This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3114360, IEEE Access

IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

REFICS: Assimilating Data-Driven
Paradigms into Reverse Engineering and
Hardware Assurance on Integrated Circuits

RONALD WILSON, HANGWEI LU, MENGDI ZHU, DOMENIC FORTE (SENIOR MEMBER,
IEEE) and DAMON L. WOODARD (SENIOR MEMBER, IEEE)

Florida Institute for Cybersecurity Research (FICS), University of Florida, Gainesville, FL 32601, USA

Corresponding author: Ronald Wilson (E-mail: ronaldwilson@ufl.edu).

ABSTRACT Comprehensive hardware assurance approaches guaranteeing trust on Integrated Circuits
(ICs) typically require the verification of the IC design layout and functionality through destructive Reverse
Engineering (RE). It is a resource intensive process that will benefit greatly from the extensive integration of
data-driven paradigms, especially in the imaging and image analysis phase. Although obvious, this uptake of
data-driven approaches into RE-assisted hardware assurance is lagging due to the lack of massive amounts
of high-quality labelled data. In this paper, a large-scale synthetic Scanning Electron Microscopy (SEM)
dataset, REFICS, is introduced to address this issue. The dataset, the first open-source dataset in the RE
community, consists of 800,000 SEM images over two node technologies, 32nm and 90nm, and four cardinal
layers of the IC, namely, doping, polysilicon, contact and metal layers. Furthermore, a framework, based on
uncertainty and risk, is introduced to compare the efficacy and benefits of existing RE workflows utilizing
ad-hoc steps in its execution. These developments are critical in developing RE-assisted hardware assurance
into a scalable, automated and fault-tolerant approach. Finally, the work is concluded with the performance
analysis of existing machine learning and deep learning approaches for image analysis in RE and hardware
assurance.

INDEX TERMS Computer Vision, Dataset, Deep Learning, Hardware Assurance, Image Processing,

Integrated Circuits, Machine Learning, Reverse Engineering, Scanning Electron Microscopy

I. INTRODUCTION

In the age of the Internet-of-Things (IoT), finding a product
that doesn’t incorporate an Integrated Circuit (IC) into its
design and functionality is an extremely challenging task. ICs
are semiconductor devices that convert a bunch of input sig-
nals into useful output signals. Being mass-produced, these
devices are affordable and well-utilized in products ranging
from low-cost IoT devices to high-performance computing
clusters. Due to their ubiquity, they are exposed to almost
all the data that flows through the internet. With the nature
of data ranging from trivial pleasantries to personal and
highly sensitive information, its accidental exposure due to
faulty/compromised ICs can have severe consequences in the
real world. Apart from faulty hardware design that leads to
compromised data, there are also flaws that are introduced
in the design, by adversaries, to compromise the design and,
consequently, the data or the functionality of the IC at will.
These malicious modifications made to the source design
are called hardware Trojans. Hardware assurance approaches
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ensure trust in these devices by ensuring that there are no
malicious modifications installed on the IC.

As shown in Figure 1, the likely culprit behind compro-
mised ICs are the use of third party services in the manu-
facturing workflow. Although these issues can be resolved
by moving the manufacturing process to an in-house facility,
the cost associated with the process is usually debilitating for
IC designers, especially for small-scale designers. Similarly,
usage of third party intellectual properties (IP) in the IC
design also introduces a potential source of vulnerability.
Hence, hardware assurance measures are critical in ensuring
trust in the devices. Existing techniques for trust and assur-
ance in these scenarios are limited and ineffective [1]-[4].
For example, run-time monitoring on the ICs increases the
resource requirements such as power consumption, memory
utilization, and area overhead on ICs due to on-chip sensors
used to detect anomalous activities. Furthermore, the hard-
ware used by run-time methods may also contain hardware
Trojans. In test time methods, generating test vectors that

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

. 10.1109/ACCESS.2021.3114360, IEEE Access
IEEE Access

Wilson et al.: REFICS: Assimilating Data-Driven Paradigms into RE and Hardware Assurance on ICs

Hardware Design

= T T T T T T e e e e e e e e e e e e e e e e e e e e e e = —— bl
' IC designer Semiconductor Foundry :
1 1
1 . - - 5 |
1 | Third party System Logic Circuit Physical o i 1

. > > > Fabrication - Packagin
' IP Description Design Design Design i :

1

| |
' |
: Threat Model: | |Trusted |  Untrusted :
b e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
____________________________________________________________________________________ ,

Iterative .

Loop for Imaging

Destructive

Target Device ‘ Decapsulation - Deprocessing

Hardware Design Recovery (RE)

Hardware Assurance modules

FIGURE 1: The hardware design and recovery workflow assumptions in this proposal. The commercial entities involved in the

design process and the threat models are also provided.

can trigger stealthy, well-placed hardware Trojans in billion-
transistor chips is usually a near-impossible task. In side-
channel signal analysis approaches, process variations and
measurement noise undermine the probability of detecting
small-scale Trojans. As a result, the confidence level in
detecting Trojans using existing techniques are quite low. At
present, Reverse Engineering (RE), the process of acquiring
the source hardware design by destructive physical analysis
of the end product, is the only approach that can assist in
these scenarios and guarantee trust. As a result, RE has
gained attention in recent years and experienced community-
wide acceptance as an effective approach for hardware assur-
ance [5]-[7].

Although RE is a versatile tool for the hardware assurance
community, the pace of its adoption into mainstream use is
lagging. The primary obstacle is the negative connotation
behind RE as an attack mechanism used by an adversary to
illegally acquire design schematics and counterfeit IP rather
than a hardware assurance tool. The concerns from utilizing
RE as an attack mechanism can be prevented by the use of
IC obfuscation and camouflaging [8]-[10]. There are several
obfuscation methods available for securing layout-level and
netlist-level information rendering them hard to decipher
[11], [12]. Some approaches generate functionally identical
logic gates with very different physical/layout realizations
[13], [14]. Consequently, they hinder the RE workflow. How-
ever, they do not hinder the process for the IC designers
with access to the source design files. i.e. the golden data.
In contrast, it provides a significant advantage and incentive
for the IC designers to adopt RE as a tool for hardware
assurance. Another concern raised in the adoption of RE
is the considerable investment required in terms of infras-
tructural, computational and human resources [6], [15]-[18].
Although, some infrastructural investment is inevitable, the
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FIGURE 2: Exemplary RE workflow depicting accumulation
of errors in each successive step.

computational and human resources constraint can be ad-
dressed through process automation and efficient algorithms.
With the negative connotation behind RE addressed, the key
requirement for developing RE-based hardware assurance
into a popular mainstream approach is the incorporation of
data-driven paradigms, such as machine learning (ML) and
deep learning (DL), into the RE workflow. Consequently, this
raises the question: Can data-driven paradigms be directly
integrated into RE and hardware assurance?

It is a common belief that the widespread adoption of
data-driven approaches in recent years is primarily fueled
by the availability of massive amounts of data. This is not
entirely true. In addition to data, a deeper understanding of
the target domain is necessary. For instance, consider the
exemplary RE workflow shown in Figure 2. It can be seen
that a few missing pixels in the annotation stage causes a
standard cell misclassification down the line in the netlist
extraction stage. In terms of hardware assurance, it results in
an ambiguous situation where the error cannot be resolved
into a true Trojan detection or an error associated with
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the image acquisition process. In contrast, errors in a few
pixels, typically, do not result in severe consequences in the
image analysis domain. Similarly, there are several image
segmentation evaluation metrics, such as the Intersection-
over-Union (IoU) and Structural Similarity Index Measure
(SSIM), that are capable of evaluating segmentation based
on shapes but are inherently incapable of incorporating elec-
trical connectivity information into account. They lead to
short-circuits or modification of the intended functionality
resulting in significant inflation of RE process time frame to
account for manual error resolution [19]. As demonstrated
in the examples, a deeper understanding of the domain and
its inherent challenges needs to be acquired before data-
driven approaches can be fully integrated into the hardware
assurance problem. The prominent challenges are:

« Fault-intolerance of individual RE modules: In the
exemplary RE workflow in Figure 1, every module in
the workflow expects the output from the preceding
module to be error-free. This is seldom the case. At
present, there are no approaches suggested in literature
that can handle faulty data. With the RE workflow
being sequential, errors accumulate at every successive
step making the conclusion obtained from the process
uncertain.

o Ad-hoc nature of the RE workflow: RE is not a fully
defined formal process. Although the modules in the
workflow, shown in Figure 1, has its steps well defined
as part of the process, the approach taken to achieve
them may be different. For instance, the challenges
introduced by delayering the IC though Computer Nu-
merical Control (CNC) milling is different from exe-
cuting the step using a Focused Ion Beam (FIB). Sim-
ilarly, the existence of several varieties of gas and acid
chemistry in deprocessing may have different effects on
different ICs. They are not guaranteed to be repeatable.
Repeatability, reproducability and comparability are key
requirements for any well-defined process.

« Sensitive nature associated with the design data:
There is a significant shortage of data dedicated for RE
and hardware assurance applications. This can be at-
tributed to two reasons. First, the time and resource cost
associated with performing RE on ICs and labelling the
data manually. With approaches such as DL requiring
several hundred thousand labelled images, this is a sig-
nificant undertaking. Although this can still be achieved,
the legal ramifications associated with disclosing sensi-
tive design data, the IP of the IC designers, is much more
severe. Without proper obfuscation of the design data,
such as through privacy-preserving transforms [20]-
[22] or zero-shot learning [23]-[25], disclosing them
may cause more harm than good.

