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In plant breeding, unmanned aerial vehicles (UAVs) carrying multispectral cameras have demonstrated increasing utility for high-
throughput phenotyping (HTP) to aid the interpretation of genotype and environment effects on morphological, biochemical, and
physiological traits. A key constraint remains the reduced resolution and quality extracted from “stitched” mosaics generated from
UAYV missions across large areas. This can be addressed by generating high-quality reflectance data from a single nadir image per
plot. In this study, a pipeline was developed to derive reflectance data from raw multispectral UAV images that preserve the
original high spatial and spectral resolutions and to use these for phenotyping applications. Sequential steps involved (i)
imagery calibration, (ii) spectral band alignment, (iii) backward calculation, (iv) plot segmentation, and (v) application. Each
step was designed and optimised to estimate the number of plants and count sorghum heads within each breeding plot. Using
a derived nadir image of each plot, the coefficients of determination were 0.90 and 0.86 for estimates of the number of
sorghum plants and heads, respectively. Furthermore, the reflectance information acquired from the different spectral bands
showed appreciably high discriminative ability for sorghum head colours (i.e., red and white). Deployment of this pipeline
allowed accurate segmentation of crop organs at the canopy level across many diverse field plots with minimal training needed

from machine learning approaches.

1. Introduction

The progressive increase in the global population and rising
food consumption have placed unprecedented pressures on
food security. There is also increasing demand to produce
more food while reducing the footprint of agriculture on
the environment [1, 2]. Over the years, breeding programs
have played an important part in finding solutions to these
challenges. In this regard, phenomics, especially phenotyp-
ing of traits, has evolved as a core selection tool of many
breeding programs [3]. Phenotyping requires accurate and
rapidly deployable quantitative metrics for determining
physiological and morphological traits that can effectively
assist the selection of elite varieties [4-8]. The selection of

advanced varieties relies on the assessment of large numbers
of diverse genotypes across multiple environments [9-12].
The quantification of crop-specific traits and interpretation
of the physiological basis for genotype adaptation require
pipelines for fast and accurate high-throughput phenotyping
(HTP). This “bottleneck” remains a known impediment in
implementing HTP in current breeding programs [13, 14].
The breeder’s equation provides a framework that
encapsulates the key factors involved in changing the rate
of genetic progress that can be made in a breeding program.
These factors include the amount of genetic variance, accu-
racy, and selection intensity, which in turn relate to popula-
tion size and other crop phenotypic traits [15]. Determining
such traits across large numbers of breeding lines through
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quantitative approaches with high speed and precision has
always been paramount for breeding programs [16, 17]. Tra-
ditionally, traits such as plant density, stay-green, leaf angle,
and lodging are manually measured through visual inspec-
tions at plot and field levels; however, these approaches are
time-consuming, costly, prone to human error, and categor-
ical in nature [18]. HTP methods are capable of improved
accounting of the genetic variation across a large set of
breeding lines, therefore enhancing selection efficacy and
increasing the rate of genetic gain [15, 19]. In addition, dur-
ing the past decade, phenotyping on-board ground- and
aerial-based sensing platforms has been used in phenomics
and has been shown to be highly successful in deriving
specific traits relating to morphological, biochemical, and
physiological functions at the canopy level [20-28].

Rapid development of consumer and enterprise UAV
systems over the last decade demonstrates that such systems
allow high temporal flexibility across dozens to hundreds of
hectares of field area. Improvements in the accuracy of
global position systems (GPSs) and in spatial and spectral
resolutions of sensing units (e.g., multi- and hyperspectral
cameras) further support the utility of UAV as the preferred
technology for phenotyping, monitoring, and mapping
crops across large areas [29-32]. Phenotyping using UAV-
based cameras encompasses the derivation of sensing met-
rics that serve as surrogates for describing specific crop
traits. These metrics rely on the fused properties of light as
a result of the reflectance, transmission, and absorption of
plant cells and organs at the canopy level and can be
enhanced by the use of multispectral cameras [33].

