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In this paper, an intelligent perceiving and planning system based on deep learning is proposed for a collaborative robot consisting
of a 7-DoF (7-degree-of-freedom) manipulator, a three-finger robot hand, and a vision system, known as IPPS (intelligent
perceiving and planning system). .e lack of intelligence has been limiting the application of collaborative robots for a long time.
A system to realize “eye-brain-hand” process is crucial for the true intelligence of robots. In this research, a more stable and
accurate perceiving process was proposed. A well-designed camera system as the vision system and a new hand tracking method
were proposed for operation perceiving and recording set establishment to improve the applicability. A visual process was
designed to improve the accuracy of environment perceiving. Besides, a faster and more precise planning process was proposed.
Deep learning based on a new CNN (convolution neural network) was designed to realize intelligent grasping planning for robot
hand. A new trajectory planning method of the manipulator was proposed to improve efficiency..e performance of the IPPS was
tested with simulations and experiments in a real environment. .e results show that IPPS could effectively realize intelligent
perceiving and planning for the robot, which could realize higher intelligence and great applicability for collaborative robots.

1. Introduction

An intelligent robot system should have the ability to in-
teract with humans and environment, thus realizing col-
laboration and work with humans. .erefore, object
grasping is one of the most important and significant
abilities which could lead the robot to bring productivity to
the society [1]. .e robotic system for grasping is mainly
composed of the perceiving system and the planning system.
In existing applications, humans take great responsibility for
perceiving and planning for robots as well as controlling
them through computer programs. To truly realize intelli-
gent working and collaborating, the “eye-brain-hand”
process similar to humans has become an important
researching field. However, intelligence leads to much
higher requirements, and thus deep learning and data sets
are designed and used to improve the ability of the “brain.”

.us, for wider application of collaborative robots, the
ability to learn and then independently solve tasks based on a
data set is more important and urgent thanmoving the robot
to the perceived pose.

Intelligent perceiving process has been studied for a long
time, and many studies and products to support the per-
ceiving system are realized. .e performance and quality of
perceiving received much attention, especially for 3D ob-
jects. Furthermore, the 6-DoF grasping means the object
could be grasped from any angle in the 3D working space.
With modern vision devices, such as Microsoft Kinect and
Intel RealSense, more information of the objects in the
working scene could be obtained easily through perceiving
systems. .e depth-based 6-DoF grasping methods lead the
research direction, and most of them are focused on 6D
object pose perceiving [2, 3]. Researchers also focus on the
combination with deep learning to further improve
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intelligent perceiving [4, 5]. .e visual process of intelligent
perceiving is also important for the performance of the
whole system. For 3D object visual process, existing methods
include random sample consensus (RANSAC) [6], Hough-
like voting [7], and FPFH [8]. Rabbani realized an efficient
Hough transform for automatic perceiving of cylinders.
Rusu realized the visual process in the segmented scenes and
used triangular meshes to create a hybrid shape-surface for
robotic grasping. In this research, considering the type of the
feature, a combination of FPFH method and ICP algorithm,
which effectively improved the speed and accuracy of the
registration compared to common registration method, was
designed.

Based on the perceiving process, many data sets have
been established, which greatly show the development of
intelligent and deep learning. Representative data sets in-
clude PASCAL VOC [9], SUN [10], ImageNet [11], MS
COCO [12], and Open Images [13]. .ese data sets could be
used to train the network to predict the bounding box and
precise grasping points of the object. Some famous grasping
data sets have been appeared in a great number of research
works, such as Stanford grasping data set, Cornell grasping
data set, YCB benchmarks data set, CMU data set, Google
data set, Dex-Net 1.0, Dex-Net 2.0, and JACQUARD. Be-
sides, grasping planning data sets receive much attention
from researchers. Pinto and Gupta proposed a data set size of
50K data points which collected 700 hours of grasping at-
tempts [14]. Levine realized 800,000 grasp attempts in two
months [15]. Wang realized a visual-tactile grasping data set
with a dexterous robot hand by Intel [16]. Andrew and Peter
proposed GraspIt! containing a simulator for robotic
grasping to interactively manipulate a robot [17]. Quillen
proposed a simulated grasping benchmark for the manip-
ulator [18].

Intelligent planning for robot system has always been a
hot topic for researchers. 3D object planning is based on
accurate prediction including object prediction or detection,
grasping position prediction, and grasping point prediction.
.e prediction of the 3D bounding box of the object is an
important step for intelligent planning. .e 3D bounding
box prediction is similar to 6D object pose prediction.
Methods of 3D visual process could be used here, such as
FPFH [8], CVFH [19], SHOT [20], and ICP [21], which can
locate the object and realize registration for the object. Deep
learning could make the prediction more efficient and the
bounding boxes could be predicted with features extracted
from neural network. Frustum PointNets realized 2D CNN
prediction and lifted the 2D region to a 3D region [22].
PointFusion used Faster RCNN [23] to obtain the deep
features from the image to build the 3D bounding boxes
[24]. Frustum ConvNet also obtained the 3D region through
lifting the 2D region [25]. Methods based on global features
require enough input to generate the region. Deep Sliding
Shape was the first 3D region prediction network (RPN)
using CNN, which could extract geometric features and
color features in 2D to predict the bounding boxes [26].
Real-time prediction of the 3D region with motion pa-
rameters for unknown moving object was a further research
topic [27]. In this research, a new CNN was designed to

realize grasping region planning through lifting a bounding
box from rectangle predicted with the input images, which
could effectively improve the speed and accuracy of the CNN
with less parameters and information needed. 3D object
bounding box prediction is not accurate enough to realize
grasping planning for the robot hand, but it could provide a
proper and general grasp position for further planning of
grasping contact points.