To effectively assimilate data-driven paradigms into RE and
hardware assurance, these challenges have to be resolved.
The purpose of this paper is to introduce a clear path to
resolve these issues and facilitate the formal transition into
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data-driven approaches. The rest of the paper is structured
as follows: Section II lists, in detail, the noise sources com-
monly encountered in the RE workflow. Emphasis is done
on classifying these sources as predictable (modelable) and
random (non-modelable). Section III leverages the curated
noise taxonomy to generate synthetic SEM images for use in
RE and hardware assurance applications. Sections II and 111
collectively assist in inserting domain knowledge and gen-
erating synthetic data to address the fault-intolerance of the
individual RE modules and the sensitive nature associated
with the design data. Section III further expands on a risk
analysis approach to handle the uncertainty introduced by
the ad-hoc nature of the RE workflow. Section IV performs
a thorough performance analysis and discusses on the gen-
eralizability of existing ML and DL approaches in RE and
hardware assurance using the generated synthetic dataset.
These would serve as a baseline for building better data-
driven approaches for RE and hardware assurance. Finally,
the work is concluded in Section V.

A. CONTRIBUTIONS

Our goal in this paper is to introduce a clear path to re-
solve the issues associated with RE domain and successfully
integrate data-driven approaches into the RE workflow to
provide for a scalable, automated and fault-tolerant workflow
for RE-based hardware assurance. Our key contributions are
as follows:

o A detailed taxonomy of errors that can affect the efficacy
of RE-based hardware assurance. These error sources
are collated from previously published literature on
hardware assurance and several RE case studies.

o A synthetic open-source’ Scanning Electron Mi-
croscopy (SEM) image dataset, called REFICS, gen-
erated using various imaging parameters and two node
technologies (32nm and 90nm). The dataset also in-
cludes augmentation using error sources from the taxon-
omy for developing robust data-driven approaches. The
dataset has samples for the doping, polysilicon and the
metal layer culminating in 800,000 images. REFICS is
the first and the largest SEM image dataset ever intro-
duced in the RE and hardware assurance community.

« Benchmarks and performance analysis for existing ML
algorithms and DL models used in RE. Additionally, for
the first time in the RE community, the generalization
capability of data-driven approaches across node tech-
nologies and IC layers is investigated.

o Introduction of a risk analysis approach for facilitating
comparison between RE executed using ad-hoc steps
and assessing its influence on hardware assurance.

Il. UNDERSTANDING NOISE INTERACTIONS IN RE
As illustrated in Figure 1, a typical execution of the RE
workflow begins with decapsulation of the IC package —
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FIGURE 3: Taxonomy of various noise sources affecting image quality and reliability in the RE workflow

the removal of the protective covering surrounding the IC
die. The IC is then iteratively delayered in a destructive
process, called Deprocessing, to uncover every layer in the
IC. Each layer is imaged using a modality of suitable reso-
lution capability before delayering the next one. Being the
most common imaging modality used in RE and hardware
assurance, we limit our focus to the SEM. The SEM images
are then denoised, segmented and vectorized in the module
called Annotation to extract the relevant features such as
the shape of the doping layer structures and the connectivity
between structures in the metal layer. These features are then
aggregated and condensed into a connected graph called the
netlist. This module is called Netlist Extraction. Every node
in the netlist represents a standard cell and performs a specific
function. A detailed explanation of each step and practical
recommendations for their execution can be found in a recent
survey [5]. To summarize the process in the context of
hardware assurance, the vectorized image shows the physical
realization and the netlist represents the functional realization
of the IC design. Both realizations are verified for trust. With
both realizations extracted from the SEM image of the IC
die, the need for acquiring reliable SEM images is of utmost
importance.

There are several noise sources affecting the quality of the
acquired SEM image. A taxonomy of the noise sources is
available in Figure 3 for reference. The “imaging-related”
sources of error in the taxonomy incorporates the noise
sources from the imaging modality and the errors that result
as a direct consequence of physical interaction with the IC
sample. The exact sources of error may change if the imaging
modality is switched but the basic idea behind the taxonomy
remains the same. The noise introduced in the RE workflow
as a consequence of the design practices and materials used in
manufacturing the IC is listed as “Foundry/Node technology-

4

specific” sources of error. Finally, the errors that occur due to
human interactions is listed under “human factors”. The tax-
onomy of noise sources is essential in understanding the RE
process but their influence and impact on the RE workflow
can only be classified by their nature of interaction with the
process; either predictable or random. The noise sources, de-
scribed below in detail, are compiled from existing literature
in hardware assurance and case studies on RE. These noise
sources are not exhaustive and the impact of individual noise
sources are discussed in detail in the source works.

A. PREDICTABLE INTERACTIONS

The predictable interactions comply with a known statis-
tical model and their impact on the workflow can be as-
sessed/suppressed using these models.

Beam interaction: The interaction of the scanning beam
with the target material is the principle behind image for-
mation in the SEM. The scanning beam consists of electrons
emitted on the basis of a selected excitation potential and cur-
rent. This beam interacts with the material and the material,
in response, produces more electrons. In the literature, elec-
trons in the scanning beam are called primary emission and
the response obtained from material is called secondary emis-
sion. The electrons from secondary emissions are captured by
a detector and interpreted as pixels in the SEM image by the
electronic sensors. Depending on their atomic configuration,
every material has its own characteristic response. The beam
interaction noise is induced by both primary and secondary
emissions. In the scanning beam, excitation potential and
current determines the average count of electrons over time.
The average rate of emission remains constant. However,
instantaneous electron count in the emission is not equal to
the average electron count. The difference between the in-
stantaneous electron count and the average electron count in
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FIGURE 4: Exemplary cases of imaging noise. (a) Pixel
intensity variation associated with beam interactions. The
SEM image on the left has a higher dwelling time per pixel
than the image on the right. (b) Demonstration of beam drift
in SEM imaging.

the scanning beam is commonly known as shot noise and can
be represented using a Poisson modulated process. A similar
issue happens with the secondary emissions as well. This
leads to noise in the beam interaction which can be modelled
using either a compound Poisson process or a Gaussian-
Poisson process (by approximation) [26]—[30]. In addition,
the electronic components of the SEM (e.g., amplifiers and
scan generators) induce an Additive White Gaussian Noise
(AWGN) into the response but its influence was found to
be negligible as compared to that of beam interaction noise
[31], [32]. The consequence of these interactions can be
visualized as pixel intensity variations in pixels belonging to
the same material under test. This affect can be overcome
by sampling the same area for a longer amount of time and
averaging out the response. In terms of SEM imaging, a
longer dwelling time per pixel will accomplish this task. An
exemplary case is shown in Figure 4(a). It was suggested that
the noise introduced by imaging modalities can be used to
hide hardware Trojans [18].

Beam drift: The scanning beam excites/irradiates a small
spot on the material. However, in some cases, random fluc-
tuations in the scanning beam and mechanical creep induced
by the staging platform of the SEM causes the spot to move
from its intended position on the material. If this situation
happens on the transition boundary between materials, then
the transition edge gets corrupted with interchanged response
between the two materials. An example of the phenomenon is
shown in Figure 4(b). Drift is more pronounced with a larger
Field-of-View [33]. Although the beam drift is random, the
process can be modelled using a Gaussian distribution for the
true position of the beam with respect to the intended position

VOLUME 4, 2016

Flatness: Min = 4416.6; Max = 4594.7; Sag = 178.1

- 15379
7679

9913 - = —70
9913 2083 > T a8 o

—=7
4937 = 3
X (um): 19.8 mi 9887 12 | (g

wedge = 5.44 mRad (X: 2.20 Y: -4.98)

FIGURE 5: Warpage induced in the IC die due to accumu-
lated mechanical stresses [35].

[34]. It is present in every electron microscopy modality
and cannot be fully accounted for in every case. This noise
source is the likely culprit behind unintended short-circuits
in between IC structures in SEM images.

Die warpage: This source of error is associated with the
deprocessing of the IC. Deprocessing requires delayering the
IC die with a fixed cross-sectional thickness. Incremental
removal of the material, especially the bulk of the silicon sub-
strate supporting the IC structure, results in mechanical stress
accumulating on the die and causing it to warp [35], [36].
This phenomenon, shown in Figure 5, results in a perspective
distortion on the features in the imaged region. Although this
issue is not resolved yet, knowing the curvature of the die
can, potentially, help resolve this distortion. A small Field-
of-View can also help alleviate this issue by flattening the
region under focus from the observer’s perspective.

Feature dimensions and proximity: These errors are a
direct result of the layout synthesis and so-called design
rules. Complex geometry of structures can only be imaged
if they are within the resolution capability of the imaging
modality. Similarly, structures placed in close proximity with
each other may, also, not be resolved effectively. In simpler
terms, these features may be truncated by the SEM unless
a small Field-of-View or high magnification is used. This
in turn significantly inflates the resource requirements and
cost associated with performing RE or RE-based hardware
assurance.

Flicker noise: The concept of flicker noise is common
knowledge in the field of semiconductor physics. This param-
eter is coupled with the performance characteristics of semi-
conductor devices. This source of noise occurs during normal
device operating conditions when electrons are trapped inside
electron holes and released after a short time delay. The time
delay is modelled using the power law. This noise source is
not considered during SEM imaging because the device is
assumed to be not operational. However, the principle behind
SEM imaging using electrons is similar to the device under
operating conditions. In simpler terms, the electrons in the
scanning beam of the SEM is akin to the electrons flowing
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FIGURE 6: Plots indicating the influence of flicker noise
interactions on SEM images. The change in pixel intensity
values due to flicker noise is inconsequential as compared to
the standard deviation in electron beam interaction responses
from the materials.

through the device during operation, albeit with different
energy levels. The influence of flicker noise on SEM images
of ICs have not been studied in literature.

To address this issue, a set of experiments were conducted
to study the influence of flicker noise in SEM images. Our ex-
periment protocol for these experiments are straightforward.
In theory, the electrons captured by electron holes during
irradiation are released in accordance with the power law
after a time delay. The SEM, with its reliance on these elec-
trons for image formation, will cause an observable increase
or decrease in pixel intensity values. Assuming the imaging
modality to scan in a raster mode, the experiment evaluated
the change in pixel intensity values when the current material
is same as the material observed earlier in the scan, i.e. the
scanning beam is on the same material in sequence. The
experiment considers the impact of past ten pixel values on
the current pixel value if they belong to the same material.
Four materials commonly used in the manufacture of ICs
were considered: silicon substrate, doped silicon, polysilicon
and metal. The samples under study were collected with
high dwelling time per pixel and verified to be devoid of
any other noise sources. The results are shown in Figure 6.
As expected, the materials under SEM observation exhibits
flicker noise but at inconsequential levels. The mean change
observed was around one intensity level on the entire pixel
intensity scale for SEM images (0.004% of the pixel intensity
scale: 0—255).

