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Abstract: Herein, a disturbance observer is designed for linear non-minimum phase 

systems. A Smith Predictor is added to the system, using Recursive Least Squares (RLS), 

with a forgetting factor algorithm. The combination of both approaches, eliminates the 

restrictive feature of the classical disturbance observer, for non-minimum phase systems 

and removes the necessity for precise delay measurements, for the Smith Predictor 

structure. The results show that the proposed design procedure preserves system stability, 

in the presence of disturbances and time delays. 
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1 Introduction 

Disturbances often occur in real systems and this has a negative effect on system 

stability and performance. In the past, a number of remedies have been proposed 

to enhance the stability and performance characteristics of feedback control 

systems [1]. 

The classical disturbance observer (DOB), estimates disturbances acting on the 

system, utilizing a proper inverse model and eliminates the disturbance from the 

control channel. However, the model inversion for non-minimum phase systems 

leads to unstable control loops, which require a special treatment for the right half 

plane (RHP) zeros [2]. This undesired situation narrows down both the simplicity 

and the capabilities of DOB. 
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Although researchers try to make the system robust by using more complex 

controllers due to restrictive effect of classical DOBs, the designed controllers 

often achieve one control target, making the system robust against disturbances, 

yet sacrificing other control objectives. 

In addition to external disturbances, inherent time delays are also inevitable facts 

observed in dynamic systems, and similar to disturbances, they disrupt the 

system’s stability and deteriorate its operation [3] [4] [5]. Smith Predictor (SP) [6] 

is often used to restore the stability of such systems. In this approach, negative 

feedback is made from the controller output to input by using time delay model 

and the delay becomes a multiplier of the delay free closed loop transfer function. 

However, in order to design the time delay model, the actual time delay must be 

measured precisely, which is usually not possible in practice [7]. 

In this study, the aim is to create a new control design, that removes the above-

mentioned limitations of classical DOB and SP designs and can eliminate the 

negative effects of both disturbance and time delay concurrently. For this reason, 

both the DOB for non-minimum phase systems and the online SP design for 

systems with time delay are proposed to eliminate the negative effects of 

disturbances and time delays. As a non-minimum phase system, the altitude 

control of the Tower Trainer 60 unmanned aerial vehicle [8] is used and H based 

robust control design is preferred as the altitude controller. 

In the first step, the design of a DOB for non-minimum phase systems is 

performed. The minimum phase approximation of the system is found by using a 

constrained optimization approach [9], and the inverse of the system is obtained 

by using this approximation. Then, input and output disturbances are fed to the 

system and the effect of the DOB on the system performance is observed. 

In the second step, the online SP design using the Recursive Least Squares with 

Forgetting Factor (RLSWF) [10] method is proposed. In this phase, it is assumed 

that the nominal model of the system is known and the real system dynamics with 

delay are estimated using RLSWF. In this way the disruptive effect of delay on the 

system is eliminated in an online manner without the need for precise 

measurement of the time delay. 

In the last phase, the studies done in the previous steps are combined to observe 

how the system stability is maintained for cases where the disturbance and delay 

are effective simultaneously. Then the closed loop system with uncertain elements 

is investigated with and without the presence of combination of proposed 

methods. 

According to the results, it is seen that the controller alone is not capable of 

maintaining the stability under time delay and disturbances. On the other hand, for 

non-minimum phase and time delay systems, the response of the system is stable 

and it resembles the nominal system behavior with proposed time delay and 

disturbance estimation methods. 
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As a result, the following features in the presented study are superior to other 

studies in the literature: 

1)  A novel, simple and reliable DOB design has been created for non-

minimum phase systems. 

2)  By making the SP design adaptive, time delay elimination is realized 

without the need for actual time delay measurement. Unlike the 

communication disturbance observer design [11], it can work for non-

minimum phase systems without the need for extra design costs. 

3)  By combining the new SP and DOB designs, both delay and disturbance 

elimination is provided. 4) Both designs can be used both separately and 

in combination based on the system requirements. 

This paper is organized as follows. Section 2 summarizes the previous work. 

Section 3 gives information about the DOB structure designed for linear non-

minimum phase systems and shows the optimization results. Section 4 describes 

how the delay is compensated by combining SP and RLSWF when it occurs in the 

system. Section 5 shows how system works for the case where both methods are 

combined. Finally, Section 6 presents the conclusions. 

