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Application security is essential in today’s highly development period. Backdoor is a means by which attackers can invade the
system to achieve illegal purposes and damage users’ rights. It has posed a serious threat to network security. Thus, it is urgent to
take adequate measures to defend such attacks. Previous research work was mainly focused on numerous PHP webshells, with less
research on Python backdoor files. Language differences make the method not entirely applicable. This paper proposes a Python
backdoor detection model named PBDT based on combined features. The model summarizes the common functional modules
and functions in the backdoor files and extracts the number of calls in the text to form sample features. What is more, we consider
the text’s statistical characteristics, including the information entropy, the longest string, etc., to identify the obfuscated Python
code. Besides, the opcode sequence is used to represent code characteristics, such as TF-IDF vector and FastText classifier, to
eliminate the influence of interference items. Finally, we introduce the Random Forest algorithm to build a classifier. Covering
most types of backdoors, some samples are obfuscated, the model achieves an accuracy of 97.70%, and the TNR index is as high as

98.66%, showing a good classification performance in Python backdoor detection.

1. Introduction

With the rapid development of network technology in recent
years, various applications have become the primary way to
provide information services, significantly improving the
convenience of people’s life. However, once criminals utilize
it, it will cause data leakage and property damage. Among
them, the backdoor is an effective means for attackers to
achieve the purpose of intrusion. The 2020 State of Malware
Report [1] released by Malwarebytes Labs shows that
backdoors have continuously become the top ten common
security threat’s categories among users and commercial
products, and the proportion is increasing. Sufficient
identification of backdoors to take further measures has
become the current research’s focus in cyber security.

As a concise, easy-to-read, and extensible programming
language, Python has been widely used in large-scale project
development while initially only writing automated scripts.
Nevertheless, there is little research on malicious Python
code. Most of the existing backdoor-related research is
aimed at PHP or general-purpose webshells [2-8] and has

not considered other backdoor types. Simultaneously, due to
the differences in programming languages, existing methods
are not fully applicable to Python text. There are feature
selections for programming language functions or pro-
gramming features in the research methods, such as PHP
language tags “<?php...?>”, “shell_exec ()” functions, etc.
These features should have corresponding changes to the
Python language. At the same time, the previous research
did not involve a more detailed analysis and summary of
function behavior of the backdoor. We think that these are
essential when judging the maliciousness.

The attacker will use the backdoor to perform a series of
subsequent operations, which must leave traces on the
victim’s host. Some studies [9, 10] use the dynamic acqui-
sition of logs and other information to capture backdoor
behaviors for detection. However, some can use system
processes to hide their existence, such as thread insertion
backdoor (Section 2.1), and this method does not identify
well. As deep learning is widely used in the security field,
some papers [11-14] use deep neural networks to check
webshells and achieve good results. Nevertheless, Python
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backdoor dataset is sparse, so training a deep neural network
may cause overfitting and consume numerous system re-
sources, resulting in poor overall performance. Moreover,
the full-text feature extraction ignores the functions and
modules that implement the backdoor’s basic functions.
Detailed research on malicious python code behavior has
become a research point that needs to be broken.

This paper uses machine learning method for Python
backdoor detection by combining multiple features such as
function calls, text statistics, and opcodes. First, we analyze
the modules and functions required for the basic functions
of Python backdoor, including text encryption, network
communication, process settings, file operations, command
execution, and system control. Then, we count the number of
times the suspicious module or function appears in the text
and record the suspicious function’s code line. What is more,
the entire text’s statistical characteristics, including infor-
mation entropy, longest string, coincidence index, and com-
pression rate, are obtained to capture the characteristics of
obfuscated codes. We also consider the number of IP, URL,
and many dangerous keywords that frequently appear in the
backdoor. In addition, using the opcode information, the
code is represented by the statistical features of the overall
text and suspicious function lines, the TF-IDF feature
representing the contextual relevance, and the FastText
feature. Finally, it is sent to the Random Forest classifier to
determine whether it belongs to the backdoor. The main
contributions of this paper are as follows:

(1) Inresponse to lack of dataset, we manually generated
some Python backdoor samples, including rebound
shell and obfuscated code, to expand the sample
library and improve the accuracy of classifier
detection.

(2) By analyzing many real samples, the malicious
functions and modules frequently used in the Python
backdoor are summarized to distinguish the benign
and malicious sample. We integrate multiple types of
features to classify malicious codes. Both statistical
features and opcode features can eliminate the in-
fluence of obfuscated codes and ignore irrelevant
information such as text comments. Simultaneously,
the n-gram value selection fully considers the Python
opcode’s characteristics and accurately represents
the text information.

(3) We collect a total of 2,026 samples to test the pro-
posed model, including 1,511 benign Python codes
and 515 Python backdoor codes. In the end, all
indicators of PBDT reach more than 95%, and the
accuracy is as high as 97.7%.

To verify the validity of PBDT, a series of comparative
experiments are designed. The results show that, compared
with other machine learning algorithms, Random Forest
has better performance in the classification of Python
backdoors, and the performance of the combined feature is
better than any single feature, which also has a more re-
markable performance improvement than the previous
paper method.
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The rest of this paper is organized as follows. Section 2
introduces the relevant background, including the definition
and classification of backdoors and previous research work.
We will describe the PBDT system architecture and specific
implementation methods in Section 3. Subsequently, in
Section 4, the dataset and the evaluation results of PBDT are
explained and analyzed. Finally, Section 5 summarizes the
tull study.

2. Background

2.1. Backdoor. Thomas and Francillon [15] definition of the
backdoor is that the intentional structure existing in the
system undermines the original security of the system by
providing convenient access to other privileged functions or
information. In other words, the backdoor refers to a
program method that bypasses security controls such as
authentication to obtain system permissions, whose com-
mon types include webshell, C/S backdoor, thread insertion
backdoor, and extended backdoor:

(1) Webshell refers to the backdoor program that exists
in the web application. The file format includes PHP,
ASP, JSP, Python, and so on. After the attacker
exploits the vulnerability to invade the website, the
webshell is placed in the server file directory for
subsequent remote control, execution of malicious
commands, and other operations.