B. RANDOM INTERACTIONS

Some of the random interactions stated below can be ana-
lytically modelled but they are still considered as random
because their influence on the acquired SEM images cannot
be effectively modelled. For example, the process of electro-
migration is well-known in semiconductor physics and can
be modelled analytically but the current operating state of the
IC under test may be unknown.

Radiation damage: Damage to the sample under study
happens when the sample is irradiated for an extended time
period. Sample damage also happens if the radiation power
is too high. i.e. high-dose radiation. The radiated region sat-
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FIGURE 7: Exemplary cases of deprocessing errors. (a)
Residue leftovers from the etching process. (b) Missing struc-
tures as a consequences of uneven delayering. (c) Conduction
in the active layer. (d) Corruption in the SEM image due to a
dust particle.

urates to form a contamination layer and suppresses further
emission of electrons [37]. Due to the risk of sample dam-
age, there is a persisting interest in the hardware assurance
community for low-dose imaging [38].

Residue: Any foreign remnants on the surface of the die that
prevents observation and resolution of surface-level features
on the IC die can be called a residue. Typically, the etching
process used for delayering may leave some residue on the
sample. They can be prevented by cleaning thoroughly. For
instance, using an ultrasonic bath. An example is shown in
Figure 7(a).

Uneven delayering: This specific noise source is a direct
consequence of surface-level imperfections on the IC die.
Areas with high roughness or edges between materials in
the IC have larger escape areas for the secondary electrons
[37], [39]. These cause pixel intensity variations in the same
material measured in different locations on the same IC die.
Further, if the IC die is not mounted properly, the delay-
ering process may unevenly delayer the surface of the die.
This may result in features belonging to two layers getting
merged together as shown in Figure 7(b). These issues can
be resolved by polishing the deprocessed IC die for a planar
surface before imaging.

Conduction: Insulating materials may charge positively and
suppress the electrons required for obtaining a proper SEM
image [39]. This leads to localized pockets of bright and
dark regions in the image as shown in Figure 7(c). It is also
suggested that dynamic charging of the sample deflects the
electron beam from its intended position and cause the inten-
sity of the induced signal to vary uncontrollably [40]. This
issue can be resolved by depositing thin layers of conductive
materials such as carbon or platinum on the IC die surface
[41], [42].
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External contaminants: This class of errors represent a
wide selection of external factors that affects the RE work-
flow in a detrimental way. For example, dust particles are a
common source of corruption as shown in Figure 7(d) [43].
Vibrations, even those that are barely perceptible, along with
thermal expansions in the sample caused by slight temper-
ature fluctuations in the environment, are examples of this
noise source and can significantly affect image quality [33].
This issue can be resolved by isolating the RE device from
the environment.

Stitching: In most cases, the Field-of-View provided by
SEM does not cover the entire region of interest. This typ-
ically results in multiple images to be collected and stitched
together to form a complete image. In typical applications,
the stitching process involves taking two images with a cer-
tain overlap. The degree of overlap is decided by the operator
and remains fixed for the entire image acquisition phase.
Stitching is usually an error-prone process since it involves
finding key points in two images corresponding to the points
of highest similarity based on which the two images are
merged together [44], [45]. In contemporary nano-scale node
technology, the features are very much similar and repetitive
resulting in false key point detection and faulty merging of
images [46], [47]. An example of a stitching error is shown
in Figure 8. To emphasize, if the IC design layout is know
beforehand, the likelihood of stitching error can be predicted
based on the similarity shared between the features in the
overlapping field-of-views. In such situations, stitching errors
can be classified as a predictable interaction. With no prior
heuristics on the IC design layout, stitching errors are random
and are resolved manually by a Subject Matter Expert (SME).

Vertical alignment: Owing to the vertical layered construc-
tion of ICs, the individual images taken from multiple layers
have to be stacked on top of each other to reconstruct the
features from the IC. The alignment is done using correla-
tion matching, typically utilizing vertical interconnects (vias)
[48]. With correlation involved, the issues related to stitching
are also experienced in vertical alignment. At present, design
rule checks and manual operator intervention are used to
validate the vertical alignment of the image stack.

Oxidation: Delayering exposes the metallic structures in
the IC to the atmosphere [49]. Oxidation of metallic surfaces
causes fluctuations in the pixel intensity responses obtained
for the same material at various points in the IC. A possible
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FIGURE 9: Example of electron-migration in the metal layer
when subjected to accelerated life conditions.

solution is to perform the deprocessing tasks in an inert
atmosphere.

Electromigration: If the IC has been under use, there
are chances of having electromigration and changes in the
physical structure of the material [50]. This type of defect
is usually found in metal interconnects through which high-
density currents flow. As shown in Figure 9, electromigration
causes change in the pixel intensity values belonging to same
material depending on the degree of migration. This issue is
predominantly studied in device failure analysis in estimating
the lifetime of an IC [51].

Process variations: Due to the high resolution capability
of the imaging modality, any small variation in the manufac-
turing process would cause changes in the acquired image.
The degree of influence of these variations depend on the
precision/tolerance of the manufacturing process and the
resolution of the imaging modality. These variations, being
naturally stochastic processes, may not necessarily be mod-
elled parametrically. Therefore, modeling these variations
using statistical models is not recommended [18]. In terms
of image analysis, the physical realization of the IC design
may not be the same as the synthesized layout but, typically,
very similar.

FIGURE 10: Example of operator interaction. Contrast en-

hancing modifications are applied to the SEM image on the
left to obtain the image on the right.

Operator interactions: The operator can perform several
modifications to the SEM. Other than basic imaging param-
eters, such as Field-of-View and dwelling time per pixel,
there are several other parameters that can be adjusted by the
operator. An exemplary situation involving contrast enhance-
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ment is shown in Figure 10. These changes may not be the
same across all images acquired by the same operator and
constitutes a source of randomness in the image acquisition
phase.

Incorrect information: SME:s play a significant role in the
RE workflow. Even with their expertise, they are still subject
to errors in decision making. The influence of human factors
in decision making was investigated with respect to hardware
assurance in an earlier work [52]. For instance, SMEs help
populate the standard cell library for extracting the gate-level
netlist in the RE workflow. With layout-level and gate-level
obfuscation applied, it is possible for the SME to incorrectly
identify a logic gate. The consequence of incorrect logic gate
assignment was demonstrated in the example in Figure 2 and
objectively assessed in a RE case study where the authors
reported that the time frame required for error resolution was
larger than the time frame required for imaging the IC [19].
Limiting human interaction with RE workflow, especially
that of inexperienced SMEs, can address this issue to a great
extent. In addition to identifying the standard cell library, the
role of SMEs in RE also extends to identifying anomalous
data, such as changes introduced by stitching errors, and
validating compliance with design rules. Without the intro-
duction of robust data-driven algorithms that can effectively
identify and resolve anomalies in RE data, active input from
SME:s will be required in the RE workflow.

As demonstrated through the taxonomy, some of the noise
sources can be modelled and their influence on the RE
workflow controlled to a large extent. The random noise
sources are more problematic. As discussed, some of these
issues can be prevented using simple precautionary measures.
For addressing the other noise sources, suitable data-driven
approaches needs to be incorporated to detect and curb their
influence in the RE workflow.

lll. GENERATING SYNTHETIC SEM IMAGES FOR RE

The process of image formation in SEM can be simulated.
Existing studies in electron microscopy imaging and works
in the fault analysis community support this statement. The
electron microscopy community introduced an SEM image
simulator called ARTIMAGEN, an initiative supported by
the National Institute for Standards and Technology (NIST)
[33], [53]. This simulator can generate images with vary-
ing influences of drift, vibration, thermal expansion, and
noise profiles (Gaussian/Poisson). However, the selection
of materials, noise profiles, and shape contours are limited
and not suitable for IC RE and hardware assurance. The
fault analysis community extensively uses simulated images
for benchmarking Line Edge/Width Roughness (LER/LWR)
algorithms [34]. A recent DL approach generates synthetic
SEM images based on layout data for mask optimization
and virtual meteorology [54]. Although the data used for
these approaches are not publicly available, it does provide
a path towards integrating data-driven approaches for RE in
the imaging phase [48].

8

An SEM image generator that can support the inclusion
of several noise sources for data diversity is key in adapting
data-driven approaches into the hardware assurance com-
munity. Being synthetic and simulatable, a large quantity
of good quality data can be generated without legal con-
sequences and fear of compromising sensitive design data.
Even if an attempt is made on collecting real SEM image
data, it will be considerably hard to induce errors on demand.
Further, the synthetic image generator can be used to aug-
ment real RE case studies. Performing RE on an IC does not
yield enough data for training data-hungry techniques like
DL. However, designers with access to the layout data can
synthetically generate more data from a specific IC to make
the model more robust on the chosen IC. Also, data-driven
approaches, such as image in-painting, are extensively used
to recover corrupted data when exemplary corrupted data
with ground truth (GT) labels are available for training [55].
Therefore, synthetic SEM image generation will resolve two
key challenges in the assimilation of data-driven approaches
for hardware assurance and trust: the sensitive nature asso-
ciated with the sharing of design data and incorporating
fault-tolerance into individual RE modules. In Section
III-A, the generation process behind synthetic SEM images
is discussed followed by the approach on addressing the
final challenge, the ad-hoc nature of the RE workflow, in
Section III-B.

