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ABSTRACT — This paper proposes a general-purpose no-reference image quality assessment (NR-IQA) method 

that investigates the image's structure information from a new aspect, i.e., the characteristic of image edge profiles 

that depict the directional property of adjacent edge points in the spatial domain of the image. More specifically, we 

extracted the image's edge map based on Laplacian of Gaussian (LoG) filtration and zero-crossing (ZC) detection and 

refined the edge map to be 1-pixel wide. We then explored the edge map by investigating edge profiles' statistics in a 

local window with a 5×5-pixel size. Considering the consensus that natural images consist of directional structures, 

we found that the spatial distribution property of adjacent edge points can be represented through several edge 

profiles called edge patterns, which are selected from natural images with a proposed smooth criterion. With the 

proposed edge patterns and their statistical histogram for the image and the support vector regression technique, we 

proposed the NR-IQA model based on the edge patterns in the spatial domain, named EPISD. The proposed method 

has been extensively validated on the LIVE, CSIQ, TID2013, MDID2017, SIQAD, and SCID databases. The 

experimental results showed that EPISD has a competitive performance with state-of-the-art methods and works 

stably across different databases. 

INDEX TERMS Blind image quality assessment, spatial domain, edge patterns, LoG, ZC detection, smooth 

criterion. 

I. INTRODUCTION  

Quality assessment of an image is not a judgment of “beauty” 

or “realism,” but an objective measure [1] aiming to predict 

perceived image quality that is consistent with the human's 

subjective perception quality. Although the subjective 

perceptual quality can be obtained by evaluations of a number 

of people, the method is inherently time-consuming, expensive, 

and unstable for a practical system. Measuring the subjective 

perceptual quality cannot obtain real-time feedback for an 

automatic system. 

In practical image and video processing systems, distortions 

inevitably occur in the acquisition, digitization, compression, 

storage, transmission, and display stages. In the last three 

decades, with the rapid development of digital systems, the 

image quality assessment (IQA) method plays a crucial role, 

where useful information can be provided to test, optimize, 

benchmark, and monitor the process. 

On the basis of the degrees of using reference image 

information, objective image quality methods can be classified 

into full-reference (FR), reduced-reference (RR), and 

no-reference (NR) models. Among the three classes, FR 

models [2-7] are the most matured ones; however, they are 

hardly applied for most practical application because of 

unavailability of the reference image. RR models could predict 

image quality with only partial information of the reference 

image [8-15]. In contrast, the NR models are considered as 

“blind” IQA, where any reference image information is not 

required. Hence, in practice, the NR models are more useful for 

applications.  

Usually, in NR-IQA model designs, various statistics of 

images' structural features play key roles. When an image is 

distorted, the structural features are changed accordingly, and 

such structural change can be characterized by some specific 

structure statistics of the image. By the way of calculating 

feature statistics, NR models can be further classified into 

training-free method (e.g., [16, 17]) and the machine 

learning-based method (e.g., [18, 19]). Training-free methods 

have an inherent generalization ability; however, their 

performances are weaker compared with those machine 

learning-based methods at present [20]. Alternatively, with the 

help of machine learning techniques, such as support vector 

regression (SVR) and random forest (RF) techniques, statistics 

of image features can be easily mapped to the image quality 

index, which assists the machine learning based NR-IQA 

models to achieve relatively higher evaluation performance. In 
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recent years, the deep-learning based methods that directly map 

image or image structure to quality index achieve top 

performances on some single type distortion evaluations 

[21-23], but show comparatively weaker performances on 

multiply distortion based databases or screen content images 

databases [21]. In addition, deep learning-based methods 

generally need a large-scale IQA database to train numerous net 

parameters, while most existing databases are moderately small. 

In summary, the NR-IQA models based on statistics of image 

features and regularized by machine learning are still 

promising.  

There exist various kinds of IQA features for machine 

learning based NR-IQA methods. For example, BLIINDS-II 

[24] operates by analyzing the statistics of discrete cosine 

transform  coefficients using the generalized Gaussian 

distribution (GGD) model. DIIVINE [25] uses a set of 

neighboring wavelet coefficients modeled by the Gaussian 

scale mixture (GSM). In contrast, some other approaches 

directly obtain the statistic sensitive to image quality in the 

spatial domain. For example, image luminance is processed by 

BRISQUE [26] with local mean subtraction and local variance 

normalization, where the mean subtracted contrast normalized 

coefficients are modeled by GGD and neighboring coefficients 

are modeled by asymmetric GGD, respectively. Xue et al. [19] 

proposed joint statistics of the gradient magnitude map and the 

Laplacian of Gaussian (LoG) response to characterize the 

image quality. Some models [27-29] endeavor to improve local 

binary pattern (LBP) in the spatial domain. A visual codebook 

contains several code words, each representing a specific image 

structure, and the statistics of the codebook can be used for 

quality estimation. For example, CORNIA [30] classifies 

normalized image patches whiten by zero components analysis 

based on a clustering method to create the codebook. The local 

quantized pattern can also be used for building a codebook [31]. 

IQA model designs already used structure information 

represented by edge points. Edge points that mark the image's 

singularity positions explicitly represent the important spatial 

information of the image structure, which is relevant to the 

perceptual quality. IQA models [32-34] investigated how the 

edge points can be used for IQA model design, where the edge 

points were detected by LoG filtering and zero-crossing (ZC) 

detection. By exploring how many edge points stay in their 

original positions in deteriorated image, we proposed a multi- 

or single-scale FR-IQA model to achieve the state-of-the-art 

evaluation performance [32, 33]. Meanwhile, EMSQA[35] 

measures two salient edge attributes which are edge contrast, 

edge width. GSS[36] only extract gradient direction as an 

important attribute of the edge. ESIM [37] improves EMSQA 

by adding edge direction attribute which shows a better 

performance on four common distortion types (JP2K, JPEG, 

WN, and GB) and a weaker performance on other types 

especially in contrast change (CC). GFM [38] employs 

chrominance information of whole image to add with edge 

information, which improves those metrics with only edge 

attributes on the performance of CC, Layer-Segmentation 

based Compression (LSC), and Color Saturation Change (CSC). 

In another work, the histogram of counting four-neighborhood 

points of each edge point was proposed as the feature to build 

an efficient RR-IQA model [34].  

Existing edge-based IQA models explored the quality 

properties of each single edge point. However, an image 

structure involves a serial of adjacent edge points that jointly 

demonstrate the shape of the image structure. To investigate the 

relationships of adjacent edge points in terms of IQA, we 

introduced a new way of using edge points. Generally, natural 

images consist of abundant directional local features in terms of 

low-level vision [39]. The local feature's semantic information 

could be revealed by its edge profile that depicts the directional 

property of the adjacent edge points in the spatial location. 

When an image deteriorates, the image edge profiles will be 

changed accordingly. Thus, an IQA model could be built on the 

basis of investigating the statistics of all the possible image 

edge profiles. Although image edge profiles would appear in 

diversity, on the premise that the low-level features of natural 

images are directional in appearance, the edge profiles would 

be smooth along with their directions and hence exhibit a finite 

number of distribution patterns. This smooth property is crucial 

in designing a learned IQA model using such edge profile 

features. Copious features are unacceptable for building a 

learned IQA model because existing IQA subjective databases 

are limited in size, which cannot support a training process with 

a large scale of features. This study shows that a limited number 

of edge profiles can be collected from natural images by the 

proposed smooth criterion described in IID, and the limited 

number of edge profiles can represent most edge maps of 

natural images. By collecting all possible distribution patterns 

 
        (a)   (b) (c)  (d)     (e)  

FIGURE 1. Outline of the proposed method: (a) sample image; (b) enlarged region indicated by the red rectangle in (a); (c) edge map after LoG + ZC 
detection, thinning, and branch pruning shown in Fig. 2; (d) extracted edge patterns from (c); and (e) histogram of edge patterns of the whole image. 
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of the edge profiles from natural images within a local region 

(e.g., 5×5 pixels), we would have a new way to characterize 

image local features with the sets of edge profiles as edge 

patterns in this paper. Fig. 1(a) shows a natural image of the 

LIVE database, and its enlarged region is shown in Fig. 1(b). 