2 Literature Background 

In 2004, Chen, Zhai and Fukuda [12] used the least squares method to find the 

minimum phase estimation of the non-minimum phase system and incorporated it 

to the design of the classical DOB. However, this study focuses only on the inner 

loop of the system with DOB structure and the disturbance estimation. Therefore, 

in the presence of a controller, the performance of the closed loop system is not 

considered. 

In 2010, Kim and Son [13] also designed a DOB for non-minimum phase systems 

and demonstrated that the designed observer executes robustly in the presence of 

time delay and time varying disturbance in the input signal. This study is 

important as it provides delay and disturbance compensation by combining non-

minimum phase DOB and classical SP designs. However, the need for actual time 

delay measurement and the insufficiency for time varying delays of classical SP 

are the limitations of the study. 

In 2010, Jo, Shim and Son [14] designed a parallel filter using the H synthesis 

technique for non-minimum phase system. Then, using this technique, they also 

incorporated a robust controller into the closed loop system and showed that 

without the proposed DOB, the corresponding controller can only achieve one 

design goal. Although this design provides the applicability of the classic DOB 

design for non-minimum phase systems, it has two drawbacks: 
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1) The input disturbance affecting the system is not injected the input of the 

parallel filter at runtime. For this reason, this situation leads to a small 

uncertainty in the design. 

2) In order to calculate the parallel filter, a deep robust stability analysis is 

required. 

In 2013, Sarıyıldız and Ohnishi [15] estimated the minimum phase equivalents by 

running an optimization method for the RHP zero(s) in the system and presented a 

study on which constraints should be considered when designing Q filter for such 

systems. In this method, the performance of the DOB is directly dependent on the 

performance of the optimization method used, and an approach with a high error 

rate affects the DOB performance and fidelity of the simulation negatively. 

Therefore, the cost function and optimization method should be selected in 

accordance with the non-minimum phase system to be used. 

In 2014, Wang and Su [16] designed a DOB for non-minimum phase, delayed 

systems and they presented a Q filter optimization using H theory. In this study, 

disturbance rejection control using DOB for stable systems is investigated. 

However, although the study presents a design methodology considering both time 

delay and RHP zeros, the validity of the study only for stable systems and having 

a deep robust stability analysis are the limitations of the proposed method. 

Observers are used quite often, not only for disturbance estimation, but also for 

estimating some system parameters. In 2014, Regaya et al. [17] estimated the 

speed in the induction machine using the sliding mode observer. Thus, they 

provided the control and determination of the unknown rotor speed without the 

need for the speed sensor. The simulation results support that the speed estimation 

was carried out successfully and the chattering in the controller was reduced. 

The time delay problem is encountered in many different fields. In 2016, 

Muradore and Fiorini [18] examined the algorithms that will ensure the stability of 

communication between master and slave systems in dual teleoperation 

technologies and presented the advantages and disadvantages of these algorithms. 

These algorithms are based on passivity theory to guarantee the stability of 

teleoperation in the presence of time delay. Similarly, in 2017, Marton et al. [19] 

presented the modified bilateral control algorithm based on the time domain 

passivity concept, which guarantees system stability in the presence of time 

varying delays. 

Although there exist DOB designs for non-minimum phase and delayed systems 

in the literature, an in depth stability analysis is required for designs using          

H theory [14] [16]. In other DOB designs for non-minimum phase systems, the 

delay is not included in the system [12] [15]. Even so, an accurate delay 

measurement is still required for SP design [13]. In this study, for non-minimum 

phase systems with time delays, delay compensation without precise delay 

information requirement is investigated and a practical optimization study for 

RHP zeros is conducted. 



Acta Polytechnica Hungarica Vol. 18, No. 8, 2021 

 – 167 – 

3 Disturbance Observer Design for Linear Non-

Minimum Phase Systems 

3.1 Classical Disturbance Observers 

The structure of classical DOB is shown in Figure 1, where P(s) is the real system, 

Pn(s) is the nominal model of the system, C(s) is the system controller and Q(s) is 

a low pass filter. 

As shown in Figure 1, the control signal exposed to the disturbance enters the 

plant via the control channel. The resulting –possibly- noisy output signal passes 

through the inverse of the nominal system dynamics and Q filter, respectively, and 

the estimated value of the disturbance is obtained. 

The performance and stability of a closed loop system with a DOB depends tightly 

on the design of Q filter. In [20], a design procedure, which always guarantees the 

closed loop stability of the Q filter, is proposed. However, the use of inverse 

system dynamics in the design of DOB also requires some special considerations 

for non-minimum phase systems as the inverse of the nominal plant is unstable. 