A. SIMULATING THE SEM IMAGE GENERATION
PROCESS FOR RE

The initial requirement for generating a synthetic SEM im-
age is to have a context. The context, in this case, is the
layout-level design file for an IC. With strict control on the
availability of industry-use standard libraries, open-source
educational standard cell libraries were used to synthesize an
open-source’> Advanced Encryption Standard (AES) design
into approximately 10,000 standard cells from which four
cardinal layers were extracted: doping, polysilicon, contacts
and the metal layer. The standard cells were acquired from
32/28nm Educational Design Kit and Synopsys open edu-
cational design kit containing 350 and 340 standard cells,
respectively [56], [57]. The layout files were split into
250%250 patches and fed into the image synthesis workflow,
as described in Figure 11, along with the image synthesis
parameters.

There are two sets of input parameters for image synthesis.
The first set corresponds to the imaging settings in the SEM.
In our case, Field-of-View/Magnification and dwelling time
per pixel (3.2 psec/pixel and 10 psec/pixel). With the layouts
synthesized to maintain a 1:1 relative scaling for effective
comparison between node technologies, the features in the
32nm layout is smaller than the 90nm layout. Consequently,
Field-of-View/Magnification was setup differently for the
node technologies. The 32nm layout was up-scaled (1x, 2x,

>The AES designs used in this paper are licensed from Synopsis for open-
source usage under Creative Commons Attribution licensing
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FIGURE 11: Workflow for generating a synthetic SEM image for the REFICS dataset.

3x and 4x the original standard cell dimensions) and the
90nm layout was down-scaled (1x, 2x, 4x and 6x the
original standard cell dimensions). The second set of param-
eters corresponds to the noise characteristics: the shot noise
(Ashot) parameter for the primary scanning beam and the
expected mean ((t,,4¢) and standard deviation (o,,,4¢) for the
pixel intensity response from the material under study. The
shot noise distorts the scanning beam intensity at 2%, 5%,
10% and 20% with an excitation potential of 5kV. Every usec
spent on a pixel is equivalent to 1000 samples acquired from
the simulation. So, a single pixel acquired at 10 psec/pixel
setting would simulate 10,000 samples from a Monte-Carlo
simulation using the beam interaction model. A Poisson-
Gaussian model was used to model the beam interactions in
the workflow. The model for obtaining a sample using the pri-
mary scanning beam (PE) and the corresponding secondary
response (SE) from the material is shown in Equations 1 and
2. The average electron count is dependent on the current
flowing through the beam emitter but it is assumed to be
constant for our model. Typically, the beam current is not
modified in real-world experimental setups. The beam drift
was simulated using a 5 x5 kernel where the beam drift prob-
abilities from the center of the kernel to the periphery was
determined by a Gaussian distribution. Finally, the model was
augmented using flicker noise and sensor noise. The mean
pixel intensity response for each material was acquired from
real SEM images of that layer. This concludes contributions
from the predictable interactions of the noise taxonomy in the
image synthesis workflow.
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PE = Poisson(Ashot) (H
SE = Gaussian(fimaet £k X 2.5 X Omat, Omat) (2)
PE
where, k =

maz(PE) — min(PE)

The random interactions are added to the image after the
SEM image is generated. Currently, the synthesis workflow
applies two random interaction to the SEM image: stitching
errors and operator interactions. Stitching errors are taken
as random in the workflow and applied randomly on either
the vertical, horizontal or both axes at the same time. The
operator interactions are limited to contrast adjustments in
the image. This modification is applied by introducing ran-
dom variation to the material’s mean pixel intensity response.
For instance, the mean pixel intensity response for the doped
region is 160. Operator interaction randomly samples a Gaus-
sian distribution with the mean set at 160 and a standard devi-
ation of 15 to change the mean pixel intensity response from
the materials. This modification can increase or decrease
contrast in the image. Finally, a standalone modification, not
listed in the taxonomy, is applied to the AES layout image
at the input stage. The corners in the original layout are
converted to simple curves in the SEM images as shown
in Figure 12. This is to capture the variation introduced
by the mask generation process for etching the IC layout
onto the wafer during manufacturing [58]. The radius of the
curve is randomly sampled from one to five. The chosen
magnification parameter also scales the radius. The final
SEM image is generated at the end of this stage. Along with
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FIGURE 12: Edge distortion caused by limitations in the

mask generation process in transition from the GDSII layout
(left) to the silicon wafer (right) [54]

noise interactions that can be prevented through reasonable
precautions, this SEM image synthesis workflow constitutes
the closest substitute to a real SEM image obtained from an
IC through RE.

The claim for the closest substitute to a real SEM image
can be verified through extensive experimentation. The ex-
periment protocol applied for verification consists of acquir-
ing a large number of SEM images of an IC at a fixed set
of imaging parameters and comparing them against synthetic
SEM images generated using an exhaustive set of imaging
parameters through Monte Carlo simulations of the beam in-
teractions and the other predictable interactions. If the model
is valid, then the statistical similarity of the synthetic and
the real SEM image should be highest at the same imaging
parameters.

A smart card IC was deprocessed to satisfy the real SEM
image data requirement for the experiment. A 250um win-
dow was opened on the flip-side of the IC using a FIB and im-
ages were acquired using a 25um Field-of-View and dwelling
times of 10 and 3.2usec/pixel. With a fixed resolution of
1024x 1024 pixels, 25 SEM images of the diffusion layer
were captured for each dwelling time setting. These images
were hand-labelled as pixels belonging to either the silicon
substrate or the doped region. For the Monte Carlo simulation
counterpart in the experiment, the imaging parameters used
were the dwelling time per pixel, shot noise and the standard
deviation of the material. The simulation generated 64,000
pixels for every possible combination of the parameters listed
earlier. The comparison between the real and synthetic SEM
image can now be performed.

In image processing and computer vision, the similarity
between images are assessed using two distinct characteris-
tics of the image: the image histogram and texture. In both
cases, the data preparation follows the same process. Initially,
a hand-labelled ground-truth image is taken and the labelled
pixels are filled in by sampling the pixel values generated
by the Monte Carlo simulation to produce a synthetic image
representing the particular set of image simulation param-
eters. This is repeated for every possible combination of
simulation parameters. The mean pixel intensity values for
the silicon substrate and the doped region were used to offset
the histogram for the simulated images. For instance, silicon
substrate and the doped region had a mean pixel intensity
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FIGURE 13: Plot indicating the similarity between the real
and synthetic SEM image. Simulation parameter format:
Standard deviation of the material-Shot noise parameter.
The black and green trends indicate 10 usec/pixel and 3.2
psec/pixel dwelling times with the real parameters estimated
at 22-2 and 38-2 respectively.

value of 60 and 161 respectively in our real SEM image data.
For assessing the similarity in image histogram, the image
histogram (pixel intensity frequency distribution) of the real
SEM image and the corresponding synthetic SEM images
representing every combination of simulation parameters are
taken. The similarity between image histograms were as-
sessed using the Jensen-Shannon distance. A distance value
of zero indicates that both the histograms are the same. The
results of the experiments are shown in Figure 13. The plot
shows that, even with all the possible parameter combinations
for the simulated images, the points of highest similarity
correspond to the true parameters estimated from the im-
age. Similarly, for assessing the similarity in image texture,
the real SEM images and the synthetic SEM images were
decomposed using the Fourier transform. The magnitude
spectrum for both images were rearranged into vectors and
the similarity was assessed using the cosine distance between
the two vectors. Both the experiments produced identical
results. Similarity in histogram of the images suggest that the
distribution from which the pixels are sampled are identical.
Further, with the Fourier domain representation of the images
being identical, the relationship of a pixel with its neigh-
bouring pixels (i.e. the texture) is preserved as well. These
observations, along with the model validations reported in
literature, suggests that the real and synthetic SEM images
are very similar.

B. IMPACT OF AD-HOC PROCESSES ON HARDWARE
ASSURANCE

There are several works that perform RE on a particular IC,
typically a smart card, as a case study for reporting on the
challenges and resources cost incurred during the work [6],
[19], [58]-[61]. The modules in the RE workflow shown in
Figure 1 mostly acts as a placeholder. The actual technique
used to execute vary in between ICs and researchers. For
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Scenario 1: Chemical Etching SEM@32psec/pixel

Scenario 2:  FIB-based Multi-SEM@100ns/pixel

FIGURE 14: Example indicating the ambiguity introduced
by ad-hoc processes in RE and hardware assurance.
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FIGURE 15: Exemplary image histograms for the doping
layer. The top and bottom image histograms are acquired
at 3.2 and 10 psec/pixel dwelling times respectively. The
resolved individual distributions are shown for the top plot.
There is more overlap in pixel intensities for the individual
materials in the top than in the bottom making it hard to
resolve pixel membership.

instance, some perform delayering through FIB while others
use chemical or mechanical etching. FIB provides conve-
nience at an increased cost and may not be available to all
researchers. Some works have access to state-of-the-art SEM
machines like the multi-SEM [62] while others are restricted
to regular SEMs. The cost incurred and the challenges faced
in each of these cases are different. In contemporary nano-
scale node technology, like the 14nm finFET, the challenges
faced may be completely different and require some other
sophisticated technology. A demonstration of this situation
is shown in Figure 14. The questions raised here are: Is the
design validation obtained through Scenario 2 better than
Scenario 1? How can it be quantified? Does the investment
in specialized equipment produce an equivalent boost to the
reliability of the hardware assurance process? The complex-
ity in answering these questions are comparable in scale to
the diverse options available for executing the modules in the
RE workflow. Currently, there are no common grounds for
comparison between these works. With the goal of hardware
assurance being trust in the ICs design and functionality,
the results obtained through various hardware assurance pro-
cesses should be comparable and repeatable.

