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Chapter

Sparse Linear Antenna Arrays:
A Review
Ashish Patwari

Abstract

Linear sparse antenna arrays have been widely studied in array processing
literature. They belong to the general class of non-uniform linear arrays (NULAs).
Sparse arrays need fewer sensor elements than uniform linear arrays (ULAs) to
realize a given aperture. Alternately, for a given number of sensors, sparse arrays
provide larger apertures and higher degrees of freedom than full arrays (ability to
detect more source signals through direction-of-arrival (DOA) estimation).
Another advantage of sparse arrays is that they are less affected by mutual coupling
compared to ULAs. Different types of linear sparse arrays have been studied in the
past. While minimum redundancy arrays (MRAs) and minimum hole arrays
(MHAs) existed for more than five decades, other sparse arrays such as nested
arrays, co-prime arrays and super-nested arrays have been introduced in the past
decade. Subsequent to the introduction of co-prime and nested arrays in the past
decade, many modifications, improvements and alternate sensor array configura-
tions have been presented in the literature in the past five years (2015–2020). The
use of sparse arrays in future communication systems is promising as they operate
with little or no degradation in performance compared to ULAs. In this chapter,
various linear sparse arrays have been compared with respect to parameters such as
the aperture provided for a given number of sensors, ability to provide large hole-
free co-arrays, higher degrees of freedom (DOFs), sharp angular resolutions and
susceptibility to mutual coupling. The chapter concludes with a few recommenda-
tions and possible future research directions.

Keywords: Antenna Arrays, Array Signal Processing, Co-array MUSIC,
Co-prime arrays, Degrees of Freedom (DOFs), Difference co-array (DCA),
Direction of Arrival (DOA), Fractal arrays, Fragility of sparse arrays,
Minimum redundancy arrays (MRAs), Nested arrays and Sparse linear arrays

1. Introduction

Array processing research has flourished and raked-in much attention in the past
five to six decades. It has been an evergreen topic that has fancied many researchers
due to the sheer variety of its applications. Array Processing is a scientific field of
study which involves the processing of information-bearing signals received by an
array of sensors operating in an environment of interest [1], for example, on the
ground, above ground or under water. An array has two or more sensors which are
arranged in a specific geometrical layout. An array has better directional properties
than an individual sensor.
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Sensor arrays find application in diverse fields such as radar (radio detection and
ranging), space exploration, sonar (sound navigation and ranging), seismology,
chemical sensing, medical imaging, wireless communications, navigation, source
localization etc. Depending on the application, the sensors could be antennas,
microphones, hydrophones, geophones, ultrasonic probes etc. For example, hydro-
phone arrays are used in sonar; acoustic arrays are used for audio source localiza-
tion; piezoelectric sensors are used in medical ultrasound; geophone arrays are used
in seismology etc. More specifically, antenna arrays are used for electromagnetic
applications such as radar, radio astronomy, remote sensing, wireless communica-
tions, positioning and navigation [2]. Exhaustive reading for the topic of array
processing can be found in [3–5]. A mention of the multidisciplinary nature of this
topic is given in the introductory chapter of [4] and final chapters of [3, 5]. A
thorough coverage of phased array theory and array processing applications in the
modern era is provided in [6]. Arrays can have different geometries – such as linear,
planar, circular, hexagonal, spherical etc. An array spanning across more dimen-
sions can extract more details about the scene of interest.

In many of the above applications, it is of primary interest to sense the directions
from which the source signals impinge the array. The signal of interest may be an
electromagnetic wave, a sound wave, an underwater acoustic wave, a gas diffused
into the surroundings, the location of a tumor etc. The use of multiple sensors
bestows the array with a sense of direction. Individual sensors cannot sense direction.

A uniform linear array (array in which the antenna elements are arranged along
a straight line) with an inter-element spacing of d is given in Figure 1.

Direction of Arrival (DOA) estimation involves determining the directions/
angles at which electromagnetic sources are located with reference to the receiver
array or the directions from which electromagnetic signals strike the array [7]. DOA
estimation methods have been classified into three broad approaches, namely,
classical methods, subspace methods and maximum-likelihood (ML) methods [8].
A new class of DOA estimation algorithms based on compressed sensing (CS) and
sparse recovery have received much attention in the recent past [9–12]. Dealing
with coherent arrivals is a main problem in DOA estimation of practical sources.
Two signals are said to be coherent if one is a scaled and shifted version of the other.
Multipath interference and intentional jamming are the main causes for sources
being coherent to each other [13]. When coherent sources arrive at the array, the
array covariance matrix becomes non-diagonal, singular and rank-deficient. That is,
its rank would be less than the number of incoming signals [14]. Hence, when
subspace methods are used for DOA estimation, an additional step of spatial
smoothing would be needed to restore the rank of the covariance matrix. Also, a
major drawback of subspace methods is that they need prior information about the
number of source angles to be detected, which is often impossible in practical

Figure 1.
A uniform linear array (ULA) with N sensors.
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scenarios (as the number of sources is usually unknown, a priori). Akaike
information criteria (AIC) test and/or minimum description length (MDL) test and
their variants are generally used to estimate the number of sources beforehand.
However, these methods are also susceptible to failure when the signals are
coherent [15].

In a passive array signal processing system, the array of sensors just listens to the
environment, as in passive sonar, radio astronomy and wireless communication.
Contrarily, in an active array signal processing system, a transmitter is used to
illuminate the environment and the array listens to the signal reflected by the
environment and/or objects of interest, as in radar, active sonar and medical imag-
ing [1]. Both passive and active DOA estimation are quite famous in array
processing literature.

Antenna arrays offer better gain and directivity than single antennas. High
directivity enables the array to confine its radiation or reception to certain direc-
tions. As the array size increases (i.e., as the number of array elements increase), so
does its aperture. Arrays with wider apertures provide narrower beam-widths and
finer angular resolutions than those with smaller apertures [16]. The spatial
response or radiation pattern of the array indicates the directions in which the array
radiates its energy or receives energy from. Due to its directional properties, an
array is often regarded as a spatial filter [17].

