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ABSTRACT The very high recognition accuracy of iris-based biometric systems and the increasing
distribution of high-resolution personal images on websites and social media are creating privacy risks that
users and the biometric community have not yet addressed properly. Biometric information contained in the
iris region can be used to automatically recognize individuals even after several years, potentially enabling
pervasive identification, recognition, and tracking of individuals without explicit consent. To address this
issue, this paper presents two main contributions. First, we demonstrate, through practical examples, that
the risk associated with iris-based identification by means of images collected from public websites and
social media is real. Second, we propose an innovative method based on generative adversarial networks
(GANs) that can automatically generate novel images with high visual realism, in which all the biometric
information associated with an individual in the iris region has been removed and replaced. We tested the
proposed method on an image dataset composed of high-resolution portrait images collected from the web.
The results show that the generated deidentified images significantly reduce the privacy risks and, in most
cases, are indistinguishable from real samples.

INDEX TERMS Biometrics, Deidentification, GAN, Iris, Privacy

I. INTRODUCTION

THE number of high-resolution images and videos up-
loaded by users on social networks and web-based

applications is constantly increasing. These images present
a relevant privacy risk since biometric recognition could be
performed by third parties without the explicit consent of the
owners [1]. In fact, the need to protect high-resolution images
posted on social media from the possibility of biometric
recognition was proven in recent studies [2].

Although iris recognition algorithms have traditionally
been designed for ocular images acquired from cooperative
users using infrared light and dedicated acquisition devices,

recent studies have reached remarkable biometric recognition
accuracy even for samples acquired in the wild, with images
taken at long distances from sensors and under natural light
conditions [3], [4]. Furthermore, images of faces captured
using cameras integrated in recent smartphones frequently
represent irises with a diameter of more than 300 pixels,
which exceeds the value needed to obtain a satisfactory
recognition accuracy [5]. Therefore, recent iris recognition
techniques introduce the possibility of performing biometric
recognition by using portrait pictures uploaded on websites
or social networks [6]. Fig. 1 shows an example of a failed
face recognition [7] for which the iris recognition method
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FIGURE 1. Privacy concerns in public images caused by the possibility of
correctly achieving iris recognition. The figure shows an example of failed face
recognition [7] using public-domain face images of the same person (a).
Regardless of failure, the iris recognition method [8] obtained
HDleft = 0.277 (b), which is below the threshold currently deployed in most
iris recognition systems. Therefore, even when face recognition is not
applicable, it is possible to be highly confident that two irises belong to the
same person.

[8] obtained HDleft = 0.277, which is below the threshold
currently deployed in most iris recognition systems.

Among the biometric characteristics visible in pictures
uploaded on websites and social media, iris patterns represent
one of the most sensitive biometric traits for several reasons:
i) the iris is stable throughout a person’s lifetime, thus en-
abling individual recognition using images even when taken
several years apart [9]; ii) the probability that two individuals
will have iris traits that are recognized to pertain to the
same individual is extremely low, enabling high-confidence
matches even when dealing with millions of images [10];
iii) iris recognition can be successfully conducted in cases
where face and periocular recognition algorithms fail due
to the presence of thick makeup, occlusions, rotations, and
unnatural expressions [11]; iv) the iris pattern visible in a face
image could be stolen and used by ill-intentioned people to
create synthetic traits usable in spoofing attacks [1]; v) the
two iris patterns and other characteristics could be used by a
multibiometric system (Fig. 2), which significantly increases
the recognition capability [12] and, consequently, the asso-
ciated privacy risks; and vi) people are wary of unauthorized
uses of biometric traits traditionally acquired in a cooperative
manner (e.g., via iris and fingerprint) because such traits are
frequently used for governmental applications.

Fig. 2 shows the steps of the biometric process for recog-
nizing irises in images downloaded from the web: i) face and
eye detection; ii) iris segmentation; and iii) iris matching. The
first two steps can be performed using automatic libraries or
manually by a human operator to achieve higher accuracy.

Protecting the distinctive characteristics of the iris in im-
ages uploaded online is a topic that has not yet been properly
addressed in the literature. To the best of our knowledge, no
studies evaluating the privacy risks exist that are related to
the use of iris regions extracted from online face images.
Furthermore, only three works on the topic of protecting
iris samples exist [13]–[15]; these obfuscate or blur the iris
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FIGURE 2. Outline of the methodology used to perform iris recognition using
public domain face images. It is possible to use robust methods to
automatically detect the face, extract the eye positions, segment the irises, and
then compare them to achieve high-confidence recognition.

region of the image but do not provide deidentified visually
realistic images suitable for posting on the web in place of
the original image.

In this study, we address the issue of protecting the dis-
tinctive characteristics of the iris in images uploaded online
while maintaining a satisfactory level of realism and visual
quality. Users of social networks and websites, in fact, usu-
ally desire that their images be recognizable by other people,
but one would think it should be highly desirable to be able
to post such images with automatically removed distinctive
biometric information from the iris regions to reduce privacy
risks. The new iris regions should be visually plausible,
preserve the original eye color and be of sufficient quality
to satisfy users. In fact, people would prefer to preserve the
most distinctive human characteristics (e.g., eye color) while
discriminative biometric details that are not usually noticed
by human observers (e.g., the texture of the iris pattern) are
removed. Therefore, the proposed method does not modify
facial characteristics and it preserves the eye color nuances
of the original image.

With the above ideas in mind, the contributions of this
paper are twofold. First, we analyze the privacy risks related
to the visibility of the iris pattern in high-resolution images.
Second, we propose a novel method to deidentify the iris
region in face images by replacing the iris region with a
synthetic pattern1. The deidentification process consists of
removing or replacing personal identifiers with surrogate
personal identifiers, with the aim of preventing the disclosure
and use of data for purposes unrelated to the one for which
the information was originally obtained [16]. In contrast
to prior works, our method is designed to obtain visually
plausible iris textures with high resolution and to leave
other aspects of the original image unaltered. The proposed
method replaces irises with synthetic biometric characteris-
tics computed randomly using fractals or images produced
by a generative adversarial network (GAN). The obtained
images are highly realistic and visually plausible, preserving
the visual aspect of the reflections, which is frequently used
to discriminate between real and synthetic images [1], and

1Source code available at http://iebil.di.unimi.it/irisGan/irisGan.html
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preserving the color nuance of the original iris. The images
do not include any biometric information originating from
the original iris.