In typical deployments of UAVs, thousands of overlap-
ping images are captured and “stitched” into mosaics using
robust software programs, like Agisoft [34] or Pix4D [35],
that were originally based on the scale invariant feature
transform (SIFT) algorithm [36]. After the alignment of
overlapping images and processing (usually some form of
pixel averaging), the product is a single geometrically cor-
rected orthomosaic image that represents the instantaneous
reflectance, which is affected by the integration of canopy
structure, soil colour, and the bidirectional reflectance distri-
bution function. The quality of an orthomosaic is affected
during the rectification and pixel-averaging process, which
limits its application [37, 38]. The orthomosaic is generated
based on the digital surface model (DSM) that is created
from the UAV-derived densified point cloud (DPC) and cal-
ibrated with a set of ground control points (GCPs) [35, 39].
A variety of reasons, for example, the lack of precision in
GCPs, insufficient flight overlap, and movement of plant
organs due to slight winds, would cause low accuracy of rel-
ative point heights and therefore errors in DPC. Such errors
result in height differences in the recreation of canopy
objects and lead to image distortions commonly seen in
orthomosaics, especially for highly dense canopies and
structural edges [35, 40]. This is also known as “ghost” or
“halo effects,” which in crop-specific applications tend to
blur the canopy features (e.g., leaves, flowers, and heads),
thereby limiting its application for accurate phenotyping
[37]. Methods for deriving high spatial resolution reflectance
from original UAV photos without distortions are critical in
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quantifying canopy characteristics within the phenomics-
genomics space.

While reverse calculation methods to derive plot images
have been developed for UAV-based RGB photos for pheno-
typing purposes [40], few have been done to extract single
images from a multispectral sensor onboard a UAV. In
RGB photo-focused studies, high spatial information from
plot images has been used for sorghum head detection using
machine learning or deep learning algorithms [22, 41]. Geo-
metric features of the heads (e.g., shape and size) have been
applied to train mathematical models, which achieved mod-
erate to high detection accuracies. Such studies generally
require intensive labelling efforts for training purposes.
Apart from the detailed spatial information used in these
studies, the spectral information of the canopy has been less
discussed. Recently, multispectral sensors have become more
readily available for the development of practical applica-
tions in research [21]. The unique spectral characteristics
of the canopy components provide additional properties that
can be used for segmenting the components with fewer
labelling and training efforts.

The aim of this study was to utilise the high spatial and
spectral advantages of UAV-derived multispectral images
for sorghum plant and head detection. An HTP approach
was developed to determine the number of sorghum plants
and heads at the plot level across large numbers of breeding
plots. This was done by deriving calibrated high spatial res-
olution canopy reflectance data for each plot from thousands
of multispectral UAV images. Specifically, this study is
aimed at (i) enhancing the calibration of raw images without
the loss of spatial and spectral details and (ii) developing an
approach to automatically detect sorghum plants and heads
in breeding plots.

2. Materials and Methods

2.1. Study Site, Imagery Collection, and Data Preparation.
This study was conducted at the experimental station of
Gatton Campus, University of Queensland, during the
2019-2020 summer season (Figure 1). The trial was sown
on 12 November 2019 with genotypes planted in plots com-
prising four rows 4m in length. The internal two rows with
0.6m row spacing were used for data collection. The row
spacing between the two data rows and the outside rows
was 0.75m. A total of 1080 plots were sown in this trial, with
a layout of 20 rows and 54 columns. The trial was nominally
planted to be a pure stand, with approximately 30 plants per
row. However, due to the great variation in genotypes and
seed quality, the plots had a large amount of variability
and ranged from about 5 to 30 plants per 4m row length.
Hence, the trial unintentionally provided a useful dataset
for the study of plant emergence and head counts.

A three-dimensional robotics X8+ multirotor drone
(Berkeley, California) mounted with an Altum narrow-
band multispectral camera (MicaSense Inc., Seattle,
Washington) was used to collect high-resolution and multi-
spectral images. The Altum camera captures six bands: blue
(475nm centre, 32nm bandwidth), green (560 nm centre,
27 nm bandwidth), red (668 nm centre, 16 nm bandwidth),
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FiGurek 1: Layout of the sorghum breeding trial conducted in Queensland, Australia, during the 2019/20 summer season. The inset photo

demonstrates the “ghost” effect associated with UAV orthomosaics.

red-edge (717 nm centre, 12nm bandwidth), near-infrared
(842nm, 57 nm bandwidth), and thermal (not used here).
The horizontal field of view (FoV) of the multispectral lenses
was 48° with an 8 mm focal length, producing images at a
resolution of 3.2 megapixels. Flight missions were conducted
across the season on clear and cloudless days, and the flights
were completed around mid-morning (10-11am). The
multispectral images were acquired from a height of 20 m.