The IC design and RE workflow requires several decisions
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to be made from the beginning to its conclusion. Every deci-
sion has an impact on the successive steps in the workflow.
For instance, if the IC is designed using dielectric materials
that does not provide contrast under SEM observation, it
will be extremely challenging to validate the design of the
IC even with access to state-of-the-art equipment and expert
assistance. Therefore, the impact of each decision has to be
measured in terms of the uncertainty/risk it introduces to the
process. A suitable demonstration can be made using the
simulated workflow developed in this paper. The purpose
of RE-assisted hardware assurance is to acquire design in-
formation, both layout-level and netlist-level, to verify the
functionality of the IC and, consequently, enable trust in
the device. With the sequential nature of the RE workflow,
this in turn condenses to acquiring reliable images of the
IC from which the features can be accurately extracted. The
reliability of an image lies in effectively differentiating a
pixel belonging to the silicon substrate from that of the
polysilicon or metal pixels. In image analysis, the process
of assigning pixel membership is accomplished through the
image histogram, the combined pixel intensity distribution
of the materials. Every decision made in the RE workflow,
such as choosing the dwelling time per pixel parameter or
the quality of the SEM device used to acquire the image,
affects the resolvability of pixel membership by increasing
or decreasing the overlap between the distributions of the in-
dividual materials. A graphical illustration of this situation is
shown in Figure 15. This can also be observed in Figure 4(a)
with the same region of interest on an IC acquired at different
imaging settings exhibiting a change in the standard deviation
of the pixel intensity values belonging to the material. The
ratio of the area of the overlapping region in the distribution
to the entire area under both the distributions can be taken
as the risk or uncertainty introduced by the decisions in the
workflow. An ideal situation requires having zero overlap
between constituent material distributions, a highly unlikely
case.

The change in the chosen SEM imaging parameters affects
the histogram and, consequently, the overlap between distri-
butions of the individual materials. Hence, the risk can be cal-
culated as a function of the imaging parameters. To facilitate
this, the synthetic workflow can be used to generate image
histograms with all possible combinations of shot noise and
dwelling time representing the quality of the SEM device
and the imaging parameters respectively. In addition to the
imaging parameters, the materials chosen to manufacture the
IC also has an associated risk value with it. The quality of the
materials is represented through the sensitivity index (D) as
defined in

11 — po|
%\ / O’% + 0'%
The mean (u) and standard deviation (o) in Equation 3 is
calculated from the individual pixel intensity distributions

from the materials under study. The sensitivity index is a
proxy for contrast provided by the material under SEM

D(Ny,Ny) = N ~ Gaussian(p, o). (3)
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observation. Since contrast is relative, at least two materials
are required to obtain the index. A higher index indicates
higher contrast. Now, the risk/uncertainty can be defined as
a conditional distribution over all the parameters that can be
modified/chosen during the execution of the RE workflow.

The result of this approach is shown in Figure 16. The plot
demonstrates an exemplary study with the choice in imaging
parameters. Some observations in this plot is intuitive. For
instance, the risk decay is higher for high dwelling time im-
ages than for the lower dwelling time images for increasing
sensitivity index. In addition, although counterintuitive, the
plot suggests using noisier images when the contrast is close
to non-existent. This can be attributed to the fact that noisier
images increase the standard deviation of pixel intensities be-
longing to a certain material making it likelier to find regions
in the image histogram where the material intensities do not
overlap. Using a high quality image with no contrast provides
no additional information. All these qualitative observation
can be drawn from the plot with the added possibility to
quantitatively reason the benefit of choosing a particular set
of parameters in the RE workflow.

One of the major concerns at this point is the calculation of
the parameters that cannot be directly observed. For instance,
the shot noise or the pixel intensity distribution for the
individual materials without access to the ground truth labels.
There are approaches in literature that can address these is-
sues. The shot noise parameter can be directly estimated from
a single SEM image [26]. LASRE, an approach developed
for segmenting SEM images, captures the pixel intensity
distribution for the individual materials without the ground
truth labels or layout images [63]. This framework can be
extended to other interchangeable steps in the RE workflow
as well. The effect of every interchangeable step is connected
to the overall risk to the RE process and, therefore, provides
a common frame of reference for every interchangeable step
in the hardware assurance process. This helps address the
challenges introduced by the ad-hoc nature of the RE
workflow.

IV. PERFORMANCE ANALYSIS

The primary bottleneck for RE, in terms of computation
and human resource requirement, is the annotation module.
Therefore, this module will benefit the most from the in-
tegration of data-driven approaches. The expansion of the
workflow associated with the annotation module is shown in
Figure 17. With a reliable annotation module built, the gate-
level netlist can be obtained using the standard cell library, in-
cluding using available design data, manual template match-
ing [19], [45], [64], [65] or other automated approaches [46].
There are several approaches that are available for hardware
assurance at the netlist extraction module. Interested readers
are referred to a recent survey [5].

A. DATA-DRIVEN APPROACHES IN RE
The annotation module expects image data from the previ-
ous step to be noise-free, free of deprocessing errors, well

12

=
o
o

N B o)) o]
o o o o o
1 1 1 1

Recovery Risk/Uncertainty

Sensitivity index between materials

Dwelling times: Shot Noise
3.2usec/pixel ===2==-5===10=---15---20
10usec/pixel =—2 —5 —10——15—20
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trollable imaging and design parameters. As expected, a
lower dwelling time increases risk in the RE workflow.
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FIGURE 17: Expanded representation for the Annotation
module in RE workflow.

stitched, and aligned in all layers. However, in most cases,
these are not fully satisfied. Currently, there are no ap-
proaches to detect corrupted images and, hence, this module
is fault intolerant. Inclusion of data-driven approaches focus-
ing on detecting and resolving errors will assist in addressing
this issue. The annotation module can be divided into three
sub-modules: denoising, segmentation, and vectorization. An
overview of the annotation block can be seen in Figure 17.

Denoising: The denoising sub-module is responsible for
ensuring that the noise component in the image is suppressed.
There are several approaches currently employed in litera-
ture for processing noisy SEM images. They include spatial
filtering approaches, including Gaussian, median, curvature,
anisotropic diffusion, wavelet, adaptive wiener filter, and hys-
teresis smoothing [66]-[69]. Simple high-frequency filtering
and DL-based denoising approaches have also been used
on SEM images [38]. These techniques are mostly naive
image processing techniques and do not take the semantics
of structures in the image into account. ML-based denois-
ing approaches, such as image inpainting, super-resolution
and dictionary-based sparse reconstruction, have also been
explored for SEM images [34], [55], [70], [71]. Simple
measures like Peak Signal-to-Noise Ratio (PSNR) and SSIM
can be used to evaluate SEM image quality [72]-[75].

Segmentation: This step involves the separation of struc-
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tures in the IC image based on some qualifying fact. In
SEM images, this would be the material represented by
grayscale pixel intensity values. Segmentation algorithms
can be supervised, unsupervised or interactive. Supervised
segmentation approaches require massive amounts of man-
ually ground-truthed image data for learning representative
models to discriminate between classes. Support Vector Ma-
chines (SVM) and Convolutional Neural Network (CNN)
are examples of supervised segmentation methods [43], [76].
The unsupervised approaches are based on generalizable
features that can be found in the same IC or across ICs.
For instance, the technique developed by [76]-[78] relies
on the fact that polysilicon structures and metal layer traces
can be generated by simple Manhattan geometry contours.
Interactive approaches, such as [79], require the operator to
guide the segmentation. K-means and Fuzzy C-means are
some simpler unsupervised segmentation approaches [77].
LASRE is another technique that relies on using frequency-
based texture signatures for different materials to segment
out IC structure across multiple layers [63]. Simple image
processing techniques, such as Otsu’s binarization, have also
been explored for segmenting SEM images [80]-[84].

Segmentation accuracy is measured in pixel accu-
racy/Mean Square Error (MSE), SSIM, F-measure and IoU.
These measures rely on the similarity between shapes to
evaluate segmentation accuracy and does not take electrical
connectivity into account. Hence, a simple metric is devised
to evaluate electrical connectivity in the segmented image.
A common approach from image analysis, called connected
components, is used to analyze the connectivity between
shapes with respect to the ground truth image. In this method,
a component in the image refers to a useful structural feature
i.e. a trace in the metal layer or any white region in ground
truth shown in Figure 18. If a short-circuit is present, then
two separate components in the ground truth image will be
represented as one component in the segmented image. This
situation, also referred to as under-segmentation in image
analysis, can be measured as the ratio of short-circuited
components to all the components present in the segmented
image — the custom metric (CC-US). Similarly, an open-
circuit can happen when one component is split into multiple
components due to a segmentation error. Such a situation,
also referred to as over-segmentation in image analysis, can
be measured as the ratio of open-circuited components to all
the components present in the segmented image -the custom
metric (CC-OS). In both cases, a value of zero indicates
perfect segmentation in terms of electrical connectivity.

Vectorization: The vectorization stage converts the seg-
mented image into a bunch of polygons. The idea behind
this module is to recover the design files as close to the
original die layout as possible. This specific step enables
the use of commercial off-the-shelf tools allowing smoother
transition between the annotation and the netlist extraction
modules. This step further serves in suppressing edge noise
between materials and compressing the amount of data in
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the image, where the former is discussed in detail with
Edge/Line Width Roughness (EWR/LWR) for fault analysis
in ICs [85]—[87]. Vectorization can be achieved through sim-
ple edge following algorithms and custom tools like GDS-
X [41], [88]. Traditionally, vectorization was well-utilized
in compressing images, but, with the large capacity and
inconsequential cost associated with data storage for present
day computers, vectorization is not considered critical for
most RE case studies. Most case studies conclude the an-
notation module with segmentation. In addition to reducing
the memory footprint, a possible use for vectorization is in
detecting corruption in segmentation like short-circuits and
routing errors. Therefore, this sub-module will play a critical
part in making the RE workflow more reliable and fault
tolerant.

The annotation block is critical to several hardware assur-
ance approaches. Being in the middle of the RE workflow,
the amount of errors accumulated at this stage is far lower
than further down the line. Several approaches use segmented
images of the IC layers for detecting hardware Trojans [6],
[84], [89]-[93]. Being segmented, hardware assurance mea-
sures performed at this stage can also be free of the influence
of localized variation in pixel intensity and noise. It should
also be noted that variants in Trojans, such as the parametric
Trojans, can only be detected at this stage in RE [94]. The
only disadvantage at this stage is the overhead in storing and
processing full-scale images.