An antenna array can serve two purposes. It can help (i) determine the direc-
tions from which source signals impinge the receiver (direction of arrival (DOA)
estimation), and (ii) in focusing the radiation pattern towards certain directions
based on the knowledge of desired and undesired signal directions (beamforming).
Additionally, antenna arrays also offer electronic beam-steering, whereby the
array’s main beam can be pointed towards a desired direction just by controlling the
element phases, without the need for any mechanical movement of the antenna
platform.

A static array is one whose response does not change over time. The perfor-
mance of such an array may be degraded severely under situations such as interfer-
ing signals, clutter returns, deliberate electronic countermeasures, non-hostile
interference and multipath propagation. An adaptive array has the ability to control
its response based on changing conditions of the signal environment coupled with
the knowledge of desired and undesired signal directions [2].

Beamforming is the process of obtaining sharply focused beams in a given
direction by applying a suitable set of complex weights (element currents and
phases) to each of the sensors. Adaptive beamforming (ABF) involves the continu-
ous adjustment of these weights to track the changes in the signal environment
using adaptive algorithms that are based on certain specific optimization criteria.
Generally, the optimization criteria optimize some measure of system performance
such as mean square error, variance or likelihood [7].

Element spacing in an array is of high importance as it influences the
occurrence of grating lobes. Grating lobes are large undesired side lobes (that are
similar to the main beam in stature) that appear in the radiation pattern and
radiate the energy in unwanted directions. Ideally, an inter-element spacing of half
wavelength is followed in order to avoid spatial aliasing and to prevent the forma-
tion of grating lobes. In applications that require a limited field-of-view (FoV),
presence of grating lobes does not hinder the array operation if the scanning region
is limited to the grating-lobe-free area. An example of this is found in automotive
radar systems, where the FoV is limited to �45° to +45°. Hence, an inter-element
spacing of 0.59λ is generally used. Even though grating lobes exist beyond �45° in
the above case, their presence is least bothersome as the scanning region is limited
to �45°.
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Beamforming is one of the key enabling technologies for 5G systems that operate
in the millimeter wave frequency band [18, 19]. It is known that millimeter fre-
quencies are more sensitive to blockages and path loss. Huge array gains and sharp
directional beams obtained from antenna arrays housing hundreds of antennas can
counteract the propagation effects of the millimeter channel. DOA estimation also
assumes prominence in 5G as DOA-based beamforming is one of the main require-
ments for smart antennas [20].

1.1 Motivation for sparse arrays

Though there are many definitions of sparse arrays in the array processing
literature, the focus of this book chapter would be only on grid-based
sparse arrays.

In grid-based sparse arrays, the sensors are assumed to be located on the grid
points defined by an integer multiple of the basic inter-element spacing. That is, the
sensors are assumed to lie at 0, d, 2d, and so on. In general, the inter-element
spacing would be half wavelength. The element positions are normalized to the half
wavelength. Accordingly, a sparse array with sensor positions {0, 2, 4, 5} means that
the array has an overall aperture of five units and its sensors are located at the grid
points 0, 2d, 4d and 5d. There are no sensors at grid points d, 3d. As the array is
sparsely populated with sensors compared to a regular/full array, it is called as a
sparse array. Sparse arrays need fewer sensors or active elements than ULAs to
realize a given aperture length. Hence, they provide huge savings in the system
costs associated thereof (e.g., feed, power consumption, and radio frequency
chains). They are a type of green technology in array processing.

Different types of linear sparse arrays have been studied in the past. Minimum
Redundancy Arrays (MRAs) have numerous useful properties and had been pri-
marily studied in the past in relation to radio astronomy [21, 22]. MRAs have also
been applied in digital communications [23–25]. Numerous properties and modern
applications of MRAs can be found in [26–28].

The use of sparse or non-uniform arrays in close future communication systems
such as fifth generation (5G) telecom and the Internet of Things (IoT) is appealing
as sparse arrays need fewer active elements than ULAs and operate with little or no
degradation in performance [29].

1.2 Contribution of this chapter

The area of sparse arrays is continuously evolving and there are at least 50 types
of linear sparse arrays in the current literature. A comprehensive understanding of
various sparse array configurations is essential in the current scenario as more and
more sparse arrays are being rapidly introduced into the literature. To the best of
our knowledge, a comprehensive review on the properties of 1D sparse arrays has
not been taken up in the past (barring the works by Liu and Vaidyanathan, Cohen
and Eldar). This is a sincere attempt to bring a few well-known sparse arrays under
one roof so that their characteristics could be compared.

The rest of the chapter is organized as follows. Section 2 gives an introduction to
linear sparse arrays. Section 3 explains some terminology related to sparse arrays
and discusses the characteristics of a few well-known sparse arrays. Section 4 gives
an overview of sparse arrays with special properties and also discusses the effect of
sensor failures on array performance. Section 5 provides a few future directions and
Section 6 concludes the chapter.
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2. Introduction to sparse arrays

Sparse arrays have aperture widths equal to regular/filled/full arrays but are
sparsely populated. They consist of voids that arise due to missing/inactive sensors.
The vacancies are deliberately created and are woven into the design of the sparse
array to achieve certain desired characteristics. The span of the array is called its
aperture. It is the sum of all the inter-element spacings. A ULA with N sensors, each
separated by an inter-element spacing of d has an aperture distance or aperture length
of N � 1ð Þd. The aperture in the units of the inter-element spacing is given by L ¼
N � 1. Sparse arrays need fewer than N sensors (Ns <N) to offer the same aperture.
Failure or absence of either the first sensor or the last sensor in an array of N sensors
reduces the array aperture by one unit. Failure of both sensors reduces the array
aperture by two units. Hence, in the analysis of thinned/sparse arrays or when
analyzing arrays with sensor failures, it is generally assumed that the first and the last
sensor are always functional, intact and active so that the array aperture is preserved.

Another advantage of sparse arrays is that they are less affected by mutual
coupling compared to ULAs. Sparse arrays are generally analyzed in the co-array
domain. A difference co-array (DCA) is formed from the physical sparse array by
considering all the spatial lags (differences) that can be generated using the avail-
able sensors. A missing spatial lag forms a hole. The DCA should be hole-free as the
presence of holes introduces ambiguity in the estimation of spatial correlation and
hence spatial angles.