Fig. 1(c) is the edge profile of Fig. 1(b), and Fig. 1(d) shows the 

edge patterns extracted from Fig. 1(c). The normalized 

histogram of the whole picture is shown in Fig. 1(e), which can 

be fed into an SVR model to predict the image quality. 

In this study, we used the statistical distribution of edge 

pattern over an image to blindly measure the image's perceptual 

quality. The proposed NR model consists of two stages: (1) 

extraction of edge patterns from natural images and (2) quality 

measurement based on edge patterns. In the first stage, we 

collected all of the possible edge patterns from the edge maps of 

several natural images by following the proposed smooth 

criterion according to the properties of natural images. 

Meanwhile, we classified the spatial distribution of adjacent 

edge points in terms of binary value into 65 groups of edge 

patterns, in which we excluded three groups representing pieces 

of straight lines with different directions which are not sensitive 

to quality evaluation for designing the general purpose IQA 

features. In the second stage, with the collected 62 groups of 

edge patterns, we represented the image's quality property by 

the histogram of the occurrence number of every edge pattern. 

Finally, we employed a learned model based on the histogram 

feature to predict the image's perceptual quality, which shows a 

generalization ability across common distortion types.  

The main contributions of our paper are as follows. First, 

considering that the human visual system is sensitive to the 

image's structure information, we investigated the spatial 

relationship of adjacent edge points, which is different from the 

existing IQA models based on structure information [2, 30] and 

the edge map [32-34]. Hence, we produced a new way of using 

edge points in terms of IQA. Specifically, we first collected 

several edge patterns that capture most existing edge profiles of 

natural images in a local region. Second, we proposed the 

smooth criterion to construct a limited size codebook of edge 

profiles. The smooth criterion captures the directional 

smoothing property of the image so that the small number of 

edge patterns can cover most of the edge profiles of natural 

images. In this study, the proposed smooth edge pattern feature 

has been validated to efficiently acquire the structural 

information of the image and sensitive to image quality. The 

novel property found from natural images brings a new aspect 

of introducing a visual codebook that may benefit IQA 

researchers. 

The rest of the paper is organized as follows. Section II 

introduces the edge patterns and the details of the proposed 

method. Section III gives experimental results to evaluate the 

performance of the proposed method. Section IV gives the 

discussion and conclusion of this study. 

II. EDGE PATTERN CONSTRUCTION 

In this study, the edge pattern is defined as representing 

images' local structure based on the ZC map detected from the 

LoG-filtered image. More specifically, the edge patterns are 

refined ZC patches sampled from the ZC map. To simplify the 

representation of ZC patches without losing the edge profile's 

information, we used morphological operation, that is, the 

thinning process to abstract the ZC skeletonization. For IQA 

model implementation, assuming the smoothness of edges in 

natural images, several edge patterns are extracted from the 

thinning-processed ZC maps of natural images, followed by 

smooth criterion. 

A. LOG FILTERING AND ZERO-CROSSING DETECTION  

The proposed IQA model is based on the edge map. Various 

edge detection algorithms, such as Sobel, Canny, or ZC 

detection on LoG-filtered images, can extract edge points. In 

this study, we chose ZC detection on LoG-filtered image 

because both LoG filtration and ZC detection are 

symmetrically sensitive to image edges without any angular 

favor. This property would help fairly sense the edge structures 

of both natural images and distortion images. 

The proposed LoG filtering follows two steps. The first step 

is the normal LoG filtering, and the filter h is given by 

2 2 2 2

4 2 2

1
[1 ]exp( )

2 2

x y x y
h

  

+ +
= − − −               (1) 

where σ is the scale parameter, and x and y denote the spatial 

locations. 

Although LoG filtering removes local correlations of image 

signals, there still exist contrast correlations in a broader region. 

The contrast variance in a large spatial scale will affect the 

selection of the threshold of ZC detection. To address that 

problem, we further reduced the correlations by applying the 

Gaussian filter g to normalize LoG-filtered image with the 

surrounding energy, as shown in Eq. (2), called adaptive 

normalization (AN) process, which has been validated to be 

helpful in IQA model formulation [19]. 

                    

            (a) Branched structure (b) Branched structure after 
fixing the corner point 

 
(c) Branched structure 

after deleting the cross point 

  FIGURE 2.  Branched structures. 

 
  FIGURE 3. Patches for filling points of intersection. 
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where cc is a small positive constant to avoid numerical 

instability for small denominator, σ2 = 2σ;  is the linear 

convolution operator; I is an input of gray image; and L is the 

output of AN for LoG-filtered image. After the AN process, 

selecting the threshold of ZC detection will be consistent 

regardless of image contents. 

After applying ZC detection [40] to the image L, we obtained 

the ZC map for the subsequent process for performing the IQA 

model. 

B. PREPROCESSING OF ZC MAP  

The ZC map captures crucial information about the image 

structure. However, ZC detection would inevitably generate a 

multiple-pixel-wide edge line in the ZC map, introducing 

redundancy in representing the edge profile. In this regard, we 

used a morphological operation, that is, the thinning process 

[41], to abstract the ZC skeletonization. The thinning process 

can reduce the edge image's width to 1 pixel, enabling the 

processed ZC map to demonstrate the simplest connectivity of 

the edge points without redundancy. The collection of the edge 

profiles is refined. 

The thinning process could distort the branch structure, as 

shown in the example in Fig. 2(a). The branch structure reflects 

the superposition of two components in light imaging. In this 

case, the cross-edge point would be erased by the thinning 

process, which is the black point shown in Fig. 2(b). Indeed, the 

branch structure should be considered two independent 

structures, as shown in Fig. 2(c). To this end, we used detection 

templates shown in Fig. 3 to find the branch structures, and then 

we refined the edge structure by supplementing the black points 

and deleting the circle-labeled point [Fig. 2(b)]. In this study, 

we called the aforementioned process as branch pruning. After 

the branch pruning process, we obtained the refined ZC map. In 

this refined ZC map, the number of edge profile groups 

collected from natural images dramatically decreases from 

23797 to 95, by our experimental statistics, making it 

practicable to use the edge profiles representing image 

structures. 

The refined ZC map can demonstrate the quality change of 

distorted images. In Fig. 4, it shows samples of refined ZC 

maps of a reference image and several distorted counterparts. 

The images come from the LIVE database. For each image, an 

identical local region is enlarged and placed beside the image. 

The DMOS values are given beside each caption. On the basis 

of viewing these images, it could be found that the refined ZC 

maps are related to the visual perception of the image quality. 

Specifically, compared with the reference image's edge map in 

Fig. 4(a3), other images seem to be more unregular to some 

extent. In particular, these refined ZC maps distribute 

differently with different distortion types, which deviate from 

natural image's statistics. Moreover, the degree of deviation 

from the natural image's statistics would be employed if natural 

images' characteristics could be measured, and hence, the 

image quality could be predicted. 

 
                (a1)                             (a2)                           (a3)                            (a4) 

 
                  (b1)                           (b2)                            (b3)                             (b4)   

 
             (c1)                          (c2)                            (c3)                            (c4)  

 
(d1)                          (d2)                            (d3)                          (d4)   

FIGURE 4. Samples of refined ZC maps in the LIVE database: (a1) Natural 
image (DMOS: 0); (b1) JPEG (DMOS: 88.1423); (c1) white noise (DMOS: 

70.5033); (d1) Gauss blur (DMOS: 60.1070); (a2), (b2), (c2), and (d2) are the 
enlarged regions indicated by the red rectangle in (a1), (b1), (c1), and (d1), 

respectively; (a3), (b3), (c3), and (d3) are the edge maps of the whole 
pictures after LoG + ZC detection, thinning, and pruning; and (a4), (b4), (c4), 

and (d4) are the edge maps of the enlarged regions indicated by the red 
rectangle in (a3), (b3), (c3), and (d3), respectively. 
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(a) Index of edge points            (b) The freeman chain code value of  
                                                                 each edge point 

FIGURE 5. Coding example for a 5 × 5 patch. 
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FIGURE 6. The freeman chain 

code of the center point i. 