We evaluated the deidentification capability of the pro-
posed method as well as the visual realism of the obtained
samples using face and iris images collected from websites
and social media. The performed tests are based the analysis
of the performance of state-of-the-art iris recognition meth-
ods and on the answers of volunteers to a questionnaire. Pos-
itive results were obtained for every aspect of the proposed
iris deidentification method.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related works. Section III describes
the proposed method to estimate the privacy risk associated
with iris recognition using images downloaded from the web.
Section IV illustrates the method proposed to perform iris
region deidentification. Section V presents the experimental
evaluation, and Section VI concludes the work.

II. RELATED WORKS
Most of the studies in the literature on the deidentification
of biometric characteristics focus on the face trait. The ear-
liest studies on face deidentification used simple strategies
based on common image processing operations to modify
the face region [17], such as “black box”, “pixelation”,
and “blurring”. However, these methods remove informa-
tion unrelated to the individual’s identity and degrade the
overall realism of the image. More recent techniques try to
overcome these limitations and provide formal guarantees
regarding the anonymity of deidentified data by using the
concept of κ-anonymity [18], [19], for example, the κ-same
approach [20]. These methods preserve some of the original
distinctive characteristics of the biometric trait to try to obtain
an image as similar as possible to the original sample. In
recent years, researchers have proposed face deidentification
methods based on deep learning (DL) techniques, which
frequently use a GAN to generate modified face images or
mixtures of faces computed starting from a feature database
[21], [22]. Since the distinctive characteristics of iris patterns
are more complex for humans to memorize compared to other
face traits, methods based on the concept of κ-anonymity
are not convenient and it should be possible to use visually
realistic patterns generated using pseudorandom approaches
to compute synthetic iris patterns. Furthermore, the GANs
used to generate face images are not directly applicable for
creating synthetic iris regions due to the low image resolution
and the low level of detail in the iris region.

To the best of our knowledge, only a few studies on iris
deidentification techniques exist; these studies are intended
only to protect the iris region. The method presented in
[13] first searches for the iris region and then degrades that
region using a JPEG extended range (XR) encoder. Another
study [14] applied a cryptographic technique designed for
JPEG 2000 images to protect iris images converted using the
rubber sheet model (RSM) [23]. The method proposed in [15]
removes distinctive biometric characteristics while preserv-

ing iris biological features from ocular images by using an
algorithm that adds a controlled amount of Laplacian noise to
blur the iris region. However, none of these methods attempt
to preserve the visual realism of the deidentified irises. In
[22], [24], the authors proposed methods to obtain visually
realistic ocular regions. These methods were intended to be
integrated into face portraiture software for inpainting closed
eyes or enforcing a specific gaze direction. However, such
methods can be applied only to very low-resolution images
compared to images that are suitable for iris recognition. In
addition, they do not generate detailed iris textures, and they
replace the entire eye and eyelash region, which alters the
original facial expression.

In this paper, we propose a novel method for generating
synthetic iris textures that achieve visually pleasant results.
The literature contains several studies involving methods
to compute synthetic iris images. However, none of these
methods can be directly used to create visually realistic iris
textures to be embedded in input facial images. The existing
methods can be grouped into algorithmic approaches [25]–
[29] and methods based on DL and GAN models [30]–[33].
Table 1 presents a summary of the existing methods for
generating synthetic iris textures.

III. PRIVACY RISK ESTIMATION
In this section, we describe a simple approach for estimating
the privacy risks associated with distributing high-resolution
facial images with visible iris regions. In our analysis, we
focus on a monomodal recognition strategy based on a sin-
gle iris. Since multimodal biometrics tend to achieve better
recognition accuracy than do monomodal systems [12], this
analysis should be considered an optimistic estimate.

For our analysis, we used I-SOCIAL-DB [6], containing
3, 286 ocular images collected from websites and social
media. For each ocular image, the dataset includes the cor-
responding iris segmentation mask and the parameters of the
circles approximating the inner and outer iris boundaries. The
average size of the face images is ≈ 3, 000 × 3, 200 pixels
and the iris radii vary from ≈ 56 to ≈ 137 pixels. Fig. 3
shows examples of the iris images collected from websites
and social media. Notably, it is not possible to obtain in-
formation about possible image enhancements performed by
photographers, which can drastically reduce the accuracy of
biometric recognition algorithms.

To estimate the privacy risk, we analyzed the cumulative
distributions of the genuine and impostor matching scores
obtained by comparing every possible pair of samples in the
dataset, thus allowing the average privacy risk for the popu-
lation in the database to be computed. As an example, Fig. 4
compares the results achieved by a public implementation
[8] of a contrast-adjusted segmentation algorithm [34] and
a well-known recognition method in the literature [35] for a
subset of the Institute of Automation of the Chinese Academy
of Sciences version 4 (CASIA-v4) interval dataset [36] and
I-SOCIAL-DB. A comparison of Fig. 4 (a) to Fig. 4 (b)
reveals some important differences between the iris images
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TABLE 1. Summary of methods for generating synthetic iris textures

Ref. Year Type Method Approach

[25] 2006 Algorithmic approach Feature agglomeration First, this method uses a Markov random field to generate a random texture; then, it
generates detailed features and embeds them in the texture.

[26] 2007 Algorithmic approach Anatomy-based iris generation First, this approach uses a generation process based on simulating a dense fiber structure;
then, it applies image processing operators to refine the generated image.

[27] 2008 Algorithmic approach Patch-based sampling This method first creates a visual primitive of the iris texture using iris patch-based
sampling; then, it generates pseudo-irises by introducing intraclass variations.

[28] 2010 Algorithmic approach Multiresolution approach This approach first decomposes the training iris image into lower-resolution components
and then combines the components to generate random samples.

[29] 2013 Algorithmic approach NOISYRIS
This approach first applies a stochastic method based on creating and grouping fibers to
generate a synthetic iris; then, it applies rendering algorithms to simulate illumination
effects and different nonideal conditions.

[30] 2017 DL iDCGAN This approach uses a deep convolutional GAN trained on iris images and a corresponding
quality index to generate synthetic samples starting from a random vector.

[31] 2017 DL S+U GAN
This model uses a GAN trained using a combination of simulated and unsupervised
learning to generate highly realistic synthetic irises by starting from a synthetic iris with
coarser realism.

[32] 2018 DL Iris-GAN It uses a GAN to generates synthetic images resembling the irises in public databases.

[33] 2019 DL RaSGAN This model trains a GAN composed of relativistic networks and uses quality-based
metrics to improve the realism of synthesized irises.

Notes. DL = Deep Learning.