.e grasping position and grasping point planning or
prediction are crucial for intelligent planning, which could
improve the performance and collaboration ability of the
robot greatly. Empirical method is a data-driven method to
learn from successful results and plan to grasp objects, which
can solve the grasping of known or unknown object [28].
Miller proposed a method to classify objects into categories
corresponding to grasping types [29]. Vahrenkamp divided
objects based on geometric information and labeled infor-
mation [30]. It is hard for the grasping planning based on a
data set to grasp the unknown object. .erefore, in this
research, an operation recording set was established as
grasping experience could effectively solve this problem.
Mahler established a grasping data set with the depth image
and many object grasping points, which has more than 50k
grasps, and the grasping performance was great [31]. .e
grasping points could be directly predicted from the input
image only. Pinto and Gupta proposed a method to predict
grasp locations with a CNN-based classifier to predict the
grasp [14]. Park proposed an accurate grasping prediction
method with fully CNN to obtain the poses for the ma-
nipulator [32]. Zeng designed a multi-affordable planning
method to select the grasping types and recognize the object
in product images [33]. In this research, a new CNN was
designed together with grasping type to realize grasping
point planning based on the bounding box planning and
well-designed calculation, which could greatly improve the
speed, accuracy, and success rate of the CNN and realize
higher intelligence.

.e intelligent planning process contains an important
part which is the trajectory planning for the manipulator.
.rough imitation learning, deep learning could learn from
successful grasping attempts in the data set and finish
grasping with a movement similar to human operation.
Amor realized imitation learning to achieve grasping ability
based on human operation [34]. Ebert tried to learn robotic
skills from images from observations of collected experience
to realize planning for unlabeled data [35]. Fang realized a
task-based grasping planning network when being input by
the vision system [36]. Wu realized coordinated planning of
a dual-arm robot for surgical instrument sorting tasks [37].
Many traditional planning algorithms have been proposed
worldwide, including ant colony algorithm [38], LPA∗ al-
gorithm [39], D∗ Lite algorithm [40], and PRM algorithm
[41]. .e traditional trajectory planning method is suitable
for the working space where the obstacle position is de-
termined and ensures high efficiency and accuracy. Rapid
random tree RRT algorithm could plan the trajectory
through random sampling, which fits the trajectory planning
of 7-DoF robots with infinity mobility in high dimensional
space [42]. To solve the shortage of RRT like low speed for
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large environment, improved RRT algorithms have been
proposed. .e bidirectional RRT sets the steps from the
terminating and starting point at the same time [43]. In this
research, an improved trajectory planning algorithm was
proposed; it combined interpolation with RRT algorithm
with the operation recording set to improve the collabo-
ration ability and man-robot interaction performance.

In this research, a new system based on deep learning,
known as IPPS, was proposed and implemented to realize
intelligent perceiving and planning for robot hand and
manipulator. .e most important innovations and contri-
butions of IPPS are as follows. First, a new operation and
environment perceiving process was proposed, including a
well-designed vision system, a new hand tracking method,
and fingertip marking. .en, a new operation recording set
was established based on the perceived operation process
and daily object data set. Besides, a new grasping and tra-
jectory planning method was proposed based on the deep
learning with CNN and the operation recording set to realize
grasping gesture type prediction, grasping bounding box
prediction, and contact point prediction for three-finger
robot hand. Finally, a new trajectory planning method for
the manipulator which combined interpolation based on the
operation recording set and the tracking records of the
vision system with RRT algorithm was proposed. IPPS was
tested with simulations for every new method and algo-
rithms and application in real environment for its efficiency,
accuracy, and stability, which could effectively realize the
intelligence perceiving and planning of the robot and
achieve higher collaboration ability and better man-robot
interaction.

1.1. Intelligent Perceiving Process. .e most convenient way
to achieve the intelligence of the robot is learning from
human operation experience. However, the existing data sets
mainly contain object images only and lack records of
operation, which could make it difficult for the robot to gain
sufficient experience. To solve this problem, establishing an
operation recording set is necessary. .e main process
contains two parts: one is recording the human hand op-
eration process, and the other is tracking the marked hand
posture at the same time. Besides, the vision system can also
perceive the environment when IPPS is applied to the robot
to start the whole process. .e perceived image could be
used as the input to the neural network for deep learning to
realize planning. Intelligent perceiving is acting as the “eyes”
for the robot to observe human operation for learning as well
as the objects and tasks for planning the man-robot
interaction.

1.1.1. Vision System with Cameras. .e completeness of
operation data and object and scene images is important for
the performance of perceiving. .erefore, in addition to two
three-dimensional RGB cameras as the binocular fixed vi-
sion system, an eye tracker is designed as the follow-up
vision system in this research, which could be worn by the
operator when operating. Besides, environment perceiving
will be finished with another depth camera on the top for

registration and trajectory recording. .e entire vision
system is shown in Figure 1.

Compared with a single fixed vision system, the com-
bined vision system could observe the hand motion and the
marked points from adjustable and different angles as the
eye tracker could finish real-time following and achieve
images from several directions to reduce data loss caused by
occlusion. All images achieved from the vision system could
be saved to the operation recording set. For environment
perceiving, the fixed cameras from different angles could
make sure that the observation is comprehensive and
provide enough information in the images for the neural
network to plan for the operation of robot..e vision system
is combined with operation perceiving and environment
perceiving camera system. .ese two camera systems work
separately in the whole IPPS at different steps when realizing
the robot but they share much information together to
support higher intelligence for the robot. .e complete
information achieved from the vision system could provide
great support for operation recording set establishing and
intelligent robot planning.

1.1.2. Hand Posture Tracking. .e establishment of a data set
for hand operations is crucial for further deep learning.
Some methods have been proposed like using marked gloves
which limit the flexibility of the hand and affect the data.
When a human grasps an object, the operation is usually
hard to track with plenty of movable joints..erefore, in this
research, a new method to realize hand tracking was pro-
posed to achieve finger joint angles and hand posture ef-
fectively. Considering that most parts of the hand deform
when grasping, the fingertips of the thumb, index, and
middle finger could not be easily affected, and the corre-
sponding position could represent the contact points on
object at the same time. If the positions of three fingertips
and wrist could be confirmed, the joints of every finger and
the hand posture could be obtained through analysis of
kinematic constraints. .e hand structure is shown in
Figure 2.

