of applications such as being storage
containers, separators and filters. Their failures can result
in catastrophe to both the natural environment and human
safety. Thus, regular visual inspection of these infrastructures
is required [1]. Visual inspection of oil and gas pressure ves-
sels has been traditionally performed by engineers deployed
to pressure vessels or operating a telepresent ground vehicle
[2]. The former method puts engineers’ life and health at risk,
while the latter is time-consuming due to its low mobility
and operation complexities. Instead, using an autonomous
Unmanned Aerial Vehicle (UAV) can achieve a close view
of the surface inside the pressure vessel with a high degree
of manoeuvrability [3].

Some reviews about UAV autonomous navigation techniques
for inspection tasks can be seen in [4]. Among them, reliable
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Fig. 1. One pressure vessel. (a) The overview of the pressure vessel; (b)
The entrance of the pressure vessel; (3) The inside of the pressure vessel.

state or vehicle pose estimation without GPS signal is one of
the most important research areas. In UAV-based indoor vi-
sual inspection applications, the Light Detection and Ranging
(LiDAR) sensor is the most popular one. In [5], Castafio et al.
demonstrated a semi-autonomous UAV system for sewerage
inspection. The UAV utilised four TeraRanger One sensors
to compute its position relative to the pipe longitudinal
axis, and the UAV was remotely controlled by engineers.
The autonomous UAV navigation system developed by [6]
equipped with the RPLiDAR A3 to perform 2D localisation
for autonomous monitoring tunnel infrastructures. Ozaslan
et al. proposed a UAV navigation system that utilised a
Velodyne Puck 3D LiDAR to estimate its position and
conducted inspection tasks for Penstocks and Tunnels [7].
Nevertheless, the low-cost LiDAR cannot support precise
UAV autonomous 3D navigation, while a precise 3D LiDAR
runs against the low-cost feature of the platform [8].

In the robotic navigation and infrastructure inspection lit-
erature, the visual Simultaneous Localisation and Mapping
(SLAM) has shown great prospect, since it can preciously
perform the estimation of the state of a robot [9]. Monocular
visual-inertial SLAM enabled autonomous navigation ap-
proaches for aerial visual inspection of the Hardturm Stadium
and transmission towers were demonstrated by Teixeira et
al. [10] and Bian et al. [11], respectively. To improve the
necessary robustness of the navigation system, Nikolic et al.
proposed an off-board stereo visual-inertial SLAM method
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to estimate the pose of the UAV and achieved the navigation
capability inside the industrial boiler to perform inspection
tasks [12]. However, the cable limits the movement of the
UAV. What is more, these autonomous navigation systems
rely on the integrated visual and time-synchronised inertial
sensors to realise the UAV ego-motion estimation. The high-
quality inertial measurement unit (IMU) adds extra cost and
payload to the low-cost UAV platform.

This study deals with the pressure vessel which is a GPS-
denied and low-illumination environment (as shown in Fig.
1). Autonomous navigation for low-cost UAV-refined inspec-
tion inside the pressure vessel is really challenging and has
not been fully implemented. Thus, this work proposes a novel
stereo vision-based autonomous navigation approach for the
automatic acquisition of images inside oil and gas pressure
vessels with a low-cost UAV. The main contributions are
summarised as follows.

o The ORB-SLAMS3 is improved by the image contrast
enhancement capability to estimate the pose of the UAV
in the GPS-denied and low lighting environment.

o The stereo vision-based autonomous navigation ap-
proach is developed which allows the low-cost UAV
to track the planned inspection trajectory stably inside
the pressure vessel.

e The ROS-Gazebo-PX4 simulator is customised deeply
to support UAV autonomous navigation performance
evaluation in the oil and gas pressure vessel visual
inspection scenario. The effectiveness of the proposed
approach is demonstrated in the developed simulation
environment.

The rest of the paper is organised as follows. Details of
the proposed stereo vision-based autonomous navigation
approach are given in Section II. In Section III, the experi-
mental environment is demonstrated. Section IV shows and
analyses the performance of the proposed approach. Finally,
conclusions and future work are provided in Section V.

II. APPROACH SCHEME DESCRIPTION

The scheme of the proposed stereo vision-based au-
tonomous navigation approach is shown in Fig.2. Based on
the images captured by the UAV on-board stereo camera,
the UAV will locate itself through the visual localisation
technology. Then, compared with the planned trajectory, the
next target position will be updated. Afterwards, the proper
control signal will be generated to control the UAV to move
to the target position. The whole process will be repeated
until the UAV finishes the whole trajectory.

Control signal Images Current position
[ 1 ] [ ]
Position tracking UAV Improved visual Waypoint
controller platform localisation controller

I I Sensor signal

Current position . -
Desired position

Fig. 2. Scheme of the vision-based autonomous navigation approach.