FIGURE 3. Examples of iris images collected from websites and social media.
The iris radii are sufficiently large to perform iris recognition using
state-of-the-art algorithms.

acquired using the biometric scanners of CASIA-IrisV4 and
those downloaded from public websites. Fig. 4 (b) shows that
while the privacy risks related to images collected from the
web are less than those of databases of iris images collected
using biometric scanners, the risks are still relevant. Notably,
by setting a threshold HD = 0.365, we obtained a correct
genuine identity comparison percentage of 25.86% at a false
matching rate (FMR) of ≈ 10−4.

IV. PROPOSED IRIS DEIDENTIFICATION METHOD
Our proposed iris deidentification approach can work in dif-
ferent configurations by the use of heterogeneous algorithms
for generating synthetic iris textures. Our approach extracts
the iris region from the high-resolution face image, creates
a synthetic iris texture, and finally inserts the synthetic iris
into the original face image. During the generation of the
synthetic iris, no biometric information from the original iris
texture is used; we extract only appearance-based statistics
on eye color nuances, which are not relevant for most of
the state-of-the-art iris recognition technologies (the mean
and standard deviation of the intensity values of the color
channels). We use the extracted statistics to generate visually
plausible synthetic iris textures that resemble those in the

original images.
Our approach can be divided into the following steps: A)

eye region extraction and iris segmentation; B) computation
of the RSM; C) computation of the synthetic texture; D) color
domain adaptation; E) conversion to cartesian coordinates
and blending. We repeat this procedure for both the left and
right irises. Fig. 5 shows the outline of the proposed synthetic
iris generation method.

A. EYE REGION EXTRACTION AND IRIS
SEGMENTATION
This step first processes the face image to extract the eye re-
gion and then segments the iris to compute a binary segmen-
tation mask. We considered two variants for completing this
step. In the first variant, both the eye region extraction and
the iris segmentation are performed manually by an expert
user. In the second variant, we use state-of-the-art automatic
algorithms to perform both tasks. For both variants, we adopt
pixelwise segmentation.

In the remainder of this section, we describe the variant
using automatic algorithms. To extract the eye region, we
use the method described in [37], based on a convolutional
neural network (CNN). We chose this method because it rep-
resents the state-of-the-art segmentation algorithm for high-
resolution face images. The network automatically estimates
the coordinates of the image corresponding to the centers
of the eyes (xleft, yleft), (xright, yright). The ocular regions
Ileft, Iright are obtained by cropping the face image around
each eye center using squared regions whose sides are equal
to 1/3 of the Euclidean distance between (xleft, yleft) and
(xright, yright).

To segment the iris from the ocular images Ileft, Iright,
we use an algorithm based on CNNs [38] because of its high
accuracy in segmenting iris images acquired in visible light
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FIGURE 4. Privacy risk analysis for a dataset of iris images collected (a)
using a biometric scanner (b) from face images downloaded from websites
and social media and using segmentation masks created by a human expert.
In our experiments, the matching scores are computed as the Hamming
distance between two templates. The resulting graph reveals that although
privacy risks are not comparable for samples acquired using a biometric
scanner and samples extracted from face images downloaded from websites
and social media, there are concrete privacy risks even for downloaded
samples. As an example, by setting a threshold of HD = 0.365, we obtained
25.86% of correct genuine identity comparisons at a FMR of ≈ 10−4.

conditions.
A segmentation algorithm computes the binary segmen-

tation masks Bleft, Bright for the left and right irises, re-
spectively. For each iris, the algorithm also computes the
parameters describing two circles approximating the inner
and outer iris boundaries. The inner boundary is described
by the center coordinates (xi, yi) and the radius ri, while the
outer iris boundary is described by the parameters (xo, yo)
and ro.

In this paper, we consider the methods [37], [38] only as
an example; it is possible to use any suitable algorithm from
the literature to extract the eye region and segment the iris.

In the remainder of the section, because our deidentifi-
cation method processes both the left and the right eyes in
the same manner, we describe the remaining steps in the
processing chain by referring to a single iris.

B. COMPUTATION OF THE RUBBER SHEET MODEL
This step aims at creating a normalized representation of the
iris region invariant to image resolution, pupil dilation, and
nonconcentricity of the pupil with respect to the iris. For nor-
malization, we adopt the RSM, which is one of the simplest
and most commonly used techniques in the literature.

The normalization algorithm converts the iris region of the
ocular image I , described by the segmentation mask B, into
a rectangular polar image P representing the pixels included
between two circles approximating the inner and outer iris
boundaries. Specifically, the cartesian coordinates (x, y) of
every pixel of the iris region of I are converted to a double
dimensionless nonconcentric polar coordinate system (ρ, θ),
where ρ belongs to the unit interval [0, 1] and θ is an angle in
the range [0, 2π]. The image IR is obtained by quantizing
ρ and θ into nθ and mρ values, respectively. We set the
parameters nθ and mρ empirically.

C. COMPUTATION OF THE SYNTHETIC TEXTURE
This task creates a realistic synthetic iris texture represented
as a rectangular image T with a fixed size of nθ bymρ pixels.
The goal is to obtain a synthetic texture as similar as possible
to those obtained by normalizing a real iris region using the
RSM algorithm but lacking any biometric information related
to the original iris.

The main advantages of simulating the iris texture in the
normalized domain with respect to performing the same com-
putation in cartesian image space are as follows: i) the RSM
is invariant to the image resolution; ii) the RSM is robust to
pupil dilation; and iii) the RSM does not require that the pupil
be concentric with respect to the iris. These advantages help
in embedding the iris texture into the face image and thereby
creating visually realistic deidentified images.

To compute the synthetic texture, we propose two tech-
niques, optimized in terms of resources and visual realism.
The first technique is based on a simple and fast fractal
algorithm, while the second technique is based on a GAN
and can achieve more visually realistic results. In our work,
we consider both techniques and use the fractal algorithm as a
baseline against which to compare the GAN-based technique.
In fact, GANs can produce more visually realistic images
taking advantage of large datasets in their training, while the
fractal algorithm requires only a single random number for
its initialization.

1) Fractal generation of the synthetic iris texture
To rapidly compute a pseudorandom representation of the
iris texture, we approximate the texture as a plasma fractal
and compute it using the diamond-square algorithm. This
algorithm is frequently used to compute height maps for
computer graphics [39].