(2) C/S backdoor uses a client/server model to achieve
the control operation, some of which are similar to
traditional Trojan programs’ principles. After the
attacker implants the server into the target computer,
the client starts the backdoor to control it. Rebound
shell is also based on this mode, but the two roles are
precisely the opposite. The attacker runs a server
program to monitor a specific TCP/UDP port, and
the victim host initiates a request for an active
connection. This rebound connection is usually
applicable to scenarios such as restricted firewalls,
occupied ports, and insufficient permissions on the
controlled end.

(3) Thread insertion backdoor does not have an inde-
pendent process when it runs but inserts into a
particular service or thread of the system, which is
now a mainstream type of backdoor. However, it is
relatively difficult to detect or kill, and traditional
firewalls cannot effectively defend against it.

(4) The extended backdoor usually concentrates a va-
riety of common functions, including system user
detection, port opening, opening/stopping services,
HTTP access, and file upload/download. It has
powerful functions but relatively inadequate
concealment.

Python has simple structures but powerful functions.
Attackers only need to write scripts’ dozens of lines to es-
tablish a persistent backdoor. And because Python is a
common language used by administrators, there is no no-
ticeable difference between malicious Python traffic and the



Security and Communication Networks

traffic generated by daily network management tools, so it is
difficult to be detected by the terminal detection response
system, and it is quite popular with hackers. As a result, the
traditional backdoor recognition method is not universal,
and it is particularly important to realize an effective de-
tection of Python backdoor scripts.

2.2. Related Work. At present, there is little research on
Python malicious code in security field. The papers on
backdoor detection mainly focus on webshell. At the same
time, JavaScript is also used as an interpretable language,
and part of the detection methods of malicious statements
can be used in other language types. This section will in-
troduce existing research on webshell and malicious
JavaScript from the perspective of static detection and
dynamic detection. Among them, the more typical papers
are summarized in Table 1.

2.2.1. Static Detection. Static detection mainly identifies
malicious code by analyzing the grammatical structure and
statistical characteristics of the source code. The most classic
method is to build a black or white list and detect malicious
files through simple string’s regular matching. NeoPi [16] is
a classic webshell open-source detection tool. It considers
the document’s statistical characteristics to determine
whether it is obfuscated and matched some feature function
for detection. However, the feature database is relatively old.
Tu et al. [20] detected webshells in applications based on
malicious signatures and malicious functions. At the same
time, it was proposed to consider only the longest word’s
beginning and ending with the header tag. This method
reduced the false positives from NeoPi’s 24.5% to 6.7%, but
its detection essence was still simple character matching.
Lawrence et al. [2] designed a firewall tool to intercept and
alert calls to system functions that were not in the whitelist.
However, due to the limited whitelist, there were high false
positives, and the webshell that was encrypted and obfus-
cated by complicated means could not be identified.

It is impossible to obtain the function’s language envi-
ronment only by manually defined black and white lists,
which will cause many false positives. Besides, due to the
continuous variation of malicious code types, the rule base’s
update is critical, and false negatives are inevitable. With the
widespread application of machine learning in various fields,
it has also been used to detect malicious code, improving
detection accuracy by combining with information such as
code syntax and semantics. AL-Taharwa et al. [21] proposed
and implemented a JavaScript obfuscation detector JSOD,
which focused on obfuscated scripts. It first performed anti-
obfuscation processing and extracted the contextual se-
mantic information of the code by using the AST (Abstract
Syntax Tree). Then the malicious JavaScript was detected by
the Bayesian classifier. Fass et al. [17] proposed a pre-de-
tection system JStap for malicious JavaScript. Based on
existing lexical and AST detection, the system added the code
CFG (Control Flow Graph) and PDG (Program Dependency
Graph), fully considering the syntax and semantic infor-
mation of the program. Finally, it was classified by Random

Forest. While using machine learning, the effect of basic
functions on the maliciousness of the code cannot be
ignored.

The most common language type in webshell is PHP.
Opcodes are the instructions and fields of the PHP operation
performing, which can eliminate interference from irrele-
vant items. In recent years, it has been often used in PHP
webshell detection. Cui [18] designed a webshell detection
model, RF-GBDT, which considered the statistical charac-
teristics of PHP files. Furthermore, the model extracted the
TF-IDF vector and the hash vector of the opcode sequence.
After integrating all the features, the webshell was recog-
nized through Random Forest and gradient boosting deci-
sion tree. Fang et al. [22] proposed and implemented the
PHP webshell detection system FRF-WD. They innovatively
used the FastText text classifier to characterize PHP’s opcode
sequence, integrating its classification results and statistical
features as the Random Forest classifier’s input. In addition
to the statistical and opcode features mentioned above, Pan
et al.s [23] detection method of webshell used AST to obtain
executable data features of PHP code, fully considering the
execution data flow and function parameter characteristics
of common system commands. The opcode sequence should
be combined with the best n-gram value to effectively ensure
the detection effect.

With the rapid development and application [24, 25] of
deep neural networks, opcodes are often combined to realize
the webshell detection function. Yong et al. [14] detected
PHP webshell based on DNN (deep neural network),
extracted opcode features through 2-gram and TF-IDF
grammar models, and input them into a DNN model
composed of CNN (convolutional neural network), LSTM
(long short-term memory), and MLP (multilayer percep-
tron) for detection. But the model consumes a lot of
computing and storage resources. Word vector is a com-
monly used representation method in text classification, and
it has also shown good detection advantages in malicious
code detection in the recent years. Tian et al. [12] detected
webshells with HTTP request packets, used Word2vec to
convert the collected packet text into word vectors, and
finally implemented classification through the CNN model.
Ndichu et al. [26] proposed a malicious JavaScript detection
scheme, which used the Doc2vec model to characterize the
source code context’s features and input them into the SVM
classifier to determine the program’s maliciousness.