In this research, the robot hand designed mainly in-
cludes proximal phalanx, middle phalanx, and distal pha-
lanx, in addition to four types of joint points: MCP
(metacarpophalangeal), PIP (proximal interphalangeal),
DIP (distal interphalangeal), and IP (interphalangeal). .e
relationship is shown in (1) and (2). .e constraints are
necessary because they are the natural relations between
joints, which can make the robot hand similar to the human
hand and achieve better grasping performance.

θDIP ≈
2
3
θPIPθPIP ≈

3
4
θMCP, (1)

θIP ≈
1
2
θMCP. (2)

Constraints also exist between two joints of different
fingers. For example, when bending the index finger at the
MCP, the MCP of the middle finger will bend at the same
time. .e relationship between the index and middle fingers
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when the index finger MCP is flexed is shown in the fol-
lowing equation:

θMCPmiddle
≈
1
5
θMCPindex.

(3)

Besides, to reduce the difficulty of kinematics analysis,
the robot hand will keep only the necessary DoF for grasping
with three fingers. Considering the limited mobility, the
solution will be single and solvable for the fingers and
thumb. .e forward and reverse kinematics can be easily
solved through D-H method with MATLAB and robotics
toolbox. .e fingertips can be achieved by perceiving and
represent the contact points on the object. .e error of

reverse kinematics is evaluated with standard deviation
which is set to be less than 0.1 to ensure the effectiveness of
the new hand tracking method.

1.1.3. Operation Recording Set Establishment. In this re-
search, operation recording set of different representative
objects could ensure that the data set has great applicability.
Unlike the data set with only object images, the operation
recording set could be a solid foundation for further deep
learning and planning, which could make the manipulator
and the robot hand achieve the experience of human op-
eration and finish grasping more similar to human arm
motion and hand grasping gesture.

.e establishment of the recording set mainly includes
two steps: one is recording the human operation, and the
other is operation data processing..e vision system records
the marked point information when a human is operating
and grasping the objects completely. .e recording of the
operation process is shown in Figure 3. In this research, 24
objects were used to ensure the effectiveness of the operation
perceiving, and RGB images were recorded for different
operation types for each object. .e operation recording set
could effectively bring better applicability, as deep learning
could achieve the experience from human operation, which
results in better performance in man-robot interaction in
real applications.

1.1.4. Environment Perceiving and Visual Process. .e en-
vironment perceiving is also important to the intelligent
perceiving process, especially the manipulator. Depth
camera at the top could realize the registration and posi-
tioning of the object at the beginning. However, with the
existence of interference like noise and other factors, the
images and data acquired need a proper visual process to
improve the quality. .e visual process starts with filtering
and top point cloud obtaining. Point cloud filtering is re-
alized through calculating the average distance of all
threshold neighbor points and eliminating the terrible
points. Obtaining the top point cloud is to obtain the highest
z-direction layer of the remaining point cloud as the feature
of the object to reduce the difficulty of registration.

.e registration is realized with coarse registration and
accurate registration. .e coarse registration can make the
actual object be basically matched with the object in the data
set. In this research, FPFH was used, which is realized based
on the feature histogram. .e principle used is the sampling
consistency method. .en, the accurate registration can
make the object and the model accurately registered. In this
research, ICP algorithm was used, which is based on cal-
culating and evaluating the sum of the squares of the Eu-
clidean distance between all corresponding points as in the
following equation:

f(R, T) �
1

NP



NP

i�0
p

i
t − R · p

i
s − T




2
, (4)

p is the corresponding points and N is the total pairs.
Besides, R and T are rotation and translation matrix,

Metacarpal

Proximal phalanx

Middle phalanx

Distal phalanx
DIP

PIP

IP

MCP

Figure 2: Details of the human hand structure.

RGB Camera

Depth Camera

Eyes Tracker

Environment Perceiving

Operation Perceiving

Figure 1: Vision system: the combination of fixed cameras and eye
tracker.
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(c) (d)

(e) (f )

Figure 3: Continued.
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respectively. A confidence threshold is needed for evaluating
the registration, which was set to be higher than 97%. .e
registration is shown in Figure 4.

1.2. Intelligent Planning Process. .e robot hand has a
structure similar to the human one, so it potentially has great
collaboration ability and may even replace human hands in
some specific environments and tasks. .erefore, to realize
collaboration in more scenes and conditions, an intelligent
planning method was proposed in this research, which
includes simple object-based grasping planning and com-
plex task-based operation planning. By adding the trajectory

planning of the manipulator, the intelligent planning system
for the robot could be realized completely..e data obtained
through the perceiving process could be used by the neural
network, and it could get a basic command of human op-
eration, to realize intelligence planning when being given
objects or tasks through the environment perceiving like
humans.

1.2.1. Grasping Region Planning. In this research, grasping
region prediction from RGB images of the object in the
working scene is an important task. .e performance of
grasping is judged by the success rate and error of pose. A
successful grasping process is considered when the object is

(g) (h)

(i) (j)

Figure 3: .e recording of the human operation process. (a–e) Images from RGB cameras. (f–j) Images from the eye tracker.
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truly grasped, held, and moved to realize man-robot in-
teraction tasks. A grasping region rectangle can be described
as follows:

g x, y, h, w, θ , (5)

where x and y describe the center of a rectangle grasping
region; h and w describe its size in terms of height and width;
and θ describes the orientation relative to the horizontal axis
of this image..e example of this representation is shown in
Figure 5(a). .is representation works well in practice as it
expresses the grasping in the coordinate system of this
image. Based on the rectangle grasping region with x, y
position, the z position could be described as the depth and
the distance which is vertical to the image..erefore, if using
two RGB images from different angles could achieve the
depth and distance, the rectangle could be lifted along its
depth to get a 6D grasping region, a bounding box, as shown
in Figure 5(b).

