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ABSTRACT A novel enhanced quantum particle swarm optimization algorithm for IIoT deployments is 

proposed. It provides enhanced connectivity, reduced energy consumption, and optimized delay. We consider 

heterogeneous scenarios of network topologies for optimal path configuration by exploring and exploiting 

the hunts. It uses multiple inputs from heterogeneous IIoT into quantum and bio-inspired optimization 

techniques. The differential evolution operator and crossover operations are used for information interchange 

among the nodes to avoid trapping into local minima. The different topology scenarios are simulated to study 

the impact of p-degrees of connectivity concerning objective functions' evaluation and compared with 

existing techniques. The results demonstrate that our algorithm consumes a minimum of 30.3% lesser energy. 

Furthermore, it offers improved searching precision and convergence swiftness in the possible search space 

for p-disjoint paths and reduces the delay by a minimum of 26.7%. Our algorithm also improves the 

throughput by a minimum of 29.87% since the quantum swarm inclines to generate additional diverse paths 

from multiple source nodes to the gateway. 

INDEX TERMS Connectivity, energy consumption, Industrial Internet of Things, optimization, PSO, 

QPSO, route configuration, throughput.

I. INTRODUCTION 

With the advent of technologies for the Internet of Things 

(IoT), machine-to-machine communication, and the related 

ecosystem, a new paradigm of Industrial IoT (IIoT) has 

recently emerged. As per Forbes [1], it is forecasted that by 

2025, more than 75 billion IoT devices will be connected to 

the Internet, catering to the large number of applications, 

including industrial, environmental, medical, and others. The 

IIoT contains intelligent machines, robots, equipment, and 

tools with multiple IoT sensors to monitor and control the 

required parameters. The data received at the centralized 

controller or server is analyzed to enhance the efficiency of 

industrial systems [2]. The IIoT may also comprise anything 

related to industrial sectors such as factories, factory floors, 

warehouses, shipyards, locomotives, trailers, cargo planes, 

and similar. It can be deployed in diverse applications of 

manufacturing, production, supply chain, quality assurance, 

predictive maintenance and control, optimization of resources, 

and others. The emerging fields of artificial intelligence, Big 

data, and Blockchain, there are huge prospects for IIoT 

deployments to achieve the emerging paradigms of Factory as 

a Service (FaaS), Machine as a Service (MaaS), Equipment as 

a Service (EaaS), and others. Cloud-based data processing, 

analytics, and storage may not have the scalability required for 

IIoT as a huge amount of sensor data can incorporate the 

latency and pose storing challenges. IIoT solutions also 

require energy efficient and resilient operations, enhanced 

connectivity, co-existence, interoperability, and data security. 

Hence in the recent past, the researchers have started working 

on hybridized data processing at local and cloud levels to 

reduce the network load. Edge and fog computing are used for 
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distributing the required information and intelligence to the 

different layers in the network. 

Most of the sensing applications require wireless access to 

the Internet and connectivity to the cloud. IoT is dependent on 

diverse communication technologies, viz. Wi-Fi, ZigBee, 

Bluetooth, RFID, Cellular, LPWANs, 5G, and others. It is 

employed in distinct networks and layered structures where 

connectivity is the key issue. When these technologies are 

used in an integrated manner in industrial scenarios, 

connectivity between sensing devices and Internet servers, 

service reliability, and productivity improves. These multi-

technology hybrid networks are particularly relevant for 

complex applications which require different IoT protocols 

[2]. 

The coordinator or gateway communicates the received 

data to the cloud via the core network. The network servers 

and related entities perform device management roles related 

to the registration, security, allocating the resources, traffic 

management [2]. Most of the existing approaches are 

considered for homogeneous network scenarios. However, 

some approaches based on heterogeneity have the challenges 

of energy efficiency, connectivity among the networks, and 

time criticality. One of the main objectives for heterogeneous 

sensor node distribution in the multilevel IIoT framework is to 

guarantee sensor nodes' connectivity in the supervised region 

over multiple hops with minimum delay and optimized energy 

consumption. Sensor nodes are considered at the lowest layer, 

whereas fog nodes and gateway are employed at the higher 

layer. Though the sensor nodes have the capabilities to 

communicate with their neighbors directly, they have to be 

furnished with more complex processors that are costly and 

uneconomical. Therefore, it is crucial to examine accessibility 

and connectivity for low complex sensor nodes for optimized 

and energy efficient network topology for IIoT applications. 

In this work, a unique enhanced quantum particle swarm 

optimization (EQPSO) algorithm is designed for IIoT 

applications with enhanced connectivity, lesser delay, and 

energy consumption. The main objectives of our research are 

to combine the network topologies for exploitation and 

converge in the direction of optimal route configuration and 

maintain diversity during the collaboration of sensor nodes. 

We considered a multi-layered heterogeneous network 

structure for the IIoT environment. The framework includes 

low complex sensor nodes and fog nodes with comparatively 

robust computing and storage abilities. The novelty of our 

work is in employing multiple inputs from heterogeneous IIoT 

using a hybrid approach based on quantum and bio-inspired 

optimization techniques for optimal routing. It achieves 

energy efficiency, reliability, and scalability for wide-range 

IIoT systems. We used robust optimization techniques to 

interchanges the information efficiently for maintaining multi-

network topologies and attains the best objective function for 

the chosen connecting paths. The differential evolution 

operator is used to avoid the group moving in small ranges and 

dropping into local optima, which improves global 

searchability. We have also incorporated crossover operator 

with quantum particle swarm optimization. It promotes 

knowledge sharing among the individual particles of a group. 

The structure of the papers is organized as: Section II covers 

the related work to the node deployment. Section III focuses 

on the QPSO, whereas Section IV presents the development 

of enhanced QPSO. Section V presents the framework for the 

proposed optimized IIoT deployment considering Quality of 

Service (QoS) parameters such as energy consumption, delay 

constraints, and throughput. Finally, section VI discusses 

results and performance evaluation, whereas the paper is 

concluded in Section VII. 

II.  RELATED WORK 

The industrial IoT (IIoT) applications in different industries 

aim to enhance the functioning of processes by optimizing 

coverage, connectivity, energy efficiency, fault tolerance, 

and reliability issues in IIoT [3 - 7]. Chouikhi et al.  [6] have 

analyzed fault tolerance approaches for the coverage and 

connectivity improvement based on the sleep schedule, relay 

node deployment, and node repositioning [7]. Meng et al.  

[8] have emphasized the key drawbacks of homogeneous 

communication between the nodes for IIoT and proposed a 

relationship technique to improve auto-configuration by 

concentrating on connectivity. Zero message quality-based 

communication into the industrial systems is proposed in [9] 

for different sensing applications. The approach improves 

the reliability, but it is not suitable for a wide range IIoT 

framework as the sensor nodes lying close to the gateway 

generally consume more energy and drains earlier or may 

face temporal death as they are involved in forwarding 

packets received from the large number of end nodes, and 

ultimately affect the network's lifetime. The temporal death 

model for energy harvesting of resources proposed in [10, 

11] is based on a 3D stochastic method that uses the buffer 

queue and packet blocking probability to define the dynamic 

strategy of energy harvesting. Topology control is 

considered as a technique to progress and maintain 

connectivity [12]. Several topology control techniques are 

based on accessibility, accuracy [13, 14], number of devices 

[15], the influence of transmission range [16], duty cycle 

management [17], and clustering for data aggregation [18]. 

Ghorpade et al.  [19] have proposed a topology control 

algorithm based on binary grey wolf optimization to produce 

the reduced topology by preserving network connectivity. It 

uses the active and inactive sensor nodes' schedule in binary 

format. In addition, it introduces a fitness function to 

minimize the number of active nodes for achieving the target 

of lifetime expansion of the nodes and network [19].  