In summary, static detection can use limited resources to
achieve better detection results, but false negatives and false
positives are inevitable. How to improve detection accuracy
is a problem that needs to be focused on. The relevant re-
search introduced above is aimed at languages such as PHP
and JavaScript. Improving the existing methods to make
them suitable for Python malicious code detection is a di-
rection worth studying.

2.2.2. Dynamic Detection. The main idea of dynamic de-
tection is to dynamically execute sample files, monitor
network traffic, or call sensitive functions to identify mali-
cious code. This method is often used to analyze specific
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TaBLE 1: Summary of related work.
Author Main work Shortcoming
Scottand Hagen  Identifying obfuscated webshells through statistical =~ The feature library is old, and using simple
[16] features character matching with high false positives
Fass et al. [17] Extracting JavaScript semantic information through No analysis and consideration of basic
Static ’ AST, CFG, and PDG for malicious judgment functions with malicious intent
detection Cui et al. [18] Using TF-IDF vectors and hash vectors to obtain No semantic information is considered,
’ webshell opcode features for detection which may result in false negative
Processing opcode through 2-gram and TF-IDF, and .
Yong et al. [14]  using composite neural network DNN for webshell’s Deep neural network is too complex and
o consumes a lot of resources
classification
Canali and  Analysis of common webshell behavior using honeypot High requirements for resources,
Dynamic Balzarotti [9] technology environment, and samples
detection Combining attack feature’s vectors and dynamic The types of malicious functions summarized

Wang et al. [19]

execution trajectories

are not comprehensive

behavior types of files, including extracting HTTP
requesting or responding to payload characteristics, and
hooking sensitive functions.

Kim et al. [27] designed a framework called JsSandbox to
detect malicious JavaScript. Through IFH (internal function
hooking) monitoring and analysis of sample code behavior,
functions that could not be executed by API hooking could
be extracted. This method was commonly used in other
malicious code classification tasks and would not be affected
by operations such as code deformation and obfuscation on
detection performance. Canali et al. [9] used honeypot
technology to obtain and analyze the attacker’s behavioral
characteristics’ destruction of the target. The information
source included HTTP request logs and files modified or
generated after the attacker obtained the victim host’s
permission. It also focused on analyzing common webshell
behaviors. Xie and Hu [10] developed an anomaly detection
system that can identify webshells. They analyzed ADFA-LD
intrusion detection datasets, obtained log behaviors, and
used the K-nearest neighbor (KNN) algorithm to cluster
them. Although dynamic detection can effectively reduce the
rate of false positive and false negative, it consumes more
resources and it is not suitable for detection tasks with
multiple samples. At the same time, there may be a big gap
between the actual application and the detection effect in the
ideal experimental environment.

Therefore, studies have combined static and dynamic
detection to achieve better classification results with limited
resources. Rieck et al. [28] proposed Cujo, a malicious
JavaScript automated detection system, which analyzed by
combining static lexical features and dynamic runtime
teatures. The dynamic analysis used sandbox to obtain web
page code, provided analysis reports, and finally mapped the
report results to vector space. The final detection model was
generated based on SVM machine learning. Wang et al. [19]
researched and implemented the JavaScript malware de-
tection tool JSDC. First, it used the extracted text, program
information, and dangerous function call features to detect
based on machine learning. According to attack feature
vector and dynamic execution trajectory, malware was di-
vided into eight attack types. The dynamic and static
combination achieved a false positive rate of 0.2123% and a
false negative rate of 0.8492%. Starov et al. [3] conducted an

in-depth analysis of common webshell behaviors based on
two dimensions of static analysis and dynamic analysis.
Through static analysis, it was found that most of the sample
attacks included file browsing and uploading, system in-
formation viewing, command execution, etc., while dynamic
analysis found that most of them would try to access links or
directories such as http://+ and /etc/=.

Dynamic detection performs better in identifying
malicious code behavior, but its inherent defects have high
requirements for resource environment and samples, and its
application in practice is limited. It is necessary to consider
various factors to select a suitable detection method
comprehensively.

3. Methodology

The PBDT model proposed in this paper is constructed based
on multiple features. Various features can be used for
classification alone or in combination. Experimental data
will be used to illustrate the performance of each combi-
nation in Section 4.3. The architectural designed is shown in
Figure 1. It has three categories, including sample module
and function call features, text statistical features, and opcode
features.

The calling feature involves six types of modules and
functions, including text encryption, network communica-
tion, process settings, file operations, command execution, and
system control, to capture potentially dangerous behaviors of
the sample. However, the backdoor file may be obfuscated to
avoid detection, so text statistical features are added to
identify the obfuscated sample file through typical param-
eters such as information entropy, longest string, coincidence
index, and compression rate. At the same time, this part
involves the IP, URL, and dangerous keywords that are likely
to exist in the backdoor. It is impossible to identify the
backdoor based on the above-mentioned manually defined
malicious behaviors accurately. Therefore, the opcode-re-
lated features are added, including the simple statistical
features of the overall text and the suspicious function line,
the TF-IDF feature indicating the importance of words, and
the FastText feature of the efficient text classifier to com-
prehensively analyze the meaning of the opcode. Finally,
these features are combined as the feature vector and input
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FIGURE 1: Architecture of PBDT.

into the Random Forest classifier to classify Python samples
and accurately distinguish backdoor files with malicious
behavior.

Some of the above features are proposed by previous
researchers and some are proposed in this paper, which we
summarize and illustrate in Table 2. For the old features, the
improvements made in this paper are noted in the third
column of the table. In the following, various features and
classifier selection will be introduced in detail.

3.1. Call Features. It can be seen from the definition of
backdoor that the two key points worth noting are
“bypassing security controls” and “obtaining system per-
missions.” Therefore, there must be specific modules and
functions to implement corresponding functions. We collect
and analyze numerous backdoor samples, combining with
data summary and empirical analysis, and divide the
backdoor’s common behaviors into the following six cate-
gories (Sections 3.3.1-3.1.6). At the same time, we list the
modules and functions required to implement each type of
function. See Table 3 for details.