When performing the grasping method on the real
robot, h, w, and d bound the robot hand. Moreover,
compared with traditional six-dimensional grasping based
on point cloud, the grasping box achieves the location and
orientation based on five-dimensional grasping rectangle
and depth, which will reduce the calculation and save a great
deal of time for the neural network to train and learn. .e
CNN for six-dimensional grasping box planning is shown in
Figure 6. .e CNN extracts the global and local features to
plan. For example, if the object is an apple, the global
features give shape information that the object is most likely
to be an apple..erefore, the position of the grasping should
be the circle near its top. Besides, the local features give the
edge, which provides the contact region. Finally, the last fully
connected layers could save the training time greatly and
output the parameters.

A threshold is used to consider the success of grasping
planning. .e rectangle region of grasping is used for
evaluation, and a grasp is considered successful, good, or
correct if the difference between the predicted angle and true

angle is less than 30 degrees and the Jaccard index of the
predicted grasp and true grasp is more than 25%, which is
defined as follows:

J(θ, θ) �

θ ∩ θ




|θ ∪ θ|
, (6)

where θ hat is the predicted grasp and θ is the truth grasp,
which represents the ratio of the overlapping to the total.
For all objects in the data set, the best scored grasp
rectangles using the planning method are selected.
Combined with the end pose of the manipulator, the
grasping gesture can be totally decided. However, even
though planning for the bounding box can solve most
grasping problems, it actually supports the grasping with
gripper. .e planning for a complex and accurate task
needs better flexibility of grasping. .erefore, the finger-
tips position is important information to realize truly
intelligent grasping planning.

1.2.2. Contact Point Planning. Intelligent collaboration has
higher requirements for grasping planning. When humans
grasp objects, the gestures of the hand could be mainly
divided into some certain types, and the ones fitting with
three-finger robot hand are large wrap, medium wrap,
small wrap, adducted thumb, power sphere, tripod, lateral
pinch, and two-finger-thumb precision. A simple CNN was
designed for grasping gesture prediction with object images
input. .e grasping type and the grasping region are both
necessary to realize independent control of each finger.
.erefore, another CNN was proposed in this research. If
the end pose of the manipulator could represent the gesture
of the wrist of the robot hand and the position of the
fingertips could represent the contact points, the pose of
every finger joint can be calculated, hence the intelligent
control of the hand. .e CNN for contact point planning is
shown in Figure 7.

(a) (b)

Figure 4: Registration of the visual process. (a).e object, a ball, perceived in the scene. (b) Registration and positioning with the ball in data set.
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CNN is used to extract the features of the object with
four convolution layers to describe the object combining
with the grasping type. .erefore, if the object is an apple
this time, the global features show that the object could be
an apple and so the basic grasping position is determined.
.e local features give the edge information for the
grasping rectangle planning. With double RGB images
input, the depth can be used to translate the rectangle to
form a grasping box, which could totally limit the
grasping region. Finally, the gesture type based on the
thumb pose type is input to finally decide the accurate
contact points. .e contact points for three fingers could
be calculated as follows:

cpthumb � x −
w

2
cos θ, y +

w

2
sin θ, z +

d

2
 , (7)

cpfinger � x +
w

2
cos θ ±

h

2
sin θ, y −

w

2
sin θ∓

h

2
cos θ, z +

d

2
 ,

(8)

where cp is the contact point position, (x, y, z) is the image
center, and (w, h, d) is the box size. It can be assumed that
high-quality grasps are achieved when the geometric center
of the box or the rectangle which is formed with three
fingertips is located near the true geometric center of the

(x, y)

h
w θ

(a)

(x, y)

w
h

d

θ

(b)

Figure 5: A grasping representation with location, size, and orientation. (a) Grasping rectangle. (b) Bounding box.
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Figure 6: CNN structure for six-dimensional grasping box planning.
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object. .erefore, we assign the geometric center score to
describe the distance from the grasping points related to the
geometric center of the object, thus evaluating the quality of
the contact points as follows:

cgc �
dmax − d

dmax − dmin
, (9)

where cgc is the geometric center score, d is the distance from
the center of grasping points to the geometric center of the
object, and dmax and dmin are the maximum and minimum
distance between any grasping point center planned and the
corresponding object geometric center. .e error of
grasping point planning is evaluated with MSE which is set
to be less than 2.5, and the success rate is set to be higher than
85% to ensure the accuracy and effectiveness of the new
CNN proposed.

In real life, when dealing with a cup, the collaboration is
not only grasping the cup, but moving to the human, re-
moving the closure, or pouring out, which requires the high
complexity and intelligence of robot. .is CNN can effec-
tively realize the accurate grasping task with independent
finger controlling. When the object in its scene is perceived,
classified, and positioned with the vision system, the
grasping type and grasping region on a cup will be planned if
the object matches the data set well. .e grasping will be
realized, and the manipulator could finish the task and
realize man-robot interaction, thus achieving higher intel-
ligence to the robot.

1.2.3. Manipulator Trajectory Planning. .e trajectory
planning of the manipulator is another part of the planning
in this research. Traditional trajectory planning methods
mainly solve the joint angle of a manipulator from the
starting pose to the end pose through reverse kinematics.
However, the reverse solution of multi-degree-of-freedom

manipulator like 7-DoF manipulator is uncertain and could
not conform to the optimal trajectory.

.e operation recording set has been established during
the perceiving process, which could record the operation
process, which could be used for the whole trajectory per-
ceiving. .e marked information of the hand in each image
could be used to improve the trajectory planning. For the 7-
DoF manipulator, it is more efficient to plan for the end
pose. In this research, the intelligent trajectory planning
method was combining RRT with interpolation as the
records could make it much more convenient to interpolate
points and lead the manipulator to move as a human arm.
.e flow chart of the interpolation with RRT is shown in
Figure 8.