TABLE I. Freeman chain code 

value of each point. 

i 1 2 3 4 

Si
 6 7 7 0 

For this sample, the curvature 

ratio (CR) = 2. 
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C. CURVATURE RATIO 

The refined ZC map outputs 1-pixel skeletonization of edge 

points. We collected edge profiles from the refined ZC map and 

then abstracted the edge patterns. The edge profiles were 

collected from numerous patches sampled from the refined ZC 

map. The patch has a definite size, for example, 5 × 5. We 

restricted the sampled patch centered on the edge point. After 

the branch pruning process, each collected patch only contains 

one or more straight/curved lines with 1-pixel wide, which are 

not interconnected. For a collected patch, we only researched 

the line traversing patch center and neglected the others. 

However, the missed line will be captured by another sampled 

patch when one of its points is located at the center of the patch. 

Hence, all the lines on the map will contribute to the IQA task. 

In the end, the collected patch contains a single line traversing 

the center point. 

The natural image is abundant in directional structure 

features. This phenomenon would result in a smooth edge 

profile in the curvature. To characterize this property, we 

proposed an index, named curvature ratio (CR), to measure the 

edge profiles' smoothness. In our edge profile's statistics in each 

patch, the edge should span most of the patch, which means that 

the edge enters the patch at a start point (at patch border), 

crosses the central point, and then exits from an endpoint. In 

most cases, the exit point is also at the patch border. However, 

in the case of representing an edge terminal, the endpoint may 

be inside the patch. To accommodate this situation, we 

restricted the number of edge points to be bigger or equal to the 

window size value instead of requiring the endpoint is at the 

patch border. Fig. 5(a) shows an example for a 5 × 5 patch, 

where the edge piece contains five-point spans across the patch. 

We indexed the edge points one by one with variable i from the 

start point (i = 1) to the endpoint (i = K), and in this example, 

K = 5.  

To calculate the edge profile's direction change, we used the 

Freeman chain code (FCC) [42]. Fig. 6 shows the FCC's 

definition that indicates the eight-neighbor position of the next 

edge point, labeled by Si. Fig. 5(b) shows the FCC value of each 

point in Fig. 5(a). The CR of the edge profile in a patch is 

defined as Eq. (3): 

1

1

1

(( ),8)
K

i i

i

CR mod S S
−

+

=

= −                          (3) 

where K is the number of edge points in the patch, and mod() 

means modulus operation that outputs the shortest distance 

between two points on the circle linked by S1, S2, …, SK.  

Table I lists the FCC value of each edge point of the sample 

shown in Fig. 5. In this case, CR = 2.  

D. EDGE PATTERN GENERATION AND SMOOTH CRITERION  

On the basis of the aforementioned processes, we can collect 

various edge profiles from natural images with determined 

patch size. Normally, the patch size is picked among odd 

numbers, such as 3 × 3, 5 × 5, 7 × 7, and so on, to ensure a 

centered edge point. Meanwhile, we calculated the CR of every 

edge profile. Let us denote the edge profile by Pi,c, where i 

indexes different edge profiles, and c is the CR value. To 

classify the collected edge profiles, we combined the edge 

profiles with the same distribution but different directions into 

one group, denoted by the group number (GN) (Fig. 10). In this 

study, we called the grouped edge profiles as edge patterns. 

 
(a) Map ratio under 3 × 3 window size                 (b) Map ratio under 5 × 5 window size                  (c) Map ratio under 7 × 7 window size 

FIGURE 8. Map ratios of the edge patch with different maximum CRs. 

 
FIGURE 7. Samples of 110 natural images  
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Moreover, if an edge profile is symmetrical, there will be four 

elements in the edge patterns: horizontal, vertical, and diagonal 

at 45° and 135°. Otherwise, the group will have eight members 

instead. The edge patterns and edge profiles are indeed the 

same if the grouping process is neglected. To avoid 

misunderstanding, we alternated the edge profiles and edge 

patterns. In this paper, we collected the edge profiles from 110 

natural images bought with the right of use from a picture 

company. The 110 images' contents are varied enough to cover 

most natural scenes (Fig. 7) for some of their thumbnails. The 

images' size is approximately 500 × 700, which are 

independent in content to any images of existing subjective 

IQA databases. 

To analyze the edge patterns, we first viewed the map ratio 

that reflects how much extent a group of edge patterns can 

represent the ZC map, which is denoted by MR and calculated 

by Eq. (4): 

,

0 1 1

,

0 1 1
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( ),
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C

IC N

j i c

c j i

IN

j i c

c j i
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= = =
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                 (4) 

where Z denotes the refined ZC map, j indexes each edge point 

in Z, N is the number of the edge points in Z, c and i are defined 

as the same as above, IC denotes the number of the edge profiles 

for a given CR value, CM denotes the maximum CR value of 

which the edge profiles are used to represent the refined ZC 

map, Ej(Z) is an operator to fetch a patch from Z with the center 

point of j, Like(A, B) is the morphological operator to compare 

if the two patches of A and B are the same, as shown in Eq. (5). 

1
( , )

0
Like A B

           = 
= 

           
                        (5) 

For natural images, the collected edge profiles have limited 

CR values. By our experimental results, the CR value did not 

exceed 2 for the 3 × 3 patch size, 6 for the 5 × 5 patch size, and 

10 for the 7 × 7 path size.  

On the basis of the 110 natural images, we illustrated the 

relationship between the map ratio, max CR, patch size, and 

threshold of ZC detection (Fig. 8). Meanwhile, we listed the 

number of edge patterns under different patch sizes and CRs in 

Table II. From Fig. 8, we can see that regardless of the ZC 

threshold and patch size, the map ratio can be nearly 100% 

when the maximum CR is under a certain value. From Table II, 

the number of edge pattern group is increasing rapidly as the 

maximum CR growing. In applying edge patterns for image 

quality prediction, a large patch size will be helpful because 

large patch size will capture the diversity of edge patterns' 

distributions. However, introducing a large number of edge 

patterns will dramatically increase the burden of calculation. To 

balance between the representation effectively and computation 

burden, we adopted the 5 × 5 patch size and set the maximum 

CR to 4. We called the above maximum CR limitation under 

the 5 × 5 patch size as a smooth criterion in this study. Under 

this criterion, we have 65 groups of edge patterns representing 

the ZC map with a more than 96% map ratio.  

To validate whether the proposed edge patterns can 

effectively represent ZC maps of other natural images except 

for the 110 natural images, we used the 65 groups of edge 

patterns in calculating the map ratios for the 103 

(29 + 30 + 24 + 20) reference images of the four frequently 

used IQA databases (LIVE [43], CSIQ [44], TID2013 [45], and 

MDID2017 [46]). The scales of the LoG filters are 0.5, 1.0, 1.5, 

and 2.0, respectively. By the result, the average map ratios are 

98.34%, 97.19%, 97.83%, and 99.05% over the 103 reference 

images respectively on the four scales, and under the threshold 

selections of ZC: 0.98, 0.01, 0.15, and 0.15, respectively. The 

results suggested that the spatial distributions of edge patterns 

are consistent among different image contents, and thus, they 

would become a new effective representation of oriented 

smooth edge profiles for natural images.  