Most of the function’s acquisition in the file directly
performs regular matching on the text, such as[16]. The
shortcomings of this method are obvious. When the cor-
responding function exists in the comment, it will be
regarded as called. But in fact, the function has not been
executed, and of course, there will be no malicious behavior.
This paper analyzes the AST of Python code, extracts the file
import module and call function information, and obtains
the number of various dangerous modules and functions
after counting, as the call features part of the final
classification.

AST is a tree-like representation of the abstract gram-
matical structure of a programming language. As the input
of the compiler’s back-end, it does not depend on specific
grammar and language details and represents information
on the semantic level of code. Currently, AST has been
widely used in the detection of malicious code

[17, 21, 29-33]. This method can eliminate the influence of
annotations on text analysis and effectively extracts infor-
mation about imported modules and calling functions. If it is
determined to be a suspicious function, recording the
number of lines in the source file to obtain the line’s opcode
information (Section 3.3.1) and finally returns it as a result
for in-depth study and analysis of suspicious file behavior.

3.1.1. Text Encryption. The backdoor uses some obfuscation
methods to bypass the security control and evade the
software’s detection and killing of system. The most com-
mon one is to use algorithms to encrypt text. In order to
achieve this purpose, it is necessary to introduce corre-
sponding functional modules and call functions, including
commonly used encryption algorithms “AES,” “RSA,”
“base64,” encryption padding “padding,” “OAEP,” encoding
conversion “binascii,” etc., which can be used as determining
a feature of the backdoor file.

3.1.2. Network Communication. A crucial function in the
backdoor is data interaction, including the communication
between server and client in the C/S backdoor, and webshell
uploading or downloading files from a specific network
address. Python language implements such functions in-
cluding network communication “socket,” “setsockopt,”
SSH connection to remote server “paramiko,” “SSHClient,”
HTTP request “urllib,” “httplib,” etc. If there is such be-
havior, pay attention.

3.1.3. Process Setting. Generally, the process needs to be set
when the backdoor is running, such as starting a new process
to facilitate subsequent operations, including creating a
process “subprocess,” multiprocess management “multi-
processing,” and generating a pseudo-terminal “pty.”
Concurrently, to avoid detection and obtain permissions, the
process may monitor “select,” modify, and obtain the
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TaBLE 2: Feature summary.

Feature set

Old features

New features and improvements

Call features

Malicious module feature
Malicious function feature
Line opcode feature

Text statistical features

Information entropy

The longest string
Index of coincidence
Compression ratio

IP/URL information
Dangerous keywords

Opcode features

TF-IDF feature
FastText feature

All opcode features
5-gram
5-gram

TaBLE 3: List of common modules and functions of backdoor.

Module

Function

AES/base64/binascii/hashlib/RSA/
Crypto/sha256/hashes/padding/DES
Socket/urllib2/urllib/paramiko/ftplib/
SocketServer/httplib
Subprocess/commands/pty/threading/
select/multiprocessing/setproctitle
Shutil/fentl/StringlO/BytesIO/ctypes/

Text encryption

Network
communication

Process setting

File operation

scapy.all
Command Argparse/getopt/getpass/argv/optparse/
execution cmd

System control Platform/winreg/psutil/wmi/pynput

b64encode/b64decode/encrypt/decrypt/EncodeAES/DecodeAES/
AESGCM/md5/rc4/SHA256/shal/encode_base64/OAEP/MGF1

Socket/bind/setsockopt/gethostbyname/gethostname/SSHClient

spawn/Popen/communicate/daemon/fork/ThreadingTCPServer/

ThreadingUDPServer/setproctitle/CreateThread
Exec/execv/execvp/execfile/storbinary

System/getopt/getoutput/tcsetattr/command/exec_command/
check_output
Virtual Alloc/sysinfo

process name “setproctitle”, etc. The introduction of above
module has reason to suspect that it has an attacking intent.

3.1.4. File Operation. The backdoor will also perform a series
of operations on files, including polluting local files, reading
and writing system sensitive files, and replacing common
system command files, in order to achieve the purpose of
obtaining system permissions. For example, memory read
and write “StringlO,” file copy “shutil,” file lock “fentl,” and
“exec” family functions for executing files, including “execl,”
“execv,” and “execvp.” Although the above modules and
functions are harmless by themselves, they may cause un-
desirable consequences when used by the backdoor.

3.1.5. Command Execution. Executing system commands is
a common and potentially harmful behavior of backdoors
and may be a pivotal step in achieving core functions.
Specifically, it includes the functions “system,” “command,”
“exec_command,” etc., that execute commands. In addition,
interacting with the command line and parsing parameters is
also a significant feature, such as modules “argparse,”
“getopt,” “argv,” etc. But normal Python programs may also
have such requirements, so the correct distinction is

necessary.

3.1.6. System Control. Controlling the system and
obtaining system-related information is the ultimate goal
of backdoor execution and an essential manifestation of

backdoor hazards. Such functions include system moni-
toring “psutil,” system hardware’s information acquisition
“wmi,” system operation “platform,” etc. Besides, registry
operations “winreg” and virtual memory allocation
“VirtualAlloc” are also common behaviors. This part also
includes some special functions, such as the module
“pynput” that controls the keyboard and mouse. The above
can be used as a vital basis for judging whether it is a
backdoor.

3.2. Text Statistical Features. The matching of modules and
functions can simply and intuitively identify some malicious
behaviors of the backdoor. However, in actual applications,
in order to bypass the security control, the backdoor file is
likely to undergo obfuscation, such as the splicing or
encoding of characters, and simple function matching
cannot achieve the detection effect. The obfuscated code text
has some typical features. Here, four types are selected as the
final feature components, and two additional features are
added simultaneously.