 

Figure 1 

Classical DOB structure 

3.2 Effect of Non-Minimum Phase Systems on Stability of 

Classical Disturbance Observer 

If the stability condition is examined for the inner loop in which the classical DOB 

is located (See Figure 1), we have the following transfer functions from r to y in 

(1) and from d to y in (2). The measurement noise is denoted by  and the transfer 

function from  to y is given in (3): 

Pry(s) = 
P(s)Pn(s)

Pn(s)+(P(s)- Pn(s))Q(s)
 (1) 
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Pdy(s) = 
P(s)Pn(s)(1-Q(s))

Pn(s)+(P(s)- Pn(s))Q(s)
 (2) 

Pσy(s) = 
P(s)Q(s)

Pn(s)+(P(s)-Pn(s))Q(s)
 (3) 

If P = Pn(1+), i.e. the uncertainty model is multiplicative, the characteristic 

equation of the closed loop system is as given in (4): 

Pn(s)+(P(s)-Pn(s))Q(s) = 0 

Pn(s)(1+∆(s)Q(s)) = 0 (4) 

If (3) and (4) are combined, below transfer function is obtained: 

Pσy(s) = 
(Pn

(s)+(1+ ∆(s)))Q(s)

Pn(s)(1+∆(s)Q(s))
 (5) 

In (5) P, Q and ∆ are can be expressed as the ratio of polynomials such that 

Pn= NPn
/ DPn

, Q= NQ/ DQ and ∆ = N∆/ D∆. Rearranging (5) with these variables 

yields: 

Pσy(s) = 
NQ(NPnD∆+ DPnD∆+N∆DPn)

NPn(D∆DQ+ N∆NQ)
 (6) 

In order to fulfill the internal loop stability condition, the denominator polynomial 

NPn
(D∆DQ+ N∆NQ) specified in (6) must be Hurwitz. In this case, the nominal 

system must be minimum phase because NPn
 stands for the numerator of the 

nominal system. 

3.3 Approximation of Non-Minimum Phase Systems 

In order to invert the non-minimum phase system transfer function, minimum 

phase equivalents of the RHP zeros in the numerator of the nominal system that 

make the system non-minimum phase should be found for a certain frequency 

range. For this purpose, the approach specified in [15] is adopted with changes in 

the error function. 

Suppose that the non-minimum phase causal system which we want to invert 

contains RHP zeros and NP represents the polynomial consists of only RHP zeros. 

Also the non-causal, minimum phase transfer function that we calculated as the 

equivalent of NP at the end of optimization is Napprox / Dapprox. In this case, the 

error polynomial can be defined as in (7): 

e:= NP - 
Napprox

Dapprox
 (7) 

With this definition, the optimization problem can be cast as: 

minimize  

E = xamp(w)|e(jw)|2+xphase(w)(arg(e(jw)))
2
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subject to: 

E1: Napprox and Dapprox are Hurwitz polynomials.  

E2: 0 ≤ w ≤ min(Re(zRHP)) (8) 

xamp(𝑤) and xphase(𝑤) represent frequency dependent magnitude and phase 

weights. In the original solution, these coefficients are assumed to be constants.   

In the experiments, it is observed that taking these weights in the form of 

functions varying depending on the frequency yields more accurate results. In the 

minimization of the problem specified in (8), numerical solution is implemented 

by using the off-the-shelf interior point method and the solution is realized for 

frequency points up to the smallest of the RHP zeros. 

3.4 Novel Disturbance Observer Design for Non-Minimum 

Phase Unmanned Aerial Vehicle 

The Tower Trainer 60 autopilot design problem is used to test the new DOB 

method which is designed for non-minimum phase systems. The nominal transfer 

function of the system takes the elevator angle as input and provides altitude 

control. This transfer function’s denominator degree is 5 and it has 3 zeros in total. 

One of these zeros is in the RHP and its value is approximately 12.449088.        