A. Improved Visual Localisation

To navigate successfully in a GPS-denied and low-
illumination environment, the UAV must have the self-
localisation capability. The ORB-SLAM3 [13] is claimed as
the robustness visual SLAM system in the literature, and
it has three main threads, i.e. tracking, local mapping, and
loop and map merging. Besides, it utilises the multi-map
technology named Atlas to improve the robustness of the
system. However, the ORB-SLAM3 relies on matching ORB
feature point pairs heavily. In the low lighting environment,
the number of stable ORB feature points drops significantly.
Thus, the system fails to obtain enough input information,
and posture cannot be calculated and corrected. When ORB
feature points are less than 500 in all frames, the pose esti-
mation process cannot be performed so that the initialisation
and tracking fail [14].

Image pre-processing technologies have been used widely to
improve the performance of computer vision tasks, such as
the image sharpening technique for facial emotion recogni-
tion [15] and speckle reduction for synthetic aperture radar
(SAR) image recognition [16]. In the oil and gas pressure
vessel inspection scenario, the light is insufficient to the
ORB-SLAM3, and the image contrast enhancement technol-
ogy improves the visual quality of dimmed images. Thus,
the image contrast enhancement method is adopted before
the ORB feature point extraction process in the tracking
thread. The image contrast enhancement technology makes
the image contain more prominent textures, thereby increas-
ing the number of stable ORB feature points. Eventually, the
robustness and stability of the ORB-SLAM3 are improved.

1) Atlas: Atlas is a multi-map representation that contains
all non-active maps in the ORB-SLAM3. The active map is
utilised by the tracking thread to locate the incoming frames.
All other maps are treated as disconnected maps and stored
in Atlas. When the system re-enters the mapped scene, the
active map will be merged with the relative non-active map.

2) Tracking Thread: The tracking thread processes each
frame of the video. Firstly, it will initialise the system with
the first frame that can be extracted more than 500 ORB
feature points. Then, the system starts tracking the pose of
the current frame. When the tracking fails, the relocation
function is activated to relocate the current frame in all the
maps. If being relocated, the corresponding map becomes
the active map. Otherwise, a new active map is created
while all other maps are stored in Atlas as non-active maps.
The bundle adjustment is applied to process the active map
points to minimise the reprojection error and optimise the
pose of the current frame. If the current frame meets certain
conditions, it will be selected as a keyframe.

3) Local Mapping Thread: Keyframes generated by the
tracking thread are sent to the local mapping thread. The
newly added keyframe and corresponding map points are
inserted into the active map. A local bundle adjustment
is performed to optimise the poses of map points and
keyframes. To maintain the size of the map, the redundant
map points and keyframes will be deleted.
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4) Loop and Map Merging Thread: The input of this
thread is the refined keyframes by the local mapping thread.
It detects the overlap scenes between the active map and At-
las. If it exists in different maps, the active map and matching
map will be merged as a new active map. Otherwise, the loop
closure is utilised in the active map. When the loop correction
is finished, an independent thread executes a global bundle
adjustment to reduce the accumulated drift error.
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Fig. 3.
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Diagram of the adaptive gamma correction with weighting

5) Adaptive Image Enhancement: In the image contrast
enhancement domain, considering the easy adjustment and
efficient implementation capabilities, gamma correction [17]
has been widely utilised. It enhances image contrast by
directly modifying pixel values based on regulation. An
adaptive gamma correction algorithm with weighting distri-
bution [18] is adopted to process frames before the ORB
feature points extraction procedure. Fig. 3 shows the steps
for enhancing the image in high level. As ORB feature points
are extracted from the gray image, the colour image needs
to be transformed to the gray image first. In the dimmed
gray image, most of pixels lie in the low-intensity level.
After the weighting distribution and gamma correction, more
pixels will be distributed in the high-intensity region, thereby
improving image contrast.

Specifically, gamma correction techniques use the parameter
v to adjust the luminance of the image. The transform-based
gamma correction is represented by

F()= lmag,:(L

) (1)

lmaac
where [ and [,,,,, represent the intensity of each pixel and
the maximum intensity in the input image, respectively. In
(1), the highest intensity in the output image is restricted by
the maximum intensity of the input image. To deploy it in a
low-illumination environment, the [,,,, 1s set to 255, which
is the highest intensity value in the gray image. Thus, the
modified gamma correction can be defined as

F(l) = 255(%)” (2)

The Probability Density Function (PDF) can be approxi-
mated by
ny
PDF(l) = = 3

=" (3)
where n; represents the number of pixels that have intensity
. N denotes the total number of pixels in the image. Based
on the PDF, the Cumulative Distribution Function (CDF) can
be formulated as

l
CDF(l) =Y _ PDF(k) (4)
k=0

The adaptive gamma correction is written as

l
F(l) = 255( )= CPFW) 5
() =255(5z) )
Additionally, the weighting distribution function is utilised
to modify the statistical histogram with less adverse effects.
The weighting distribution function is expressed as