3.2.1. Information Entropy. The concept of information
entropy was first proposed by Shannon [34] in 1948. It
represents the probability of random discrete events and is
a measure of the system order’s degree. The more chaotic
the information, the higher the corresponding entropy.
The method of calculating information entropy is as
follows:
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H() =~ Y p(x)log(p(x). 1)

Among them, p(x;) represents the probability of a
random event x;. When the backdoor performs file obfus-
cation to hide its existence, encryption and encoding will
generate some random strings, making the information
entropy higher. Therefore, the greater the information en-
tropy, the more suspicious the corresponding file.

3.2.2. The Longest String. When the code is obfuscated and
encoded, it will generate a long string without spaces, such as
the classic base64 encoding. Moreover, the introduction of
shellcode will have the same effect, which is not easy to detect
because of the malicious behavior hidden in the hexadecimal
machine code. This kind of long string is rarely encountered
in regular Python code, so the length of the longest string in
the code can be used to determine the backdoor.

3.2.3. Index of Coincidence. Index of coincidence represents
the relative frequency of the letters in sample, that is, the
probability that two letters are the same. The concept is
widely used in cryptography related research. The calcula-
tion method is as follows:

_ i (= 1)

C is the normalization coefficient, which is 26 for English
letters, n; is the number of times each letter appears in the
text, and N represents its length. Since the encrypted text’s
randomness will increase, the code has a high probability of
being a backdoor file after obfuscation operations such as
encryption and encoding if the IC value is low.

3.2.4. Compression Ratio. In information theory, data
compression is a process of representing information with
fewer data bits than the source file according to a specific
encoding mechanism, which can make the distribution of
data characters tend to be balanced. The ratio of after
compressing to before compressing of a file’s size is called
the compression ratio. In order to achieve the purpose of
obfuscation, malicious files generally have a relatively uni-
form character’s distribution after particular encoding, and
the data compression rate is higher than that of ordinary
files. It is reasonable to think that files with high compression
rate are backdoors.

3.2.5. IP/URL Information. When the backdoor performs
network communication, IP or URL is most likely required
to indicate the target address, which usually appears in pairs
with data interaction related functions. For example, “bind”
binds the IP and port, “host” parameter indicates the
communication host, and “connect” connects to the IP
address and also includes interaction with a specific network
address URL. Therefore, the total number of IPs or URLs in
the code can be used as a feature of the backdoor.

3.2.6. Dangerous Keywords. When developers write back-
door code, due to their habits or functional needs, they will
include some backdoor-related words in comments or
named functions. The characters considered here include
“shellcode,” “webshell,” “shell,” “backdoor,” “cmd,” “com-
mand,” “hack,” and “bypass.” If there are more dangerous
keywords in the code, it is considered as a suspicious
backdoor file.

3.3. Opcode Features. The two modules mentioned above
can only identify known malicious behaviors or encoded
special files. However, there are various types of backdoors
in actual applications. People have limited awareness of
malicious codes, and not all malicious files will be encoded.
The text’s characteristics of some encoded files are not
prominent. Therefore, we consider adding opcode features
to express Python code through the nature of instructions
and contextual connections represented by the opcode itself.

Opcodes represent instructions or fields for performing
operations in a computer program. It is a step in compilation
process of Python files. Compared with the source code, it
can eliminate the influence of file obfuscated and ignore the
interference items such as source comments. There are 121
opcodes listed in the latest Python3.8 document. This paper
obtains the sample’s opcode sequence and extracts the
corresponding features through the following three types of
processing.

3.3.1. Statistical Features. The functions and processing
methods of backdoor files are different from benign files, so
the types and numbers of opcodes used may be different.
First, we conduct statistics on each opcode instruction for
the entire text and generate an array with a length of 121 as
the overall opcode statistical feature.

The primary manifestation of the malicious function
performed by the backdoor is malicious functions. If there
are suspicious functions in the benign file, the opcodes of the
two contexts’ execution parameters may be different.
Therefore, the backdoor file can be identified by the opcode
characteristics of the suspicious function line. Use the lines’
number of the code file’s dangerous function when obtaining
function information through AST. Then, compile all code
lines containing dangerous functions into opcodes sepa-
rately, and count the total number of various opcodes.
Similarly, an array of length 121 is generated as the statistical
feature of the malicious function line’s opcode.

3.3.2. TF-IDF Feature. TE-IDF (term frequency-inverse
document frequency) is a commonly used weighting tech-
nique to evaluate the word’s importance to the entire text
[35]. TF represents the frequency of target word in the text.
IDF decreases as the number of texts containing a certain
phrase increases. It is used to reduce the impact of some
common phrases in all texts that have little effect on the
function. The two are multiplied to the final TF-IDF value.
The calculation formula is as follows:
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Among them, n; ; refers to the number of occurrences of
the word i in file j, and the corresponding denominator
represents the sum of occurrences of all words in file j. |D|
refers to the total number of samples, and the corresponding
denominator indicates the number of documents containing
the term i. If the term is not in the document, the de-
nominator will be zero. Generally, the denominator will be
increased by one in practical applications. The main idea
applied here is that if a certain phrase appears more fre-
quently in a given sample and rarely appears in other
samples, it is considered that the phrase has a greater class
distinction ability.

In order to obtain the local context information of the
text, on the basis of obtaining the full-text opcode sequence,
the n-gram grammar model is used to segment the sequence
and calculate the frequency. The basic idea is to perform a
sliding window operation of size n on the text content in
bytes to form a sequence of byte fragments with a window of
n. Here, n=5 is used to balance the completeness of the
information expressed by opcode and the effect of model
(Section 4.3.1). The first 50 subsequences are selected for
calculation since the amount of information and model
performance is comprehensively measured. The word se-
quence’s information of the backdoor and benign files may
be different, so the TF-IDF value is calculated according to
the n-gram segmentation result. The opcode feature matrix
indicating the importance of the phrase is obtained to
identify the backdoor.