The algorithm consists of nf iterations, during which it di-
vides an image T into local square regions and sets the center
point of each region to the average of the four corner points
plus a random value. In each iteration, the algorithm reduces
the magnitude of the randomness. The algorithm generates
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FIGURE 5. Outline of the proposed iris deidentification method. Iris deidentification is applied separately to both the left and the right irises in each image. As a
result, we obtain images with visually plausible synthetic iris textures that resemble the original images. The outline shows the results of two alternatives for
generating the synthetic pattern: a fractal algorithm and a GAN. We consider the fractal algorithm a baseline against which to compare the GAN-based technique.
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FIGURE 6. Examples of plasma fractals used to compute representations of
the iris texture: (a,b) squared plasma fractals; (b,c) corresponding images after
resizing the fractals to the proportions of the rubber sheet model (RSM). The
images exhibit a pseudorandom pattern.

a squared plasma fractal T with a size of 22+nf × 22+nf .
Then, region T is resized to a rectangular image with size nθ
by mρ, with nθ,mρ selected to imitate the proportions of the
RSM. Fig. 6 shows some examples of plasma fractals used to
compute the pseudorandom representations of the iris texture
and the corresponding image after resizing.

2) GAN-generated iris textures

Among computational intelligence approaches, owing to
their advantage of being able to automatically learn data
representations, techniques that use DL are being increas-
ingly used in a wide variety of pattern recognition fields.
In particular, DL methods based on GANs are emerging
as state-of-the-art techniques for generating highly realistic
synthetic images. They work by combining two machine
learning models: a generator G, which generates synthetic
data, and a discriminator D, which takes as input the data
generated by G and classifies it as real or synthetic. Learning
algorithms for GANs are based on adversarial training of G
and D, which compete against each other to reach an equi-
librium point [40]. When this equilibrium point is reached

(or training is terminated), the generator has been trained to
create synthetic images from a vector of random numbers.

Fig. 7 shows the architecture of the GAN used in our work.
Specifically, we use a deep convolutional GAN (DCGAN) in
which G and D are implemented as CNNs. DCGANs have
successfully been used to generate visually realistic images
in different application scenarios [41], [42]. The DCGAN is
trained to generate synthetic iris textures using a training set
of iris RSMs2.

The DCGAN consists of several layer types, which are
described as follows:
• Linear layer: applies a linear transformation to the input

data, according to the equation: y = xAT + b, where x
is the input data, A is the transformation matrix and b is
the bias.

• Hyperbolic tangent: applies the hyperbolic tangent
function y = tanh(x) to the input data.

• Sigmoid: applies the sigmoid function y =
1

1 + e−x
to

the input data.
• Convolutional layer: computes its output by applying

a convolution of the input data using a bank of two-
dimensional filters. For each coordinate (i, j), the output
is computed according to the equation: y(i, j) = b +∑H
m=1

∑W
n=1 f(m,n)×x(i−m, j−n), where M and

N are the horizontal and vertical dimensions of the filter
f , respectively, and b is the bias. In this work, we set
M = N = 3, and the padding = 1.

• Leaky Rectified Linear Unit (LeakyReLU) layer: applies
the function y = max(0, x) +m×min(0, x).

• Dropout layer: randomly sets the input data to 0, with a
probability of pdrop.

The architecture of the generator G CNN is shown in
Fig. 8a. G is composed of linear, resizing, convolutional,
and ReLU layers, arranged as shown in Table 2. We apply
batch normalization after layersL2,L3,L6 using the function
described in [43]. The DCGAN performs the generation

2The source code is available at http://iebil.di.unimi.it/irisGan/irisGan.
html
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FIGURE 7. Architecture of the deep convolutional GAN (DCGAN) used in this work. To train the generator G and the discriminator D, we use a database of RSMs
of irises. The generation process is performed by applying G on a vector z composed by random numbers in the range [0, 1], extracted following a normal
distribution.
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FIGURE 8. Architecture of the generator G and discriminator D CNNs used in the DCGAN: (a) generator G; (b) discriminator D.

TABLE 2. Summary of the architecture of the CNN of generator G

Layer Layer Feature Number Stride Batch
N. type size of filters Norm.

L0 Input [|z| = 100] - - N
L1 Linear [nθ/4 ·mρ/4 · 128] - - N
L2 Resizing [nθ/2×mρ/2× 128] - - Y
L3 Conv. [nθ/2×mρ/2× 128] 128 1 Y
L4 LeakyReLU [nθ/2×mρ/2× 128] - - N
L5 Resizing [nθ ×mρ × 128] - - N
L6 Conv. [nθ ×mρ × 64] 64 1 Y
L7 LeakyReLU [nθ ×mρ × 64] - - N
L8 Conv. [nθ ×mρ × 3] 3 1 N
L9 Hyper. tan. [nθ ×mρ × 3] - - N

Notes: Batch norm. = Batch normalization (Y = Yes; N = No);
Conv. = Convolutional; Hyper. tan. = Hyperbolic tangent.

process by applying G on a vector z, with size |z| = 100,
composed by random numbers in the range [0, 1], extracted
following a normal distribution [42]. As a result, G outputs
an image with size nθ ×mρ × 3.

The architecture of the discriminator D CNN is shown in
Fig. 8b. D is composed of linear, convolutional, and ReLU
layers, arranged as shown in Table 3.

We train the DCGAN with the adaptive moment estimation
(Adam) algorithm, which optimizes the binary cross-entropy

TABLE 3. Summary of the architecture of the CNN of discriminator D

Layer Layer Feature Number Stride Batch
N. type size of filters Norm.

L0 Input [nθ ×mρ × 3] - - N
L1 Conv. [nθ ×mρ × 16] 16 2 N
L2 LeakyReLU [nθ/2×mρ/2× 16] - - N
L3 Dropout [nθ/2×mρ/2× 16] - - N
L4 Conv. [nθ/4×mρ/4× 32] 32 2 N
L5 LeakyReLU [nθ/4×mρ/4× 32] - - N
L6 Dropout [nθ/4×mρ/4× 32] - - N
L7 Conv. [nθ/4×mρ/4× 64] 64 2 N
L8 LeakyReLU [nθ/8×mρ/8× 64] - - N
L9 Dropout [nθ/8×mρ/8× 64] - - N
L10 Conv. [nθ/8×mρ/8× 128] 128 2 N
L11 LeakyReLU [nθ/16×mρ/16× 128] - - N
L12 Dropout [nθ/16×mρ/16× 128] - - N
L13 Linear [1] - - N
L14 Sigmoid [1] - - N

Notes: Batch norm. = Batch normalization (Y = Yes; N = No);
Conv. = Convolutional.

function [44]:

min
G

max
D

V (G,D) = min
G

max
D

Ep≈pdata
[logD(x)]+

Ez≈pz [log(1−D(G(z)))]. (1)

After training the DCGAN, we generate an iris texture by
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FIGURE 9. Examples of synthetic iris textures computed using the proposed
DCGAN. The images exhibit high visual realism and resemble RSMs
computed from real irises.

supplying a vector z of random numbers to G. The result is a
synthetic iris texture T with a size of nθ ×mρ. Fig. 9 shows
some examples of synthetic iris textures created by the use of
the proposed DCGAN.