Fang et al.  [20] presented an Integrated Information 

System (IIS) based IoT framework for environmental 

monitoring, categorized in the four layers: perception, 

network, middleware, and application. Yang et al.  [21] 

proposed a direct and greedy search algorithm for deploying 

the minimum number of sensor nodes while ensuring 
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energy-efficient coverage and connectivity. A single-phase 

manifold initiator technique [22] has been offered for 

determining the link cover set to fulfill the coverage and 

connectivity necessities by calculating a connected set. 

However, both of the above approaches fall into local 

maxima due to their inherited greedy behavior. To avoid 

local maxima in greedy algorithms, a nature-inspired genetic 

algorithm [23] decreases the number of sensor nodes in a 

network sensor area with obstacles [24]. 

Various metaheuristic techniques have been proposed to 

find the optimal solution for coverage and connectivity 

issues in the IIoT framework [25]. To avoid early 

convergence of swarm, a concept of diversity is proposed in 

[26, 27]. Lower and upper bounds of the achievable region 

are set for ensuring the better search ability to get optimum 

solutions for real-time applications. The duty cycle approach 

is used for scheduling the smallest set of sensor nodes into 

active mode [28]. In addition to these, other approaches are 

based on localization [29], geometry [30], and hybridization 

of direct information methods [31] to solve k-connectivity 

issues in wireless sensor networks. 

Rebai et al.  [32] have proposed a combination of local 

search genetic algorithm to decrease the number of 

positioned sensor nodes that attain maximum coverage for a 

2D sensing area and forms a connected network [33]. Li et 

al.  [34] have developed quantum ant colony multiobjective 

routing for monitoring complex manufacturing 

environments by considering the nodes' energy 

consumption, transmission delay, and network load-

balancing degree. A range-free localization algorithm based 

on quantum particle swarm optimization (QPSO) is proposed 

to estimate the distance among the nodes for the random and 

uniform deployment of nodes in heterogeneous wireless 

sensor networks [35]. 

However, most of the existing node deployment 

approaches are based on a basic disk coverage model, which 

is unrealistic for implementing in actual industrial 

environments. Moreover, in these approaches' spatial 

relationship of the supervised physical characteristics, sensor 

nodes' association, and network fault tolerance are ignored. 

As a result, they fail to attain the global requirements of 

optimization. Hence, there is a scope to improve the 

performance of the metaheuristic algorithms because of the 

slower convergence rate for optimal solutions. It can be 

achieved by altering and enhancing the exploration and 

exploitation abilities of the algorithms [36]. To address these 

issues, we propose an enhanced PSO (EQPSO) algorithm for 

IIoT based on quantum PSO, differential evolution operator 

and crossover operator. 

III.  QUANTUM PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) proposed by Kennedy et 

al.  [37] is based on the concept of swarm social behavior, 

which results in a set of particles that spread into the search 

space. PSO starts with the initial swarm population called 

particles which explore arbitrary position 𝑝𝑙𝑚 and velocity 

𝑣𝑙𝑚 in m-dimensional hyperspace for the particle. Every 

particle is determined using an objective function 

𝑓(𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑚) where 𝑓: 𝑅𝑚 → 𝑅, represents the 

number of sensors/particles exposed by other nearby 

sensors/particles. For position update, each sensor node will 

consider a certain number of other sensor nodes in its 

vicinity. PSO attempts to attain maximal coverage 

determined by the network connectivity [29]. PSO guides 

each particle for the position updates in the search space by 

considering some aspects of the global solution and best 

fitness locations with one of the whole members of the 

swarm. The position update process is continued until the 

desirable global best solution is attained or performed the 

fixed number of iterations [36].  

To determine the next position in each iteration, velocity 

and positions are updated using (1) and (2), respectively. 

𝑉𝑙𝑚
𝑡+1 = 𝑉𝑙𝑚

𝑡 + 𝑎1𝑏1(𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 − 𝑃𝑙𝑚

𝑡 )

+ 𝑎2𝑏2(𝑔𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 − 𝑃𝑙𝑚

𝑡 )                      (1) 

𝑃𝑙𝑚
𝑡+1 = 𝑃𝑙𝑚

𝑡 + 𝑉𝑙𝑚
𝑡+1                                                                   (2) 

l =  1, 2, 3, … , N;  m =  1, 2, 3, … , M. 𝑙, 𝑚 represents an 

index of the sensor. 𝑃𝑙𝑚
𝑡 and 𝑉𝑙𝑚

𝑡  are the mth component of the 

position and velocity of the 𝑙𝑡ℎ sensor in 𝑡𝑡ℎ iteration. 𝑏1 and 

𝑏2 are the random numbers such that 0 ≤ 𝑏1, 𝑏2 ≤ 1. 

𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡  and 𝑔𝑏𝑒𝑠𝑡𝑙𝑚

𝑡  are the best and global best positions 

experienced by the lth sensor and whole swarm topology 

[29]. 𝑎1 and 𝑎2 are confidence particles as in perception and 

community behavior. In the process of estimation 

sensor/particle will take the weighted average position, 

which is determined [36] as 

𝑊𝑙𝑚
𝑡 =

𝑎1(𝑏1)𝑙𝑚
𝑡 𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡 +𝑎2(𝑏2)𝑙𝑚
𝑡 𝑔𝑏𝑒𝑠𝑡𝑙𝑚

𝑡

𝑎1(𝑏1)𝑙𝑚
𝑡 +𝑎2(𝑏2)𝑙𝑚

𝑡 , 1 ≤ 𝑚 ≤ 𝑀   (3) 

PSO tends to be trapped into local optimization while 

solving complex multimodal problems. We have applied a 

swarm behavior into IIoT with the help of pervasive 

intelligence, smart devices, and other new approaches of 

merging computational improvements into swarm behavior. 

Subsequently, we will be benefited from establishing a 

complex setup on the IIoT. Nevertheless, there will be many 

questions that are to be answered. Will these steps be 

common for all the devices in multimodal data 

communication or regulate specific devices? Which form of 

swarm behavior turns out to be feasible on the extensive 

networks that are spread over a vast region? Will it activate 

an innovative phase of progression in an industrial area? 

Generally, there are numerous PSO techniques that go 

through the alterations in the velocity updating equations for 

getting a robust optimal solution. We have studied these 

alterations methods reported in the literature to identify the 

variation among the QPSO algorithms over the extensive 

connection between the swarm behavior and the technique of 

positioning sensor and fog nodes. Consequently, a network 
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progression can produce a technique of directing and 

handling the connectivity of devices during the iterative 

process. 

To improve PSO, Sun et al.  [38] have proposed quantum 

PSO (QPSO). It is assumed that the particle swarm system 

satisfies quantum mechanics' elementary proposition. 

Particle 𝑙 moves in the 𝛿 probable well centered at the point 

W in mth dimension with quantum basic actions characteristic 

[35], and its state can be described  [36] as  

𝜓(𝑃𝑙𝑚
𝑡+1) =

1

√𝐶𝑙𝑚
𝑡

𝑒𝑥𝑝 (
−|𝑃𝑙𝑚

𝑡+1 − 𝑊𝑙𝑚
𝑡 |

𝐶𝑙𝑚
𝑡 )                            (4) 

where C is the characteristic length of the probable well 𝛿, 

and its value is directly related to an algorithm's convergence 

speed and searching ability [40]. The probability density 

function of particle l is as given as 

𝑄(𝑃𝑙𝑚
𝑡+1) =

1

√𝐶𝑙𝑚
𝑡

𝑒𝑥𝑝 (
−2|𝑃𝑙𝑚

𝑡+1 − 𝑊𝑙𝑚
𝑡 |

𝐶𝑙𝑚
𝑡 )                         (5) 

To obtain the particle's position, it has to be collapsed from 

the quantum to the classical state. The position of the particle 

is determined by  

𝑃𝑙𝑚
𝑡+1 = 𝑊𝑙𝑚

𝑡 ±
𝐶𝑙𝑚

𝑡

2
ln

1

𝑟𝑙𝑚
𝑡                                                         (6) 

where W is the particle motion center and is called the 

attractor of the particle. r is a random number with a uniform 

distribution function ranging between 0 and 1. Parameter C 

is determined as  

𝐶𝑙𝑚
𝑡 = 2𝛾‖𝐿𝑚

𝑡 − 𝑃𝑙𝑚
𝑡 ‖                                                             (7) 

𝐿𝑚
𝑡 =

∑ 𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡𝑁

𝑙=1

𝑁
                                                                (8) 

 𝛾 is the contraction and expansion factor, which is to be 

reduced while running an algorithm. 𝐿𝑡 = {𝐿1
𝑡 , 𝐿2

𝑡 , … . . , 𝐿𝑚
𝑡 } 

is the mean optimal position, representing the mean value of 

the optimal position in the individual of all particles and the 

expression. 