Images' structures exhibit a large amount of redundancy over 

scales [16], and the spatial distributions of edge points are 

different at different scales. Hence, the edge profiles of multiple 

scales distribute differently. As a result, edge profiles' statistics 

in distorted images are different from those in the natural image 

over different scales. In this paper, the Ej(Z) of a tested image is 

extracted on multiple scales to compare with the selected 

smooth edge patterns. Then, the compared result's statistics can 

be fed into a learned EPISD (edge patterns in the spatial domain) 

model to predict the quality score. 

Fig. 9 illustrates the whole framework of extracting smooth 

edge patterns from natural images. In this process, the scale of 

LoG is 1.0, the threshold of ZC is 0.01, and the parameter of 

AN is 14.44. The calculations of the first three steps in Fig. 9 

 
FIGURE 9. Block diagrams of the extracting edge pattern process. 

TABLE II. The number of edge patterns under each curvature ratio (CR) with 

different window sizes. 

CR ≤0 ≤1 ≤2 ≤3 ≤4 ≤5 ≤6 ≤7 ≤8 

Number 

of edge 

patterns 

3 × 3 1 2 4 / / / / / / 

5 × 5 1 4 16 36 65 89 95 / / 

7 × 7 1 6 38 153 363 520 579 585 586 
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are introduced by IIA, IIB, and IIC, respectively. For the 

collected edge profiles, we only kept the ones whose CR ≤ 4. 

Then, we grouped all selected edge profiles by their distribution 

into groups. After the whole process above, we extracted 65 

groups of edge patterns with CR ranging from 0 to 4 from the 

110 natural images. The edge patterns are displayed in Fig. 10. 

Although we collected the edge patterns under the LoG scale 

factor of 1.0, the produced edge patterns are generally over 

other scale factors, by our experimental observation. 

E. EDGE PATTERN HISTOGRAM AND NR-IQA MODEL LEARNING 

Fig. 10 shows the 65 groups of edge patterns, in which not all 

edge patterns are qualified for predicting image quality. Based 

on our experimental observation which are shown in section III. 

B, we excluded three groups of edge patterns with GNs 1, 2, 

and 5(highlighted in Fig. 10). Specifically, the removed edge 

patterns represent pieces of straight-line edges with different 

directions, which are insensitive to image quality evaluation. 

Those edge patterns have large occurrence probabilities, which 

disturb the training process of building the IQA model. To 

refine the proposed model, we excluded them from the quality 

features in yielding the proposed model. Finally, we selected 62 

groups of edge patterns to build a quality feature for producing 

the NR-IQA model. The selected edge patterns have the CR 

value not exceeding 4. Fig. 10 shows the 65 groups of edge 

patterns. The GN is placed at the left of each group. The CR 

values of the edge patterns are listed in the first column.  

We used the histograms of groups of edge patterns as the 

quality feature of the proposed NR-IQA model. To predict 

perceptual quality scores based on the histogram features, we 

used the SVR technique to train the regression model, 

commonly used in the literature [19, 24, 26, 47, 48]. Here, the 

prediction model is learned via ε-SVR training between the 

normalized histograms [H1, H2, …, Hk, …, HK] and the 

corresponding DMOS/MOS [y1, y2, …, yk, …, yK] scores of the 

training image set with K images. For each image k, the 

normalized histogram Hk is calculated by (6):  

4 62

=1 =1

  == 1( ) ),+1  j, n

k

n i

i

j

n

f (i,n)
H (i,n)

f (i,n)

f(i,n)= i Likf(i,n) e(E (Z ),Pf 

=



        (6) 

where f is the count number for edge patterns Pi, which are 

 
FIGURE 10.  The 65 groups of the edge patterns selected from 110 natural images (CR: curvature ratio, GN: group number) 
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compared with every edge patch Ej(Zn) of the refined ZC map 

Zn for the test image on each scale n; i denotes the index of the 

GN of edge patterns, and n denotes the LoG scales, j is the 

index of each edge point in Zn. Here, we adopted four scales to 

detect natural image edge points. In this regard, we have 62×4 

quality features to acquire the perceptual quality of the image.  

    The deep learning method was not introduced on the learning 

step because the proposed method needs each training picture's 

subjective value, and all the exiting databases with 

DMOS/MOS have no enough training samples for deep 

learning. 

III. EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION 

The edge pattern histograms are normalized to be the input of 

SVR for image quality prediction. Specifically, the refined ZC 

patches Ej(Zn) with the 5 × 5-pixel size are extracted from the 

tested image of natural scene to match groups of edge patterns 

Pi on scales of 0.5, 1.0, 1.5, and 2.0, where the corresponding 

thresholds are 0.98, 0.01, 0.15, and 0.15, respectively. Besides, 

the regression kernel is the radial basis function (RBF) with two 

parameters C and γ set on each database. Given the edge pattern 

histograms observed, the trained model EPISD could predict 

various distorted images' quality score. The MATLAB source 

code for the EPISD can be downloaded at 

http://gr.xjtu.edu.cn/web/xqmou/EPISD. 

We tested groups of edge patterns' prediction accuracy on 

subjective image databases to investigate each database's 

performances and demonstrate their independence and 

generality across databases. The EPISD is trained and tested 

separately on the natural scene databases: LIVE [43], CSIQ 

[44], TID2013 [45], and MDID2017 [46]; and even on the 

screen content images SCIs databases: SIQAD[49], and 

SCID[37]. The results showed that for all databases, EPISD are 

highly correlated with the corresponding subject scores 

(DMOS/MOS) and stays in the state-of-the-art NR-IQA models 

and shows a good generalization ability across different image 

contents. 

A. DATABASES AND EVALUATION PROTOCOLS 

The LIVE database was published by the University of Texas, 

consisting of five types of distortion and 779 images generated 

from 29 reference images. Here, all distorted images were 

tested with the associated DMOS values in the LIVE database. 

The CSIQ database was released by the Oklahoma State 

University, which contains 866 distorted images of six 

distortion types originated from 30 reference images. 

Compared with the two databases mentioned above, the 

TID2013 is the largest database among the four databases. 

TID2013 database was published by the National Aerospace 

University and the Tampere University of Technology, which 

contains 3000 distorted images of 24 distortion types. Those 

distorted images are generated by 24 natural reference images 

and one synthetic reference image. In this database, the 

synthetic image is excluded from the evaluation in the 

following sections. The MDID2017 database was recently 

published by the Tsinghua University, which was designed for 

evaluating IQA on 1600 multiple distorted images generated by 

a selection of five distortion types and levels. Also, it contains 

20 natural images. We used two different sets (600 and 480) of 

distorted images from the CSIQ and TID2013 databases of four 

distortion types (JP2K, JPEG, WN, and GB) to follow the IQA 

work's common experiment setting. These four distortion types 

are shared in the four databases, and all the distortion types in 

TID2013 were particularly applied to evaluate the NR-IQA's 

performance further. 

SIQAD has 980 distorted images generated from 20 

reference images, and SCID contains 1800 distorted images 

created from 40 reference images. Although the two databases 

have 7 and 9 distortion types respectively, we only tested our 

metric on the four common distortion types which are shared in 

the aforementioned databases. 

We also calculated the following three commonly used 

indexes for the IQA evaluation: (1) the Pearson correlation 

coefficient (PCC) after the non-linear matching between the 

method's value and the subjective value, (2) the Spearman 

rank-order correlation coefficient (SROCC), and (3) the 

Kendall rank-order correlation coefficient (KROCC). All the 

three indexes lie in the range (−1, 1), and the larger absolute 

value indicates the higher prediction performance. 

We applied the LIBSVM package [50] for regression to 

construct a model between the normalized histograms of 

trained images and the database's corresponding subjective 

values. The trained model was then employed to forecast 

quality values through the normalized histograms of test 

images. To ensure the model's independence, we made sure that 

the image contents must be non-overlapping between trained 

and tested sets. The trained images are distorted versions of 

80% of the reference images, and the remaining 20% are 

allocated to the tested set. Furthermore, the random choice of 

different contents for trained and tested was repeated 1000 

times to ensure the stability between the two sets with different 

contents; meanwhile, the prediction's median results were 

recorded. A cross-validation experiment was conducted in each 

database to determine the values of C and γ for the RBF. 