D. COLOR DOMAIN ADAPTATION
This step aims at adapting the simulated texture T in the
color domain to obtain an image C with color characteristics
similar to those of the irises included in I . To perform
this task, we also consider identity-independent appearance-
based color statistics extracted from the iris image I but with-
out including any biometric information originating from the
real iris.

To perform the color domain adaptation, we first reduce the
possible presence of visual incoherence at the extremes of T
due to the transition of θ from 0 to 2π. To meet this goal, we
apply a Gaussian filter to T using a kernel with an empirically
estimated size of sk×sk pixels and with a standard deviation
of σg . The filter is applied by considering the image T as
continuous in the convolution operation, thus obtaining the
smoothed image T ′.

We then adapt the intensity range of T ′ for each color
channel of the iris region. Starting from I and a binary mask
B representing the segmented iris, we compute a vector
of intensity values Vc, where c ∈ {R,G,B}, for each of
the color channels of the red, green and blue (RGB) space.
We compute each channel of the color texture image C as
follows:

A = T ′ −mean (T ′),

Cc = A× [std(Vc)× w1 + mean(Vc)× w2]

∀c ∈ {R,G,B}, (2)

where w1 and w2 are two empirically estimated constants.

E. CONVERSION TO CARTESIAN COORDINATES AND
BLENDING
The goal of this step is to create a deidentified image by
creating the image S, representing the synthetic iris texture
C in the cartesian coordinates of the eye image I , and then
blending S into the real image, obtaining a face image with a
deidentified iris Î .

First, we compute an image S that represents the synthetic
iris texture in cartesian coordinates by considering the param-
eters that describe the inner and outer iris boundaries, which
are computed using the method described in Section IV-A.

(a) (b) (c)

FIGURE 10. Example of the results of the proposed iris deidentification
process: (a) original iris; (b) deidentified iris obtained using the fractal
algorithm; (c) deidentified iris obtained via the GAN. The deidentified images
(b,c) are highly visually realistic.

Specifically, we compute the cartesian coordinates X,Y as
follows:

X(i) = xi + {[R(i)× cos Θ(i)]× [(ro − ri) /mρ]} , (3)

Y (i) = yi + {[R(i)× sin Θ(i)]× [(ro − ri) /mρ]} , (4)

where R and Θ are two matrices representing the polar
coordinates of the texture T . The matrices X and Y are
then used to compute the cartesian image C by performing
a Poisson image interpolation.

Finally, we obtain the deidentified image Î by substituting
the pixels of I in the region of interest defined by the binary
mask B with the corresponding pixels from S by the use
of a Poisson-based blending approach [45]. To achieve a
more natural transition between the synthetic texture and the
original image, during the blending process, we superimpose
the external iris ring Ir of the original iris image I on S.
We compute Ir by considering only the regions of I whose
distance 9

10ro ≤ rb ≤ ro, where ro is the radius of the
external iris boundary. We used this simplification to obtain
a more natural transition between iris and sclera and because
it has been demonstrated that iris regions close to the border
carry limited biometric information [46].

Fig. 10 shows an example of the results of the proposed
iris deidentification process.

V. EXPERIMENTAL RESULTS
This section describes the procedures used to train the GAN,
summarizes the method parameters, presents an analysis of
the deidentification performance of the proposed approach,
and presents a qualitative analysis of the generated images.

A. GAN TRAINING PROCEDURE
To train the GAN, we created a dataset of iris images ob-
tained by applying a data augmentation procedure to sets of
iris images acquired using traditional iris scanners. For this
purpose, we considered portions of the public iris databases
CASIA-IrisV4 [36] and the Indian Institute of Technology
Delhi (IITD)-IrisV1 [47], captured with near-infrared light.
We used only the images for which the corresponding seg-
mentation masks are publicly available [48]. Specifically,
we used 2, 639 images from the CASIA-Iris-Interval subset
(captured from 249 individuals and with a size of 320× 280
pixels) and 2, 240 images from the IIT Delhi Iris Database,
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version 1.0 (captured from 224 individuals and with a size of
320× 240 pixels).

The proposed procedure for training the GAN is based on
the following steps.

1) Database merging to obtain a single database with
4, 879 samples.

2) Data augmentation to inpaint occlusions in the nor-
malized textures by replicating the iris pattern over
the occluded areas. This step is necessary to teach
the GAN to generate synthetic iris textures with no
occlusions. The proposed inpainting procedure is based
on the following steps.

a) Selection. We selected only the RSMs for which
the percentage of occlusions in the corresponding
mask is ≤ 30%.

b) Extraction. For each RSM, we extracted the
longest portion P of images with no occlusions.
The sizes of this portion are Ys = mρ and
Xs = xs,end − xs,start, where mρ is the size
of the RSM along the y-axis, computed via the
weighted adaptive Hough and ellipsopolar trans-
form (WAHET) algorithm, and xs,start, xs,end
are coordinates along the x-axis, computed as
follows:

(xs,start, xs,end) = argmax
x1,x2

x2∑
xi=x1

Ys∑
yi=1

B(xi, yi) ,

(5)
where B is the segmentation mask corresponding
to the RSM, in which the occluded areas are set
to 0.

c) Replication. The extracted portion of P was repli-
cated along the x-axis on the areas of the RSM
≤ xs,start and ≥ xs,end. For each replication of
P , the image was mirrored to ensure the continu-
ity of the iris pattern.

3) The data augmentation procedure is performed to in-
crease the dimensionality of the database by perform-
ing horizontal and vertical flipping operations for each
image along the x- and y-axes, respectively. As a result,
we obtained a training set with ≈ 14, 000 images.

4) Training of DCGAN was implemented with the train-
ing set described above for ne = 200 epochs, with a
batch size of sb = 60, a learning rate of lr = 0.0002,
and exponential decay rates for the first and second
gradient moment estimates of b1 = 0.5 and b2 =
0.999, respectively. The size of the random number
vectors used as input to the network is |z| = 100. The
number of trainable parameters is 26, 699, 137 for G
and 113, 985 for D.

B. PARAMETER TUNING
During RSM computation, we set the values of nθ and mρ

to nθ = 512 and mρ = 64. These values resulted in RSMs
with dimensions similar to those used by the majority of iris
recognition methods in the literature.