IV. ENHANCED QUANTUM PARTICLE SWARM 
OPTIMIZATION 

In QPSO, every particle holds the weighted mean position 

obtained by considering the individual earlier optimal 

position and the optimal position of group history as its 

desirability point. This computation method has the 

advantage of simple calculations but holds the weighted 

mean position and has two drawbacks. Apart from its own 

learning experience, each particle's position depends on the 

group's optimal historical position. In addition to this, the 

possible dispersal space of each particle's attraction point 

progressively declines during an algorithm's development 

process [36]. It leads to swift decay in the diversity of huge 

groups, which reduces the algorithm's ability to solve 

complex multiobjective optimization problems, ultimately 

leading to its ability to jump out of local optimization. Since 

the algorithm falls into the local optimum in its final stage, it 

indicates that the particle's individual and global optimum 

positions are almost adjacent to each other or maybe 

coincident [39].  

Hence for improving the QPSO algorithm's performance, 

sufficient information about the individual and optimal 

global positions of the particles should be utilized by 

choosing an appropriate technique. To overcome this 

drawback, a differential evolution operator is incorporated 

into QPSO. A differential evolutionary algorithm proposed 

by Storn et al. [41] is based on population differences. It uses 

competition and cooperation among individuals to solve 

optimization problems. The proposed differential evolution 

operator improves the population diversity and jumps out of 

the local optimum. Enhanced QPSO algorithm aims to 

improve control of exploring and exploiting hunts by 

considering adjacent relationships between the particles by a 

linear increase in the connectivity of the swarm's topology 

and carrying out regulating mechanisms [36].    

Position update in QPSO is performed by using  

𝑊𝑙𝑚
𝑡 = 𝜒𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡 + (1 − 𝜒)𝑔𝑏𝑒𝑠𝑡𝑚
𝑡                                   (9) 

𝐴𝑉𝑏𝑒𝑠𝑡𝑚 =
1

𝑁
∑𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡                                                   (10)

𝑁

𝑙=1

 

𝑃𝑙𝑚
𝑡+1 = 𝑊𝑙𝑚

𝑡 ± 𝛾|𝐴𝑉𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚
𝑡 | ln (

1

𝑟𝑙𝑚
𝑡 )                    (11) 

𝜒 is a random number lying between (0, 1), 𝑊𝑙𝑚
𝑡  is the 

random position between 𝑃𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡. By combining 

(3) and (5), the position evolution equation changes to 

   𝑃𝑙𝑚
𝑡+1 = 𝜒(𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡 − 𝑔𝑏𝑒𝑠𝑡𝑚
𝑡 ) + 𝑔𝑏𝑒𝑠𝑡𝑚

𝑡

± 𝛾|𝐴𝑉𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚
𝑡 | ln (

1

𝑟𝑙𝑚
𝑡 )           (12) 

Let 𝑎 and 𝑏 be the particles in the existing swarm distinct 

from 𝑙, then the differential evolution operator (position 

difference between them) is 

∅ = 𝑃𝑏 − 𝑃𝑎                                                                              (13) 

Substitute ∅ to replace 𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 − 𝑔𝑏𝑒𝑠𝑡𝑚

𝑡  of (12) and 

randomness can be increased by adding a random number 

(1 − 𝜒) to the second term  𝑔𝑏𝑒𝑠𝑡𝑚
𝑡  of (12). The new 

evolution equation [36] is 

𝑃𝑙𝑚
𝑡+1 = 𝜒𝜙𝑚 + (1 − 𝜒)𝑔𝑏𝑒𝑠𝑡𝑚

𝑡

± 𝛾|𝐴𝑉𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚
𝑡 | ln (

1

𝑟𝑙𝑚
𝑡 )           (14) 

Differential evolution operator introduced in (14) helps 

avoid the group moves in a small range and fall into local 

optima, which is favorable in improving the ability of global 

search. In the next phase, we have introduced a crossover 
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operator with QPSO. These cross operations will promote 

the information interchange among individuals in a group, 

and those exceptional genes can be continued moderately, 

accompanying the continuance of the evolutionary process. 

Ultimately groups can progress in the desired route. The 

position estimate 𝑃𝑙
𝑡+1 of particle 𝑙 is generated by using (3), 

(7), (8), and (14). Later, the estimated position 𝑃𝑙
𝑡+1 and 

individual optimal position 𝑃𝑏𝑒𝑠𝑡𝑙
𝑡  are separated for the 

generation of the test position 𝑌𝑙
𝑚 = {𝑦𝑙1

𝑡 , 𝑦𝑙2
𝑡 , … , 𝑦𝑙𝑚

𝑡 }, the 

cross equation is written as 

𝑌𝑙𝑚
𝑡+1 = {

𝑃𝑙𝑚
𝑡+1,                     (𝑟𝑎𝑛𝑑)𝑚 < 𝑐,𝑚 = 𝑚𝑟𝑎𝑛𝑑

𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 ,                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

   (15) 

where (𝑟𝑎𝑛𝑑)𝑚 is a random number satisfying uniform 

distribution such that (𝑟𝑎𝑛𝑑)𝑚 ∈ [0,1] and 𝑐 is the crossover 

probability. 𝑚𝑟𝑎𝑛𝑑 is randomly and uniformly generated 

integer on [1,𝑀]. Lastly, the optimal position of the particle's 

individual history is updated as 

𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡+1 = {

𝑌𝑙𝑚
𝑡+1,                  𝑓(𝑌𝑙𝑚

𝑡+1) < 𝑓(𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 )

𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡 ,          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

   (16) 

where 𝑓(∗) is a compatible cost function. The value of 

crossover probability plays an important role in an 

algorithm's searchability and convergence speed. Smaller 

probability values enable individuals in a group to hold 

further their individual information and preserve a higher 

diversity of the group, which is suitable for the global 

exploration of an algorithm. On the contrary, the larger value 

of the probability impulses individuals to acquire additional 

experimental information in the group, consequently 

accelerating an algorithm's convergence speed [36].  

By considering the crucial role of crossover probability 𝑐, 

it is directly encoded into each particle to achieve adaptive 

control. After extended encoding, particle 𝑙 in the population 

is defined  

𝑃𝑙
𝑡 = {𝑝𝑙1

𝑡 , 𝑝𝑙2
𝑡 , … , 𝑝𝑙𝑚

𝑡 , 𝑐𝑙
𝑡  }                                                    (17) 

Crossover probability for every particle in the population 

is updated as 

𝑐𝑙
𝑡+1 = {

𝑟𝑎𝑛𝑑𝑚(0, 1),     𝑟𝑎𝑛𝑑𝑚(0, 1) < ∝                

𝑐𝑙
𝑡 ,                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

    (18) 

𝛼 is the update probability of parameter 𝑐. For ease of 

operations, we have introduced an additional binary vector 

𝐵𝑙
𝑡+1 for every particle 𝑙.  