ZC map is determined on the basis of threshold selection. 

From the Fig.8 (b), map ratios of edge patterns with CR equal to 

0 vary a lot under different thresholds. After deleting edge 

patterns with GNs 1, 2, and 5 for quality prediction, the 

remaining edge patterns’ occurrence probabilities change 

relative slightly across different thresholds. Acordding to the 

experiment observation in LIVE database, the SROCC value is 

not sensitive to the threshold selection. When we randomly 

selected four thresholds on the four range [0.92,1.03], 

[0.01,0.04], [0.11,0.17], [0.11,0.17] for scales of 0.5, 1.0, 1.5, 

and 2.0 respectively in the LIVE database, the median SROCC 

value of 1000 times change from 0.943 to 0.949, which stay in a 

stable range. The optimal thresholds of the four scales on LIVE 

database are 0.98, 0.01, 0.15, and 0.15, respectively, which are 

consistently used in other databases.  

B. ABLATION EXPERIMENTS 

The ablation experiments of different CR and GNs on natural 

images and SCIs were listed in the Table. III and IV. The 

ablation experiments were performed on images with four 

common distortion types from the CSIQ, TID2013, SIQAD, 

http://gr.xjtu.edu.cn/web/xqmou/EPISD
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and SCID databases and full size of LIVE and MDID2017 

databases to follow normal experiment setting for existing IQA 

evaluations. Table. III shows that distributions of edge patterns 

with CR=0, 5, and 6 are not good features for quality prediction 

regardless of the image content variations. 

According to the ablation experimental results shown in 

Table IV, 62 groups are more effective than 65 groups. The 

excluded three groups with GNs 1, 2 and 5 (shown in Fig. 10) 

are negative to the EPISD model design especially when 

evaluated on SCI databases. Indeed, the three groups represent 

pieces of straight lines features with different directions. This 

kind feature is abundant in images and has very different 

occurrence quantities across different image contents, which is 

negative to quality predication.  

C. PERFORMANCE ON INDIVIDUAL DATABASE  

The following state-of-the-art SVR-based machine learning 

methods of NR-IQA are introduced as the competitive methods 

in evaluating the proposed model: Grad&LoG [19] 

BLIINDS-II [24], BRISQUE [26], GWH-GLBP [47], NFERM 

[18], and SIQE[51]. Moreover, we also employed some 

opinion-unaware methods: ILNIQE [52], QAC [53], NIQE [20], 

and dipIQ [21]. Among them, the dipIQ employs the deep 

learning method; ILNIQE, QAC, SIQE, and dipIQ have a 

pre-trained model; NIQE has a training free model; those 

methods were also repeated for a 1000-time random choice of 

different contents for 20% tested sets to ensure a fair 

comparison. The codes of the models are borrowed from either 

public web sources or authors directly. Moreover, to ensure a 

fair comparison, we determined the optimal SVR parameters 

through the grid search for all SVR-based NR-IQA algorithms.  

The overall performances of NR-IQA models on six 

databases were shown in Table V, and the best two NR-IQA 

models for each index (SROCC, PCC, or KROCC) were 

highlighted in bold. In the table, Grad&LoG performs 

excellently on LIVE, CSIQ, TID2013 and SCID with only 

single distortion-type images, whereas GWH-GLBP gets the 

best results on MDID2017 with multiple distortion-type images. 

Grad&LOG and EPISD show top two performances among all 

the NR metrics. Despite Grad&LoG shows an obvious better 

performance than EPISD on SCID database, its performances 

TABLE V 

Overall performance of the competing NR-IQA models on six databases. 

Model Grad&LoG BLIINDS-II BRISQUE NFERM GWH-GLBP SIQE dipIQ QAC NIQE ILNIQE EPISD 

LIVE 

(779 images) 

SROCC 0.9511 0.9302 0.9430 0.9418 0.9216 0.7602 0.9381 0.8728 0.9099 0.9030 0.9484 

PCC 0.9551 0.9366 0.9468 0.9461 0.9322 0.7759 0.9376 0.8692 0.9107 0.9094 0.9505 

KROCC 0.8119 0.7724 0.7979 0.8025 0.7616 0.5531 0.7841 0.6839 0.7363 0.7221 0.8034 

CSIQ 

(600 images) 

SROCC 0.9243 0.9003 0.9085 0.9149 0.8470 0.7043 0.9309 0.8538 0.8524 0.8872 0.9103 

PCC 0.9457 0.9282 0.9356 0.9357 0.9187 0.7696 0.9505 0.8866 0.8857 0.8725 0.9413 

KROCC 0.7702 0.7407 0.7404 0.7503 0.6975 0.4944 0.7696 0.6645 0.6633 0.7084 0.7428 

TID2013 

(480 images) 

SROCC 0.9355 0.8915 0.9059 0.9235 0.8597 0.7931 0.8790 0.8553 0.8106 0.8768 0.9239 

PCC 0.9502 0.9157 0.9276 0.9410 0.9042 0.8390 0.8951 0.8596 0.8192 0.8902 0.9399 

KROCC 0.7866 0.7140 0.7387 0.7653 0.6785 0.5834 0.6906 0.6565 0.6038 0.6824 0.7623 

MDID2017 

(1600 images) 

SROCC 0.7701 0.7731 0.7665 0.8031 0.8922 0.3275 0.6736 0.3294 0.6578 0.6930 0.8617 

PCC 0.7878 0.7859 0.7815 0.8119 0.8973 0.3948 0.6981 0.6211 0.6784 0.7331 0.8735 

KROCC 0.5681 0.5685 0.5595 0.6032 0.7082 0.2265 0.4820 0.2432 0.4679 0.4938 0.6646 

SIQAD 

(560 images) 

SROCC 0.7900 0.7679 0.7669 0.7797 0.7820 0.7840 0.6985 0.6051 0.4816 0.5166 0.8599 
PCC 0.8138 0.8079 0.8140 0.8082 0.8184 0.8124 0.7119 0.6320 0.5106 0.5397 0.8735 
KROCC 0.6051 0.5761 0.5824 0.5923 0.5935 0.5900 0.4970 0.4298 0.3330 0.3660 0.6739 

SCID 

(800 images) 

SROCC 0.8759 0.7781 0.7304 0.8251 0.8196 0.6574 0.7840 0.4969 0.5432 0.3231 0.8429 
PCC 0.8764 0.7895 0.7368 0.8295 0.8260 0.6647 0.7922 0.5367 0.5750 0.3789 0.8432 
KROCC 0.6895 0.5821 0.5438 0.6366 0.6284 0.4789 0.5744 0.3478 0.3813 0.2243 0.6481 

Hit count   14 0 0 2 4 0 3 0 0 0 13 

Mean 

SROCC 0.8745  0.8402  0.8369  0.8647  0.8537  0.6711  0.8174  0.6689  0.7093  0.7000  0.8912  

PCC 0.8882  0.8606  0.8571  0.8787  0.8828  0.7094  0.8309  0.7342  0.7299  0.7206  0.9037  

KROCC 0.7052  0.6590  0.6605  0.6917  0.6780  0.4877  0.6330  0.5043  0.5309  0.5328  0.7159  

 

TABLE III  

SROCC with different CRs on databases  

Edge patterns’ 

CR 

LIVE 

(779 images) 

CSIQ 

(600 images) 

TID2013 

(480 images) 

MDID2017 

(1600 images) 

SIQAD 

(560 images) 

SCID 

(800 images) 

0 0.6883 0.7906 0.6235 0.3728 0.6704 0.5186 

1 0.9094 0.8838 0.8857 0.7709 0.8055 0.7846 

2 0.9361 0.8995 0.8871 0.8600 0.8048  0.8320 

3 0.9367 0.9078 0.9104 0.8667 0.8202  0.8588 

4 0.9230 0.8806 0.9080 0.7979 0.8087  0.8165 

5 0.9009  0.8575 0.8779 0.7299 0.7493  0.7444 

6 0.7579  0.7611 0.7603 0.5557 0.5674  0.6789 

TABLE IV  

SROCC with different groups of edge patterns on different databases  

group amount 
LIVE 

(779 images) 

CSIQ 

(600 images) 

TID2013 

(480 images) 

MDID2017 

(1600 images) 

SIQAD 

(560 images) 

SCID 

(800 images) 

62 groups 0.9484 0.9103 0.9239 0.8617 0.8599 0.8429 

65 groups 0.9447 0.8989 0.8765 0.8670 0.7968 0.8054 
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on SIQAD and MDID2017 databases decline too much. EPISD 

is the most stable metric with the highest mean value of each 

three indexes. The satisfactory results of our metric in all the 

databases show that edge patterns merely recording adjacent 

edge points’ direction information have a great generalization 

ability for predicting quality of four common distortion types. 