B. EXPERIMENT PROTOCOLS

The REFICS? dataset consists of 800,000 synthetic SEM
images. These are generated from a 32nm and 90nm AES
design for the doping, polysilicon and metal layers. Each
layer has 100,000 SEM images. A few example images are
presented in Figure 18. In addition, every SEM image has
a corresponding segmented ground truth and a layout-level
mask. The intended usage of these images are defined by four
protocols. These protocols work in tandem with the expanded
workflow, shown in Figure 17, and are described below in
detail.

« Denoising Protocol: This protocol transforms the raw
SEM image into the denoised version of the image (Fig-
ure 17(a)—(b)). To obtain the ground truth denoised im-
age, apply the mean intensity response of the materials
in the image to the segmented ground truth available in
the dataset. This information is provided in the dataset.
PSNR and SSIM is used to evaluate the efficacy of
denoising approaches.

« Segmentation Protocol: The segmentation protocol can
be conducted in two ways. In the first approach, the raw
SEM image is segmented directly (Figure 17(a)—(c)).
In the second approach, the raw SEM image is de-
noised before it is segmented (Figure 17(a)—(b)—(c)).
Denoising SEM images before segmentation typically
yields better results. SSIM and IoU is used to evaluate

3Hosted on Trust-hub. Link: https:/trust-hub.org
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FIGURE 18: Examples of segmented ground truth, layout-
level mask, and raw SEM images from the REFICS dataset.

the efficacy of segmentation approaches. We also sug-
gest the use of the CC metric for evaluating connectivity
between structures in the segmented image.

« Vectorization Protocol: This protocol utilizes the seg-
mented ground truth image as input and produces the
layout image (Figure 17(c)—(d)). Although no metrics
are suggested in literature to evaluate the quality of the
vectorized image, experience suggests that SSIM, IoU
and CC can be utilized in this scenario.

« End-to-end Protocol: This protocol is typically utilized
in DL approaches to achieve all the above steps in a
unified architecture. The input is the raw SEM image
and the output is expected to be the layout-like image
(Figure 17(a)—(d)). Metrics used in segmentation pro-
tocol are applied.

The data provided in the dataset is intended for bench-
marking novel image processing algorithms and developing
neural network architectures. For approaches that involve
very complex DL strategies or a directed purpose like han-
dling stitching errors, a tool* is made available for generating
more SEM image samples. The tool assists in generating
more SEM images and can be modified to generate SEM
images with a particular error or set of errors depending on
the user’s intended application.

C. EXPERIMENT RESULTS

In this section, the performance of the image processing
and ML methods are evaluated, scored using the metrics
discussed earlier, on the dataset following the denoising, seg-
mentation and end-to-end protocols. The key characteristic
of a good algorithm is to score high on the chosen metrics
and maintain stable scores across different layers and node
technologies. The ability of the algorithm to maintain stable
scores in these conditions is called cross-generalizability. In
terms of ML, this is quintessentially required for supervised
approaches that maintain some sort of heuristic on the design
data from the labelled ground truth data provided to the
algorithm. Consequently, the cross-generalizability of DL
methods between layers and nodes is also investigated and
discussed in detail.

A performance benchmark for various algorithms used in
the image processing pipeline is critical for the introduc-
tion of data-driven paradigms. This can be attributed to the
fact that every algorithm currently available in literature is
evaluated on a small private dataset and their performance
cannot be compared to each other. Further, concepts such as
cross-generalizability of supervised algorithms have not been
discussed in literature till date. Consequently, the benchmark
results provides a quantitative baseline over which better
data-driven algorithms can be built and tested. The bench-
marks provided for various algorithms on the datasets use
the parameters suggested in the source papers. Parameter
fine-tuning was only performed for algorithms that require
it in the original work. Exhaustive parameter fine-tuning and
optimization for every algorithm is out of the scope of this

paper.

1) Denoising Benchmark

Denoising assists in removing noise artifacts from the image.
This entails differentiating between noise and signal. To
actualize this, the denoising approaches use some assump-
tion on the noise characteristics. The filters that make the
closest assumption to the noise characteristic perform the
best. Table 1 presents the performance of the aforementioned
denoising methods, including five filtering and two ML meth-
ods. The key observation from the presented data is that the
denoising performance reduces in the order: Polysilicon layer
— Doping layer — Metal layer. In most cases, the metal
layer shows reduction in image quality after denoising. This

4 Also made available with the dataset
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TABLE 1: Denoising algorithms used on SEM images. The reported numbers are improvement (in %) over original raw SEM
images for that specific quality metric. The results are represented as PSNR / SSIM with higher values indicating better results.
Negative values indicate degradation in image quality after denoising. The highest improvement in metrics for each layer and

node technology is highlighted in bold.

Algorithm (|) / Layers(—) Metal Layer Doping Layer Polysilicon Layer

Node (—) 32nm 90nm 32nm 90nm 32nm 90nm
Gaussian filter [68] 8.11/22.53 9.46/22.24 15.50/30.58 15.93/32.52 15.84/27.99 17.27/36.75
Anisotropic diffusion filter [68] 1.60/45.67 6.37/44.79 26.08/72.73 28.64/79.16 | 29.44/62.28 37.82/91.62
Curvature filter [68] -28.56/29.55 -23.27/29.93 -14.65/50.02 1.36/67.16 18.41/52.47 32.46/84.95
Median filter 0.30/48.73 7.01/46.83 25.83/75.55 30.02 / 82.41 26.82/59.91 42.06/94.74
Adaptive Weiner filter [69] -27.20/-29.05 -21.09/-12.42 -9.73/12.05 3.84/33.63 9.69/30.03 22.81/83.45
BM3D [70] 10.20/17.99 12.86/18.14 11.21/22.56 13.54/21.22 7.5/14.25 12.93/19.66
K-SVD [70] 12.52/37.95 15.32/64.73 23.07/49.35 16.00 / 64.27 22.47/-9.65 23.73/65.88

TABLE 2: Segmentation algorithms utilized for segmenting IC SEM images. The results are represented as SSIM (1) / IoU (1)
/ CC-US (}) / CC-0S (| ) scores. The direction of increasing quality for the metrics is indicated with 1 or |. Apart from SVM,
all other methods are unsupervised. K-means, Fuzzy C-means and HAS use a 5 x5 kernel and SVM uses a 10x 10 kernel. The
highest improvement in metrics for each layer and node technology is highlighted in bold.

Fuzzy C-means [76] 0.75/0.86/0.11/0.91 0.78/0.90/0.14/0.68

0.53/0.72/0.38/0.77

Algorithm (]) / Layers(—) Metal Layer Doping Layer Polysilicon Layer
Node (—) 32nm 90nm 32nm 90nm 32nm 90nm
Otsu’s thresholding [84] 0.7770.8870.1170.91 0.7970.9170.1370.69 0.5570.7370.3870.77 0.2770.4970.2970.61 0.4070.5270.6470.69 0.1270.2970.8070.53

0.27/0.49/0.30/0.60 0.39/0.51/0.65/0.68 0.11/0.28/0.83/0.52

K-means [76] 0.77/0.88/0.11/0.91 0.79/0.91/0.13/0.69 0.55/0.73/0.38/0.77 0.27/0.49/0.29/0.60 0.40/0.52/0.64/0.69 0.12/0.29/0.81/0.53
HAS [81] 0.85/0.78/0.41/0.70 0.76/0.82/0.36/0.17 0.85/0.81/0.43/0.78 0.81/0.80/0.17/0.18 0.67/0.52/0.52/0.76 0.56/0.46 /0.33 / 0.60
LASRE [63] 0.75/0.70/0.15/0.14 0.72/0.76/0.28 /1 0.22 0.7870.79/0.09 / 0.20 0.72/0.73/0.12/0.28 0.46/0.58/0.30/0.38 0.22/0.44/0.39/0.42
SVM-10 [76] 0.76/0.73/0.26/0.78 0.67/0.79/0.20/0.15 0.74/0.78 /0.27/0.86 0.85/0.85/0.05/0.11 0.34/0.44/0.60/0.78 0.32/0.37/0.61/0.47

can be attributed to the fact that the contrast in the metal layer
is much higher than those of other layers. The contrast is
the lowest in the polysilicon layer and, hence, benefits the
most from denoising. Anisotropic diffusion filters performs
the best. This filter smooths the image while preserving the
edges. With the hardware design layout being produced by
straight edges, the performance metrics behind this filter can
be intuitively understood. The Gaussian filter and Median
filter performed relatively well. This is the reason behind
several works in RE and hardware assurance supporting the
utility of these filters. The ML-based denoising approaches
performed poorly as compared to regular methods. Note that,
Gaussian filter and BM3D performed consistently across all
layers and node technologies.

2) Segmentation Benchmark

The baseline segmentation results shown in Table 2 were
obtained by comparing the original and segmented SEM
images (Figure 17 (a)—(c)). Denoising was not performed
on the raw SEM image before segmentation. The key ob-
servation from the table is that the results are similar to
the observations from the denoising experiments. A simple
image binarization method like Otsu’s thresholding has per-
formance equivalent to that of ML approaches in the metal
layer. Otsu’s thresholding along with K-means and Fuzzy C-
means also demonstrate stable performance across all layers
and node technologies. HAS conserves more of the shape in-
formation in the segmented image while losing connectivity
information. LASRE, on the other hand, preserves more con-
nectivity information over shape information. The interesting
observation in the table is that a supervised segmentation
approach based on SVM performs similar to unsupervised
methods despite having access to labelled ground truth data.
The SVM was trained on 90,000 images and tested on 10,000
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images of a single layer and node technology. Since one
GT in the dataset may correspond to a couple of noisy raw
SEM images, this splitting is chosen to guarantee the test set
is independent from the trained models. The parameter for
the SVM classifier was obtained from an earlier work [76].
As suggested by the author, cascading different classifiers
or using a committee of classifiers will possibly yield better
results than using an individual classifier. The performance
metrics obtained on the metal layer and the doping layer
succinctly explains the existence of several well-accepted
hardware assurance approaches on these layers.