𝐵𝑙
𝑡+1 = {𝑏𝑙1

𝑡+1, 𝑏𝑙2
𝑡+1, … , 𝑏𝑙𝑚

𝑡+1}                                               (19) 

   𝑏𝑙𝑚
𝑡+1 = {

1,         𝑟𝑎𝑛𝑑𝑚(0, 1) < 𝑐𝑙
𝑡+1, 𝑚 = 𝑚𝑟𝑎𝑛𝑑

0,         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      
      (20) 

𝑍𝑙
𝑡+1 =

1

𝑀
∑𝑏𝑙𝑚

𝑡+1                                                                  (21)

𝑀

𝑙=1

 

 

 
FIGURE 1. Process flow of Enhanced QPSO 
 

By ignoring the influence of 𝑚𝑟𝑎𝑛𝑑, 𝑍𝑙
𝑡+1 follows the 

binomial distribution with 𝑀 parameters and probability 

𝑐𝑙
𝑡+1. The probability 𝑐𝑙

𝑡+1 is calculated by  

𝑐𝑙
𝑡+1 = {

𝐵𝑙
𝑡𝑍𝑙

𝑡+1 + (1 − 𝐵𝑙
𝑡)𝑐𝑙

𝑡 ,      𝑓(𝑍𝑙
𝑡+1) < 𝑓(𝑐𝑙

𝑡)    

𝑐𝑙
𝑡                                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 (22) 

𝐵𝑙
𝑡  is a random number satisfying uniform distribution 

with 0.9 ≤ 𝐵𝑙
𝑡 ≤ 1. In addition to this, reduction-extension 

coefficient 𝛾 is structured so that; with the increase in the 

number of iterations, 𝛾 decreases linearly. 

𝛾 = 𝛾𝑚𝑎𝑥 −
𝑡

𝑇
∗ (𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛)                                           (23) 

𝑇 is the maximum number of iterations to be attained [36]. 

The systematic moves are defined to guarantee connectivity 

with interparticle communication for the satisfying data 

exchange among the sensor nodes for distinct topologies. 

Velocity update means the best sensor node location of the 

restricted neighborhood to determine the adjacency with 

another sensor node neighborhood rather than the whole 

swarm topology [29]. Hence, swarm network topology in 

PSO can exceptionally regulate the performance of the 

algorithm. Moreover, the proposed enhanced quantum PSO 

(EQPSO) utilizes the entirely linked topology in which all 

the sensor nodes are neighbors. It helps the sensor node to 

link directly to a global best sensor node and influences it 

concurrently. 

Consequently, the swarm topology in EQPSO avoids 

exploring additional regions of the search space and trap into 

local optimum solutions. In the meantime, a sensor node of 

QPSO utilizes the information received from all other sensor 

nodes adjacent to it rather than that of the best one only. This 

alteration improves the performance of QPSO bilaterally, 

i.e., by assisting the sensor node to obtain information about 

promising areas of search space and prohibiting the error in 

sensors participating in the swarm's movement so that 

algorithm's exploration abilities are enhanced. The novel 

EQPSO algorithm improves the control of exploring and 

exploiting hunts in the completely connected network 

topology to get an optimal solution for IIoT. The process 

flow and pseudocode of the proposed algorithm is as shown 

in Fig. 1 and Fig. 2, respectively. 

V. FRAMEWORK FOR IIOT DEPLOYMENT 

Generally, an IIoT contains a network of several wireless 

devices and technologies positioned in a wide area, making 

it heterogeneous. We have considered a scenario in which 

sensor nodes and fog nodes are deployed in IIoT with fault-

tolerant network topology in a heterogeneous layer 

framework [42]. This framework comprises three layers; the  
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FIGURE 1. Process Flow of EDQPSO 

 

cloud back-end, the middle layer for fog nodes, and the last 

layer for sensor nodes, as shown in Fig. 3.  

 The middle layer contains few resource-rich fog nodes. 

The sensor nodes are inhibited by limited battery capacity 

and ceaseless QoS constraints. Every sensor node can change 

its transmission range by varying its power level inside the 

network topology regulated by conclusive or non-conclusive 

workload to communicate or receive a message [29]. We try 

to find a solution that curtails power consumption while 

preserving network connectivity and delay requirements. 

Actually, the transmission cost of a message between sensor 

nodes depends on the distance among them but is 

independent of the number of receiving sensor nodes. In a 

multi-hop network, connectivity can be maintained without 

every sensor transmitting at its maximum power. Most of the 

approaches reported in the literature have performed worse 

in some cases. We have identified the challenges in different 

IIoT setups and tried to address them while ensuring network 

coverage consistency by adopting the network topology 

control.  It has also been observed that the appropriate 

positioning of sensor nodes is critical in most IIoT systems 

and influences network coverage.  The  existing  techniques  

 
FIGURE 2. Pseudocode for Enhanced QPSO 

 

assume that the specified sensor node's sensing range and 

transmission range are the same. However, it is not 

applicable in wide range IIoT setups because some of the 

sensor nodes have extended routing capabilities, but they 

communicate through a short distance. Therefore, adopting 

static routing for IIoT is more feasible to achieve an energy-

efficient, reliable and scalable network.  

FIGURE 3. Industrial Internet of Things architecture 

 

We propose EQPSO to solve the IIoT deployment problem 

with distinct considerations for the framework [42] by 

centralized and distributed routing for the different network 

topologies. Centralized routing is appropriate for the 

networks in which the processing control trusts mostly on a 

single device, which is accountable for the processing, 

coordinating, and managing the identified activities. It 

Set 𝑡 =  0, initialize current position 𝑃𝑙
0 of every node in the swarm, and 

assemble 𝑐𝑙
0 = 𝑃𝑙

0. Also, set other relevant parameters. 

do  

𝛾 decreases linearly from 1.5 𝑡𝑜 0.5  

for  𝑚 = 1 𝑡𝑜 𝑀 

       if 𝜒 < 𝑟𝑎𝑛𝑑 (0, 1), then 

       then determine 𝐴𝑉𝑏𝑒𝑠𝑡𝑚 using (10) 

       end if 

Generate the characteristic length and attraction point using (3) and (7) 
resp. 

for 𝑙 ≠ 𝑎, 𝑙 ≠ 𝑏 

      ∅ = 𝑃𝑏 − 𝑃𝑎 

end for 

for  𝑙 = 1 𝑡𝑜 𝑁 

Generate test location 𝑌𝑙𝑚
𝑡+1using (15) 

Update crossover probability 𝑐 using (22) 

         If  𝑓(𝑌𝑙𝑚
𝑡+1) < 𝑓(𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡 ), then 

        𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡+1 = 𝑌𝑙𝑚

𝑡+1 

         else  

          𝑃𝑏𝑒𝑠𝑡𝑙𝑚
𝑡+1 = 𝑃𝑏𝑒𝑠𝑡𝑙𝑚

𝑡  

         end if 
end for 

Update individual global and optimal positions using (10) 

end for 
until the maximum number of iterations attained 
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allows roaming inside the network, deals with energy 

management and context information availability. 

Furthermore, it permits an improved application design in 

terms of nodes placement, application awareness, etc. In 

distributed routing, the information is managed by every 

node, and decisions are locally taken. The main features of 

distributed routing are: autonomous devices can be included, 

every node shares information to its adjacent node, and it is 

fit for distributed applications such as multiagent systems 

and self-organized systems. 

The establishment of p-disjoint paths for attaining 

connectivity degrees greater than three and complete coverage 

for sensor deployment is a crucial challenge due to smaller 

battery capacities. Furthermore, we have considered a default 

wireless network in which fog nodes and sensor nodes can 

guarantee the desired connectivity degree through many to one 

traffic patterns. Moreover, there is a need for frequent 

information interchange about the route to avoid a sudden rise 

in traffic and excessive energy consumption. 