When applying the fractal algorithm to create synthetic
textures, we adopted nf = 7 iterations; this value resulted
in a good compromise between visual realism and computa-
tional complexity.

During the color domain adaptation step, we used a Gaus-
sian filter with a kernel size of sk × sk pixels and a standard
deviation of σg , where sk = 5 and σg = 4. We chose
these values to smooth the representation without reducing
the visual realism. In addition, we adopted w1 = 5 and
w2 = 2 to obtain visually realistic synthetic textures with an
average color intensity similar to those of the original irises.

C. DEIDENTIFICATION CAPABILITY
In this section, we evaluate the ability of the proposed
method to generate deidentified irises. We applied the pro-
posed method to the following 2 datasets of deidentified face
images:
• DB-DeIdent-Facefractal: database of 1, 643 deidenti-

fied face images, in which the irises were generated us-
ing synthetic textures computed using the fractal method
described in Section IV-C1.

• DB-DeIdent-FaceGAN : database of 1, 643 deidentified
face images, in which the irises were generated using
synthetic textures computed using the GAN described in
Section IV-C2 and trained using the procedure described
in V-A.

We then extracted the iris regions from DB-DeIdent-
Facefractal and DB-DeIdent-FaceGAN using the coordinates
estimated by a human operator for F-SOCIAL-DB. In this
way, we obtained two datasets of ocular images, called DB-
DeIdent-Irisfractal and DB-DeIdent-IrisGAN .

To analyze the deidentification capability of the proposed
method, we evaluated the accuracy of different biometric
recognition schemes for real images and deidentified images,
analyzed the matching scores obtained by matching real iris
images and deidentified images, and evaluated the capability
of the proposed GAN to generate random textures.

1) Effect of the proposed deidentification method on the
accuracy of biometric systems
The identity verification process is composed of a segmen-
tation task and a recognition scheme that includes specific
feature extraction and matching methods. To test the dei-
dentification capability of the proposed method, we com-
pared the identity verification accuracy achieved by different
biometric recognition schemes for I-SOCIAL-DB and for
the deidentified images of DB-DeIdent-IrisGAN and DB-
DeIdent-Irisfractal. We considered the results achieved using
the manually segmented masks provided by I-SOCIAL-DB
and those obtained by automatically segmenting the iris
images using a deep neural network (region-based CNN (R-
CNN)) [38] in conjunction with a technique for estimating
the limits of RSMs (cnn2rubber) [49]. We selected this
segmentation algorithm since it achieved the best results
in our tests (more details are reported in Section V-D).
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The considered biometric recognition schemes are based on
heterogeneous features, handcrafted as well as learned by
using deep neural networks. In particular, we evaluated the
accuracy of a neural network with a unified deep learning
architecture (UNINET) [50], a method based on machine
learning and binary statistical image features (BSIF) [51],
and the following recognition methods implemented in the
University of Salzburg Iris Toolkit (USIT) version 3.0 [8]: log
Gabor (LG) [52], complex Gabor (CG) [23], local intensity
variations (CR) [53], cumulative sums of grayscale blocks
(KO) [54], and quadratic spline wavelet (QSW) [55]. Each
test involved 3, 286 iris images, including 11, 092 genuine
comparisons and 10, 783, 418 impostor comparisons. Table 4
summarizes the achieved results in terms of equal error rate
(EER) [56]. Fig. 11 shows the receiver operating characteris-
tic (ROC) curves obtained by the best performing recognition
schemes (BSIF and LG). The results are compared with the
ROC curve obtained from a vector of random numbers of
size equal to the number of identity comparisons performed
for I-SOCIAL-DB, DB-DeIdent-IrisGAN , and DB-DeIdent-
Irisfractal.

Table 4 and Fig. 11 show that, using manually segmented
masks, all the considered biometric recognition schemes
achieved EER close to 50% for both DB-DeIdent-IrisGAN
and DB-DeIdent-Irisfractal. Notably, an EER equal to 50%
suggests that the distributions of the genuine and impostor
scores are not substantiallly different, thus implying that
the distinctive biometric information has been completely
removed from the original samples. Futhermore, the ROC
curves obtained for DB-DeIdent-IrisGAN and DB-DeIdent-
Irisfractal by using manually segmented masks are similar to
the ROC curve obtained from randomly generated numbers.
This result proves that the proposed deidentification method
is effective, removing distinctive features from the iris sam-
ples. Using automatic segmentation algorithms, the EER is
slightly inferior because the tching methods computed a
limited number of distinctive information in the incorrectly
segmented regions. Nevertheless, the achieved result is sat-
isfactory for practical applications since all the considered
biometric recognition schemes achieved EERs higher than
41%.

We also evaluated the separation between the genuine and
impostor scores for I-SOCIAL-DB, DB-DeIdent-Irisfractal,
and DB-DeIdent-IrisGAN . Fot this analysis, we used the seg-
mentation masks provided by I-SOCIAL-DB and the recog-
nition schema LG; this study can be considered a reference
point in the literature on iris recognition systems. The more
widely the impostor and genuine distributions are separated,
the higher the privacy risk is. Fig. 12 shows the results.
The deidentified ocular images (in both configurations) do
not present distinctive information in the iris region; thus,
they obtain a genuine score distribution comparable to the
impostor score distribution.

As a further test, we evaluated the matching scores ob-
tained by comparing the original ocular images and the
deidentified images. We used the recognition schema LG.

Specifically, we performed 3, 286 identity comparisons: one
for each image in I-SOCIAL-DB. We performed this com-
parison using manually segmented masks. For DB-DeIdent-
Irisfractal, we obtained a mean score of 0.493 with a standard
deviation of 0.030. For DB-DeIdent-IrisGAN , we obtained
a mean score of 0.490 with a standard deviation of 0.027.
A comparison of these results with the distributions shown
in Fig. 12 reveals that the deidentified images do not present
sufficient distinctive information for comparisons to the orig-
inal samples using the considered biometric recognition ap-
proach.

2) Capability of the proposed GAN to generate random
textures
We evaluated the capability of the proposed GAN to gen-
erate textures that present no common biometric information
among them. We used the recognition schema LG. Observing
the genuine distribution in Fig. 12 (c) shows that the samples
computed for each individual by the employed biometric
recognition method are sufficiently different to the extent that
they appear to belong to different individuals. Furthermore,
a visual inspection confirms that the deidentified images
generated for the same individual present relevant iris texture
differences. As an example, Fig. 13 shows a real ocular image
and two different deidentified images created by starting from
the same real ocular image.