There are several types of linear sparse arrays such as minimum hole arrays
(MHAs) or Golomb Arrays, minimum redundancy arrays (MRAs), co-prime arrays,
nested arrays, super-nested arrays and so on. MRAs and MHAs have been widely
used for interferometry in radio astronomy [6, 21, 22, 30, 31]. While MRAs and
MHAs existed for more than five decades, other sparse arrays such as co-prime
arrays, nested arrays and super-nested arrays have been introduced in the past decade
[32–34]. A good review on the properties of these sparse arrays can be found in the
initial sections of [27, 35]. The introduction of co-prime array in the past decade can
be considered as a watershed moment which has opened doors for modern applica-
tions of linear sparse arrays. Following that, nested arrays were introduced. These
arrays offer hole-free co-arrays and also have closed-form expressions to determine
the sensor locations. Many variants of the co-prime array [36–38] and the nested
array [39, 40] have been proposed in the recent past. These arrays either improve the
aperture or reduce the number of sensors needed to obtain a given aperture or make
the array more immune to mutual coupling or they increase the hole-free region in
the DCA.

Following are the desirable characteristics of sparse arrays:

• The chosen array should provide the largest aperture for a given number of
sensors. It is well-known that arrays with larger apertures provide better
resolution and DOA estimation accuracy.

• The array should be least affected by mutual coupling.

• The array should have a hole-free co-array to facilitate unambiguous parameter
estimation using the entire span of the co-array.

It is desirable that the array has closed-form expressions for sensor positions.
Otherwise, there should be a provision to obtain the sensor positions using a look-
up table (LUT) or through tabulated entries.
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3. Properties of linear sparse arrays

3.1 Sparse array terminology

3.1.1 Sparse array notations

In general, sparse arrays such as MRAs and MHAs are represented in the
:a:b:c:d:f g format or simply a, b, c, df g without the dots. This format has n� 1

entries for a n�element array. A sparse array configuration of a, b, c, df gmeans that
the array has five sensors at respective locations 0, a, aþ b, aþ bþ c,f
aþ bþ cþ dg. For example, an 8-element MRA may be denoted as {.1.3.6.6.2.3.2.}
or {1, 3, 6, 6, 2, 3, 2} or {1, 3, 62, 2, 3, 2}. The power indicates the number of times
the given spacing should be repeated. Therefore, as per the formulation, the above
8-element MRA has sensors at {0, 1, 4, 10, 16, 18, 21, 23}.

Another common representation is in the form of a binary string of 1 s and 0 s
which represent the presence or absence of a sensor element on the respective grid
point. For example, in the representation :a:b:c:d:f g, the dots indicate the presence
of sensors and hence have to be written as 1. Accordingly, the binary string for the
above sparse array would be {1, (a-1) zeroes, 1, (b-1) zeroes, 1, (c-1) zeroes, 1, (d-1)
zeroes, 1}. Considering the 8-element MRA {.1.3.6.6.2.3.2.} given above, the binary
string would be {1, (1-1) zeroes, 1, (3-1) zeroes and so on}. This gives the binary
string {1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1}. Zero indicates
the absence of a sensor at the respective grid point. The grid positions of all sensors
for which the binary entry is one gives the sensor locations of the sparse array i.e.,
{0, 1, 4, 10, 16, 18, 21, 23} in the case of the 8-element MRA given above. The reader
has to be comfortable in changing from one form to another as different papers and
textbooks follow different notations [4, 41, 42]. The auto-correlation of the above
binary string gives the weight function (explained shortly) in the coarray domain.

3.1.2 Difference set and the difference co-array

For a sparse array with sensors at  ¼ z1, z2, … , zNsf g, the difference set is
defined as

 ¼ zi � z j; i, j ¼ 1, 2, … ,Ns

� �

(1)

The distinct entries (dÞ of the difference set form the difference co-array
(DCA) or simply co-array of the physical sparse array. The DCA is symmetric, that
is, every p∈d∃� p∈d .

In simple terms, the difference set is obtained by subtracting all possible sensor
positions in the given sparse array. This gives rise to spatial lags. The DCA is then
formed by considering only the non-repeating (distinct) spatial lags. For example, a
sparse array with sensors at {0, 1, 4, 6} can generate all spatial lags (differences)
between 0 and 6, resulting in a difference set of {0,�1,�4,�6, 1, 0,�3,�5, 4, 3, 0,
�2, 6, 5, 2, 0}. The DCA {�6, �5, �4, �3, �2, �1, 0, 1, 2, 3, 4, 5, 6} is obtained by
sorting the numbers and retaining only the distinct elements. Note that the repeat-
ing lag of zero is considered only once.

The number of unique lags in the DCA of a sparse array gives the number of
source angles that can be detected during DOA estimation (often known as the
degrees of freedom (DOFs) offered by the sparse array). Unique lags are often used
in the analysis of sparse arrays with holes in the DCA. The usefulness of arrays that
have holes in the DCA is limited by the span of the central continuous portion of the
DCA. Though there are methods [43, 44] that can extend the continuous portion of
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the DCA, they are computationally intense. A more useful parameter, namely, the
uniform degrees of freedom (UDOF), which indicates the number of continuous
entries in the DCA; is often used to avoid ambiguity (as it clearly specifies the
hole-free span of the coarray) [43].

3.1.3 The weight function

Defining wn equal to 1 if the sensor is present at grid location nd, and 0 for the
case of a missing sensor, the weight function is defined as the auto-correlation of
wn. In simple terms, the weight function gives the number of times a given spatial
lag is generated or the number of sensor pairs that can generate a given spatial lag.
This weight function should not be confused with the weight vector that defines
element currents and phases during beamforming.

A unit spacing corresponds to a spatial lag of one and can be generated by any
pair of sensors that are adjacent to each other. In other words, any two sensors that
are half-wavelength apart from each other are said to have unit spacing. The con-
cept of unit spacing is important in determining the role of mutual coupling on the
array’s performance. Empirically, arrays that have a large number of adjacent sen-
sors are more susceptible to the effects of mutual coupling than those with fewer
unit spacings.

3.2 Types of sparse arrays

It is necessary to understand the structure of a ULA and the normalized sensor
positions in order to comprehend the properties of grid-based sparse arrays.

3.2.1 Uniform linear array (ULA)

As per definition, there would be no missing sensors in the ULA. Hence, the
sensor positions are given by the set ULA ¼ 0, 1, 2, … ,N � 1f g. All sensor spacings
are normalized to half wavelength.