GWH-GLBP was dedicatedly developed for evaluating image 

quality with multiple distortion types; SIQE was designed for 

SCIs; thus, they work not so well in other databases. 

Table VI recorded the SROCC values for each distortion 

type on the five singly distortion databases, where the best two 

models were also highlighted in bold. Evaluated by the hit 

count, the proposed method and dipIQ share the second place. 

EPISD still shows top two according to the mean value and 

standard deviation. Also, Table VII presented the NR-IQA 

results with 24 distortion types in the TID2013 database 

generated from 24 natural images to evaluate each model on 

more distortion types further. From Table VII, all NR-IQA 

methods indicate poor performances on several uncommon 

distortions, which are Nos. 14–18 on the TID2013 database. 

TABLE VI 

Performance (SROCC) of competing NR-IQA models on single distortion types. 

  Grad&LoG BLIINDS-II BRISQUE NFERM GWH-GLBP SIQE dipIQ QAC NIQE ILNIQE EPISD 

JP2K 

LIVE 0.9283 0.9258 0.9175 0.9366 0.8955  0.6818 0.9527 0.8779 0.9242 0.9027 0.9367 
CSIQ 0.9172 0.8870 0.8934 0.9142 0.8914  0.6817 0.9421 0.8834 0.8836 0.9213 0.9244 
TID2013 0.9408 0.9215 0.9075 0.9229 0.9016  0.8169 0.9208 0.8939 0.8975 0.9123 0.9196 
SIQAD 0.5963 0.6683 0.4869 0.6598 0.5052 0.6733 0.5745 0.2080 0.2458 0.3834 0.7898 
SCID 0.8118 0.7902 0.5566 0.7370 0.7674 0.3471 0.8126 0.0462 0.6340 0.0955 0.7812 

JPEG 

LIVE 0.9659 0.9500 0.9655 0.9615 0.9360  0.8917 0.9668 0.9438 0.9422 0.9428 0.9582 
CSIQ 0.9328 0.9115 0.9253 0.9065 0.8879  0.7496 0.9341 0.9143 0.9147 0.9033 0.9136 
TID2013 0.9046 0.8666 0.8931 0.9023 0.8354  0.8144 0.9252 0.8714 0.8639 0.8671 0.9023 
SIQAD 0.6686 0.4226 0.5348 0.6546 0.6305 0.7153 0.4567 0.1954 0.4422 0.2920 0.7269 
SCID 0.8879 0.7998 0.7684 0.8323 0.8401 0.6514 0.8464 0.4143 0.6050 0.2774 0.8519 

WN 

LIVE 0.9853 0.9477 0.9789 0.9791 0.9475  0.9359 0.9729 0.9497 0.9720 0.9795 0.9640 
CSIQ 0.9406 0.8863 0.9310 0.9031 0.7529  0.6440 0.9020 0.8242 0.8287 0.8683 0.8808 
TID2013 0.9354 0.7885 0.8773 0.9002 0.5962  0.6481 0.8652 0.7535 0.8155 0.8864 0.8838 
SIQAD 0.8916 0.8612 0.8820 0.8662 0.8719 0.8281 0.8765 0.8638 0.8245 0.8143 0.8684 
SCID 0.9651 0.9203 0.9535 0.9578 0.9442 0.9000 0.9380 0.8992 0.8073 0.7012 0.9377 

GB 

LIVE 0.9395 0.9132 0.9479 0.9301 0.9106  0.8122 0.9382 0.9168 0.9404 0.9261 0.9453 
CSIQ 0.9079 0.9152 0.9143 0.9238 0.9010  0.7311 0.9346 0.8567 0.8538 0.8725 0.8961 
TID2013 0.9254 0.9131 0.9185 0.9159 0.9100  0.8876 0.9046 0.8846 0.8145 0.8355 0.9100 
SIQAD 0.8180 0.8708 0.8711 0.8114 0.8987 0.9022 0.8121 0.6613 0.5266 0.4560 0.8976 
SCID 0.8174 0.5741 0.5723 0.7824 0.7213 0.7678 0.7376 0.3792 0.2903 0.2015 0.7320 

FF LIVE 0.9008 0.8736 0.8854 0.8701 0.8625  0.6941 0.8558 0.8207 0.8647 0.8496 0.9052 

Hit count 14 0 4 5 1 3 7 0 0 1 7 

Mean  0.8848  0.8384  0.8372  0.8699  0.8289  0.7512  0.8604  0.7171  0.7567  0.7090  0.8822  

STD 0.0968  0.1331  0.1556  0.0925  0.1228  0.1326  0.1301  0.2836  0.2149  0.2878  0.0690  

 

 

TABLE VII 

Performance (SROCC)  of competing NR-IQA models on single distortion type on the TID2013 without the synthetic reference image. 

 
2880 images 

Grad& 

LoG 

BLIINDS-

II 
BRISQUE NFERM 

GWH-GL

BP 
dipIQ NIQE ILNIQE EPISD 

1 Additive Gaussian noise 0.7677 0.5823 0.6477 0.8074  0.4400 0.9014  0.8469  0.9050 0.6883  
2 Additive noise in color components  0.5642 0.2704 0.4796 0.5091  0.3185 0.7750  0.6938  0.8277 0.4273  
3 Spatially correlated noise 0.7915 0.7277 0.7162 0.8720  0.5781 0.6192  0.7208  0.9385 0.6685  
4 Masked noise 0.5028 0.3785 0.3720 0.5415  0.3143 0.8128  0.8104  0.6966 0.2131  
5 High-frequency noise 0.8741 0.7094 0.7758 0.8653  0.6135 0.8900  0.8642  0.8850 0.8356  
6 Impulse noise 0.6881 0.6342 0.7428 0.7902  0.5838 0.8569  0.8215  0.8300 0.7071  
7 Quantization noise 0.8103 0.5942 0.6069 0.7604  0.3962 0.8215  0.8783  0.8869 0.5715  
8 Gaussian blur 0.8860 0.8947 0.8562 0.8946  0.8553 0.9169  0.8388  0.8622 0.8538  
9 Image denoising 0.7739 0.7953 0.5014 0.7770  0.7476 0.1090  0.6604  0.8032 0.7854  
10 JPEG compression 0.8500 0.6535 0.7391 0.7992  0.8010 0.9332  0.8808  0.8838 0.8373  
11 JPEG2000 compression 0.8892 0.8515 0.7893 0.9262  0.8523 0.9246  0.9070  0.9208 0.8531  
12 JPEG transmission errors 0.5155 0.5688 0.3302 0.5400  0.6399 0.7865  0.0146  0.3654 0.6688  
13 JPEG2000 transmission errors 0.7592 0.6616 0.6746 0.7965  0.5979 0.4506  0.6069  0.6658 0.7185  
14 Non-eccentricity pattern noise 0.2037 0.1591 0.1839 0.1693  0.1978 0.4275  0.1652  0.1764 0.3183  
15 Local block-wise distortions  0.3918 0.2891 0.2075 0.1716  0.1817 0.3995  0.0585  0.2200 0.3895  
16 Mean shift (intensity shift) 0.1869 0.2126 0.1904 0.1662  0.1500 0.0285  0.1431  0.2573 0.1806  
17 Contrast change 0.3298 0.1088 0.1338 0.1650  0.0908 0.2481  0.0431  0.1296 0.2710  
18 Change of color saturation 0.2577 0.2319 0.2646 0.2723  0.2369 0.0688  0.2273  0.2523 0.3265  
19 Multiplicative Gaussian noise 0.7097 0.6484 0.5985 0.7077  0.4677 0.8596  0.7555  0.7415 0.6115  
20 Comfort noise 0.2375 0.1992 0.3266 0.2850  0.5888 0.4095  0.1769  0.4320 0.2815  
21 Lossy compression of noisy images 0.7581 0.6703 0.6476 0.6039  0.5881 0.8785  0.8517  0.8846 0.6900  
22 Image color quantization with dither 0.8869 0.7823 0.8285 0.8492  0.7265 0.7958  0.8131  0.7942 0.7638  
23 Chromatic aberrations 0.6739 0.6488 0.7615 0.7355  0.7058 0.7578  0.7031  0.8177 0.7506  
24 Sparse sampling and reconstruction 0.9285 0.8854 0.7919 0.8892  0.8277 0.7976  0.8708  0.9054 0.8185  