To estimate the quality during the trajectory planning of
the manipulator, the end pose of the manipulator is used to
check the pose error. .e pose can be represented by a 4× 4
matrix P� [R, t], where R is a rotation matrix and t is a
translation vector. Based on the forward and reverse kine-
matics of the 7-DoF manipulator, the relationship of the
joint angle and end pose can be used to correct the trajectory
and evaluate the performance as follows:

R
error

� R
T
R
ref

, (10)

t
error

� t
ref

− t, (11)

error � t
error


2

+ ωerror

2
. (12)

.e error is dependent on the translation vector t and
angle vector ω from the rotation matrix R. .e error of
trajectory planning is set to be less than 2.5%, and the ef-
ficiency is evaluated with the trajectory length and planning
time compared to the traditional RRT to ensure higher
accuracy and efficiency of the improved RRTproposed. .e
error of the trajectory planning is important as the grasping
planning needs the accurate end pose of the manipulator or
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Max Pooling

128

128
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Input3
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Figure 7: CNN structure for three-contact-point planning.
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the success rate will be uncontrollable and meaningless. .e
performance of trajectory planning could improve the
quality of intelligent planning process and the ability of
man-robot interaction for the collaborative robot.

2. Results and Discussion

In this research, IPPS was verified in terms of the perceiving
process, the planning process, and the whole system ap-
plication to the robot. .e verification was composed of
simulations and experiments in a real environment. .e
simulation platform used in the research was MATLAB..e
industrial computer was configured as NVIDIA RTX3080
and Intel Core i9-11800H @ 2.3GHz, and the memory was
32GB. .e experiments in the real environment were re-
alized based on the hardware system including SCR5 ma-
nipulator and Mech III robot hand. Xbox One Kinect
camera, Intel RealSense D415, and Microsoft HoloLens 2
were used for perceiving. .e experiments comprehensively
ensure the effectiveness and intelligence of the IPPS for the
collaborative robot.

2.1. Intelligent Perceiving Process. In this research, the vision
system was built up for intelligent perceiving..e perceiving
process is not only used to perceive the environment to
finish the tasks but also to perceive and record the objects as
well as the operation to establish the recording set for deep
learning and intelligent planning. Actually, the intelligence
of IPPS is mainly based on a well-designed data set with
different types of objects and some corresponding opera-
tions in daily life. In this research, the images of objects and
operation were recorded and marked information was
stored, thus realizing further intelligent planning. Moreover,
the perceiving of the operation is important for manipulator
trajectory planning. .e visual process of the perceiving
process influences a lot the quality and accuracy. .e ef-
fectiveness and rationalization of the perceiving method and
the recording set establishment as well as the stability and
accuracy of the marking and tracking method were tested.
Besides, the accuracy and stability of the visual process were
tested to evaluate the environment perceiving.

2.1.1. Vision System for Perceiving. .e perceiving process is
realized based on a well-designed vision system. .e per-
ceiving of human hand operation is one of the main parts of
perceiving as well as the starting point of IPPS. In this re-
search, the double fixed RGB camera group and a tracking
vision as an eye tracker worked together as the new vision
system of operation perceiving, as shown in Figure 9(a). .e
environment perceiving for the application was realized by
the combination of the depth camera on the top and two
RGB cameras in front of the working scene, as shown in
Figure 9(b). .e depth camera could realize registration and
positioning to trigger the whole process and reduce the use
of deep learning. Moreover, the recording could be of great
importance to the trajectory planning.

When realizing the application of IPPS to the robot and
manipulator, the environment perceiving was realized first
with two steps. First, the depth camera perceives the

End

Perform collision detection
and delete the edge 

Start

Generate random points
around the origin

Find the nearest interpolation
point in the tree

Connect random and
interpolation points

Compare new trajectory cost
with the origin RRT

Lower

Yes

Travel all optimized
interpolation points

No

Figure 8: Flow chart of the improved RRT based on interpolation.
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environment first to match the object and get the position
information from the visual process. If the object was
matched, the RGB cameras would perceive the environment
and get the accurate feature and pose information for deep
learning. .e environment perceiving is shown in Figure 10.

In the research, the real environment with a working
scene like a table, with many daily objects at different poses
on it, could be messy and difficult to perceive. .e combined
camera system could make it more comprehensive to per-
ceive the scene and get more information. A table was placed
with different combinations of several objects to build up
different kinds of daily scene of the table. .e well prepared
and designed objects’ kind and working scene could greatly
influence the quality and applicability of the system.

2.1.2. Hand Tracking andMarking. Tracking andmarking of
the hand are crucial for recording sets. In this research, the
effectiveness of the new method of hand tracking and finger
joint angle achieving was tested and verified. .ree different
colored tapes in red, yellow, and blue were tied on the
thumb, index, and middle fingertips, respectively, as shown
in Figure 11(a). In this research, the robot hand was designed
based on the proximal phalanx, middle phalanx, and distal
phalanx with four joint points: MCP, PIP, DIP, and IP, as
shown in Figure 11(b).

.e joint angles of three fingers were calculated based on
the kinematic constraints relationship, and the reverse ki-
nematics was realized with MATLAB. .ere is only one
solution for the thumb as it is a 3R mechanism. However,
there are two solutions for the index and middle finger as
they are 4R mechanism and the mobility is 1. .e optimal
solution was the one with positive angle change for DIP and
IP. .e hand posture calculation was tested with 4 grasping
types, respectively, and 5 tests each with the manipulator
reaching the grasping point. .e results of reverse kine-
matics tests are shown in Table 1. It could be seen that the
solutions obey the kinematic relationship and effectively

finish grasping with a standard deviation of joint angles less
than 0.05. .e stability and accuracy of kinematics could
ensure the precise grasping as well as the application value of
the recording set.

2.1.3. Visual Process. .e visual process for intelligent
perceiving is an important step for the whole system. .e
object data set in this research was designed with the top
layer model perceived from the depth camera, as a vision
from the top could set up a model with less data than the
front vision system, which could effectively reduce the
calculation for registration..e registration of the object had
two steps: first coarse registration based on FPFH and then
use of ICP algorithm to modify and finish the accurate
registration..e registration performance was tested with 22
objects in this research, and the accuracy of translation and
rotation and confidence of registration were used for
evaluation. .e results are shown in Figure 12.