3.3.3. FastText Malicious Judgment Features. FastText is a
word vector representation and fast text classification tool
open-sourced by Facebook in 2016 [36]. It provides a simple
and efficient method for text classification and representa-
tion learning. It can achieve accuracy comparable to deep
learning methods but is many orders of magnitude faster
than its training speed. The length of the opcode sequence of
different files may be quite inconsistent. The fixed-length
word vector’s embedding may miss the text’s critical in-
formation or do much useless work that consumes multiple
computing resources. Using the FastText model’s prediction
result as a feature is more suitable for this type of data.
FastText has two important optimizations, n-gram and
hierarchical softmax. The model architecture is shown in
Figure 2, where x, — x represent the n-gram vector in the
text, and the average value of word vector is used as the
feature to predict the specified category. The value of n
selected here is the same as the previous module; both are 5.
N-gram will keep word order information during model
training. The softmax function is often used as an activation
function in the neural network’s output layer to normalize
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FiGure 2: FastText model architecture.

the output value of the neuron to 0-1 interval. Compared
with the standard softmax, which normalizes all categories’
probabilities, hierarchical softmax constructs a Huffman tree
based on the probability of the category, which can reduce
the complexity from N to logN and significantly improve the
efficiency of model. The label category of test set predicted by
the FastText model is used as a feature of the backdoor’s
judgment.

3.4. Classifier. After integrating all the above features, they
are sent to the classifier for model training and sample
detection. Here, a Random Forest classifier is selected. This
classifier was first proposed by Tin Kam Ho of Bell Labo-
ratories in 1995 [37] and has been widely used since then.
Random Forest is a classifier containing multiple decision
trees, and the mode of output category of a single tree is used
as the final output. It uses unbiased estimation. The model
has a robust generalization ability, and it is insensitive to
missing or outlier values of features. For unbalanced
datasets, it can reduce errors.

This paper selects several classic machine learning
models, including XGBoost, Naive Bayes (NB), and Support
Vector Machine (SVM). Compared with the traditional
GBDT algorithm, XGBoost supports column sampling,
which can not only reduce overfitting, but also reduce
calculations. Naive Bayes performs well on small-scale data
and has a high speed during training, while SVM has ex-
cellent generalization ability. The above classifiers perform
well in a variety of code classification tasks. We conduct
performance comparisons through experiments (Section
4.3.3) and find that the Random Forest has the best clas-
sification effect, so we believe this algorithm is suitable for
Python backdoor detection.

4. Experimental Evaluation

This section will evaluate the effect of PBDT and prove its
benefits through comparative experiments. First, we used
tool generation and network collection methods to obtain
more than 2,000 Python samples. After deleting some low-
quality data, we labeled them. Then, we built a model, used
existing data to evaluate its performance, and compared the
detection effects of various modules and common algo-
rithms. Finally, we compared the performance of PBDT with
some previous detection methods in similar fields on this
dataset. Experiments show that PBDT has a better dis-
tinguishing ability for Python backdoors.
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4.1. Dataset. 'The current research on malicious Python code
is limited, and there is no relatively comprehensive and
authoritative public dataset. We have extensively collected
various Python files from the open-source library GitHub,
including malicious backdoors and benign codes. Together,
since there are few public backdoor samples, we also used
some tools to generate them. In the end, 1,511 white samples
and 515 black samples were obtained. In each experiment,
they are randomly divided into 70% training set and 30%
testing set to avoid the fortuity of results. The primary data
sources are shown in Table 4.

4.1.1. Backdoor Data. The backdoor samples are mainly
divided into three categories:

(1) First of all, we collected a wide range of GitHub
projects, including webshells, reverse shells, C/S
backdoors written in Python language, and so on.
The collected files were marked in the project in-
troduction and verified by manual inspection to be
malicious.

(2) Another part of the samples are generated using
Metasploit Framework (MSF), an open-source se-
curity vulnerability detection tool with functions
including the whole penetration testing process. The
msfvenom module can generate Trojan programs.
We have obtained part of the rebound shell through
this tool, including some samples encoded by base64
or containing shellcode.

(3) In actual applications, backdoors are mostly obfus-
cated. In order to obtain more comprehensive data,
we use the Veil-Evasion anti-virus tool, which can be
used to generate Metasploit payloads and bypass
standard software detection or killing. Combining
these two tools, a high-quality sample that can bypass
security controls is obtained.

4.1.2. Benign Data. The benign samples are all obtained
from GitHub, including the Python code of various basic
functions. To ensure the data’s accuracy, we try to choose the
project with more stars, which shows that the project has a
high degree of recognition. The standard code with ordinary
communication function has some functional similarities to
the backdoor, which may cause false positive in practical
applications. Therefore, some samples like this are added to
the benign dataset to ensure the accuracy of final training
model’s classification.

4.2. Evaluation Index. Choosing appropriate evaluation
indicators is the key to the experiment. K-fold cross-vali-
dation is a conventional method for model evaluation.
Generally, within a specific range, the evaluation accuracy
will increase with the K value increase. However, the number
of datasets in this paper is limited. When the K value is
considerable, the test samples are small so that the result’s
validity cannot be guaranteed. Therefore, for each type of
experiment described below, the dataset is randomly divided

TABLE 4: Statistics from the main sources of data.

Source
https://github.com/TheAlgorithms/Python
https://github.com/Lawouach/WebSocket-for-python
https://github.com/facert/socket-example
https://github.com/geekcomputers/Python

Type

Benign

Metasploit generation
Veil-Evasion + Metasploit generation
https://github.com/xl7dev/WebShell/tree/master/
python
https://github.com/JustinTom/Packet-Sniffing-
backdoor

Backdoor

into a training set and testing set at a ratio of 7:3 and re-
peated ten times at the same time to calculate the average
value of each indicator. This avoids the fortuity of the ex-
perimental results and reduces the number of samples’
impact.