The transfer function coefficients are shown in (9): 

 Pn(s) = 
h(s)

δe(s)
 = 

-34.16s3-144.4s2+7047s+557.2

s5+13.18s4+95.93s3+14.61s2+31.94s
 (9) 

In the first step, using (7), the following error polynomial is defined: 

 e(s) = (s - 12.449088) - 
Napprox

Dapprox
 (10) 

Solving the optimization problem in (8) with the error polynomial specified in 

(10), the minimum phase approximation of the non-minimum phase part of the 

transfer function is estimated. xamp(𝑤) and xphase(𝑤) are chosen as exp(-10 * w) 

and 10, respectively. The estimation is realized non-causal by selecting the 

numerator degree 2 and denominator degree 1 of the minimum phase transfer 

function. In order to obtain more accurate results, minimization can be carried out 

for different numerator and denominator degrees by providing the condition of 

being non-causal. Equation (11) shows the minimum phase and non-causal 

transfer function obtained as a result of minimization: 

Napprox

Dapprox
= 

-0.183s2-5.486s-72.63

s+6.963
 (11) 

In Figure 2, the RHP zero polynomial (s - 12.449088), minimum phase 

approximation and symmetric zero polynomial (-s - 12.449088) is compared in 

Bode diagrams. In this figure, Bode diagrams display acceptable similarity up to 
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the RHP zero frequency, which is used as the maximum frequency point in 

minimum phase approximation. This figure also shows us that the new DOB 

design has a bandwidth of 12 rad/sec and system responses are acceptable at 

frequencies below this value. 

In the presence of new DOB, the robustness of the closed loop system for both 

input and output disturbances is studied after the minimum phase approximation 

of the non-minimum phase autopilot design. H synthesis method is used in the 

design of system controller. In this controller design type, a closed loop weighted 

transfer function is obtained by using the system's sensitivity and complementary 

sensitivity. Then, the optimal transfer function minimizing the norm of this 

weighted transfer function is used as system controller. Sensitivity and 

complementary sensitivity functions of the closed loop system are shaped using 

weights. For this purpose, the weighting method given in [14] is used in the 

control design. Values of weights are given as: 

   

WSensitivity(s) =  
s2+1.84s+0.846

0.001s3+1.002s2+1.84s+1.84e-06
  

and 

WCosensitivity(s) =  
s

5
× 

s

s - 0.001
  

The gain and phase margins of the system are calculated as 38.5 dB and 76.1 

degrees, respectively. The reference signal, input disturbances and output 

disturbances are defined as  r(t)= step(t), d(t)= sin(t) and  σ(t) is the output 

measurement noise, which has uniform distribution in between ±1e3, 

respectively. 

 

Figure 2 

Bode diagrams of non-minimum phase, approximate minimum phase and symmetric polynomials. 

Blue, red and orange curves indicate non-minimum phase, approximate minimum phase and 

symmetric polynomials, respectively. 
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In Figure 3 the system response obtained in the absence of DOB when input and 

output disturbances affect the closed loop system is shown. As can be seen from 

the figure, when disturbances are active, the controller becomes incapable of 

alleviating it and this causes oscillations in the system response. 

In Figure 4 the system response obtained in the presence of controller and DOB is 

compared with the system responses obtained only in the presence of a controller. 

As can be seen from the figure, the proposed DOB design used with the controller 

makes the system more robust against disturbances and provides a response close 

to the nominal system’s response. 

 

Figure 3 

Closed loop responses of the system. Red and green curves show system responses in the presence and 

absence of both input and output disturbances, respectively. 

 

Figure 4 

Closed loop responses of the system. Red and blue curves show system responses against input and 

output disturbances in the absence and presence of new non-minimum phase DOB, respectively. 
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4 Smith Predictor Design Using Recursive Least 

Squares 

4.1 Classical Smith Predictor 

SP is a simple yet effective design that ensures a stable response from a closed 

loop system when time delay is available in the loop. In this design, the accurately 

known delay term of the system is removed perfectly from the system’s 

characteristic equation and the negative effect of the delay on the response is 

eliminated. Classical SP structure is illustrated in Figure 5. As shown in the figure, 

the delay that adversely affects the closed loop system is compensated using the 

predictor transfer function P (1- e-τs). 

 

Figure 5 

Classical SP structure 

If the system structure is expressed using the following equations, then: 

U

E
= 

C

1+PC(1-e-τs)
 (12) 

Y

R
=

U

E
 
Y

U

1+
U

E
 
Y

U

=

PCe-τs

1+PC(1-e-τs)

1+ 
PCe-τs

1+PC(1-e-τs)

=
PCe-τs

1+ PC
 (13) 

are obtained. Equation (13) expresses the ideal design expected in the presence of 

controller and SP. However, in real systems, SP efficiency depends tightly on the 

exact measurement of delay and correct modeling of the real system. These are 

rather restrictive conditions for a successful application of SP. 