To evaluate the performance of the developed methods,
nadir images for 120 plots were manually labelled. Labellmg
(https://github.com/tzutalin/labellmg) was used to create
bounding boxes for sorghum heads (and plants) and to cre-
ate ground truth data. The 120 plots were randomly selected,
and for each plot, a nadir image (obtained by the method
described in Section 3.2) was used to draw the bounding
boxes. The flight data collected on 26 November 2019
(Table 1) were selected to label the presence of green plants,
as this was the earliest flight for the season, and the recently
emerged plants were small and not overlapping each other
in most plots. The data collected on 19 February 2020
(Table 1) were selected to label the sorghum heads, as the
sorghum heads were clearly visible and easy to identify.
The selected images covered a wide range of different plant
densities (from 3 to >100), different head sizes (e.g., small/-
medium/large), and different colours (e.g., red, brown, and
white), which represented the variation across the entire
breeding experiment.

TaBLe 1: Flight information for the postemergent stage and
heading stage.

26 Nov 2019 19 Feb 2020
Flight time 10:15-11:15am  10:50-11:50 am
Flight height ~20m ~20m
Number of images collected 6204 9528
Number of captures 1034 1588

When labelling, a rectangular bounding box was drawn
surrounding each head (plant). After all heads (plants) in a
plot were identified and labelled, the bounding boxes were
cross-checked by another researcher. The number of heads
(plants) was then automatically determined by counting
the number of records in the Labellmg exported XML file.

2.2. The Pipeline and Its Applications

2.2.1. An Overview of the Pipeline. The pipeline (Figure 2)
was designed to control the calibration workflow and over-
come the defects associated with the software packages to
generate orthomosaics for multispectral cameras. The nadir
reflectance map for each plot was derived by following the
procedures outlined in the mainstream of the pipeline
(Figure 2(a)). The maps were then imported to the plant
(Figure 2(b)) and head (Figure 2(c)) detection applications
using the approaches specified in the following sections.
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FIGURE 2: An overview of the pipeline depicting (a) the mainstream of the pipeline to obtain a nadir image for each plot, (b) the procedure
for plant detection and counting, and (c) the procedure for head detection and counting (*Optimised Soil Adjusted Vegetation Index,
**Global Environmental Monitoring Index, and ***Vegetation Index).

2.2.2. Single Image Calibration for Surface Reflectance. The
calibration model (Equation (1)) provided by MicaSense
(https://support.micasense.com/) was implemented to cali-
brate the digital numbers (DNs) of the raw images into
radiance:

a P —Ppr,
L=V(x, VR S & — 1
(x y) . g 8 te +ayy— a3tey ( )

where L is the spectral radiance (W/m?/sr/nm), p is the
normalised DN value, py; is the normalised black level
value, a,, a,, and a; are the radiometric calibration coeffi-
cients, V(x, y) is the vignette polynomial function for pixel
location (x, y), t, is the image exposure time, and g is the
sensor gain settings. These model parameters were deter-
mined by accessing the metadata from the image metadata
using the ExifTool (http://exiftool.org) in the pipeline.

The radiance (L) was further calibrated into reflectance
by using the calibrated reference panel (CRP), which had
been recorded prior to the flight. The known reflectance
levels of the CRP (p,, provided by MicaSense) and the
average value of radiance for the pixels located inside the
panel area of the CRP image (avg(L;)) were used to deter-
mine the reflectance calibration factor (F;) for each band
(Equation (2)). The factors were then used to convert all
radiance values to reflectance for the images collected in
the same flight.

_ P
i avg(L;) @

2.2.3. Spectral Band Alignment for Pixel Scale Calculation
and Analysis. The MicaSense Altum possesses five lenses,
excluding the thermal lens, that are not hardware aligned.

To do pixel scale calculation and analysis, a software align-
ment must be applied to the spectral bands. The pipeline
implemented an image alignment function based on motion
models for this task [42]. In the analysis, a “Homograph”
motion model, which accounted for the shift, rotation, and
scale relationships between two image layers, was used to
define the relative relationship between each pair of spectral
bands. When implementing the model, the green band was
set as the reference, and the other four bands were compared
with the reference separately to generate a transformation
matrix for each band. The bands were then brought into
alignment by applying these matrices.