3.2.2 Minimum redundancy arrays (MRAs)

MRAs are synthesized from a ULA by eliminating selected sensors such that the
sensors thus retained are capable of generating all possible spacings between zero
and a specified number [41]. A ULA has many sensor combinations that provide a
given spatial lag (e.g., considering the sensor positions from 0 to 9, a spatial lag of 4
can be obtained using any of the redundant sensor pairs {9, 5}, {8, 4}, {7, 3}, {6, 2},
{5, 1} and {4, 0}). MRAs minimize this redundancy by carefully removing select
sensors. An optimum MRA has sensors at positions that are just enough to provide
all the spatial lags from 0 up to a maximum number L: A zero redundancy MRA is
one which generates each spatial lag exactly once. The 4-element MRA {0, 1, 4, 6}
generates each spatial lag from 1 to 6 exactly once and is a zero redundancy MRA.

For arrays with more than four elements, it is not possible to get rid of the
redundancy completely if one were to ensure all possible spatial lags. For example,
in a 5-element MRA whose sensors are located at {0, 2, 5, 8, 9}, it can be seen that
the available sensor pairs can generate all the spacings between 0 to 9. But in
particular, a spacing of 3 can be obtained using the sensor pairs {5, 2} and {8, 5}.
This leads to redundancy but is inevitable for large arrays.

Consider an N-element MRA with an aperture of L ≤
N N�1ð Þ

2

� �

. The redundancy

of the MRA is given by

7

Sparse Linear Antenna Arrays: A Review
DOI: http://dx.doi.org/10.5772/intechopen.99444



R ¼
N N � 1ð Þ

2L
(2)

A value of R ¼ 1 indicates zero redundancy i.e., there are no redundant
sensor pairs and that each spatial lag is generated exactly once. However, in
practice, R> 1, indicating that the array contains certain redundant sensor pairs that
can generate a given spatial lag more than once. Since zero redundancy cannot be
achieved in arrays with more than four sensors, MRAs are optimized to achieve the
configuration that provides the minimum redundancy possible for a given number
of sensors.

MRAs do not have closed-form expressions to determine the optimum sensor
positions and have to be synthesized using exhaustive search mechanisms. The
optimization problem to find sensor positions in MRAs is given by

max : L x1, x2, … , xnð Þ s:t:h x1, x2, … , xnð Þ ¼ 0, xi ∈ 0,L½ � (3)

where xi indicate the positions of the array elements in the ascending order; the
constraint h x1, x2, … , xnð Þ ¼ 0 ensures that there are no missing spatial lags within
the segment 0,L½ �. The optimization wishes to maximize the segment 0,L½ � using N
sensors without any missing lags [45].

3.2.3 Minimum hole arrays (MHAs)

MHAs are obtained by optimizing the sensor positions such that a given spatial
lag is obtained at most once. In other words, the sensors should be placed such that
the spatial lags generated by them are unique. No two sensor pairs shall generate the
same lag. Additionally, it is not bothersome in MHAs even if the available sensor
pairs cannot generate all the spacings between 0 and L. For example, a 5-element
MHA with sensors at {0, 1, 4, 9, 11}, can generate almost all the spatial lags between
0 and 11 but fails to generate a spacing of 6. It should also be noted that there should
be no more than one sensor pair to generate a given spatial lag. A perfect MHA is
one which can generate all the spacings between 0 and L exactly once. A 4-element
MHA with sensor positions {0, 1, 4, 6} is perfect. MHAs are also referred to as
Golomb arrays and the sensor positions represent the marks on the Golomb ruler.
Perfect Golomb rulers or MHAs do not exist for arrays with more than four sensors
and hence only optimum rulers can be designed for such cases. Optimal Golomb
rulers up to 19 marks have been presented in the past [46]. Like MRAs, there are no
closed-form expressions to determine the optimum placement of sensors in MHAs.
MHAs are also known as non-redundant arrays.

Coincidentally, the definitions of a zero redundancy MRA and a perfect Golomb
array (MHA) bear the same physical meaning. Arrays with fewer than four
elements qualify both as zero redundancy MRAs as well as perfect MHAs (Eg: A
4-element array with sensors at {0, 1, 4, 6}). However, for arrays with more than
four sensors, neither zero redundancy MRAs exist nor do perfect MHAs. MRAs and
MHAs mean different things for arrays with more than four sensors.

The objective function to synthesize MHAs is described below. A Golomb ruler
consists of a set of integers A ¼ a1, a2, … , anf g, in ascending order, such that for
each non-zero integer x, there is at most one solution to the equation x ¼

a j � ai∣ ai, a j ∈A. The set of integers, A represents the positions of n marks on a
ruler [47]. For MHAs, a1 ¼ 0; an ¼ L. The largest known optimum ruler till date has
27 sensors and can provide an aperture of 553 [31]. Obtaining optimal Golomb
rulers is a computationally hard problem [48].
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3.2.4 Co-prime arrays

The coprime array consists of two ULAs. It was one of the first sparse arrays
introduced with closed-form expressions (CFE) for sensor positions. That is, the
sensor locations or the sparse array configuration can be immediately obtained once
the number of sensors is given without the need for any exhaustive search mecha-
nisms. One ULA has 2P sensors with a spacing of Q units and another ULA of Q
sensors spaced P units apart. P and Q are co-prime integers such that P<Q [27].
The first ULA is given by S1 ¼ qPjq ¼ 0, 1, 2, … :,Q � 1f g and the second ULA is
given by S2 ¼ pQ jp ¼ 0, 1, 2, … :, 2P� 1f g.

The overall co-prime array is Scp ¼ S1 ∪ S2: For example, considering P ¼ 2,Q ¼ 3;
we have S1 ¼ 0, 2, 4f g, S2 ¼ 0, 3, 6, 9f g and the resulting co-prime array has sensors at
{0, 2, 3, 4, 6, 9}. The drawback of co-prime arrays is that their DCAs are not hole-free.