Hit count 

Mean 

STD 

5 3 1 5 1 13 3 13 4 

0.6349 0.5483 0.5486 0.6206 0.5208 0.6445 0.5980 0.6701 0.5929 

0.2458 0.2486 0.2374 0.2707 0.2376 0.2963 0.3255 0.2806 0.2271 
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The proposed model is not quite effective when tested on the 

distortion type of color component, masked noise, and comfort 

noise. The edge patterns with binary values only reveal the edge 

profile's spatial information, which are effective on the 

distortion types which result in spatial structure deviation.  

However, the proposed EPISD is very effective in MDID2017, 

as shown in Table VIII. Table VIII listed SROCC of all the 

1600 distorted images with multiple types combined by five 

single distortions, which were represented by five different 

colors on each column, and white color indicated the absence of 

the corresponding single distortion. Grad&LoG and dipIQ, 

which show good performances in single distortion types in 

Table VI, are relatively weak in multiple distortion types that 

are combinations of five distortion types. On the contrary, 

GWH-GLBP delivers the best performance on multiple 

distortion types but weaker on single ones. However, the 

proposed model keeps in the top 2 spots in Table VIII and the 

most stable on common distortion types, whether they are 

single or multiple, as shown in Tables VI and VIII.  

A one-sided t-test with a 95% confidence level was 

performed to test the mean values' equivalence, where the 

SROCC was generated from the NR-IQA models, and the 

experiments were carried out on the four databases for 1000 

iterations. The results were displayed in Fig. 11. In the figure, 

the “1” value indicates that the current row model performs 

statistically better than the corresponding column model, the 

“−1” value implies that the current column model performs 

statistically better than the current row model, and the “0” value 

indicates that there is no statistical performance difference 

TABLE VIII 

Performance (SROCC) of competing NR-IQA models on multiple distortion types on the MDID2017. 

Multiple distortion types (1600 images) Models 

                GN GB CC JPEG JP2K 
GRAD& 

LOG 

BLIINDS-

II 
BRISQUE NFERM 

GWH-GL

BP 
dipIQ NIQE ILNIQE EPISD 

1      0.8214  0.8182  0.8571  0.8407  0.9091  0.8850  0.8182  0.8671  0.8601  

2      0.8167  0.7906  0.8818  0.8667  0.8788  0.9286  0.9026  0.9000  0.8681  

3      0.2038  0.4266  0.0857  0.2967  0.2363  0.1542  0.0984  0.0989  0.0125  

4      0.8182  0.8511  0.8095  0.8095  0.9048  0.8333  0.6500  0.8022  0.8000  

5      0.8182  0.7505  0.8500  0.8507  0.8736  0.8023  0.8164  0.8667  0.8286  

6      0.7025  0.7547  0.7564  0.7621  0.8424  0.8297  0.8000  0.7818  0.7561  

7      0.8322  0.8571  0.7909  0.7825  0.9091  0.8455  0.8273  0.4759  0.8333  

8      0.7825  0.7005  NAN NAN NAN 0.7912  0.8300  0.7000  0.8333  

9      0.5928  0.6828  0.6167  0.7143  0.7475  0.6500  0.6000  0.6905  0.6167  

10      0.6279  0.7667  0.6967  0.7273  0.8322  0.7697  0.6907  0.5462  0.6912  

11      0.8033  0.8041  0.8322  0.8286  0.8791  0.7529  0.8601  0.7701  0.8201  

12      0.4349  0.3099  0.3373  0.3852  0.4636  0.7852  0.4870  0.7088  0.4788  

13      0.7000  0.7167  0.7833  0.7413  0.8727  0.4929  0.7143  0.8000  0.8000  

14      0.6833  0.5545  0.4182  0.6144  0.7500  0.6429  0.4196  0.3681  0.7273  

15      0.6621  0.3333  0.3826  0.5429  0.4788  0.7500  0.6429  0.4000  0.6000  

16      0.5821  0.6783  0.7429  0.7091  0.8529  0.3257  0.6593  0.8077  0.8187  

17      0.6540  0.6242  0.5714  0.6736  0.7692  0.6022  0.4586  0.3345  0.7290  

18      0.7000  0.7022  0.7143  0.6713  0.8516  0.6606  0.7091  0.7455  0.8061  

19      0.2909  0.5280  0.4725  0.5000  0.8328  0.2500  0.3147  0.3143  0.6833  

20      0.6345  0.6190  0.6842  0.6492  0.8571  0.4182  0.3000  0.2727  0.8322  

21      0.6205  0.7107  0.6679  0.6945  0.7034  0.6147  0.6929  0.6806  0.6709  

22      0.4382  0.6085  0.5804  0.6737  0.8121  0.4321  0.5134  0.5645  0.7440  

23      0.5925  0.6137  0.5856  0.6370  0.8142  0.3218  0.2616  0.2549  0.8098  

Hit count 1 4  0 2 18 6 3 3 10 

 
 

 

     
(a) LIVE                                                                                                                  (b) CSIQ 

       
(c) TID2013                                                                                                               (d) MDID2017 

FIGURE 11. Results of the one-sided t-test conducted using SROCC values of competing NR-IQA models on each database. The “1” value indicates that the 
row model is statistically better than the column model, the “−1” value indicates that the column model is statistically better, and the “0” value indicates that 

they are statistically similar in performance.  

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3112741, IEEE Access

                                                                                          W.T.Shao et al: No-Reference Image Quality Assessment based on Edge Pattern feature 

 

between the current row and column models. On the basis of 

the listed results, EPISD is statistically superior to four methods 

on each database.  Considering the “1” value on the four 

databases, EPISD and Grad&LOG share the first place with the 

hit count of 16. 

D.  DATABASE INDEPENDENCE 

The most important properties of the NR-IQA model are 

independence and generality. In other words, when the model 

was learned from one database, it could be applicable to test the 

images in other databases as well. In this paper, 12 different 

combinations of training and testing pairs were formed by four 

trained databases and four tested databases. In Table IX, all 

SROCC values of NR-IQA models across four databases 

(LIVE, CSIQ, TID2013, and MDID2017) were presented. 