Our model is the directed graph that uses the concept of 

disjoint node paths and p-connected networks. Paths are said 

to be node disjoint if they do not have any common node, and 

the sensor network is said to be p-connected if every interior 

node of its graphical structure is connected with at least p-

node disjoint paths. Node disjoint paths are modeled in graph 

𝐺(𝑃, 𝑄) in two-dimensional space. 𝑃 is the set of sensor 

nodes and fog nodes, whereas links between them are 

included in set 𝑄.  𝑉 ⊆ 𝐴 represents a set of sensor nodes, and 

𝑊 ⊆ 𝐵 represents fog nodes. Every link in 𝑄 is assigned with 

a non-negative number which QoS parameters among the 

sensor nodes. 𝑎𝑢 and 𝑎𝑣 are two sensor nodes connected with 

Euclidian distance 𝑑𝑢,𝑣
𝑝

. All the sensor nodes are supposed to 

be alike with power transmission range τ𝑅 and sensing range 

τ𝑆 (τ𝑅 ≥ τ𝑆). Every sensor node identifies neighbors by 

sending messages periodically and gathering information 

about its adjacent nodes' energy consumption, distance, total 

latency, and throughput. 𝐻𝑜𝑝 (𝑎𝑢 , 𝑎𝑣) describes distance 

among sensor nodes 𝑎𝑢 and 𝑎𝑣. 𝑄 =
{(𝑎𝑢, 𝑎𝑣)|𝐻𝑜𝑝 (𝑎𝑢 , 𝑎𝑣)  ≤ τ𝑅},  represents the set of all 

edges among the nodes 𝑎𝑢 and 𝑎𝑣 with distance between 

them less than or equal to the transmission range.𝑝𝑎(𝑎𝑢 , 𝑎𝑣) 

is path from node 𝑎𝑢 to 𝑎𝑣, which is an alternating sequence 

of nodes and links between them. Set of alternative paths is 

𝑃(𝑎𝑢 , 𝑎𝑣) = {𝑝𝑎(𝑎𝑢 , 𝑎𝑣) ∈ 𝑃 ∀𝑝𝑎(𝑎𝑢 , 𝑎𝑣)⁄ ∈
𝑃,𝐻𝑜𝑝 (𝑎𝑢 , 𝑎𝑣) ≤ τ𝑅 , 𝑢 ≠ 𝑣 = 1,2, … , 𝑉 + 𝑊}. 

𝑄(𝑎𝑢 , 𝑎𝑣 ∈  𝑝𝑎(𝑎𝑢 , 𝑎𝑣)) represents node disjoint paths 

among (𝑝𝑎(𝑎𝑢 , 𝑎𝑣), (𝑎𝑉 , 𝑎𝑉+𝑊)) and (𝑒 ∈ 𝑝𝑎(𝑎𝑢 , 𝑎𝑣),

(𝑎𝑉 , 𝑎𝑉+𝑊)) represents direct link among two nodes. The 

communication rule for such direct links among the nodes is 

described as below:  

i. For any 𝑎𝑢 , 𝑎𝑣 ∈ 𝑉 ⊆ 𝐴, even if 𝑑𝑢,𝑣
𝑝

< τ𝑅, then 𝑎𝑢 and 

𝑎𝑣 cannot communicate with each other. 

ii. For any 𝑎𝑢 ∈ 𝑊 ⊆ 𝐵 and 𝑎𝑣 ∈ 𝑉 ⊆ 𝐴, even if 𝑑𝑢,𝑣
𝑝

≥ τ𝑅, 

then 𝑎𝑢 and 𝑎𝑣 can communicate with each other. 

In this way, p-disjoint paths in graph 𝐺 and the objective 

function can be determined by considering QoS parameters. 

The p-disjoint paths are used to communicate the 

information collected by sensor nodes to the fog nodes.  

Network connectivity directly influences energy 

efficiency. Hence, defining the relationship between the 

number of sensor nodes that remain dynamic and linked 

while maintaining desirable QoS is essential. As a result, we 

emphasize p-vertex fog node connectivity for obtaining 

fault-tolerant network topologies as a transmission range 

assignment in which every sensor node is connected with at 

least one fog node by p-disjoint paths. In these situations, an 

objective function's main aim is to save energy attained by 

curtailing transmission power and delay. To get an optimum 

communication path, an objective function is applied to the 

distributed sensor nodes having p-disjoint paths among them 

and fog nodes. 

A. MODELING QUALITY OF SERVICE FOR IIOT 

The QoS optimization for IIoT in terms of energy, delay, 

and throughput is planned. To get an optimal distribution 

scenario with the minimal number of sensor and fog nodes, 

it needs to define the distribution pattern. The neighboring 

correlation between sensor and fog nodes is considered a 

constraint. The set of disjoint sensors and another 

neighborhood of the p-disjoint path is 𝐷𝑢,𝑣 . 

𝐷𝑢,𝑣 = {𝑢, 𝑣 ≠ 𝑢|‖𝑎𝑢 − 𝑎𝑣‖ ≤ 𝑇𝑃𝑎(𝑢,𝑣)
}                         (24) 

𝑇𝑃𝑎(𝑢,𝑣)
 is the sensor transmit power for one hop. 

Conditional adjacency matrix M of graph 𝐺(𝑃, 𝑄) guarantees 

connections among two nodes,  

𝑀 = [

𝑚11              𝑚12          …   𝑚1|𝑃|

𝑚21               𝑚22          …𝑚2|𝑃|

⋮                          ⋮                 ⋮
𝑚|𝑃|1               𝑚|𝑃|1       …      𝑚|𝑃||𝑃|

]                  (25) 

𝑚𝑢𝑣 = {
1,                 𝑖𝑓 𝑎(𝑢, 𝑣) ∈ 𝐷𝑢,𝑣

0,                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
                               (26) 

The connectivity feature, the intermediary distance among 

two sensor nodes along the chosen path, and the number of 

hops is the constraints considered for addressing the 

topology specifications. If 𝑑𝑢,𝑣
𝑝

≤ 𝑇𝑃𝑎(𝑢,𝑣)
, then the binary 

connectivity constraint defined in (26) identifies whether the 

sensor lies within its transmission range or not. For a new 

association to be included in directed graph 𝐺(𝑃, 𝑄), (26) can 

be rewritten as, 

𝑚𝑢𝑣

= {
1,   if {𝑢, 𝑣 ≠ 𝑢|‖𝑎𝑢 − 𝑎𝑣‖ ≤ 𝑇𝑃𝑎(𝑢,𝑣)

} ∈ 𝐷𝑢,𝑣 ⊆ 𝐴⋃𝐵

0,    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                               (27)  
 

a) Energy Consumption: 

The IIoT energy consumption model is dependent on 

dissipation and gain during communication. During the 

processing and sensing, power dissipation should be less 
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than data transmission or reception. Every sensor will have a 

transmission range for communicating with adjacent nodes. 

By exploiting the closest neighborhood, the subsequent hop 

will be chosen by each sensor node. Energy consumption per 

bit is calculated as 

𝐸𝑎𝑠𝑑
= ∑ (𝐸𝑃𝑎𝑉∪𝑊

𝑡 + 𝛽0𝑇𝑃𝑎(𝑢,𝑣)

𝜙
+ 𝐸𝑃𝑎𝑉∪𝑊

𝑟 ) 𝑆𝑝 

𝐵∪𝐴

𝑢,𝑣𝜖𝑉∪𝑊

     (28) 

where 𝐸𝑃𝑎𝑉∪𝑊
𝑡  is the energy used by the transmitter, 𝐸𝑃𝑎𝑉∪𝑊

𝑟  

is the energy utilized by the receiver, 𝑇𝑃𝑎(𝑢,𝑣)
 is the 

transmission range, 𝛽0 is the multipath model of transmit 

amplifier of the sensor, and 𝑆𝑝 is the set of paths. 𝜙 is the 

energy drop due to the loss in the path, assuming that the 

network link is obstacle-free.  