Furthermore, we analyzed the ability of the GAN to gen-
erate samples different from those used to train the network.
We compared the RSM obtained from each sample of the
training set with 1, 000 RSMs generated by the proposed
GAN by using the recognition schema LG. Fig. 14 contains
a plot of the distribution of the obtained matching scores,
showing that the RSMs created by the GAN are substantially
different from those used for training the network. In fact,
the shape of the matching score distribution is similar to the
shape of the impostor distributions obtained using the same
algorithm, as shown in Fig. 12 (the mean of the matching
scores is 0.480, with a standard deviation of 0.026). When the
employed recognition method is used, a matching score of
0.480 is usually obtained for impostor identity comparisons
performed for samples with substantial differences. These
results demonstrate the ability of the GAN to create images
different from those in the training set. The obtained results
also prove that the proposed deidentification method guar-
antees robustness to reidentification attacks even in cases in
which the samples to be deidentified pertain to the training
set because the textures generated by the GAN do not present
distinctive biometric characteristics in common with the sam-
ples in the training set.

D. REALISM OF DEIDENTIFIED IMAGES
To analyze the realism of the deidentified images obtained by
the proposed method, we performed a visual analysis, evalu-
ated the results achieved by segmentation algorithms based
on heterogeneous features (edge-based as well as texture-
based features), analyzed the results of questionnaires, and
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TABLE 4. Identity verification accuracy of different biometric recognition schemes for real and deidentified images.

I-SOCIAL-DB DB-DeIdent-IrisGAN DB-DeIdent-Irisfractal
Iris Manual R-CNN + Manual R-CNN + Manual R-CNN +
Recognition Segmentation cnn2rubber Segmentation cnn2rubber Segmentation cnn2rubber
Library EER (%) EER (%) EER (%) EER (%) EER (%) EER (%)

UNINET 31.89 36.38 48.81 42.69 49.78 42.68
KO 31.22 35.06 49.19 41.10 49.12 41.10
QSW 29.23 37.57 49.34 47.20 49.78 47.20
CR 28.48 34.86 50.14 43.09 50.09 43.00
CG 24.51 31.75 50.04 44.56 49.86 44.29
LG 21.71 27.42 48.28 46.80 49.01 46.80
BSIF 18.94 25.72 49.64 41.03 49.86 41.03

Notes. EER values close to 50% indicate that the distinctive information of the samples has been completely removed. U-Net uses only the parameters of the
circles approximating the inner and outer iris boundaries and segments the iris region in the coordinate system of the RSM. The results of U-Net refer to the
deep neural network trained for the IITD dataset, which achieved the best results in our tests.
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FIGURE 11. ROC curves obtained comparing the biometric recognition schemes (a) BSIF and (b) LG with manually segmented masks and automatically
computed segmentation masks (R-ccn + cnn2rubber) for I-SOCIAL-DB, DB-DeIdent-IrisGAN , and DB-DeIdent-Irisfractal. The results are compared with the ROC
curve obtained from a vector of random numbers of size equal to the number of identity comparisons performed for I-SOCIAL-DB, DB-DeIdent-IrisGAN , and
DB-DeIdent-Irisfractal. The proposed deidentification method effectively removes the biometric information present in the iris region since the curves obtained for
DB-DeIdent-IrisGAN and DB-DeIdent-Irisfractal by using manually segmented masks are similar to the curve obtained from randomly generated numbers.

evaluated the performance of automatic face recognition
methods.

1) Visual analysis

Fig. 15 shows a face image and a corresponding image
with iris regions deidentified using the proposed method.
Then, Fig. 16 and Fig. 17 show examples of images selected
from DB-DeIdent-FaceGAN . Specifically, Fig. 16 shows a
complete image of the face, while Fig. 17 shows only the iris
region. We considered only the images of the DB-DeIdent-
FaceGAN database because, from our visual examination,
they exhibited a greater visual realism than did the images
in DB-DeIdent-FaceFractal (in agreement with the opinions

of the volunteers involved in our tests). It can be observed
that the proposed method generates highly realistic images in
which the iris patterns closely resemble the original patterns
but contain synthetic information unrelated to the original
biometric traits.

2) Applicability of iris segmentation methods

We compared the segmentation accuracy achieved via dif-
ferent methods for I-SOCIAL-DB and for deidentified im-
ages of DB-DeIdent-FaceGAN and DB-DeIdent-Facefractal.
The considered iris segmentation methods are based on
heterogeneous features, including edge-based and texture-
based features, as well as those learned by using deep neu-
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FIGURE 12. Distributions of the matching scores obtained by applying the proposed iris deidentification: (a) ocular images segmented by a human expert; (b)
ocular images segmented using automatic segmentation software; (c) ocular images segmented by a human expert and deidentified using the fractal approach; and
(d) ocular images segmented by a human expert and deidentified using the GAN approach. The deidentified ocular images (under both configurations) do not
include distinctive information in the iris region; thus, they obtain a genuine score distribution comparable to the impostor score distribution. Furthermore, the results
in part (b) show that the privacy risk is still relevant even when an automatic segmentation algorithm is used.

(a) (b) (c)

FIGURE 13. Examples of patterns generated by the proposed GAN for the
same sample before blending the edges: (a) original ocular image; (b)
deidentified image obtained by the first execution of the GAN; and (c)
deidentified image obtained by a second GAN execution. To enhance the
visibility of the differences between the images (b) and (c), in this example, we
did not apply the blending algorithm (subsection IV-E), which is designed to
smooth the transition between the iris and sclera. Examples of iris images
obtained by applying the the blending algorithm (subsection IV-E) are shown in
Fig. 17. A visual inspection shows that deidentified images generated for the
same individual have substantial iris texture differences.

ral networks. In particular, we considered a segmentation
method based on the total variation model (TVM) [57], a
fast segmentation algorithm for nonideal images (FSA) [58],
a segmentation technique based on deep learning (R-CNN)
[38], and three segmentation algorithms included in USIT
version 3.0 [8](contrast-adjusted Hough transform (CAHT)
[34], iterative Fourier-series push and pull (IFPP) [59], and
WAHET [60]). We considered two figures of merit com-
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FIGURE 14. Distribution of the matching scores obtained by comparison sof
the RSMs of the samples of the training set with 1, 000 randomly generated
RSMs. The shape of the matching score distribution is similar to the shape of
the impostor distributions obtained using the same algorithm and shown in
Fig. 12. Furthermore, the mean of the matching scores is 0.48; a similar value
is usually obtained by the employed matcher when applied to impostor identity
comparisons performed for samples with substantial differences. These results
show the ability of the GAN to create images different from those in the
training set. The obtained results also prove that the proposed deidentification
method guarantees robustness to reidentification attacks even in cases in
which the samples to be deidentified pertain to the training set because the
textures generated by the GAN do not present distinctive biometric
characteristics in common with the samples in the training set.
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(a) (b)

FIGURE 15. Examples of face images with iris regions deidentified using the
proposed approach: (a) original image; (b) face image with deidentified iris
regions. The proposed method for iris deidentification generates images with
high visual realism.

monly used in the literature, introduced for the Noisy Image
Challenge Evaluation, Part 1 (NICE.I) competition [61]: the
classification error rate (E1) and a metric for evaluating the
disproportion between the false positive rate (FPR) and false
negative rate (FNR) of the pixel classification (E2). Table 5
summarizes the obtained results.