It shows that the accuracy of registration is 98.85% on
average, and the confidence of registration is 99.45% on
average, which could effectively ensure the quality of the
visual process. Objects without a typical top layer have lower
registration confidence and accuracy because of the char-
acteristic of depth camera. For example, when matching an
object such as a cup in the scene, the registration with other
objects such as metal can and small bowl could also exceed
the confidence threshold to make a confusion. .us, two-
step registration is needed to realize the better performance
of environment perceiving. Based on the tests for the objects,
the accuracy and confidence are enough for the intelligence
requirements and could greatly support the planning pro-
cess and improve the performance of the IPPS.

2.2. Intelligent Collaboration Planning. .e new intelligent
planning method proposed aimed at achieving better col-
laboration ability through realizing higher intelligence of
robot. In this research, the performance of the new

(a) (b)

Figure 9: Vision system for operation and environment perceiving. (a) Operation perceiving camera system. (b) Environment perceiving
camera system.
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intelligent planning method for robot hand based on deep
learning and trajectory planning for manipulator based on
the combination of RRT and interpolation were tested. .e
experiments mainly checked the effectiveness of gesture type
prediction, and the accuracy and stability of grasping box
and grasping point prediction. Besides, the accuracy and
efficiency of trajectory planning were also tested. Finally, the
performance of the intelligent planning process and the IPPS
was tested in a real environment. .e simulation and ex-
periments with the robot could ensure the effectiveness and
stability of IPPS and show the performance and value of the
intelligent system, which could realize intelligence per-
ceiving and planning as well as man-robot interaction for
collaborative robot.

2.2.1. Grasping Gesture Prediction. .e gestures of grasping
were divided into eight types for the three-finger robot hand.
Deep learning was used to plan for the grasping gestures. A
CNN neural network was designed with the object RGB
images from the perceiving process as the input and the
grasping type as the output. Based on deep learning with the
network, the performance of grasping gesture prediction
with different objects was tested with five selected objects:
noddle box, tea cup, coke bottle, tape, and apple..e success
rate and speed are shown in Table 2.

.e speeds shown in this table were the average of the
prediction speed of every test for each object selected. .e
success rate here is to evaluate the matching of the predicted
type and the object. Object 3, which is the coke bottle, is the
one that leads to the best results in both the success rate and
speed. However, object 2, which is the tea cup, has the worst

performance, and this condition suggests that the number of
local features and the complexity of global features will
influence the CNN extracting quality for prediction and thus
the grasping gesture. Based on the grasping gesture, the
robot can solve simple grasping problems and even similar
objects with the same features as the objects in the data set.

2.2.2. Grasping Position Prediction. .e grasping position
prediction of the object is important for intelligent planning,
which could be evaluated with the success rate and error of
position..emethod proposed in this research was based on
deep learning. .e input of the RGB images could realize a
rectangle grasping region prediction and supply the infor-
mation of distance, position, and thus depth. .e depth was
then combined with the predicted rectangle to find a
bounding box, which bounded and limited the robot hand
grasping position, and realize intelligent grasping.

.e grasping box predicted for the objects and combi-
nations is presented in Figure 13, which directly shows the
stability and effectiveness of the prediction method adapting
to different shapes, sizes, and poses. It can also be seen that
some special cases showmore of this network..e objects in
Figures 13(a) and 13(c) are easier for the network to predict
as they are mostly standing in the scene with a proper
thickness. Most objects like these allow a good grasping
prediction. .e objects in Figures 13(d) and 13(e) are laid,
which makes it a bit hard to predict the box. .e tea cup in
Figure 13(b) presents a higher challenge, as it contains
several features leading to multiple grasping positions. It
could be noted that the CNN for grasping region prediction
has the ability to make intelligent choices. .e performance

(a) (b)

Figure 10: Environment perceiving vision system for play room table. (a) Perceiving with depth cameras. (b) Perceiving with RGB cameras.
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of the CNN was tested with three combinations as shown in
Figure 13(f ). It could be seen that the presence of multiple
objects did not influence the stability of the network.

.e threshold used to evaluate the success of grasping
position planning was the error of the bounding box with the
angle and the rectangle relation, as the depth is accurate

(a) (b)

Figure 11: Marked hand and robot hand. (a) Hand with marked fingertips. (b) .ree-finger robot hand.

Table 1: Repeated reverse kinematics accuracy tests on large wrap for index finger (first 4 columns) and thumb (last 3 columns).

Joint Test 1 Test 2 Test 3 Test 4 Test 5 Standard deviation
J0 (degree) 30.038 30.052 30.009 30.088 30.016 0.028238
MCP (degree) 30.057 30.151 30.098 30.139 30.110 0.033075
PIP (degree) 45.120 45.108 45.085 45.177 45.046 0.043069
DIP (degree) 45.072 45.057 45.004 45.105 45.095 0.035556
J0 (degree) 179.984 180.081 180.014 180.041 179.990 0.035704
MCP (degree) 30.113 30.018 30.101 30.098 30.052 0.035825
IP (degree) 75.037 75.012 75.022 75.079 75.031 0.023007
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enough based on the binocular mechanism. Five selected
objects were used to test the performance of the network in
terms of accuracy, speed, and success rate. .e best grasp

rectangle using the planning method was considered, and
the results are shown in Table 3.

.e performance is tested with a success rate based on
the threshold, and the error of the prediction is based on the
successful grasping. .erefore, the high success rate could
also support the evaluation of the prediction performance.
Object 3 shows the best results in the success rate and error.
Object 1 leads the best speed performance based on its
obvious depth. Object 2 shows the lowest speed as well as the
highest error, which could illustrate the influence of the
shape complexity and task combination on the CNN
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Figure 12: Registration tests with the objects data set for visual process. (a) Confidence of registration. (b) Accuracy of registration.

Table 2: Performance of grasping gesture prediction with CNN.