This paper is a typical two-category problem. The
sample will be divided into positive and negative, and there
are four possible results, as shown in the confusion matrix
in Table 5. The horizontal direction is predicted category,
and the vertical direction is actual category. In the matrix,
TP (true positive) represents the number of correctly
classified Python backdoors. FP (false positive) represents
the number of benign samples that are mistaken as
backdoors. TN (true negative) represents the number of
benign samples that are correctly classified. Furthermore,
FN (false negative) indicates the number of backdoor
samples that are mistaken as non-malicious. Based on the
confusion matrix, this paper uses the following evaluation
indicators:

TP + TN
accuracy = ,
TP + TN + FP + FN
.. TP
recision = ———,
PrecIsIOn = 15 Fp
1 P 4
recall = ————,
TP + FN (4)
TN
TNR = ———,
FP + TN
2 X precision X recall
F, =

precision + recall

In the above indicators, the accuracy represents the
proportion of correctly classified samples in all samples. The
precision represents the probability that the samples pre-
dicted to be backdoors are malicious, while the recall rep-
resents the proportion of the actual backdoor samples that
are correctly predicted (also called TPR, true positive rate).
TNR (true negative rate) represents the ratio of correct
predictions in actual benign samples, and F1 is the average
index of precision and recall. In addition to the above five
values, we also visually compare each algorithm’s perfor-
mance by drawing ROC (receiver operating characteristic)
curves (Section 4.3.2).
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https://github.com/Lawouach/WebSocket-for-python
https://github.com/facert/socket-example
https://github.com/geekcomputers/Python
https://github.com/xl7dev/WebShell/tree/master/python
https://github.com/xl7dev/WebShell/tree/master/python
https://github.com/JustinTom/Packet-Sniffing-backdoor
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TaBLE 5: Confusion matrix.
Predict backdoor Predict benign
Actual backdoor TP FN
Actual benign FP TN

4.3. Basic Experiment. First, we make experimental selec-
tions on the value of n during the two n-gram processing in
Section 3.3. At the same time, in order to verify the effec-
tiveness of each feature, we select various features indi-
vidually or remove them from the full features to evaluate
the capability of the model. In terms of classifier selection,
we compare the commonly used machine learning algo-
rithms with the Random Forest used in this paper to ensure
that the optimal algorithm is used. In this section’s exper-
iments, under the premise of comprehensively considering
model efficiency and detection accuracy, when training the
FastText model, the parameter word vector dimension is
selected as 30. Meanwhile, the epochs value is 300, and the
number of decision trees in the Random Forest is set to 100.

4.3.1. Reasonability of n in N-gram. Both FastText and TF-
IDF in the feature involve the value of n in n-gram. We
design experiments to verify the rationality of n. When »
takes different values, a line graph is drawn for the model’s
accuracy and recall. The results are shown in Figure 3.

It is found that both indicators maintain a relatively high
level when n =5, indicating that the value of # in the feature
is reasonable. When it is lower, it cannot accurately rep-
resent the complete sentence information of the Python
opcode. When it is higher, the opcode sequence appears too
few times in the code, so n=5 can better represent the
Python opcode’s relevant features.

4.3.2. Feature Validity. All features are divided into three
categories here. The text’s statistical features in Section 3.3.2
are relatively simple and cannot accurately represent the
sample, so the FastText feature in Section 3.3.3 is added to
this category. Since the opcode feature of the malicious
function line in Section 3.3.3 is based on the suspicious
function defined in Section 3.3.1, it is included in the call
feature. Three types of call features, text statistics and
FastText features, and full-text opcode features are separately
sent to the Random Forest classifier. We simultaneously
combine them for experiments and compare them with all
features. The experimental results are shown in Table 6.

It can be seen that various features have certain classi-
fication effects, but their performance is limited. After re-
moving any type of features, the classifier’s various indicators
have declined, indicating that each feature plays an indis-
pensable role in training the final model. The hybrid features
proposed in this paper can better identify the Python back-
door, with an accuracy of 97.70% and a TNR of 98.66%.

4.3.3. Classifier Effectiveness. In order to verify the effec-
tiveness of the algorithm, some classic machine learning
algorithms that are widely used in research are selected, and
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FiGure 3: Corresponding indicators for different values of n.

TaBLE 6: Performance comparison of different feature
combinations.
.. Recall F1-
Features Accuracy Precision (TPR) TNR score
#1 Call 0.9342 0.8805 0.8696 0.9575 0.8750
#2 Text 0.9391 0.9026 0.8634 0.9664 0.8825
#3 Opcode 0.9441 0.8757  0.9193 0.9530 0.8970
#1+#2 0.9589 0.9146 0.9317 0.9687 0.9231
#1+#3 0.9638 0.9264 0.9379 0.9732 0.9321
#24+#3 0.9473 0.8817  0.9255 0.9553 0.9030
PBDT #1+#2+#3 09770  0.9623 0.9503 0.9866 0.9563

the comprehensive feature’s training model is used to
compare the performance with the Random Forest clas-
sifier. The algorithms considered here include XGBoost,
Naive Bayes, and Support Vector Machine. In order to
compare the effects of each model more intuitively, the
ROC curve of each algorithm during the test is drawn, as
shown in Figure 4.

The algorithm’s effect can be judged by the graph area’s
size formed by the ROC curve and the x-axis. The graph
shows that the Random Forest has the best effect, followed
by XGBoost, Naive Bayes, and Support Vector Machine.
Therefore, it can be considered that the Random Forest
classifier has the best applicability in Python backdoor
detection.

4.4. Comparative Experiment. To further illustrate the
advantages of PBDT in detecting Python backdoors,
several representative models are selected for comparison
of experimental data. There are very few previous papers
about Python malicious code detection, so we will use
webshell detection-related methods to reproduce the ex-
periment. Moreover, due to the limited dataset, the deep
neural network method may cause overfitting and cannot
achieve better results, so the classic machine learning
models are used.
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ROC Curve TaBLE 7: Performance comparison with other models.
1.0
— Recall F1-
Accuracy Precision (TPR) TNR score
0.8 A
g‘;? ctal 08355 06393 0869  0.8233 07368
g Cui [18] 0.9122 0.8961 0.7565  0.9682 0.8201
5 061 Fang et al.
2 [22] 0.9391 0.8563 0.9255 0.9441 0.8896
& 04 PBDT 0.9770 0.9623 0.9503  0.9866 0.9563
Q B 1
=
=
0.2 The table’s data intuitively shows that PBDT is signifi-
cantly better than the other three solutions. In-depth
o0 analysis, the algorithm used by Guo et al. [38] is Naive Bayes.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

False Positive Rate

—— Random Forest (auc = 0.99)

—— XGboost (auc = 0.98)

—— Naive Bayes (auc = 0.94)

—— Support Vector Machine (auc = 0.97)

F1Gure 4: ROC curves of different algorithms.