Table 5 shows that the state-of-the-art segmentation meth-
ods based on heterogeneous features achieved similar ac-
curacy for real samples and deidentified images. These re-
sults prove that the proposed deidentification method does
not substantially affect the performance of iris segmentation
methods.

3) Analysis of questionnaires
To further evaluate the capability of the proposed method
to generate deidentified images with high visual realism, we
used an evaluation procedure based on questionnaires com-
piled by volunteers. The questionnaires consisted of evalu-
ating the visual aspect of real images and the deidentified
images. The images were presented to nonexperts based on
two criteria: 1) user appreciation and 2) visual realism. We
considered the answers to questionnaires from participants
shown complete face images as well as those shown only
the ocular region. In the first questionnaire, we compared
the results obtained by the fractal and GAN algorithms. We
extracted the face/ocular region from 15 images randomly
selected from F-SOCIAL-DB, DB-DeIdent-FaceFractal, and
DB-DeIdent-FaceGAN and asked users whether they pre-
ferred the samples from DB-DeIdent-FaceFractal or those
from DB-DeIdent-FaceGAN . The test was conducted with
16 volunteer participants, yielding 240 answers in total. We
displayed the images to the participants on different screen
types, such as those of laptops and smartphones, and showed
the original image and the corresponding deidentified image
on the same page (see examples in Fig. 16). The ocular
regions (see examples in Fig. 17) are shown at a zoom
factor of 100%. After considering the face images, 99.3%

FIGURE 16. Examples of faces with irises deidentified using the proposed
approach (face image), selected from DB-DeIdent-FaceGAN . The proposed
method for iris deidentification generates images with high visual realism.

FIGURE 17. Examples of images with irises deidentified using the proposed
approach (only iris region), selected from DB-DeIdent-IrisGAN . The proposed
method for iris deidentification generates images with high visual realism.

of the users assigned a major or equal rate to the GAN-
based configuration. After considering the ocular images,
91.2% of the users assigned a major or equal rate to the
GAN-based configuration. Taken together, the results showed
that the images generated with the GAN-based configuration
received higher approval from users than did those produced
by the fractal algorithm.

In the second questionnaire, we performed a Turing-like
test by extracting the face/ocular region from 30 images ran-
domly selected from F-SOCIAL-DB and from DB-DeIdent-
FaceGAN and asking each user to decide whether the image
was real or synthetic. In this test, we considered only the
results obtained by the GAN algorithm, since this method
yielded the best results in the previous test. This test was
performed by 32 volunteers. We displayed the images on
different screen types, such as laptops and smartphones.
The ocular regions are shown at a zoom factor of 100%.
The results showed that 62.5% of the real faces were not
recognized as real samples and that 57.1% of deidentified
faces were not recognized as synthetic samples. Similarly,
the results showed that 41.2% of the real ocular images were
not recognized as real samples and that 38.5% of deidentified
eyes were not recognized as synthetic samples. These results
indicate high error levels in the user judgments; they did not
correctly identify many faces and ocular regions as showing
deidentified or real iris patterns, thus demonstrating that users
were not able to perceive relevant differences between real
and deidentified images.

4) Face recognition performance
We also evaluated the effect of proposed iris deidentifica-
tion approach on the performance of state-of-the-art face
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TABLE 5. Accuracy of different iris segmentation methods for real and deidentified images.

Segmentation I-SOCIAL-DB DB-DeIdent-IrisGAN DB-DeIdent-Irisfractal
Library Segmentation error Segmentation error Segmentation error

E1 E2 E1 E2 E1 E2

WAHET 0.1347 0.2831 0.1571 0.3118 0.1571 0.3118
IFPP 0.1121 0.1855 0.1522 0.2557 0.1513 0.2539
FSA 0.0943 0.3226 0.1011 0.3315 0.1036 0.3343
CAHT 0.0862 0.4042 0.0871 0.4062 0.0871 0.4062
TVM 0.0316 0.1406 0.0302 0.1273 0.0300 0.1273
R-CNN 0.0146 0.0660 0.0144 0.0600 0.0142 0.0600

Notes. When needed, we set the parameters describing the minimum and maximum radii of the circles approximating the iris boundaries. We did not modify
any other parameter of the segmentation methods. The R-CNN uses the configurations designed for the University of Beira Interior Iris version 2 (UBIRIS v.2)
database.

recognition methods. Specifically, we evaluated the accu-
racy of the deep neural networks described in [62] for
F-SOCIAL-DB, DB-DeIdent-Facefractal, and DB-DeIdent-
FaceGAN . The considered deep neural networks achieved
similar performances for each dataset. As an example, the
squeeze-and-excitation network (SeNet) achieved an EER
of approximately 1.4% for the three datasets. The achieved
results show that the proposed iris deidentification method
preserves the original details of the face and maintains face
pictures that are recognizable by both humans and state-of-
the-art biometric recognition methods working effectively
only on the iris pattern.

VI. CONCLUSION
In this paper, we raised a significant privacy problem caused
by the possibility of applying state-of-the-art iris recognition
techniques on images uploaded on websites and social media.
First, we empirically demonstrated that the risk associated
with iris-based identification is real. Second, we presented an
iris deidentification method based on generative adversarial
networks, which automatically generates novel images with
high visual realism, in which all the distinctive biometric
features of the iris textures are removed and substituted. We
evaluated the deidentification capability of the proposed dei-
dentification method as well as its ability to construct realistic
images. The results showed that iris recognition algorithms
are unable to extract distinctive features from the computed
deidentified samples. Furthermore, a panel of interviewed
volunteers was not able to correctly distinguish between the
real and deidentified images. Based on the obtained results,
our method can be used as an effective privacy-preserving
tool when uploading high-resolution facial images to web-
sites and social media. The use of our method guarantees
that the iris visible in the uploaded images does not contain
any identifiable biometric information and works without
introducing modifications easily recognizable by humans.
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