PDF(l) — PDFpin

PDFya(l) = PDFyas( 55—

)* (6)

where « indicates the adjusted parameter, and it is 0.5 in
this work. PDF,,,... and PDF,,;, denote the maximum and
minimum PDF of the statistical histogram, respectively. So,
the modified CDF is defined as

l
m® PDFyal(l
CDFuult) = =gl @

where the sum of PDF),, is represented as follows
lmax

> PDF,q =Y PDFu(l) (8)
=0

Finally, the y parameter can be calculated by
v =1~ CDFya(l) 9)

To reduce the computational complexity, the temporal tech-
nique is applied. The information content contained by each
frame is represented by the following entropy function

lmaz
H =Y PDF(l)log(PDF(1))
=0

(10)

The differences between the information contents contained
by two frames can be defined as

(11)

The first frame is stored and utilised to calculate the v trans-
formation curve. When the 7}, exceeds 0.05, the stored frame
is updated with the current frame. At the same time, the
v transformation curve is modified. Otherwise, the existing
~ transformation curve is applied directly to transform the
intensity level of the incoming frame.

Th = |chrrent - Hprevious'
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Fig. 4. Scheme for position tracking controller.

B. Position Tracking Controller

After the UAV is located by the improved ORB-SLAM3,
the waypoint controller compares the current position with
the planned inspection path to compute the desired position.
Afterwards, a position tracking controller is needed to control
the movement of the UAV.

In this section, a vision hybrid position tracking controller
is developed from the PX4 [19], the leading open-source
autopilot stack for the UAV, to realise an accurate posi-
tion control mechanism for the UAV. The position tracking
controller is demonstrated in Fig. 4. Herein, based on the
PID control law, a P loop for position error (e,(t)) and
a PID loop for velocity error (e,(t)) are cascaded as the
position tracking controller. The PID velocity control loop
contains three parameters, taken as constant k,,, k,; and
k,q which are responsible to adjust the proportional, integral
and differential unit, respectively. Its continuous form can be
given as

¢ de,(t)
0 ( )dT+kvd dt
The UAV is controlled by a digital controller operating in a
sampled-data feedback loop. Define

zi(k) = zi(k — 1) + z(k)
za(k) = z(k) — z(k = 1)

where z(k) represents an error variable. z; (k) is the integra-
tor state, and z4(k) indicates the differentiator state. Define
the discrete-time PID controller as

asp(t) = kypey(t)+ ko ey(t) (12)

(13)
(14)

asp(k) = kup(k)2(k) + kvi(k)zi(k) + kva(k)za(k)  (15)
Equation (15) can be rewritten as
asp(k) = 0, (k)py (k) 16)
where
z(k)
Po(k) = | zi(k) (18)
za(k)

By modifying 6 and ¢, the P position control can be
represented as

Vsp(k) = kpp(k)zp (k) (19)

(e)

Fig. 5. Physical and simulation components. (a) The simulated pressure
vessel; (b) The section view of the simulated pressure vessel; (c) The
physical UAV; (d) The simulated UAV equipped with a stereo camera and
a spotlight source; (e) The developed simulation environment.

III. EXPERIMENTAL ENVIRONMENT

Due to the high risk of property damage and battery
constraints, extensive physical UAV flying tests are costly
and time-consuming. As an alternative solution, simulation
allows to test and validate the developed algorithm in “re-
alistic” scenarios, which can avoid the potential risk in real
flights. In the UAV research domain, the Robot Operating
System (ROS) [20] is the most popular and convenient
middleware suite. Moreover, it comes with the Gazebo
simulator [21] that contains a physics engine to imitate
actual motions of the UAV in the customised environment.
Thus, the simulation environment developed in this paper is
based on the ROS-Gazebo-PX4 toolchain. In general, Gazebo
contains a simulated pressure vessel and a simulated UAV
model. The UAV model is based on the PX4 firmware for
the dynamic simulation. The PX4 communicates with the
Gazebo to receive sensor data from the simulated world
and send the motor commands back. Meanwhile, all the
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components are coordinated through ROS.

Specifically, based on the pressure vessel shown in Fig. 1,
a pressure vessel model is constructed (as shown in Fig.
5(a)). Its dimension is 7m x 2.5m x 2.5m. As demonstrated
in Fig. 5(b), it contains shells, several horizontal bars and
vertical pipes. To simulate the customised quadrotor shown
in Fig. 5(c), a simulated UAV is developed from the PX4
flight control stack, and it is equipped with a stereo camera
and a spotlight source. Due to the horizontal bar at the
entrance of the pressure vessel, the UAV is placed inside
the pressure vessel. The overall layout of the simulation
environment is illustrated in Fig.5(e). Within this scenario,
a world coordinate system is established. The x-axis is
supposed as the depth direction of the pressure vessel, the y-
axis is parallel to the width direction, while the z-axis denotes
the altitude.