In Figure 6, the delayed real system P(s) e-τs is modeled and Pref(s) e
-τ

ref
s
 is 

obtained. Then the SP design is studied on this new block structure. The transfer 

function of the new SP design is obtained as follows: 

Y

R
= 

PCe-τs

1+PrefC(1- e
-τrefs)

1+ 
PCe-τs

1+PrefC(1- e
-τrefs)

  (14) 
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Y

R
=

PCe-τs

1+PrefC+C(Pe-τs- Prefe
-τrefs)

  (15) 

As can be understood from (15), if the modeling error of the real system with 

delay is minimized and a sufficient level of fidelity is achieved, the ideal SP 

design expressed in (13) is obtained by assuming  (Pe-τs- Prefe
-τ

ref
s
)  ≈ 0. 

 

Figure 6 

SP structure by modeling real system and delay 

In modeling the real system with delay, classical mathematical modeling methods 

can be used as well as system identification techniques. In this context, RLSWF 

algorithm, which is a system identification method in time domain, is used in 

modeling the real delayed system. 

4.2 Recursive Least Squares with Forgetting Factor 

RLS algorithm is an iterative implementation of the Least Squares (LS) regression 

algorithm. The method allows the LS algorithm to be dynamically applied to time 

series obtained in real time. Algorithm is a member of Kalman filter family and 

exhibits an adaptive mechanism in terms of execution method. In addition, it is 

adjustable according to time varying input data and it has a fast convergence rate. 

In this respect, it clearly shows a better performance than the LS algorithm. 

The basis of the LS algorithm is the identification of the linear model with 

unknown parameter values by minimizing the square of the difference between the 

real and estimated system outputs. This situation can be defined as optimizing the 

cost function specified in (16). In this equation, T is the sampling time, y is real 

system output, x is identification input and w is the vector of linear system 

parameters we want to obtain at the end of the identification. 

 ϵ(w)=
1

2
∑ (xT(iT)w-y(iT))

2m
i=1  (16) 

If closed form solution is developed, then: 

dϵ

dw
(w)= ∑ x(iT)(xT(iT)w-y(iT))m

i=1  = 0 (17) 
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∑ (x(iT)xT(iT)w-x(iT)y(iT))  = 0m
i=1  (18) 

 w ∑ (x(iT)xT(iT))-m
i=1 ∑ (x(iT)y(iT))m

i=1 = 0  (19) 

 w = ∑ (x(iT)xT(iT))
-1

∑ (x(iT)y(iT))m
i=1

m
i=1  (20) 

is obtained. In the RLS algorithm, it is aimed to recursively update the equation 

given in (20) as the real time data are obtained. If  A(mT)= ∑ (x(iT)xT(iT))m
i=1  and 

 B(mT) = ∑ (x(iT)y(iT))m
i=1 , then: 

w(mT) = A-1(mT)B(mT) (21) 

is obtained. The aim is to calculate the value of w(mT) using the data we have 

obtained at time (m-1)T. In this case, the value of  w((m-1)T) is obtained as: 

 w((m-1)T) = A-1((m-1)T)B((m-1)T) (22) 

If the values of A(mT) and  B(mT) are also calculated using  A((m-1)T) and 

 B((m-1)T), then: 

 A(mT) = A((m-1)T)+x(mT)xT(mT) (23) 

 B(mT) = B((m-1)T)+x(mT)y(mT) (24) 

are obtained. However, as specified in (21), A-1(mT) is needed to obtain the 

 w(mT) value. From the matrix inversion formula: 

A-1(mT)=A
-1

((m-1)T)-
A

-1((m-1)T)x(mT)xT(mT)A
-1

((m-1)T)

1+ xT(mT)A
-1

((m-1)T)x(mT)
 (25) 

is obtained. If the covariance matrix P(mT)  and Kalman gain L(mT) are shown as 

A-1(mT) and  P((m-1)T)x(mT) (1+xT(mT)P((m-1)T)x(mT))
-1

 respectively, P(mT) 

can also be expressed as: 

 P(mT)=(I-L(mT)xT(mT))P((m-1)T) (26) 

In this case, to find the value of w(mT) recursively, the following equations are 

used: 

 w(mT)=P(mT)B(mT) 

 =P(mT) (A((m-1)T)w((m-1)T)+x(mT)y(mT)) 