3) End-to-End Benchmarks

The end-to-end RE annotation module aims to achieve de-
noising, segmentation, and vectorization in one model. This
fits into two computer vision tasks, namely, image-to-image
translation and blind denoising. In this work, two deep
neural networks from each task, specifically pix2pix [98],
cycleGAN [97], DnCNN [95], and CBDNet [96], are eval-
vated. Their simplified network architectures are presented
in Figure 19.

The image-to-image translation is used to convert an im-
age from one representation into another [97]. In the RE do-
main, the raw SEM image and its corresponding layout GT or
a noise-free image can be considered as two representations
of one image. Under this assumption, the pix2pix network
was used for SEM image quality enhancement [99], and
cycleGAN was adopted to obtain translated SEM images that
can serve as GT [54]. Pix2pix and cycleGAN are generative
adversarial network (GAN), which consists of a pair/pairs
of generator and discriminator. This architecture allows the
network to train the image mapping by learning and minimiz-
ing a loss function simultaneously. These two GANs share
the same network architecture, while the cycleGAN can be
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Pix2pix and CycleGAN
Generator (U-Net)

Discriminator

DnCNN

X — —> = u s
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FIGURE 19: Simplified network architectures for DnCNN, CBDNet, pix2pix and cycleGAN. z and y represent the input
and output, and each block represents a convolution layer with ReLU (or Leaky ReLU) or a convolution layer with batch

normalization and ReLU.

trained using unpaired images and the pix2pix only learns the
mapping from the paired ones. Since the cycleGAN follows
this “unsupervised” training setting [98], it typically less
accurate than pix2pix.

DL-based blind denoising was proposed for removing real-
world image noise from photographs. DnCNN is one of the
well-known discriminative models that can remove AWGN
with an unknown noise level [95]. This network assumes that
the noise mapping is easier to learn than the image details.
Therefore, it learns the image residual (noise) by subtracting
the latent clean images from the noisy input. This architecture
has been successfully leveraged for EWR/LWR estimation
on images with Gaussian-Poisson mixture noise [34], [38].
However, DnCNN is often criticized for easily overfitting
to a specific noise model and cannot maintain the same
performance on real noisy images. CBDNet was proposed
to improve the generalizability by adopting noise estimation
and non-blind denoising sub-networks [96]. The regularizer
of the noise estimator prevents the over-smoothing of the
features. The non-blind denoiser is an U-Net with skip con-
nection, which is used to explore multi-scale features and
generate clean images. Later proposed networks inspired
by CBDNet achieved higher performance by increasing the
network’s receptive field [100], [101]. However, to the best
of our knowledge, such blind denoising networks were not
evaluated in the context of RE and hardware assurance.
Additionally, CBDNet was reported to be adept at preserving
sharp edges -a preferable characteristic in RE applications.
Thus, the results of CBDNet will serve as a blind image
restoration benchmark for future improvements in the RE
domain.

The baseline performance for the chosen networks are
presented in Table 3. These results are obtained by training
and testing on the same subset of one node technology and
one layer in a 9:1 split ratio as done in the case of the SVM.

The training parameters for each network are adjusted for
the best performance. DnCNN was trained with 70 epochs
with a learning rate (o) of 107> and the batch size of 32.
CBDNet was trained with 70 epochs with an a of 1074
without batch normalization. Pix2pix and CycleGAN were
trained with 50 epochs with an « of 2 x 10~* and the batch
size of 16. All networks use the Adam optimizer. Note that,
network convergence was observed with the set number of
epochs through learning curves. Since neural networks tend
to produce non-binary intensity values (values other than
0 and 255) for the output image, they are binarized using
threshold value 127.

The key observation from the baseline experiments is that
most deep neural networks perform consistently on different
layers. CBDNet performs the best with consistency. This can
be attributed to multiple losses and the U-Net architecture,
which was designed for segmentation. Additionally, com-
paring to other three networks, CBDNet adds connections
between input and other layers, which provides more image
details for reconstruction. Performance of DnCNN decreases
on the polysilicon layer as compared to other layers. Since
DnCNN learns noise solely by the differences between noisy
and clean images, low contrast images like with the polysil-
icon layer, having noise pixels similar to the pixels repre-
senting clean images could cause denoising difficulties for
DnCNN. Meanwhile, the CC-OS scores of DnCNN increases
significantly indicating the network tends to remove pixels
belonging to structural patterns. The two image translation
networks also perform consistently. However, they show
lower IoU scores. This may be due to the stitching errors
getting transferred to the reconstructed images. Example
output from baseline experiments is presented in Figure 20
(a) at the end of this section. Although failure or imperfect
cases still exist, as shown in Figure 20 (b) and (c), they are
mainly two types of errors that are less likely to affect overall

TABLE 3: Baseline performance of the end-to-end deep neural networks. The results are represented as SSIM (1) / IoU (1)/
CC-US () / CC-0OS ({) scores. The highest improvement in metrics for each layer and node technology is highlighted in bold.

Networks () / Layers(—) Metal Layer Doping Layer Polysilicon Layer Averaged

Node (—) 32nm 90nm 32nm 90nm 32nm 90nm ©

DnCNN [95] 0.94/0.90/0.00/0.03 | 0.92/0.92/0.00/0.10 | 0.96/0.95/0.00/0.02 | 0.94/0.91/0.00/0.07 | 0.83/0.67/0.00/0.48 | 0.88/0.63/0.02/0.17 | 0.91/0.79/0.00/0.15
CBDNet [96] 0.96/0.94/0.00/0.03 | 0.96/0.95/0.01/0.04 | 0.98/0.97/0.00/0.00 | 0.98/0.96/0.00/0.01 | 0.95/0.93/0.00/0.02 | 0.96/0.87/0.00/0.03 | 0.97/0.94/0.00/0.02
CycleGAN [97] 0.88/0.85/0.00/0.01 | 0.72/0.70/0.01/0.04 | 0.86/0.84/0.00/0.03 | 0.76/0.71/0.00/0.01 | 0.90/0.85/0.00/0.07 | 0.67/0.74/0.01/0.04 | 0.80/0.74/0.01/0.04
Pix2pix [98] 0.93/0.89/0.00/0.01 | 0.78/0.74/0.01/0.02 | 0.96/0.90/0.00/0.03 | 0.95/0.72/0.00/0.01 | 0.90/0.87/0.00/0.07 | 0.91/0.62/0.02/0.04 | 0.90/0.79/0.01/0.03

* The numbers shown as 0.00 are rounded to two decimal places, they are not numerically equal to zero. This is also applied in the following tables.
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TABLE 4: Cross-node generalizability results. The listed node technology represents the test set with the network trained on
the other node. The results are represented as SSIM (1) / IoU (1) / CC-US () / CC-OS ({) scores. The highest improvement in

metrics is highlighted in bold.

Networks (]) / Layers(—) Metal Layer Doping Layer Polysilicon Layer Averaged

Node (—) 32nm 90nm 32nm 90nm 32nm 90nm 2

DnCNN 0.93/0.90/0.00/0.04 | 0.91/0.91/0.00/0.09 | 0.92/0.91/0.02/0.06 | 0.96/0.93/0.00/0.02 | 0.80/0.75/0.04/0.06 | 0.83/0.41/0.00/0.53 | 0.89/0.80/0.01/0.13
CBDNet 0.90/0.87/0.01/0.05 | 0.94/0.94/0.00/0.05 | 0.95/0.94/0.01/0.02 | 0.95/0.92/0.00/0.06 | 0.83/0.80/0.01/0.03 | 0.86/0.57/0.01/0.03 | 0.91/0.84/0.01/0.09
CycleGAN 0.73/0.70/0.04/0.03 | 0.75/0.70/0.00/0.05 | 0.86/0.84/0.00/0.04 | 0.71/0.65/0.00/0.06 | 0.66/0.61/0.03/0.25 | 0.66/0.41/0.03/0.30 | 0.73/0.65/0.02/0.12
Pix2pix 0.88/0.83/0.02/0.03 | 0.79/0.72/0.00/0.02 | 0.90/0.82/0.00/0.05 | 0.91/0.70/0.01/0.09 | 0.83/0.76/0.01/0.02 | 0.59/0.41/0.05/0.28 | 0.82/0.71/0.01/0.08

TABLE 5: Cross-layer generalizability results. The results are
scores. The highest improvement in metrics is highlighted in bold.

represented as SSIM (1) / IoU (1) / CC-US () / CC-0OS ()

Train set (—) Metal Layer

Test set (—) Doping Layer Polysilicon Layer

Nodes 32nm 90nm 32nm 90nm
DnCNN 0.91/0.82/70.00/0.01 0.94/0.89/0.00/0.03 0.66/0.07/0.00/0.22 | 0.76/0.01/0.00/0.02
CBDNet 0.87/0.72/0.00/0.15 0.95/0.90/0.00/0.05 0.66/0.06/0.00/0.09 | 0.76/0.01/0.00/0.04
CycleGAN 0.85/0.83/0.00/0.09 0.68 /0.63/0.00/0.02 0.51/0.53/0.12/0.18 | 0.26/0.22/0.20/0.29
Pix2pix 0.92/0.89/0.00/0.01 0.78/0.7370.00 / 0.01 0.75/0.69/0.09/0.17 | 0.55/0.37/0.09/0.18
Train set (—) Doping Layer