The rate of data transfer in unit time from the sensor node 

𝑎𝑢 to 𝑎𝑣 is the same as that of 𝑎𝑣 to 𝑎𝑢, which is represented 

by 𝐺𝑢𝑣. Hence, the overall consumption of energy in 

transmitting and receiving per time unit is calculated by  

𝐸𝑎𝑢
= ∑𝑚𝑢𝑣𝐺𝑢𝑣 (𝐸𝑃𝑎𝑉∪𝑊⊂𝐵∪𝐴

𝑡 + 𝛽0𝑇𝑃𝑎(𝑢,𝑣)

𝜙
)                (29)

𝑣𝜖𝐴

 

𝐸𝑎𝑣
= ∑ 𝑚𝑢𝑣𝐺𝑢𝑣(𝐸𝑃𝑎𝑉∪𝑊⊂𝐵∪𝐴

𝑟 )                                    (30)

𝑢𝜖𝐵⋃𝐴

 

Hence the total energy consumption from source to 

destination is 

𝐸𝑎𝑠𝑑
= ∑ 𝑚𝑢𝑣𝐺𝑢𝑣 (2 [𝐸𝑃𝑎𝑉∪𝑊

+ 𝛽𝑟𝑇𝑃(𝑢,𝑣)

𝜙
])           (31)

𝑢,𝑣𝜖𝐵⋃𝐴

 

where 𝛽𝑟  is the multipath model of the response amplifier of 

the sensor node. We have considered communication of the 

sensed data between the set of sensors belonging to the p-

disjoint path, which can fluctuate through communication. If 

the constraints are not fulfilled, it may disconnect adjacent 

nodes and separate paths.  

To guarantee the optimal number of hops between the p-

disjoint paths, we have considered one more parameter 

called as intervening gap among two sensors along the 

chosen path.  It plays a crucial role in the design and 

performance of the IIoT network. The intervening gap 

among two sensors along the chosen path is given by 

𝐻𝑜𝑝 = √𝑑𝑎(𝑢,𝑣)
[

3𝛽𝑟

2𝐸𝑃𝑎(𝑢,𝑣)

]
𝜙

≤ 𝑇𝑃𝑢,𝑣
                                 (32)  

The constraint defined in (32) is a crucial configuration and 

performance parameter in IIoT, which makes sure that the 

optimum number of hops between the chosen p-disjoint 

paths can be attained. The intervening gap among two sensor 

nodes and hop count are directly associated with each other. 

Theoretical hop count for the chosen p-disjoint paths is, 

𝑁𝑜. 𝑜𝑓 𝐻𝑜𝑝𝑠 =  
𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜓𝑜𝑝𝑡
                                      (33) 

𝜓𝑜𝑝𝑡 = √𝑑𝑎(𝑢,𝑣)
[

3𝛽𝑟

2𝐸𝑃𝑎(𝑢,𝑣)

]
𝜙

                                                 (34) 

In the dynamic environment, the degree of network 

connectivity varies subject to changes in the topology. The 

parameter designed in (33) and (34) describes dynamic 

objective functions with reference to lower and upper limits 

for preferred solution space to decide the optimal pattern of 

sensor positioning in the target region. With the evolution in 

the optimization process, the established topology's 

connectivity degree is varied for reducing energy 

consumption. 

 

b) Delay Constraint 

Delay can be classified into distinct types, viz. queuing, 

prorogation, processing, transmission, retransmission, and 

idle. The delay in delivery among two sensor nodes is 

represented as ∇(𝑎𝑢 , 𝑎𝑣). The average value of delay is 

calculated as 

∇= ∇𝑞𝑢𝑒 + ∇𝑝𝑟𝑜𝑝 + ∇𝑝𝑟𝑜𝑐 + ∇𝑡𝑟𝑎𝑛𝑠 + ∇𝑟𝑒𝑡𝑟𝑎𝑛𝑠 + ∇𝑖𝑑𝑙𝑒  (35)  

The optimal number of forwarding hops is determined using 

(33) and (34) targets to decrease the desired transmission 

delay. This means that the sensor nodes may receive the data 

through the many hops, but it collects and transmits the data 

only once. Then the number of hops and delays are optimized 

cooperatively. Every sensor node in the network periodically 

computes the delay from one-hop neighbors. When the 

overall QoS necessities are fulfilled at each hop, the entire 

QoS controlled by the devices are attained [40]. The 

proposed technique uniformly splits the bounded delay 

∇𝑏𝑑 𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 ℎ𝑜𝑝 as defined in (36). 

∇(𝑎𝑢 , 𝑎𝑣) = ∇𝑠𝑑(𝑆𝑝) {𝑎𝑢 , 𝑎𝑣|∀𝑎 = 𝐷𝑢,𝑣 = 𝑎𝑢, 𝑎𝑣 ∈ 𝑉 ∪ 𝑊

⊆ 𝐵 ∪ 𝐴}                                                  (36) 

Overall delay due to data transfer from the source to a 

destination over the set of path 𝑆𝑝 is defined as 

∇𝑠𝑑(𝑆𝑝) = ∑ ∇(𝑎𝑢 , 𝑎𝑣)                               (37)

𝑎𝑢,𝑎𝑣∈𝑉∪𝑊⊆𝐵∪𝐴

 

Since the delay ∇(𝑎𝑢 , 𝑎𝑣) is the time needed to effectively 

communicate data once the initial sensor gets it, accordingly, 

∑ ∇(𝑎𝑢 , 𝑎𝑣)

𝑉∪𝑊

𝑎𝑢=1,𝑎𝑣=1

≤ ∇𝑏𝑑                                                    (38) 

The bounded delay ∇𝑏𝑑 depends on the number of hops 

taken and delay of sensor node, which are additive and 

denoted by 𝜓 and ∇𝑎, respectively. Hence, 

∇𝑏𝑑= ∇0
𝑠 + ∇𝜓1

𝑎+1 + ∇𝜓2

𝑎+2 + ⋯+ ∇𝜓𝑉+𝑊

𝑑                            (39) 

Per hop delay from source to destination is 

𝑆𝑎
∇ =

∇𝑏𝑑 − ∇𝑎

𝜓𝑢

                                                                       (40) 
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Then the constraint in (39) is defined as 

∑ ∇(𝑎𝑢 , 𝑎𝑣)

𝑉∪𝑊

𝑎𝑢=1,𝑎𝑣=1

≤ 𝑆𝑎
∇                                                       (41) 

c) Throughput 

Throughput is the whole quantity of successfully 

communicated data packets along with the optimum number 

of hops. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = [
∇𝑡𝑟𝑎𝑛𝑠

𝑎
]𝐺∀𝑢,𝑣∈𝑉∪𝑊                                   (42) 

B. Enhanced QPSO for IIoT Deployment: 

The population of swarm topology in positioning sensor 

nodes and fog nodes is represented by employing complex 

network connectivity to have better performance. The 

routing technique is propelled to interchange complex 

computations on each sensor node and report the objective 

function that minimizes the energy consumption and delay. 

Accordingly, making an appropriate choice, the sensor 

node's relativity degree increases or decreases with identical 

sensor node help.  