IV. RESULTS

(c1) (c2)

Fig. 6. Image contrast enhancement. (al) and (a2) are a pair of images
captured by the on-board stereo camera; (b1) and (b2) are the original gray
images transformed from (al) and (a2); (c1) and (c2) are the enhanced gray
images.

A. Comparison of Feature Point Extraction and Matching.

TABLE I
COMPARISON OF FEATURE POINT EXTRACTION AND MATCHING IN THE
FIRST FRAME

Method ORB feature points Good System
Left image | Right image | matches | initialisation
ORB-SLAM3 200 208 103 Fail
Improved
ORB-SLAM3 1051 1092 746 Success

In this experiment, the light intensity of the spotlight keeps
the same during the whole inspection procedure and the first

Fig. 7. Feature points extraction and matching. (a) Feature points extraction
and matching based on original images; (b) Feature points extraction and
matching based on enhanced images.

frame captured by the stereo camera within the developed
simulation environment is selected. The results of image
contrast enhancement is illustrated in Fig. 6. It is obvious that
the contrast of original images is low. Within the enhanced
images, the results are rich in texture information.

The ORB feature points detection and matching processes
are compared using the ORB-SLAM3 with the improved
ORB-SLAM3. Matches after selection through the Sum of
Absolute Difference (SAD) are supposed as good matches.
The visual results are shown in Fig. 7, while the statistical
results are demonstrated in Table I. The ORB-SLAM3 fails
to extract 500 ORB feature points from the first frame to
initialise the system. Compared to the ORB-SLAM3, more
than 5 times ORB feature points can be extracted by the
improved ORB-SLAM3. Meanwhile, the number of good
matching points realised by the improved ORB-SLAM3
increases by 600%.

The results illustrate that with the image contrast enhance-
ment method, enough ORB feature points can be extracted to
initialise the system. What is more, more effective matching
points for the subsequent process as tracking, mapping and
loop detection are achieved to improve the stability and
robustness of the ORB-SLAM3.

B. Trajectory Tracking Performance Evaluation

The task of the aerial vehicle is to follow a pre-defined
3D trajectory to record videos of the pressure vessel. Fig.
8 demonstrates the 3D trajectory of the UAV and the pre-
defined inspection plan. The square trajectory is designed
to inspect the shells of the pressure vessel. What is more,
the pipelines are inspected by tracking the helical path. The
results indicate that keeping a constant distance to the shell
in direction y and z is not an issue for the whole system. The
parameters of the position tracking controller are adjusted for
translation and shared with rotation, it negatively affects the
tracking accuracy, especially in direction x due to the UAV
heading the y-axis positive direction at the beginning. The
overall results validate that the UAV can locate and navigate
itself stably in a pressure vessel for the visual inspection
application. A supplementary video can be found at https:
//youtu.be/plzKOHhxKfI



Stereo Vision-based Autonomous Navigation for Oil and Gas Pressure Vessel Inspection using a Low-cost UAV

—UAV trajectory
—Planned trajectory

R
<
S e N

7
5 6

1~ —UAV trajectory
—Planned trajecto

_y(m)
°
T

Fig. 8. Trajectory following results. (a) The overview of the UAV 3D
trajectory; (b) The top view of the UAV trajectory.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a novel stereo vision-based autonomous
navigation approach for low-cost aerial inspection of oil and
gas pressure vessels has been presented. The key components
are robust localisation in a low-illumination environment
and a vision hybrid position tracking controller. The ORB-
SLAM3 was improved by the image contrast enhancement
technique using adaptive gamma correction with weighting
distribution. Besides, a P-PID controller was deployed for
position tracking. The approach was successfully verified in
a deeply customised ROS-PX4-Gazebo simulation environ-
ment. The results showed that the improved ORB-SLAM3
can achieve more ORB feature points and matching points
than the ORB-SLAM3 in the low lighting environment,
which means the effectiveness and robustness of the ORB-
SLAM3 has been improved significantly. With the developed
stereo vision-based autonomous navigation system, the low-
cost UAV can track the planned trajectory stably to take
images of inner surfaces and structures of the pressure vessel.
Future work aims to develop a more effective position
tracking controller and deploy the proposed approach on
a physical low-cost UAV platform. In addition, we plan to
develop a UAV swarm to further improve the efficiency of
visual inspection of oil and gas pressure vessels.
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