3.2.5 Nested array or the two-level nested array

Nested arrays (NA) can provide hole-free DCAs and were introduced as an
alternative to MRAs and as an improvement over co-prime arrays. Nested arrays are
better than co-prime arrays as they provide hole-free co-arrays. They too provide
CFEs for element positions when the number of sensors is known. Two ULAs are
needed to obtain a nested array. The first ULA has N1 sensors with unit spacing and
the second ULA has N2 sensors with a spacing of N1 þ 1. The overall nested array is
given by the union of these two ULAs [33]. The optimal values of N1 and N2 for a
given number of sensors are

N1 ¼ N2 ¼
N

2
;N even

N1 ¼
N � 1

2
,N2 ¼

N þ 1

2
;N odd (4)

For example, in a 10-element NA, N1 ¼ N2 ¼ 5. The level 1 ULA has sensors at
{0, 1, 2, 3, 4} and the level 2 ULA has sensors at {5, 11, 17, 23, 29}. The overall nested
array is given by {0, 1, 2, 3, 4, 5, 11, 17, 23, 29}. These arrays are well-known by the
name two-level nested arrays (TLNA). Unless otherwise specified, all instances of
nested arrays mentioned in this chapter refer to the two-level nested array.

3.2.6 Super-nested arrays

Though nested arrays are better than co-prime arrays in terms of the ability to
provide hole-free co-arrays, they are severely affected by mutual coupling. This is
due to the dense ULA portion at the beginning (level 1). Super-nested arrays were
introduced to overcome this drawback of nested arrays [34]. In super-nested arrays,
the level 1 elements of the NA are re-arranged (interleaved) to different positions
within the span of the array so that the number of sensors with unit spacing gets
reduced, thereby making the array less susceptible to mutual coupling. A 10-ele-
ment super-nested array has sensors at {0, 2, 4, 7, 9, 11, 17, 23, 28, 29}. It can be
observed that the level 1 elements of the NA are interleaved to different positions.
Super-nested arrays too provide the same aperture as nested arrays for a given
number of sensors and have CFEs for element positions. The formulation of super-
nested arrays is slightly complicated and is, therefore, not explained here.

As a continuation, augmented nested arrays (ANAs) [49] were formulated. In
ANAs, the level 1 dense sub-array of NA is split into several parts and is re-arranged
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to the left and right of the level 2 sparse array. The design of ANAs is elegant as they
provide larger apertures, higher DOFs, and are less susceptible to mutual coupling
than nested and super-nested arrays.

3.2.7 Yang’s improved nested array

An improved nested array (INA) that provides larger aperture than the nested
array for the same number of sensors has been proposed [50]. The improved nested
array has a hole-free co-array. However, like the original nested array, the Yang’s
nested array is also vulnerable to the effects of mutual coupling as it too has a dense
ULA portion at the beginning. This array has a total of N ¼ N1 þN2 þ 1 sensors of
which N1 sensors at level 1 with unit spacing, N2 sensors at level 2 with an inter-
element spacing of N1 þ 2 and a separate sensor at N1N2 þ 2N2 þN1 � 1ð ).

The values of N1 and N2 are given by

N1 ¼
N

2
� 1,N2 ¼

N

2
;N even

N1 ¼
N � 1

2
� 1,N2 ¼

N þ 1

2
;N odd (5)

It follows that a 10-element Yang’s nested array has N1 ¼ 4 and N2 ¼ 5. The
separate sensor at the end is located at the position 33. The overall 10-element
Yang’s improved nested array is given by {0, 1, 2, 3, 4, 10, 16, 22, 28, 33}. It can be
observed that the first few sensors are adjacent to each other and have unit spacing.

An extended nested array was also proposed in 2016 [51]. However, it does not
offer apertures as large as the Yang’s INA described here.

3.2.8 Huang’s nested array

A nested array configuration that provides larger aperture than the two-level
nested array has been recently proposed [52]. This array provides larger aperture
than MRAs (obviously than nested, super-nested, improved nested, and co-prime
arrays) for a given number of sensors. However, Huang’s nested array suffers from
holes in the co-array. The construction is similar to that of the Yang’s nested array in
that there is a level 1 ULA, level 2 ULA with increased spacing and a separate sensor
at the end. However, the number of sensors at each level and the element spacing in
level 2 determine the sensor locations and the overall behavior of the array.

3.2.9 Triply primed array

The triply primed array (TPA) is the union of three ULAs with different inter-
element spacings. Three mutually prime numbers N1,N2 and N3 must be selected
[53]. The total sensors in the TPA are N1 þN2 þN3 � 2. The first ULA has N1

elements separated by an inter-element spacing of N2N3. The second ULA has N2

elements separated by an inter-element spacing of N1N3. The third ULA has N3

elements separated by an inter-element spacing of N1N2. For example, N1 ¼
3,N2 ¼ 4,N3 ¼ 5 represents a 10-element TPA. The problem with TPAs is that their
DCA has a smaller number of continuous lags. Therefore, fourth order statistics are
made use of (i.e., the DCA of the DCA is used for DOA estimation).

Table 1 lists out the optimum sensor positions for different 10-element linear
sparse arrays. The optimum MHA configuration for 10 sensors has been obtained
through table look-up [46]. The sensor positions are shown in Figure 2. The
continuous part of the DCAs of these sparse arrays are shown in Table 2.
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Type of sparse array Sensor positions Aperture

ULA [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 9

MRA [0, 1, 3, 6, 13, 20, 27, 31, 35, 36] 36

MHA [0, 1, 6, 10, 23, 26, 34, 41, 53, 55] 55

Co-prime array [0, 3, 5, 6, 9, 10, 12, 15, 20, 25] 25

Nested array [0, 1, 2, 3, 4, 5, 11, 17, 23, 29] 29

Super-nested array [0, 2, 4, 7, 9, 11, 17, 23, 28, 29] 29

Yang’s Nested array [0, 1, 2, 3, 4, 10, 16, 22, 28, 33] 33

Huang’s Nested array [0, 1, 2, 3, 7, 15, 23, 31, 39, 48] 48

Triply Primed array [0, 12, 15, 20, 24, 30, 36, 40, 45, 48] 48

Table 1.
Sparse array configurations for 10 physical sensors.

Figure 2.
Sensor positions for various sparse arrays (arrays are considered in the same order as listed in Table 1 from top
to bottom).