Optimized IIoT connectivity deployment model aims at 

minimization in energy consumption ℱ⃗  and delay 

∇(𝑆𝑝) while transmitting a data packet of length 𝐺𝑢𝑣 bits 

with the objective function defined as 

𝑚𝑖𝑛 [ ∑ ℱ⃗ 

𝑎𝑢,𝑣∈𝑉⋃𝑊

]                                                                     (43) 

𝑚𝑖𝑛 [ ∑ ∇(𝑆𝑝)

𝑎𝑢,𝑣∈𝑉⋃𝑊

]                                                             (44) 

Subject to,  𝐸𝑎𝑠𝑑,      ∀𝑢, 𝑣 ∈ 𝐵 ∪ 𝐴                                 (45) 

√𝑑𝑎(𝑢,𝑣)
[

3𝛽𝑟

2𝐸𝑃𝑎(𝑢,𝑣)

]
𝜙

≤ 𝑇𝑃𝑢,𝑣
                                                  (46) 

∑ ∇(𝑎𝑢, 𝑎𝑣)

𝑉∪𝑊

𝑎𝑢=1,𝑎𝑣=1

≤ 𝑆𝑎
∇                                                       (47) 

𝑑𝑎(𝑢,𝑣)
≤ 𝑇𝑃𝑢,𝑣

≤ 𝑚𝑢𝑣𝐸𝑎𝑢𝑣 ≤ 𝐸𝑎𝑠𝑑𝑚𝑎𝑥    ∀𝑢, 𝑣 ∈ 𝑉 ∪ 𝑊 

(48) 

𝐸𝑎𝑢𝑣  represents energy utilized by sensor node 𝑎𝑢 to link 

with its adjacent sensor node 𝑎𝑣. It is assumed that the p-

distance path algorithm allocates the transmission range to 

every sensor node by considering the hop distance calculated 

by (32) for every neighbor; it helps to take advantage of the 

diversity of swarm topology.  

Due to the differential evolution operator used, every 

swarm contributes to the process of optimization. It can 

improve the convergence rate of hunt space by producing 

and grouping new subswarms to help in escaping from local 

optima and aiming for the global solution. 

In addition, every sensor can enhance collective learning 

behavior by interchanging the information to the neighbors. 

After requesting the information interchange, every sensor 

calculates the disjoint paths and updates local path data. As 

a result, new promising paths are created corresponding to 

objective functions defined in (43) and (44). 

The process for generation of subswarm from the complete 

set of sensor nodes by perceiving the objective function with 

respect to the communication cost is also discussed. If the 

sensor node is linked with the neighboring node, it is merged 

into a new subswarm. Later, every subswarm 

individualistically upgrades its velocity.  

After initializing each swarm of the sensor nodes, it is 

identified by the next adjacent sensor node. Every sensor gets 

linked with the other sensor created in the new subswarm. 

These operations are continued until the network topology is 

created. It leads to the initialization of velocity and position 

for every sensor node, and then every sensor estimates the 

objective function. While estimating the objective function, 

the sensors have connectivity during each iteration. 

Individual information interchange influences these 

sensors. The personal and global evaluated position allows 

the sensors to choose the next hop towards the ultimate 

evaluated position within the search domain's scope in every 

iteration. 

As a result, the sensor diverts from the constraint field and 

rarely converges to the constraint field's ultimate evaluated 

position. The influence of objective function ℱ⃗  on the 

personal best and global best positions is represented by the 

particle-wise multiobjective matrix-vector multiplication by 

using the symbol ∗. The position update is defined as   

 

𝑃𝑙𝑚
𝑡+1 = 𝜒ℱ⃗ ∗ 𝜙𝑚 + ℱ⃗ ∗ (1 − 𝜒)𝑔𝑏𝑒𝑠𝑡𝑚

𝑡 ± 𝛾ℱ⃗ 

∗ |𝐴𝑉𝑏𝑒𝑠𝑡𝑚 − 𝑃𝑙𝑚
𝑡 | ln (

1

𝑟𝑙𝑚
𝑡 )    (49) 

 

Each sensor node benefits from cross operations 

introduced into EQPSO, and it takes advantage of 

information interchange to avoid trapping into local minima.  

The efficiency of EQPSO is determined by the number of 

steps required to an optimal region 𝑂(𝑅). The process 

assesses the distribution of the number of steps required to 

attain 𝑂(𝑅) by correlating the expected value and the 

moments of the distribution. The total number of steps 

required to reach the optimal region is calculated as 𝑆(𝑅) =
𝑖𝑛𝑓{𝑥/𝑔𝑥 ∈ 𝑂(𝑅)}. The variance 𝑉[𝑆(𝑅)] and expected 

value 𝐸[𝑆(𝑅)] are determined by using 

 

𝐸[𝑆(𝑅)] =  ∑𝑥𝑘𝑥                                                                (50)

∞

𝑥=0

 

𝑉[𝑆(𝑅)] =  ∑ 𝑥2𝑘𝑥

∞

𝑥=0

− (∑𝑥𝑘𝑥

∞

𝑥=0

)

2

                                  (51) 
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Actually, 𝐸[𝑆(𝑅)] is dependent on the convergence of 

∑ 𝑥𝑘𝑥
∞
𝑥=0 . EQPSO converges globally if ∑ 𝑥𝑘𝑥 = 1.∞

𝑙=0  The 

time is measured by using the number of evaluations of the 

objective function. The key advantage of this technique is 

that it demonstrates correspondence among the processor 

and computation time with the increase in complexity of the 

objective function. Time complexity is computed by 

combining Range function 𝑅𝑓(𝑥) = 𝑥𝑡𝑥 and a linear 

parameter 𝐿(𝑥) = ∑ 𝑥𝑚 ≥ 0𝑀
𝑚=0  for 𝑁 particles.  

 

VI. RESULTS AND PERFORMANCE EVALUATION 

We have carried out simulations to generate network 

topology and design the objective functions to test and 

analyze the proposed algorithm's performance.  The 

performance of the proposed algorithm is evaluated and 

compared with other quantum-based algorithms such as 

Quantum Ant Colony Optimization (QACO) [34] and 

Quantum Particle Swarm Optimization (QPSO) [35]. We 

implemented these algorithms in MATLAB to obtain their 

results with the same settings for comparison as we used for 

our results. The parameter settings are given in Table I. 
 

TABLE I 

PARAMETER SETTINGS 

Algorithm Other Parameters 

QACO [33] 𝛿 ≠ 0,𝜔 = 0.01, 𝛽 = [0.001, 0.01, 0.1] 

QPSO [34] 𝛾 ∈ [0.7, 0.8], 𝑟 ∈ [0, 1] 

EQPSO 𝐵𝑙
𝑡 ∈ [0, 1],  𝜒 ∈ (0, 1) 

 

Several sensor nodes and fog nodes are uniformly 

distributed over a 2D area of 2000 𝑚 x 2000 𝑚 and 

produced homogeneous and heterogeneous connectivity 

among the sensor nodes. Furthermore, sensors are placed at 

a distance √2τ𝑆 without overlapping and with or without 

holes by using deterministic deployment, as shown in Fig. 4.  

 

 

 

FIGURE 4. IIoT node deployment scenario 

 

Diverse scenarios of topologies are simulated to study the 

impact of 𝑝–degrees of connectivity concerning the number 

of evaluations of objective functions with reference to 

energy consumption, delay, and throughput. It is assumed 

that energy consumed by every sensor node for transmitting 

or receiving data packets is 40 𝑛𝐽/𝑏𝑖𝑡, in the meantime 

transmitter utilizes an additional 90 𝑝𝐽/𝑏𝑖𝑡. The 

transmission range fluctuates between 10 𝑚 to 40 𝑚, the 

proportion of transmission range and sensing range 

fluctuates between 0: 4 to 1: 9 to assure the connectivity 

between the sensor nodes and fog nodes while satisfying the 

constraints of the algorithm. The details of the simulation 

metrics are as given in Table II. 