These values were also calculated from pictures of any shared 

distortion types, JPEG, JP2K, blur, and noise, where the best 

two were highlighted in bold. ILNIQE, dipIQ, and NIQE do not 

need to take the evaluated database's training step. The mean 

value results showed that EPISD are top three among the 

models with the four shared distortion types' training steps. To 

further validate the method's independence property, we 

implemented another experiment based on all distortion types, 

which means that the trained distortion type and test distortion 

type is not consistent. The results are given in Table X. EPISD's 

performance is poorer than ILNIQE but the best among the rest 

methods evaluated by the hit count number and mean value.  

IV. DISCUSSION AND CONCLUSION  

Among the advanced NR-IQA methods in quality prediction 

tests, the proposed method demonstrates some remarkable 

significance. It shows a satisfactory performance when 

evaluated on the databases with single and multiple distorted 

images and the most stable performance on the four traditional 

IQA databases. This highly competitive performance provides 

convincing evidence that the proposed 62 groups of edge 

patterns can effectively represent natural image structures to 

predict perceptual quality. The proposed method identifies edge 

pixels' joint relationship in a local window with the smooth 

criterion, which discovers latent characteristics of natural 

image structures and can be used for building IQA models. In 

this way, the proposed NR-IQA model performs robustly 

across different distortion types of images. Meanwhile, the 

proposed strategy of using edge patterns to represent the 

inherent property of natural image structures also provides a 

new aspect in designing IQA models. 

On the other hand, edge patterns merely record orientation 

information of adjacent edge points with binary values show a 

good generalization ability across four common distortion 

TABLE IX 

Performance (SROCC) of the NR-IQA models across the four databases in shared distortion types. 

Database 

for training 

Database 

for testing 
Grad&LoG BLIINDS-II BRISQUE NFERM GWH-GLBP dipIQ NIQE ILNIQE EPISD 

LIVE CSIQ 0.9108 0.8878 0.8993 0.8796 0.8409 0.9291 0.8694 0.8800 0.9023 

LIVE TID2013 0.9272 0.8210 0.8556 0.8995 0.8653 0.8790 0.8106 0.8768 0.9228 

LIVE MDID2017 0.5623 0.5048 0.5802 0.5641 0.8344 0.7105 0.6608 0.7442 0.7078 

CSIQ LIVE 0.9459 0.9365 0.9311 0.9186 0.8887 0.9574 0.9149 0.9149 0.9306 

CSIQ TID2013 0.8983 0.8376 0.7971 0.8839 0.8164 0.8790 0.8106 0.8768 0.9005 

CSIQ MDID2017 0.6087 0.5698 0.6397 0.5623 0.8062 0.7105 0.6608 0.7442 0.6227 

TID2013 LIVE 0.9287 0.8959 0.8579 0.8455 0.8953 0.9574 0.9150 0.9149 0.9073 

TID2013 CSIQ 0.8280 0.8484 0.8044 0.8389 0.8037 0.9291 0.8694 0.8800 0.8796 

TID2013 MDID2017 0.5635 0.5382 0.6895 0.5958 0.7973 0.7105 0.6608 0.7442 0.6813 

MDID2017 LIVE 0.9042 0.8664 0.8828 0.8300 0.8450 0.9574 0.9150 0.9149 0.8737 

MDID2017 CSIQ 0.8415 0.8182 0.7847 0.7957 0.8007 0.9291 0.8694 0.8800 0.8020 

MDID2017 TID2013 0.8519 0.7491 0.7833 0.7905 0.7874 0.8790 0.9106 0.8768 0.8478 

Hit count 5 0 0 0 3 7 2 5 2 

Mean 0.8143 0.7728  0.7921 0.7837 0.8318 0.8690 0.8223 0.8540 0.8315 

STD 0.1473  0.1498  0.1072  0.1323 0.0363 0.1000 0.1039 0.0680  0.1046  

 

 

TABLE X 

Performance (SROCC) of the NR-IQA models across the four databases in all distortion types. 

Database 

for training 

Database 

for testing 
Grad&LoG BLIINDS-II BRISQUE NFERM GWH-GLBP dipIQ NIQE ILNIQE EPISD 

LIVE CSIQ 0.6256  0.6425  0.5682  0.6101 0.6534 0.5265 0.6264 0.8145 0.7033  

LIVE TID2013 0.4669  0.4380  0.4988  0.4374 0.5322 0.4377 0.3117 0.5181 0.5358  

LIVE MDID2017 0.5180  0.4970  0.5074  0.4823 0.7920 0.6612 0.6498 0.6895 0.6955  

CSIQ LIVE 0.8606  0.8552  0.8570  0.8144 0.8152 0.9378 0.9055 0.8971 0.8830  

CSIQ TID2013 0.4744  0.4155  0.4616  0.4635 0.4216 0.4377 0.3117 0.5181 0.5185  

CSIQ MDID2017 0.4191  0.5313  0.5415  0.4146 0.7272 0.6612 0.6498 0.6895 0.6421  

TID2013 LIVE 0.8717  0.8113  0.7665  0.7371 0.8453 0.9378 0.9055 0.8971 0.8873  

TID2013 CSIQ 0.6156  0.5881  0.5514  0.6407 0.6111 0.5265 0.6264 0.8145 0.6918  

TID2013 MDID2017 0.4321  0.2862  0.2656  0.4122 0.7449 0.6612 0.6498 0.6895 0.6175  

MDID2017 LIVE 0.8554  0.8113  0.8434  0.8087 0.8477 0.9378 0.9055 0.8971 0.8909  

MDID2017 CSIQ 0.5845  0.5757  0.5650  0.6154 0.6144 0.5265 0.6264 0.8145 0.6685  

MDID2017 TID2013 0.3778  0.4785  0.4199  0.3015 0.4599 0.4377 0.3117 0.5181 0.4627  

Hit count 0 1 0 0 4 3 3 7 6 

Mean 0.5918 0.5776 0.5705 0.5615 0.6721 0.6408 0.6234 0.7298 0.6831 

STD 0.1804 0.1757 0.1739 0.1679 0.1473 0.1974 0.2200 0.1492 0.1443 
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types. EPISD with 62 groups of edge patterns also show 

satisfactory results on SCIs databases. Actually, different 

distribution of edge patterns can represent different structures, 

such as geometric information of objects and spatial structural 

information. All these factors will influence different GNs’ 

performances under different distortion types, which will be 

investigated in our future work.    

The edge patterns explore the image's structure information 

based on edge point detection. Understandably, distortions with 

non-structural noise superposition will hamper the detection of 

edge points. In this case, the proposed method would work 

unattractively on such distortion types. We investigated the 

prediction performance of the proposed EPISD on noise-related 

distortion types in LIVE, CSIQ, and TID2013 databases. 

However, regarding the prediction performance on noise 

distortion images in the MDID2017, the proposed method 

works well on some multiple distortion types containing GN 

superposition, such as the distortion types 14, 16–20, 22, and 23. 

This is similar to the case of CC-related distortion images, 

confirming that the proposed EPISD is specific for acquiring 

structural changes in the IQA task. In this regard, in future we 

will focus on how to supplement quality features that efficiently 

respond to non-structural noise-related distortions and contrast 

change distortions to the EPISD. In this way, the proposed 

method would evolve better for various IQA tasks. 

In conclusion, we proposed to use specific edge patterns to 

account for image quality and produced an NR-IQA model. 

Specifically, followed by LoG filtering and ZC detection, we 

first collected several edge patterns from 110 natural images 

with a smooth criterion that can cover most edge points of the 

image's edge map. Then, we refined the edge patterns into 62 

and used histograms of the edge patterns as the image quality 

feature. With the help of SVR, we proposed the NR-IQA model, 

named EPISD. The experimental results showed that EPISD 

stays in the state-of-the-art NR-IQA models in terms of quality 

prediction accuracy. More specifically, EPISD performs 

effectively across different databases, which shows the 

superiority of the proposed edge patterns in predicting image 

quality. We will further refine the edge patterns and combine 

other image features to improve the prediction performance for 

noise and more challenging distortion types in future work.  
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