Type of sparse array Continuous part of the DCA without holes Uniform DOFs

ULA 0,�1,�2, … ,�9½ � 19

MRA 0,�1,�2, … ,�36½ � 73

MHA 0,�1,�2, … ,�35½ � 71

Co-prime array 0,�1,�2, … ,�17½ � 35

Nested array 0,�1,�2, … ,�29½ � 59

Super-nested array 0,�1,�2, … ,�29½ � 59

Yang’s Nested array 0,�1,�2, … ,�33½ � 67

Huang’s Nested array 0,�1,�2, … ,�9½ � 19

Triple Primed array [0] 01

Table 2.
Continuous portion of the difference co-array of the sparse arrays listed in Table 1.
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The proliferation of linear sparse arrays in the past decade has led to the devel-
opment of coarray-based DOA estimation methods. Coarray methods are based on
the concept of difference co-array (DCA) and are well-suited for angle estimation
in sparse arrays. As the physical array has missing sensors due to the sparseness, the
array correlation matrix does not represent a Toeplitz structure and is not suitable
for estimation of spatial correlation. Therefore, the analysis is shifted to the co-array
domain. Due to the continuity of the DCA, the co-array correlation matrix repre-
sents a complete Hermitian Toeplitz structure and can be used to estimate spatial
angles. Co-array MUSIC algorithm is widely used for DOA estimation in sparse
arrays [32, 33]. More recently, other algorithms such as the co-array root-MUSIC
[54, 55] and the co-array ESPRIT [56] have been introduced. The Khatri Rao
(KR-MUSIC) algorithm which is applicable only to quasi-stationary sources (i.e.,
the sources which can be assumed to be stationary for short time durations) was
introduced prior to the co-array MUSIC [57]. Recently, many algorithms based on
compressed sensing have been introduced for DOA estimation in sparse arrays
[58, 59]. In summary, DOA estimation algorithms that operate (i) when the number
of sources is unknown, (ii) in the presence of coherent arrivals, (iii) under
unknown mutual coupling, (iv) under low signal-to-noise ratio (low SNR) condi-
tions, (v) under low snapshot conditions, (vi) in the presence of non-uniform or
random noise, and (vii) in a short computational time; are largely sought-after for
practical applications [60, 61].

3.3 Array factors of some well-known sparse arrays

According to the principle of pattern multiplication, the overall array response is
the product of the array factor and the element pattern. The element pattern for an
isotropic antenna is unity. Hence, in an array of isotropic antenna elements, the far-
field pattern depends only on the array factor. The array factor of sparse arrays is
conveniently evaluated using the element positions xn as given below

AF ϕð Þ ¼
X

n∈ sparse

ejkxncosϕ, (6)

where, xn denotes the actual grid-point location of the nth element in the sparse
array. k ¼ 2π

λ
denotes the wavenumber and ϕ denotes the azimuth angle. For an

MRA with sensors at {0, 1, 4, 6}, the values of xn in the above formula would be
{0, d, 4d, 6d}, respectively.

To get further idea on the characteristics of sparse arrays, the array factors of a
few prominent sparse arrays given in Table 1 were evaluated using Eq. (6) and
plotted using MATLAB. Table 3 lists the sparse arrays considered and their 3-dB
beamwidths. Figure 3 shows the plot of array factors of the considered sparse
arrays. It can be observed that MRAs provide the narrowest main beam

Type of Sparse Array Observed HPBW

ULA 10.3°

MRA 2.2°

Nested 3.1°

Co-prime 4.1°

Super-nested 2.9°

Table 3.
Beamwidths for the 10-element sparse arrays listed in Table 1.
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characteristics for a given number of sensors as they possess the largest aperture
among all the sparse arrays considered here. It has to be noted that the MHA can
offer even finer beamwidth than MRAs.

It would be good to have a few more figures representing the weight functions of
the above sparse arrays and their DOA estimation performance when used with
co-array MUSIC. However, they are omitted from this chapter for lack of space.

3.4 MRAs with the same number of sensors and aperture might have different
sensitivities

Another important aspect that a designer must be aware of, is that there can
exist many sensor configurations for a given aperture in the case of MRAs and
MHAs. Each of these configurations may possess different radiation characteristics
or sensitivity. For example, the first column in Table 4 shows a few MRA configu-
rations M1 – M4, each of which has seven sensors and is capable of offering an
aperture of L ¼ 15. Figure 4 shows their array patterns. It can be inferred visually
from Figure 4 and also reinforced from the remaining columns of Table 4 that
though the different MRA configurations provide the same aperture, they may not
possess the same main beam and side lobe characteristics.

Hence, care must be exercised before choosing a given MRA configuration.

Figure 3.
Array factors of sparse arrays listed in Table 3.

MRA configuration Beamwidth (ϕ°
HPBW

Þ First Side lobe level (dB)

M1 - [0, 1, 2, 3, 7, 11, 15] 5.73° �6.24

M2 - [0, 1, 3, 6, 10, 14, 15] 5.16° �6.50

M3 - [0, 1, 4, 8, 13, 14, 15] 4.93° �5.26

M4 - [0, 2, 4, 5, 8, 14, 15] 5.50° �6.58

Table 4.
Beamwidths and PSLs for different MRAs with same aperture and same number of sensors.
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4. More about linear sparse arrays

4.1 Sparse arrays with special properties

Many modifications to coprime arrays have been proposed in the Literature. For
example, the thinned coprime array, the coprime array with compressed inter-
element spacing (CACIS), coprime array with displaced subarrays (CADiS),
coprime array with reduced sensors (CARS) etc. [37, 38, 62]. Most recent is the
generalized thinned coprime array (GTCA) [63], of which, the above ones can be
considered as special cases. A multi-level prime array which extends the concept of
coprime arrays has also been proposed [36]. The three-level prime array (3LPA) is a
special case of the multi-level prime array and should not be confused with the
triply primed array described in Section 3.2.9.

Recently, a unified array geometry in the form of a generalized nested subarray
(GNSA) was proposed [55]. The geometry has a nested structure with two proto-
type arrays A and B. Specifically, if the prototype arrays A and B are MRAs, then the
geometry leads to the nested MRA (NMRA) thereby providing the largest sparse
array and associated hole-free coarray. On the other hand, when A and B are ULAs,
the design provides a sparse array with the least aperture and DOFs. It can be said
that the GNSA has revolutionized the development of sparse arrays in recent times.
The prototype arrays could be nested arrays or super-nested arrays, or for that
matter, any sparse array that has a hole-free coarray [55].