The impact of applying swarm techniques on 

heterogeneous multi-tiered layered IIoT topology is 

illustrated in Fig. 4. A particle's connectivity increases since 

the quantum swarm allow a sensor node to choose a new 

neighborhood. It occurs throughout the exploration 

procedure to retain the trace of every particle's searching 

ability, and then suitable alterations are made on the 

connectivity of particle. Adding new sensor nodes to the 

network leads to increased hops that are essential to describe 

an event. EQPSO algorithm tries to find the optimal number 

of hops to minimize energy consumption and delay. EQPSO 

updates position twice per iteration. 
 

 

TABLE II 
SIMULATION METRIC 

Metric Notation Specification 

Number of nodes N 100 

Rectangular area  2000 m x 2000 m 

Initial Transmission Range τ𝑅 12 m  

Energy consumed  𝐸𝑎𝑠𝑑
 40 nJ/bit 

Transmission amplifier energy  𝛽𝑓𝑠  8 pJ/bit/m2 

Amplifier energy  𝛽𝑟  0.0011 pJ/bit/m2 

Message payload   64 bytes 
Data length  p 2000 bits 

Transmitted data rate  𝑇𝑥 275 kbps 

 

 
FIGURE 5 (a). Energy consumption for 100 sensor node 
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FIGURE 5(b). Average delay for 100 sensor nodes 

 

 

 
 
FIGURE 5(c). Throughput with 100 sensor nodes 

 

 

It can be noticed that with the increase in the number of 

iterations, energy consumption decreases. Figure 5 (a) shows 

that the proposed algorithm consumes less energy than 

QPSO and QACO, as its objective function is to locate p-

disjoint paths while recovering from the fault-tolerance error 

messages due to the big size of the search space. We have 

also analyzed the influence of the number of hops and the 

interchange of messages for fault tolerance among sensor 

nodes and fog nodes. QPSO searches for p-disjoint paths 

within its accessible neighborhoods based on 

communication history. On the contrary, QACO and EQPSO 

searches paths directly within its accessible neighborhoods.  

 

This new swarm reinforces the optimal number of p-

disjoint paths to achieve lesser energy consumption. The 

results show that the proposed algorithm consumes around 

47.1% and 30.3% lesser energy than QPSO and QACO, 

respectively. From Fig. 5 (b), it can be noticed that the 

average delay of packet transmission along the chosen p-

disjoint paths by the proposed algorithm is lesser than QACO 

and QPSO. However, QACO performs better for fewer 

iterations and degrades performance with an increasing 

number of iterations.  

Although the number of sensor nodes and fog nodes are 

constant, the number of hops decreases with the increase in 

the transmission range. The number of nodes chosen by 

EQPSO inside the subswarm is lesser than the total number 

of sensor nodes and variables. It qualifies sensor node in 

terms of further choice of p-disjoint path that satisfies the hop 

availability condition. This helps the sensor node to improve 

the connectivity, which ultimately helps EQPSO to 

interchange fewer control messages for topology 

maintenance than QACO and QPSO. Hence, EQPSO offers 

improved searching precision and convergence swiftness in 

the possible search space for p-disjoint paths than QACO and 

QPSO.  

The impact of a number of hops on the objective functions 

defined in (43) and (44) is presented in Fig. 5(c) in terms of 

throughput. For QACO and QPSO, minimizing delay at the 

cost of increased hops leads to a proportionate increase in the 

number of sensor nodes and fog nodes, resulting in reduced 

throughput. 

EQPSO can solve network connectivity issues to attain 

optimal solutions with fewer fitness function estimations due 

to its feature of creating new subswarms and utilizing them 

to form a group with the new particle in the search space. As 

a result, new paths are created to improve the proposed 

algorithm's ability to escape from local optima to improved 

network connectivity. 

We have also investigated another scenario that needs 

instruction from multiple resources after particular intervals. 

Our algorithm generates results for all links among the 

sensor nodes and fog nodes positioned while executing 

QACO, QPSO, and EQPSO. Metric considered for 

generating the IIoT framework's topologies is an information 

exchange for fault tolerance among sensor nodes and fog 

nodes. The simulations for optimizing energy usage, delay, 

and throughput for p-connectivity values equal to 3, 4 and 5 

with respect to the number of evaluations are carried out. 

Results for all three algorithms are shown in Figs. 6, 7, and 

8. 
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FIGURE 6.  Energy consumption with distinct connectivity 
 

The performance of the proposed algorithm improves with 

the increase in connectivity between sensor nodes and fog 

nodes. If the connectivity is two or less, then information 

sharing happens only among adjacent sensor nodes. 

Consequently, topology has less availability of information 

for the predefined connectivity. As a result, it explores and 

creates fewer diverse paths while evaluating the objective 

functions. Whereas topologies generated through higher 

connectivity   𝑝 = 3, 4, 5  have  complete  sharing  of   the  

 
 
FIGURE. 7. Delay with distinct connectivity 
 

 

information among the sensor  and  fog nodes, which helps 

generate additional diverse paths. It has been observed that 

the EQPSO performs better than QACO and QPSO since 

quantum swarm inclines to generate additional diverse paths 

from multiple source nodes to the gateway. Due to the 
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accessibility to entire information among the sensor nodes 

and fog nodes, EQPSO needs lesser communication among 

the nodes to get the desired connectivity. 
 

 
 

FIGURE. 8.  Throughput with distinct connectivity 
 

We have investigated the performance of EQPSO for ring 

and mesh patterns by deploying optimal topologies with 

increased connectivity for achieving coverage and 

connectivity. Connectivity is increased steadily from 5 to 10. 

The results of energy consumption, delay, and throughput for 

ring and mesh topology using QACO, QPSO, and EQPSO is 

shown in Fig. 9(a) and Fig. 9(b).  

 
 FIGURE. 9(a).  Energy Consumption, Delay and Throughput for Ring Topology  
                       with distinct connectivity 
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FIGURE. 9(b).  Energy Consumption, Throughput and Delay for Mesh  
                             Topology with distinct connectivity 

 

Energy consumption for the proposed algorithm is 

minimized by 18.78% and 14.08% compared to QACO and 

QPSO. Average delay is also curtailed by 25.29% and 14.02 

% in comparison with QACO and QPSO. It also improves 

the throughput by approximately 30.70% and 13.66%, 

representing better performance in finding an optimal 

solution than QACO and QPSO, respectively. 

It is observed that for ring and mesh deployments, the 

optimal energy consumption, delay, and throughput of the 

proposed algorithm are improved when the degree of 

connectivity is increased. The information to be shared 

among the nodes for fault tolerance is available with the 

nodes. For ring topology, the information sharing occurs 

between the neighboring nodes only whereas in mesh, it is 

shared to a group. Hence, mesh performance is 

comparatively better as they have information of additional 

disjoint paths for communication.  

To determine the complexity, we considered the variance 

𝑉[𝑆(𝑅)], standard deviation, and average error by setting 

𝑂(𝑅) = 𝑂(10−5), 𝛾 = 0.75, 𝑎𝑛𝑑 𝜒 = 0.66. It has been 

observed that EQPSO shows a robust correlation among 

𝑆(𝑅) and 𝑁 with the constant coefficient value 0.9998 for all 

the evaluations. 

VII. CONCLUSION 

Most Industrial Internet of Things applications require strict 

reliability and extremely low delay in real-time 

communications between different devices, focusing on 

improving energy efficiency. To achieve it, we propose a 

novel enhanced quantum particle swarm optimization 

algorithm based on quantum and bio-inspired techniques for 

IIoT networks. Our algorithm combines the heterogeneous 

network topologies for exploitation and converges in the 

optimal route direction, and maintains diversity during the 

collaboration of nodes. The results show that the proposed 

algorithm has better energy efficiency, reliability, and 

scalability than the existing approaches. This was achieved 

by using efficient information exchange, differential 

evolution and crossover operators to configure the optimal 

path. The proposed algorithm is useful for optimized 

deployments of sensor and fog nodes in IIoT environments. 
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