Test set (—) Metal Layer Polysilicon Layer

Nodes 32nm 90nm 32nm 90nm
DnCNN 0.91/0.89/0.01/0.04 0.85/0.87/0.03/0.32 0.78/0.47/0.00/0.38 | 0.76/0.05/0.00/0.09
CBDNet 0.88/0.82/0.01/0.13 0.91/0.91/0.02/0.08 0.76 /0.60/0.00/0.17 | 0.78/0.17/0.00/0.14
CycleGAN 0.65/0.63/0.06/0.14 | 0.69/0.67/0.04/0.06 0.34/0.40/0.20/0.26 | 0.31/0.23/0.19/0.25
Pix2pix 0.81/0.70/0.04/0.24 0.79/0.5770.02/0.20 0.43/0.32/0.31/0.15 | 0.77/0.23/0.06/0.17
Train set (—) Polysilicon Layer

Test set (—) Metal Layer Doping Layer

Nodes 32nm 90nm 32nm 90nm
DnCNN 0.85/0.82/0.08 /0.09 0.83/0.79/70.08 /0.12 0.89/0.87/0.08/0.03 | 0.88/0.80/0.03/0.03
CBDNet 0.82/0.67/0.01/0.49 0.90/0.87/0.04/0.12 0.80/0.63/0.00/0.24 | 0.95/0.87/0.04/0.12
CycleGAN 0.75/0.55/0.05/0.52 0.64/0.55/0.05/0.24 0.68/0.46/0.01/0.60 | 0.72/0.58/0.00/0.09
Pix2pix 0.76/0.59/0.03/0.44 0.91/0.7270.02 / 0.04 0.74/0.65/0.02/0.36 | 0.93/0.69/0.00/0.02

accuracy for RE and hardware assurance applications. The
first is caused by low contrast, where the patterns in the noisy
image can barely be seen, and it usually happens in images
of the polysilicon layer. In real scenarios, images having
such a low contrast are less likely to be collected. Another
type is stitching error, and its influence depends on particular
applications. For example, it may not affect Trojan detection
methods that rely on representative features, but it may affect
template matching and accuracy for netlist reconstruction. It
maybe possible to address these issues using post-processing.

It is also observed that these four networks outperform
conventional methods shown in Table 2. The best SSIM and
IoU values are improved by 15% and 10%, respectively,
with the best CC-US and CC-OS score approaching zero
in all networks. Additionally, DL is more efficient once the
network is trained. Using two GeForce 2080 Ti graphic cards,
the training takes up to two days, while the testing time for
each image only takes around 0.05 seconds. This is much
faster than the conventional methods, which take around
a second on average for each image. These observations
reiterate the necessity of data-driven methods for RE and
hardware assurance.

Nevertheless, as mentioned earlier, a major concern of
applying deep neural networks is that they are easy to overfit
and cannot generalize well. A generalizable network means it
is only trained once but can achieve a similar performance on
different testing sets i.e. different layers and node technolo-
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gies. This saves efforts on data collections, computational
resources, and time cost for adapting it on various RE and
hardware assurance applications. In this work, cross-node
and cross-layer generalizability are evaluated and discussed
-a major contribution of this work.

Cross-node generalizability is presented in Table 4. The
results are obtained by using the network trained on one
node technology to test on another node technology for the
same layer. For instance, using the network trained on the
32nm metal layer to test on the 90nm metal layer. The key
observation is that four networks present different cross-node
generalizability on different layers. Overall, CBDNet still
achieves the best evaluation scores on most test sets, while
DnCNN performs the most consistently. CBDNet, pix2pix,
and cycleGAN cannot maintain a similar performance on
cross-node testing for the polysilicon layers. These may
be because the network is overfitted to the node-specified
features of polysilicon layers. Note that, the four networks
still perform better than the conventional methods on most
testing sets.

Cross-layer generalizability is presented in Table 5. These
results are obtained using the network trained on one layer to
test another layer for the same node technology. For instance,
using the network trained on the 32nm metal layer to test the
32nm doping layer of the same node technology. The key
observation is that the networks trained on metal or doping
layers easily fail in testing the polysilicon layers (cannot
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generate correct structural patterns). Note that four metrics
measure similarity from different aspects; a well-performed
network should have good evaluation scores from all aspects.
As shown in Table 5, the IoU scores of DnCNN and CBDNet
in testing polysilicon layers decrease to lower than 0.1, and
the CC-US and CC-OS scores of pix2pix and cycleGAN have
increased when comparing to the baseline. The low contrast
of the polysilicon layer may be the reason for this behaviour.
Once the networks are fitted on images with high contrast,
they can hardly recognize features from images having lower
contrast. The analysis on failure cases shows that the average
intensity difference between foreground and background on
polysilicon layers is 40, while it is 160 for the metal layer
training set. Similarly, it is 100 in the test set of doping
layer, and a moderate decrease in the score is observed,
accordingly.

4) Discussion and Insights

The benchmarks serve as a quantitative reminder over the
type of algorithms that can be chosen to resolve any directed
task in RE and RE-assisted hardware assurance. However,
there are some key observations from the presented results
that can be leveraged for the development of better algo-
rithms and smoother integration of data-driven paradigms
into RE.

The metrics commonly used in evaluating image quality
and segmentation accuracy are not stable. There are several
instances where the highest score in two metrics evaluating
segmentation accuracy, in terms of shape for instance, goes
to two different algorithms. Similarly, the methods that can
achieve a high score on shape similarity measurement may
not perform the same in terms of electrical connectivity. For
example, in the metal layer, similar SSIM and IoU values
are observed across nodes, while CC exhibits significant
differences. To truly evaluate image quality, multiple metrics
maybe necessary or a novel metric, specifically designed
for RE and RE-based hardware assurance tasks, has to be
developed.

A very interesting observation from the results is that
most approaches show a lack of stability across node tech-
nologies and IC layers. Realizing the fact that the images
are generated using the same beam interaction models with
varying layouts, it is counter-intuitive for the algorithms to
have variations in performance. The effect is compounded for
the polysilicon layer. Even supervised methods with access
to large quantities of high-quality labelled data shows this
trend. This suggest that the approaches are not able to detect
the edges in the original layout effectively. This effect can be
clearly seen in the performance metrics reported, especially
for the polysilicon layer with the lowest contrast among all
three layers. An even more noteworthy observation is in
Table 5. DL networks trained on the metal layer, a high-
contrast image with relatively simple geometry, performed
well on other layers especially in terms of separation between
structures, i.e. the CC metric. However, when trained on the
other two layers with structures having complex geometry,
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(a) Example Output of 90nm Doping Layer
Output

DnCNN

CBDNet

Pix2pix

CycleGAN

Stitch error is
removed
(CBDNet)

Incorrectly
placed stitch
error
(CBDNet)

Not remove
stitch error
(DnCNN)

Error
reconstruction
for lines
(GAN)

FIGURE 20: Example output from the end-to-end networks.
Results in (a) are four outputs for the same testing sample.
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they performed better in terms of conserving the shape of
the structures, i.e. SSIM and IoU metrics. Although this
doesn’t affect the state-of-the-art performances provided by
the DL models significantly, this does underline the fact that
model architectures that are capable of resolving the edges
between different materials under low contrast need to be
developed. Off-the-shelf complex neural architectures may
not be enough for hardware assurance applications. Support-
ing evidence can be found in a critical work that suggests
that neural networks, especially those that work on images,
are influenced more by the texture of the image than by the
edges themselves [102]. Hence, more directed research is
necessary for the development of effective neural network
models. Furthermore, these observations do provide credence
to the efficacy of template based models on the polysilicon
layer [78].

With a correlation observed in between contrast and the
efficacy of image analysis algorithms on resolving mem-
bership between materials and effective edge detection, the
need for risk analysis models discussed in Section III-B is
further reinforced. The correlation between the sensitivity
index and the metrics, depicted using the Pearson correlation
coefficient, is shown in Figure 21. Despite using multiple
algorithms, IC layers and node technologies, the metrics con-
sistently exhibited very strong correlation with the sensitivity
index between the materials, i.e. the contrast of the image.
Therefore, it can be reasoned that the higher the likelihood
of correctly resolving the membership of a pixel, the lower
the risk to the RE process irrespective of the steps followed.
Along with the qualitative discussion in Section III-B, this
provides a quantitative reasoning to support the central role of
image contrast in feature recovery and risk assessment. Risk
evaluation approaches like these are critical in quantifying
the benefits of every step, even novel ad-hoc steps, in the RE
process and transforming RE into a formalized, generalizable
and repeatable process for hardware assurance and trust.

V. CONCLUSION
RE is a great tool for hardware assurance and trust. This
is exhibited in its ability to discover well-placed stealthy
hardware Trojans and verify the source design to discover
IP infringement. The only limitations for the process were its
likelihood for use as an attack mechanism and its resource-
intensive nature. The first limitation was addressed in existing
literature through design obfuscation techniques. A pathway
to resolve the latter effectively is introduced in this paper.
Summarizing the paper, a large-scale SEM image dataset
is introduced to support the integration of data-driven
paradigms into the hardware assurance community. With a
detailed taxonomy of challenges in RE and a tool to sim-
ulate these challenges, the dataset also provides an avenue
for directed research into challenges for RE without the
associated cost and resource overhead. Further, this also
provides an opportunity for other communities, such as the
image processing and computer vision communities, to get
involved in the development of robust image processing and
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FIGURE 21: Plot indicating strong correlation between the
sensitivity index between materials to the metrics irrespective
of the algorithm used. The “D” and “S” in SSIM represent
denoising and segmentation respectively. The PSNR and
SSIM-D correlations were calculated as the improvement
over the raw image and not the raw PSNR or SSIM values;
hence, the negative correlation. CC represents both CC-OS
and CC-US as they have identical values.

DL architectures for use in hardware assurance. The detailed
benchmarks, especially the generalizability studies, provides
the very insights required to facilitate this purpose.

Finally, the risk assessment framework introduced in the
paper forms a common basis for comparison between works
executed using ad-hoc steps. This serves as a viable approach
for assessing the cost-benefit trends of any ad-hoc steps in
the process and generates a basis of comparison for process
efficacy. This framework along with the incorporation of
data-driven paradigms can transform RE from a technique
widely used in small-scale case studies to a versatile tool for
effective and expedited hardware assurance.
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