=P(mT) ((A(mT)-x(mT)xT(mT))w((m-1)T)+x(mT)y(mT)) 

=w((m-1)T)-P(mT)x(mT)xT(mT)w((m-1)T)+P(mT)x(mT)y(mT) 

=w((m-1)T)+L(mT)(y(mT)-xT(mT)w((m-1)T)) (27) 
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The algorithm structure used for RLS is similar to the one used in many recursive 

estimation algorithms. Differences between algorithms are mostly achieved by 

changing the Kalman gain. In cases where the linear system parameters are time 

varying, the RLS algorithm alone may not be sufficient. In this case, the forgetting 

factor, which is a more effective and heuristic approach, is used with RLS.        

This method allows more focus on recently observed data by reducing the 

weighting of old data points used during identification. In this case, the cost 

function used in the RLS algorithm, the covariance matrix P and the Kalman gain 

L are updated in the RLSWF algorithm respectively as follows: 

 ϵ(w) = 
1

2
∑ λ

m-i
(xT(iT)w-y(iT))

2m
i=1  (28) 

 P(mT) = (
1

λ
) (I-L(mT)xT(mT)) P((m-1)T) (29) 

 L(mT) = P((m-1)T)x(mT) (λ+xT(mT)P((m-1)T)x(mT))
-1

 (30) 

The forgetting factor () value varies in between 0 and 1, and this value provides a 

compromise between the stability and tracking performances of the algorithm.    

As this value approaches 0, the tracking capability of the algorithm is improved, 

but negatively affects stability. 

4.3 Combination of Smith Predictor Solution and Recursive 

Least Squares with Forgetting Factor 

In the new SP design, the classical SP structure is combined with the RLSWF 

algorithm, aiming to eliminate the adverse effect of delay without entailing precise 

delay measurement. The structure used in the new SP design is shown in Figure 7. 

Unlike the system shown Figure 6, it is assumed that the nominal model of the 

system is known and only the delayed system is modeled using RLSWF.             

In addition, it is aimed to model only the delayed system by eliminating the 

necessity of modeling the delay separately. 

 

Figure 7 

New SP design 
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In this structure, the RLSWF algorithm uses the inputs and outputs of the delayed 

system for identification and yields the error value between the real and the 

estimated system as output. This value is then subtracted from the reference 

signal. Similarly, the difference between the error signal and the nominal system 

output is given to the system controller as input. The execution performance of the 

new solution is directly dependent on the performance of the RLSWF algorithm. 

As specified in (15), if the modeling of the delayed system is done with a 

sufficient level of fidelity and (Pe-τs- Prefe
-τ

ref
s
)  ≈ 0 is obtained, the ideal SP 

design is achieved. Therefore, if the RLSWF algorithm also performs high-fidelity 

identification and obtains the error value between the real and the identified 

delayed systems close to zero, more acceptable delay compensation is achieved by 

approaching the ideal SP design. 

4.4 Novel Smith Predictor Design for Unmanned Aerial 

Vehicle with Delay 

In order to compare the new SP design with the classical SP design, the autopilot 

of the Tower Trainer 60 unmanned aerial vehicle is used, in which the DOB 

design presented in the previous section, is also tested. In Figure 8 and Figure 9, it 

is observed how robust the system is against delays in the presence of a controller 

obtained using the H design method. Delay values are chosen as τ = 0.1 s and 1 s, 

respectively. The reference input is a step signal. As can be seen from the results, 

the controller maintains a very precise tracking under the presence of process 

delay. In this case, there is no need for an external structure other than the 

controller to reduce the deteriorating effect of the delay in the presence of the 

specified delay values. 

 

Figure 8 

Closed loop responses of the system. Red and green curves show system responses in the presence and 

absence of  𝜏 = 0.1 𝑠, respectively. 
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Figure 9 

Closed loop responses of the system. Red and green curves show system responses in the presence and 

absence of  𝜏 = 1 𝑠, respectively. 

In Figure 10 the responses of nominal and delayed real systems are compared by 

choosing τ = 10 s. As can be seen from the figure, the system response loses its 

stability at high delay values and the controller cannot perform the satisfactory 

performance. For this reason, the novel SP design approach created using the 

RLSWF algorithm is added to the closed loop system and responses are examined. 

 

Figure 10 

Closed loop responses of the system. Red and green curves show system responses in the presence and 

absence of  𝜏 = 10 𝑠, respectively. 