Object
1

Object
2 Object 3 Object 4 Object 5

Speed (fps) 20.15 18.33 26.22 18.45 25.12
Success rate (%) 91.5 88.4 93.1 89.0 92.7
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(a) (b)

(c) (d)

(e) (f )

Figure 13: Grasp position prediction of single objects and combinations. (a–e) Object grasping position. (f ) Combination grasping position.

Table 3: Performance of grasping position prediction with CNN.

Object 1 Object 2 Object 3 Object 4 Object 5
Error 1.754 2.175 1.540 1.995 1.701
Speed (fps) 55.31 48.09 54.85 50.79 52.70
Success rate (%) 91.4 86.8 92.5 86.6 90.0
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performance. .e better grasping position prediction per-
formance could make the planning of grasping points much
easier and effectively improve the accuracy of the whole
grasping planning.

2.2.3. Grasping Point Planning. Independent control of each
finger is necessary for intelligent grasping planning, to re-
duce the calculation pressure for deep learning as there are
too many parameters for hand pose information. .erefore,
the grasping points or the contact points on the object are
important to solve the control of three fingers. .e CNN
proposed in this research could realize contact point
planning as shown in Figure 14.

In Figure 14, eight prediction examples are shown, in-
cluding the five selected objects and three combinations to
show the effectiveness of the grasping point prediction. .e
objects contain complex features and different sizes and
poses, which can ensure the applicability in real scenes. .e
tea cup still poses a challenge..e CNN predicts the gestures
required for grasping the cup and moving it, so the grasping
points are proper. If the task changes to grasping the handle,
the prediction will be much harder. Totally, the grasping
point prediction could effectively realize intelligent grasp
planning. .e performance was also tested with three
combinations as shown in Figures 14(f )–14(h), which en-
sures the stability and effectiveness of the method.

.e quality evaluation of grasping point prediction was
based on the error of the position. Assuming that the mass of
the object is uniformly distributed for most daily objects, a
bottle of water will be a considerable problem..erefore, the
difference between the geometric center of the object and the
center of three grasping points was used. Besides, the success
rate was based on whether the predicted three grasping
points could truly realize the grasping. .e five selected
objects were used to test the performance of the network in
terms of accuracy, speed, and success rate as shown in
Table 4.

It could be seen from the table that object 3 leads in the
speed, success rate, and error, which ensures great intelligence
and accuracy for grasping planning. Objects 1 and 5 also
perform well. Objects 2 and 4 have a bit larger error and lower
success rate as the complex shape influences the grasping
position prediction. .e accuracy and the success rate could
prove that the grasping planning process could effectively and
accurately realize intelligent planning for the robot hand.When
dealing with a cup, the collaboration is not only grasping the
cup, but moving to the human, removing the closure, and
pouring out as well. .ese tasks are combined with grasping
points and object features. If the task is taking the cup to the
human or pouring the water, the grasping points need to be
planned. However, features like body and handle can realize
grasping, moving, and pouring. Decision and planning lead to
high complexity of intelligence and thus influence the re-
quirement for the ability of the CNN.

2.2.4. Trajectory Planning. .e trajectory planning of the
manipulator is the final step of intelligent planning. To solve
the reverse kinematics problem of 7-DoF manipulator, the

new trajectory planning method was proposed to combine
interpolation with RRT. .is method could plan for the
trajectory similarly to human arm operation with less time
and better end pose translation. .e tests were set up for five
selected models beginning at the origin pose, where all joint
angles of the manipulator were zero..e objects were placed
in the working space of the manipulator and perceived with
the vision system to get the information, which would be the
final pose or the desired pose of the manipulator. .e dif-
ferences between the achieved pose through planning and
the desired pose by perceiving are presented in Table 5.

.e accuracy of position and orientation shows the ability
of the trajectory planning method to realize the intelligent
planning for the manipulator. .e effectiveness of trajectory
planning mainly relies on good modeling and effective oper-
ation recording set as well as well-designed vision system. .e
trajectory planning method could obtain an accurate position
with less than ten-millimeter error and less than one-degree
orientation error. .e performance of the trajectory planning
method was also tested in 3D plots with occlusion in the scene
with MATLAB, as shown in Figure 15.

It could be seen that the trajectory planning performs
well for all objects with a proper motion path in 3D space
because of the interpolation points from the operation re-
cording set. It is obvious that the tree is more similar to a
direct motion to the objects, especially when it is getting
closer as the interpolation points were mainly set near the
object..e RRTalgorithm in this research also designed with
collision detection and obstacle avoidance further improves
the ability of trajectory planning as only moving the ma-
nipulator to the final point is meaningless for an intelligent
collaborative robot. .e accuracy, efficiency, and speed of
the improved RRT compared with tradition RRT are shown
in Table 6.

.e interpolation affects the searching step length of
RRT, thus influencing the efficiency and quality of planning.
It could be clearly seen that, compared with traditional RRT,
the improved RRT effectively reduces the trajectory length
and planning error, especially the planning time, which
could greatly improve the accuracy and efficiency of the
trajectory planning. .e performance quality of trajectory
planning is so important that the grasping point planning is
based on the accurate end pose of the manipulator and the
success rate of IPPS application to real robot needs high
quality of intelligent planning.

2.3. Experiments in the Real Environment. Finally, the per-
formance of IPPS application to the collaborative robot was
tested in a real environment. An object and its scene as well
as the task were given; the intelligent perceiving process with
the vision system started and the visual process including
registration and positioning were finished. .e central
computer planned the trajectory of the manipulator with
improved RRT through interpolation. An operation similar
to human motion was predicted, and the manipulator was
moved to the predicted pose. At the same time, the RGB
images perceived were input to the CNN to plan the grasping
points. TCP/IP realized the communication between the
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(a) (b)

(c) (d)

(e) (f )

Figure 14: Continued.
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(g) (h)

Figure 14: Grasping point prediction of single selected objects and combinations. (a–e) Selected object grasping position. (f–h) Com-
bination grasping position.

Table 4: Performance of grasping point prediction with CNN.