4.1.1 Sparse arrays for active sensing

Active sensing applications need hole-free sum co-arrays. Symmetric sparse
arrays are also useful for certain applications. The concatenated nested array (CNA)
is one such array which is obtained by appending the level 1 elements of the nested

Figure 4.
Array factors of MRAs M1-M4 mentioned in Table 4.
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array just after the level 2 elements such that the overall array is symmetric [40].
However, this array heavily suffers from the effects of mutual coupling owing to
the closely spaced elements at both the ends. The Interleaved Wichmann Array
(IWA) was proposed to overcome the mutual coupling problem of the CNA by re-
arranging the sensors such that the number of sensor pairs with unit spacing is
reduced [39]. On similar lines, a nested structure using two CNAs, namely, the
Kløve array has been introduced with hole-free sum and difference coarray and is
suitable for active as well as passive sensing [64]. More recently, low redundancy
arrays with nested arrays and Kløve-Mossige as basis were proposed with hole-free
sum coarray [65]. The sum coarray is defined as

 ¼ zi þ z jji, j ¼ 1, 2,⋯,Ns

� �

, (7)

where all the cross summations between sensor positions are considered.

4.1.2 Sparse arrays for DOA estimation of non-circular sources

While the difference coarray approach is well suited for the DOA estimation of
circular sources, many non-circular source signals exist in practice. For example,
binary phase shift keying (BPSK), minimum shift keying (MSK), unbalanced
quadrature phase shift keying (UQPSK) etc. Non-circular sources have non-zero
pseudo covariances (non-zero ellipse covariance matrix) which can be used to
enhance the aperture of the virtual array to further exploit the received information
for parameter estimation [66, 67]. To fully leverage the special properties of
non-circular sources, the DOA estimation is performed using the sum difference
co-array (SDCA) which is defined as

 ¼ ∪∪ (8)

where  is the difference co-array,  is the sum co-array and  is the mirrored
sum co-array and equal to - . In short, for a sparse array with sensors at  ¼
z1, z2, … , zNsf g, the locations of the virtual sensors in the SDCA are given by

 ¼ zi � z j, zi þ z j, � zi � z jji, j ¼ 1, 2,⋯,Ns

� �

(9)

The use of difference co-array along with the sum co-array increases the virtual
array span and leads to increased DOFs than possible by using the DCA alone. In
SDCA-based designs, the vectorized conjugate augmented MUSIC (VCAM)
algorithm is generally used for DOA estimation [68].

One of the prominent designs for sparse arrays that are suitable for non-circular
sources is the nested array with displaced subarray (NADiS) as it provides CFEs for
element positions, virtual apertures, and DOFs. The NADiS array has a large central
continuous portion in the SDCA thereby providing large uniform DOFs. However,
the SDCA is not completely hole-free. As an improvement, sparse array for non-
circular sources (SANC) array was proposed with a hole-free SDCA [69]. A draw-
back of the SANC array is that it has no CFE for element positions. Therefore, the
sensor positions in SANC have to be determined through exhaustive searching.
Though an improved nested array with SDCA (INAwSDCA) [68] was proposed
recently, there is no comparison with the NADiS and SANC arrays. An ultimate
design of the nested array for non-circular signals is the translated nested array [67]
which has CFEs for sensor positions and provides larger apertures than the NADis
and the SANC. In addition, the SDCA of translated nested array is hole-free.
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4.1.3 Array motion

In recent years, moving array platforms or array motion are being exploited to
obtain higher DOFs in sparse arrays. The synthetic coprime array [70], dilated
nested array [71] and the multi-level dilated nested array [72] are few examples of
sparse array designs that leverage platformmotion to fill the holes in the DCAs. This
topic is pretty new and is widely being explored.

4.2 Sensor failures in antenna arrays

4.2.1 Sensor failures in ULAs

In an array of identical elements, the overall pattern depends on parameters such
as the array geometry, inter-element spacing, amplitudes and phases of the indi-
vidual elements and the inherent pattern of each element [16]. In most cases, the
array geometry and the type of array elements is fixed. For example, assume a linear
array with patch antennas. In such cases, only the spacing of elements, their relative
amplitudes and phases can be altered to modify the array pattern.

Perturbations in any of these parameters can distort the array’s response.
Worst of all is the partial or complete failure of one or more sensors in the array.
Element failures in sensor arrays can cause distortions in the main beam, side lobe
levels and null placements, thereby disrupting the normal functioning of the
array. Fault diagnosis and fault compensation are needed to ensure smooth oper-
ation of arrays. Several methods have been reported in literature that can (i)
identify the location of the faulty element(s) and (ii) compensate or restore the
array response through suitable weighting of the remaining healthy antennas in
the array. Consider a 10-element ULA with uniform feeding. Imagine that the
seventh sensor fails. In this case, the algorithm should be able to identify the
position of the failed element and also determine suitable weights to be applied to
the remaining nine sensors so that the compensated pattern closely resembles the
response of the healthy array. As the weights are no more uniform, the use of
digital beamforming is called for. Many bio-inspired algorithms or compressed
sensing techniques have been used in the past either to detect sensor failures or to
compensate the pattern of a faulty array or for both [73–80]. An extreme case and
new perspective is presented in [81], where a sparse array is said to be formed
when one or more elements of an ULA fail at random.

4.2.2 Fault tolerance in sparse arrays a.k.a. fragility

The notions of robustness, fragility, essentialness etc., in relation to sparse sensor
arrays have been introduced in recent years by Liu and Vaidyanathan [82–84]. The
fragility of a sparse array gives a measure of how vulnerable the array is to its’ sensor
failures. Fragility is defined as the number of essential sensors to the total number of
sensors in the sparse array. A sensor is said to be essential if its failure/absence alters
the difference coarray or introduces holes into the coarray. Arrays in which all sensors
are essential are known as maximally economic sparse arrays (MESA). MRAs, nested
and super nested arrays are maximally economic as all their sensors are essential. For
this reason, these arrays are highly fragile with a fragility of N

N ¼ 1.
It is well-known in MRA theory that, in an array of N elements, the failure of a

single-element can cause up to N � 1 missing spatial lags, thereby rendering the
sparse array useless for parameter estimation in the coarray domain. Robust MRAs
(RMRAs) have been recently proposed with the aim of designing resilient sparse
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arrays which can offer reliable and smooth operation even in the presence of a
single-element failure. RMRAs ensure that each spatial lag is generated at least twice
[85]. That is, there are at least two separate sensor pairs that can generate a given
spatial lag. Even if a single sensor fails, the remaining sensors can generate all the
necessary spatial lags. The RMRA is, therefore, preferred when array reliability is
the foremost design concern. ULAs and RMRAs have only two essential sensors (the
first and the last to preserve the aperture). Therefore, both these arrays have a
fragility of 2/N. ULAs are the most robust and least fragile as they have many
redundant sensors. RMRAs have been designed with the specific aim of achieving
the least fragility in a sparse array while retaining the hole-free coarray properties
of MRA.