Fang et al. [22] used FastText to detect webshell. The
method is similar to the synthesis of feature 2 and FastText
features in Section 4.3.2. The difference is that the statistical
text feature of compression rate is not considered, and n =4
is selected for n-gram value of FastText, while n=5 is used
in this paper. Cui et al. [18] used Random Forest and
Gradient Boosting Decision Tree comprehensive algo-
rithms to distinguish webshells. They also considered six
types of text statistical features. Besides, they used TF-IDF
and Hash, two types of vectors to represent opcode se-
quences, and obtained sequence classification labels
through Random Forest classifiers. After synthesizing the
first six types of features, the final prediction result was
obtained through the GBDT classifier. Unlike this paper,
TE-IDF represents the frequency of a single character. Guo
et al. [38] recognized webshell attacks through opcode and
also used TF-IDF to represent text. However, the bi-gram
was used to divide characters, and the final classifier chose
Naive Bayes (the method of the paper below is represented
by the author’s last name).

We use the dataset of this paper to reproduce the above
three experiments, and compare the performance with
PBDT. The results are shown in Table 7. It should be noted
that most of the parameter selection in the experiment is
described in the original text, but some adjustments are
made due to different applicable scenarios. For the part
related to the text’s statistical characteristics, the first two
papers are aimed at PHP webshells. The dangerous char-
acters proposed are also related to the PHP language. We will
replace them with the Python backdoor dangerous keywords
listed in Section 3.2.6. The TF-IDF vector dimension chosen
by Cui [18] is 146 because it is for a single character, and
there are 146 types of opcodes in PHP. There are 121 types of
Python opcodes in this experiment, so the vector dimension
is set to 121.

In Section 4.3.3, we have compared the algorithms, and the
Random Forest performs better in the classification of Py-
thon backdoors. Random Forest is a combination of mul-
tiple decision trees with strong generalization ability. At the
same time, the risk of overfitting is reduced by averaging
decision trees, and it performs well for the classification of
high-dimensional data. The Naive Bayes model assumes that
the attributes are independent of each other, and the clas-
sification effect is not good when the number of attributes is
relatively large or the correlation between attributes is rel-
atively large. The classification object of this paper is the
entire Python file. File sizes and structures vary greatly.
Different malicious files may have different manifestations,
and the location of suspicious statements in the code is
uncertain. At the same time, the feature dimension used is
higher, and the internal correlation of similar features is also
greater. Therefore, compared with the Naive Bayes used by
Guo et al. [38], Random Forest is more suitable for the
sample scenario in this paper. Simultaneously, the bi-gram
only expresses the relationship between the adjacent opc-
odes, and the opcode to express a complete sentence of
Python language needs five or more, so the # =5 used in this
paper can better represent the semantic information of the
text. The reason for the significantly lower precision of this
scheme is the imbalance in the number of positive and
negative samples.

The same is true for the selection of # in Fang et al.’s [22]
FastText model. We have proved through a lot of experi-
ments that # =5 can guarantee the best model performance.
The TF-IDF vector and hash vector in Cui [18] only rep-
resent the mapping relationship between a single opcode and
the vector and do not reflect the contextual connection.
Therefore, the classification effect is not excellent. The es-
sence of n-gram is to divide the sequence of opcodes into the
smallest subblocks that can represent code information. It
takes 5 or more to express a complete sentence of opcodes in
the Python language. For example, for the commonly used
socket connection statement “socket.socket (sock-
et. AF_INET, socket. SOCK_STREAM)” in the backdoor, the
corresponding opcode sequence is “[“LOAD_NAME”,
“LOAD_METHOD”, “LOAD_NAME”,

“LOAD_ATTR”, “LOAD_NAME”, “LOAD_ATTR”,
“CALL_METHOD?”, “RETURN_VALUE”]”. The number of
opcodes is 8, and the more parameters in the function call,
the longer the sequence length. Consequently, the value of n
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should not be too small. Cui’s [18] method is similar to the
value n = 1, and Fang et al.’s [22] method is n =4, neither of
which can effectively represent the code semantic infor-
mation. Therefore, the value of n in this paper is reasonable
and effective for classification.

In summary, compared with previous research, PBDT
can better identify malicious Python backdoor.

5. Conclusion

In order to ensure the concealment of backdoor, the attacker
will obfuscate and encode the code. Concurrently, the parts
of the text that are not related to the function will also affect
the detection effect. But the encoding often has apparent
characteristics, and the interference items such as comments
will not be compiled. This paper proposes and constructs a
Python backdoor detection model PBDT, representing the
text through the statistical features caused by obfuscation
and the features of opcode sequence in the compilation, and
matches the suspicious modules and functions in the code as
well. The above features can be used for backdoor recog-
nition, respectively. However, experiments have proved that
the detection effect of comprehensive features is the best.
When using the Random Forest classifier, the accuracy of
97.70% and the TNR of 98.66% can be obtained.

Compared with the dynamic detection which requires
high detection environment and the deep learning that
consumes a lot of resources, the static detection scheme
based on machine learning proposed in this paper can obtain
better detection results with limited resources. What is more,
under the premise that the dataset contains some obfuscated
samples, it has a significant performance improvement
compared with the previously proposed webshell’s detection
method. However, this scheme covers many aspects and has
an extensive feature dimension. How to obtain better de-
tection performance with limited feature dimensions is a
direction worthy of our future research. At the same time,
exploring the characteristics of other programming lan-
guage’s backdoor scripts is also a valuable work. The design
idea of this paper is also applicable to other malicious Python
code detection.
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