Object 1 Object 2 Object 3 Object 4 Object 5
Error 2.201 2.891 1.885 2.405 2.074
Speed (fps) 43.67 40.55 50.20 41.86 47.04
Success rate (%) 90.0 80.0 95.0 85.0 90.0

Table 5: Accuracy of trajectory planning with improved RRT.

Error x (mm) y (mm) z (mm) α (°) β (°) c (°)
Object 1 3.3 9.5 18.8 0.75 0.21 0.33
Object 2 31.1 40.5 3.4 1.84 0.57 1.88
Object 3 1.2 2.3 3.9 0.20 0.45 0.27
Object 4 8.4 5.0 17.3 0.81 0.19 1.11
Object 5 1.7 3.0 2.5 0.35 0.24 0.71
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Figure 15: Performance of improved RRT with the trajectory planning result and the trajectory only. (a, b) Object 1 trajectory planning.
(c, d) Object 2 trajectory planning. (e, f ) Object 3 trajectory planning. (g, h) Object 4 trajectory planning. (i, j) Object 5 trajectory planning.

Table 6: Results of improved RRT (first three columns) compared with traditional RRT (last three columns).

Object 1 Object 2 Object 3 Object 4 Object 5
Error (%) 1.1 2.9 0.4 0.7 0.3
Time (s) 6.08 6.38 5.74 6.45 6.50
Length (mm) 679.5 691.1 668.5 693.0 695.1
Error (%) 2.4 3.7 2.1 1.5 1.7
Time (s) 22.15 24.47 20.87 28.90 30.68
Length (mm) 699.0 707.4 701.5 715.9 709.4

(a) (b)

Figure 16: Continued.
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Figure 16: Continued.
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Figure 16: Continued.
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cameras, the computer, and the robot hand..e force sensor
on the robot hand received the message of grasping, and if it
succeeded, the computer would control the manipulator to
move to the man-robot interaction position and finish the
task. Finally, the manipulator and the robot hand will return
to the origin pose. .e process of IPPS application in real
environment is shown in Figure 16.

.e performance of IPPS was tested with repeated ex-
periments of different objects and different combinations; in
particular, several groups of unknown objects were set to test
the intelligence of the system. To ensure the effectiveness and
stability of IPPS, 100 grasping attempts were considered for
14 representative single objects, 3 combinations, and 3

groups of unknown objects. .e result of the experiments is
shown in Table 7.

.ese results indicate a success rate of 87%; they contain
thirteen failure cases with six of them due to neural network
grasping prediction and seven of them due to trajectory
planning. .e excellent success rate could verify the stability
and effectiveness of IPPS. .e unknown object groups could
evaluate the adaptation of the IPPS based on learning. It
could be seen that the collaborative robot with IPPS suc-
cessfully realizes the process of intelligent environment
perceiving as well as trajectory and grasping planning. In
addition, the performance of man-robot interaction is well
enough for the intelligence requirements. IPPS has been

(o)

Figure 16: Application of IPPS for an unknown bottle in a real environment. (a–d) Trajectory planning. (d–f ) Grasping planning.
(g–j) Finishing task. (j–m) Man-robot interaction. (m–o) Moving to origin.

Table 7: Results of IPPS experiments with objects and combinations in the real environment.

Target object Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5
Noodle box ✓ ✓ ✓ ✓ ✓
Coke bottle ✓ ✓ ✓ ✓ ✓
Metal can ✓ ✓ ✓ ✓ ✓
Chips box ✓ ✓ ✓ ✓ ✓
Tea cup ✓ ✓ ✓ ✓ 7

Coffee bag ✓ 7 ✓ ✓ ✓
Apple ✓ ✓ ✓ ✓ ✓
Banana ✓ ✓ ✓ ✓ ✓
Mouse ✓ ✓ ✓ 7 ✓
Stapler ✓ ✓ ✓ ✓ ✓
Tape ✓ ✓ 7 7 ✓
Hammer 7 ✓ ✓ ✓ 7

Bowl ✓ ✓ ✓ ✓ ✓
Tissue ✓ 7 ✓ ✓ ✓
Unknown box ✓ ✓ ✓ ✓ ✓
Unknown bottle ✓ ✓ ✓ ✓ ✓
Unknown bag ✓ ✓ 7 ✓ ✓
Combination 1 ✓ 7 ✓ ✓ ✓
Combination 2 7 ✓ ✓ ✓ ✓
Combination 3 7 ✓ 7 ✓ ✓
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fully verified with simulations and experiments in real en-
vironment, which has great application prospects for col-
laborative robots in the future.

3. Conclusions

.is paper proposes an intelligent perceiving and planning
system based on neural network, which could effectively
realize the intelligence of collaborative robot. For the per-
ceiving process, a vision system was built; a new method of
hand tracking through marking the fingertips was proposed,
and its effectiveness was tested with the accuracy of reverse
kinematics; and an operation recording set was established
to enhance collaboration ability through learning from the
experience of human and achieving intelligence. .e
designed visual process was tested with objects to ensure the
accuracy and stability of the environment perceiving. .e
planning process is based on deep learning. .e new
grasping planning method with CNN was proposed to find
the contact points and tested, which could realize accurate
and efficient planning for known and unknown objects to
ensure the quality of intelligence planning for the robot
hand. .e new trajectory planning method for manipulator,
which combined interpolation with RRT algorithm, was
proposed. .e tests show a reduction in planning length and
time as well as the pose error which could supply higher
accuracy and efficiency to the planning process. Finally, IPPS
was tested in a real environment and could successfully
realize intelligent perceiving and planning with high effi-
ciency and stability that could meet the requirements of
intelligence. IPPS could influence the popularity of collab-
orative robots in the future. However, the working scene, the
base of manipulator, and the man-robot interaction position
are motionless in this research. In future research, a ma-
nipulator with moving base and human real-time perceiving
for more complex tasks and better interaction needs to be
paid attention to. Adding an AGV under the robot and a
camera or a sensor on the robot hand could be an effective
approach.
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