As an example, a 10-element RMRA has sensors at {0, 1, 2, 6, 7, 11, 15, 16, 18, 19}
[85]. The weight function of the RMRA is plotted in Figure 5. It can be seen that all
the spatial lags from 0,�1,�2, … ,�18f g have a weight of two or more. That means
there are at least two sensor pairs that can generate the required lags from 0 to 18.
RMRAs are very much similar in concept to two-fold redundancy arrays (TFRAs).
TFRAs are based on double difference sets [86]. However, RMRAs have a much
broader scope and their design is more elegant. It can be observed from Figure 5
that the weight w1 is five which indicates that there are five sensor pairs with unit
spacing. As per the empirical relation between the weight function and mutual
coupling, it is easy to predict that the array is heavily prone to mutual coupling.
Nevertheless, the array is robust to sensor failures.

Consider a situation where a particular element in the above RMRA fails (say the
element at position 11). The weight function of the RMRA with failed sensor is
shown in Figure 6. It can be observed that the weights of a few spatial lags fall down
to one but none of them becomes zero. As long as there is just a single-element
failure in RMRAs, the weight of any given spatial lag never becomes zero, meaning
that holes would never occur in the DCA. This justifies the robustness of RMRAs.

In recent years, sparse arrays based on fractal geometries have been proposed.
Such arrays use a small sparse array as a base (called generator) to obtain larger
sparse arrays through recursive formulations. Examples include the Cantor arrays
proposed by Liu and Vaidyanathan and the generalized fractal sparse arrays
proposed by Cohen and Eldar [35, 87].

Figure 5.
Weight function of the 10-element RMRA described above.
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4.3 Sparse multiple input multiple output (MIMO) radar arrays

Any review of linear sparse arrays would be incomplete without a mention of
their usage in the design of sparse MIMO radar arrays. MIMO radar arrays make use
of co-located transmit and receive arrays. These transmit and receive arrays work in
tandem and produce the effect of a large virtual array. The transmitting array
consists of M antennas and the receiving array contains N antennas. Hence, the
total number of physical antennas in the MIMO array is K ¼ MþN. Each transmit
antenna emits an independent waveform. At each receiving antenna, there are M
matched filters that are used to extract the reflected signals. As there are N receive
elements, each equipped with M matched filters, the total number of extracted
signals is MN. It has been shown that the matched filter output is equivalent to the
signals received by an array of MN elements. This gives the effect of a large virtual
array with MN elements [88], whereas physically there are only MþN elements.
The virtual array is also known as the sum co-array as it is obtained by adding all
possible element positions in the transmit and receive arrays.

Following the introduction of the minimum redundancy MIMO radar [45] in
2008, several other sparse MIMO configurations have been proposed in the litera-
ture [89–93]. However, a thorough review of the properties of sparse MIMO arrays
is beyond the scope of this article. However, it is easy to foresee that if the transmit
and receive arrays are maximally sparse with hole-free co-arrays (like MRAs), the
resulting MIMO radar array would also be highly sparse and, therefore, capable of
providing the largest virtual array aperture for a given number of sensors and hence
the highest DOFs as reported recently [94]. Several novel designs of sparse MIMO
radar arrays are being proposed. Another research area which has gained traction in
recent years is the co-existent MIMO radar and MIMO communications.

5. Future scope

Evolutionary and swarm-based algorithms have been extensively applied for
array pattern optimization. The No-free-lunch (NFL) theorem in optimization the-
ory says that there is no single optimization algorithm that works well against all the

Figure 6.
Weight function of the RMRA with failed sensor at position 11.
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optimization problems (objective functions). Going by the above fact, it might so
turn out that there might exist a few algorithms which could be more suitable over
others for synthesizing MRAs and MHAs. As many powerful nature inspired opti-
mization algorithms (grey wolf optimizer, moth flame optimizer, whale optimiza-
tion, sparrow search algorithm and other hybrid meta-heuristic approaches etc.
[95–98]) have been introduced in the recent past, it would be a worthwhile effort to
try synthesizing MRAs and MHAs using such algorithms. One such attempt to
determine large MRAs using parallel processing has been recently reported [99]. In
recent times, deep learning methods are being employed to synthesize sparse arrays
for joint requirements such as hole-free coarrays, low peak side lobes, and optimum
far-field performance [100, 101].

In the future, research could be done to determine large RMRAs such that
tabulated entries on the optimum RMRA configurations for a given number of
sensors could be widely made available to the scientific community. Similarly,
efforts could be made to find robust nested arrays with closed-form expressions for
sensor positions as an alternative to RMRAs [33, 85].

In sparse arrays, beamforming is usually performed in the co-array domain
[102–104]. The weights of the virtual sensors in the coarray are adjusted to obtain
the desired beam pattern. It would be interesting to see how the failure of one or
more sensors in the physical array affects these beamforming weights. Detection of
failed sensors in the physical array and subsequent compensation of the beam
pattern in the coarray are a few open research challenges for sparse array analysis.

6. Conclusion

In this chapter, the properties of various linear sparse arrays have been com-
pared. It is found that different sparse arrays have different design criteria and
trade-offs. It remains as a future scope to synthesize new MRAs and RMRAs using
the latest bio-inspired and/or deep learning algorithms. Antenna array processing
techniques will be in the limelight for many years to come as many future wireless
communication systems (infrastructure-based and ad hoc) heavily rely on them.
DOA estimation algorithms and adaptive beamforming methods using sparse/full
arrays in the presence of array miscalibrations/failures are a trending research topic
at the moment. It is believed that this chapter serves as a comprehensive guide to
new researchers in the field of sparse array signal processing.
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