In Figure 11, the response of the closed loop system in which this design is used 

and the response of the system obtained in the presence of a controller only are 

compared. As can be seen from the figure, the new design ensures a stable 

response from the system by eliminating the deteriorating effect of the delay 

without the need for the actual delay information, even at high delay values.         

In this design, the performance of the RLSWF algorithm directly affects the 

performance of the SP design. Because as specified in Figure 7, RLSWF identifies 

the real system with delay and uses the identification error value in the closed loop 

system. Therefore, identification should be done at a high level of fidelity and this 

error rate should be kept low. Figure 12 shows both the response of linear system 

with τ = 10 s delay and the estimated system. As can be seen from the figure, the 

closed loop response of the linear system estimated by RLSWF is close to the real 

system response. 
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Figure 11 

Closed loop responses of the system. Red and blue curves show system responses when 𝜏 = 10 𝑠.  

The loop in the presence (blue) and absence (red) of new SP approach produces radically different 

responses. 

 

Figure 12 

Identification results of the system. Blue and red curves show estimated and measured output of 

RLSWF, respectively. 

Finally, in the Figure 13, the performances of the new SP design and classical SP 

design are compared in the presence of τ = 10 s delay. As can be seen from the 

figure, while the new SP design performs better in terms of accuracy and speed, it 

does not require prior knowledge of precise measurement or delay. 

 

Figure 13 

Responses of both classical SP and new SP design. Turquoise and blue curves indicate system 

responses with classical and new SP designs, respectively. 
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5 Online Disturbance and Delay Compensation 

Design 

In this study, the novel DOB designed for non-minimum phase systems and the 

SP design which is implemented without relying on the actual delay measurement 

are combined to create a robust system against both time delays and disturbances. 

The system structure formed when two designs are combined can be seen in the 

Figure 14. Both designs can be developed and used independently, or they can be 

combined as shown in the figure. However, if the two designs are used together, 

the nominal delay value is required for the design of the non-minimum phase 

DOB. Because the process of inverting the delayed non-minimum phase system is 

performed once and before the system is started. For this reason, although an exact 

measurement of the actual delay value is not needed, only for the DOB design, the 

presumed nominal delay value is needed. In this way, for an actual non-minimum 

phase system where the delay occurs, the inverse operation can be performed 

accurately. During the DOB design, the delay model is approximated as 𝑒−𝜏𝑠 ≈
1

𝜏𝑠+1
. The unmanned aerial vehicle model, which is used for testing purposes in the 

proposed SP and DOB designs, is also used as a test system for the case, where 

the two designs are operating together. 

 

Figure 14 

Online disturbance and delay compensation design 

By applying the disturbances to the system with delay, system response in the 

presence of a controller and system responses when two designs are used together 

are compared. R(t)=step (t) is given to the system as a reference input. 

Disturbance is chosen as d=sin (t). Figure 15 shows the case where the delay 

τ=5 s and the input disturbance is given to the control signal of the system. 

Similarly, Figure 16 shows system response where the delay is τ=10 s and with 

the same disturbance signal. As can be seen from the system responses, when both 

designs are used in combination, the system exhibits better tracking performance 

under the presence of delay and disturbances. 
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Figure 15 

Closed loop responses of the system. Red and blue curves show system responses against delay 

𝜏 = 5 𝑠 and input disturbance in the absence and presence of new design, respectively. 

 

Figure 16 

Closed loop responses of the system. Red and blue curves show system responses against delay 

𝜏 = 10 𝑠 and input disturbance in the absence and presence of new design, respectively. 

Conclusions 

This study combines SP and DOB approaches with an online identification 

mechanism. The following advantages of the proposed approach are as follows: 

 The DOB design developed for non-minimum phase systems is used by 

updating the minimization problem specified in [15], and the requirement for 

the system to be the minimum phase is removed. 

 In systems with delay, the classical SP design, which is proposed to be 

combined with the RLSWF algorithm, eliminates the need for precise 

measurement of the delay. 

 Both designs can be used combined or separately. In this way, the system is 

made more robust when the controller alone is insufficient against delays and 

disturbances. 

However, in cases where both designs are used together, the nominal value of the 

delay is needed, to correctly obtain the inverse of the non-minimum phase system. 
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In future work, we intend to use the RLSWF algorithm, also in a DOB design, in 

order to eliminate the abovementioned delay value dependency. 
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