2.2.4. Reverse Calculation for Segmenting the Plots. A
research trial typically comprises a set of plots arranged in
a matrix of rows and columns. This plot layout can be regis-
tered in ArcGIS and then applied to an orthomosaic. Reverse
calculation is designed to use the orthomosaic and the plot
layout to locate individual plots within the calibrated images
and therefore segment the images for specific applications.
The pipeline referred to the reverse calculation model devel-
oped by Duan et al. [40] and revised it for calibrated Altum
images. The model required three parameters created by
Pix4D when generating the orthomosaic: (1) the calibrated
image position, (2) the transformation matrix (P matrix),
and (3) the DSM.

In the reverse calculation for segmenting rows (for plant
detection), plant rows (straight lines) were first digitalised in
ArcGIS using the orthomosaic and buffered by 10cm on
both sides to create row boundaries. This was to avoid the
weed plants distributed between the rows.

By overlapping the row boundary with the DSM, the 3D
coordinates (X,Y,Z) of the boundary vertices in the
coordinate system of the orthomosaic were calculated and
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subsequently converted to 2D coordinates (u,v) in the
images given in pixels by applying the P matrix, according
to the following equation:

(x,y,2)" = Pmatrix x (X, Y, Z, 1),

NI N R

u

’ 3)

<
11

The four (u,v) calculated coordinates were then used
to generate a polygon within the image for segmenting
the rows.

Since a plot could be captured by several images, it was
essential to decide which image to use for the plot. In this
study, the image selected for further analysis was the one
in which the detected row was closest to the image centre
(nadir). This was done by calculating the distance of the
row centre to the image centre during the reverse calculation
procedure.

Similar procedures were applied to plot boundaries for
segmenting plots for head detection.

2.2.5. Sorghum Plant Detection. Flight data collected on 26
November 2019 were selected for plant detection and count-
ing (Figure 2(b)). The flight was 14 days after sowing, and
the emerging plants were observable from the images with
few plants clustered together in most of the plots. The OTSU
automatic thresholding method was introduced to separate
green pixels from the soil background. The OTSU method
is an adaptive thresholding algorithm for binarization; it
iterates all possible threshold values and returns an optimal
threshold, minimising within-class variance [43]. The Opti-
mised Soil Adjusted Vegetation Index (OSAVI) was selected
for OTSU analysis after visually comparing the binarization
results from other vegetation indices, including the normal-
ised differential Vegetation Index and the Global Environ-
mental Monitoring Index.

Morphological opening followed by morphological clos-
ing was then applied to the OTSU-generated binary image
for each plot. The opening operation was to perform etching
on the image first and then dilation, which would smooth
the edge of the object without changing its contour and
eliminate the small noise points generated during the mask-
ing procedure. The closing operation first performed a dila-
tion and then etching to make up the holes. The number of
green pixel clusters was then detected and counted with a
blob detector searching individual pixel clusters within the
plot [44].

2.2.6. Sorghum Head Detection. Flight data collected on 19
February 2020 were selected for sorghum head detection
when the sorghum heads in most plots were well established
(Figure 2(c)). Two challenges exist in estimating the number
of heads in the plots. The first was to separate the head pixel
clusters from the complex background, including soil, green
leaves, shadowed leaves, bright leaves, and heads. The sec-
ond was to count the number of heads where single heads

were mixed with combined heads (head pixel clusters
containing two or three single heads).

A two-step threshold strategy was implemented to pro-
gressively mask the background information. The OTSU
method was applied to the Global Environmental Moni-
toring Index (GEMI) to mask the soil background in the
first step [45]. GEMI was compared and selected rather
than OSAVI or NDVI due to its slightly better ability to
separate the canopy (green leaves and heads) from the soil
background without losing head pixels. A threshold of 0.3
was applied to a normalised differential Vegetation Index
using red and red-edge bands (hereafter called NDVI)
to separate head pixels from the rest of the canopy. The
index and threshold were determined by examining the
spectral information for canopy leaves and heads. As
shown in Figure 3(a), the green leaves were well separated
from head clusters by the red and red-edge bands. The
threshold was then determined by checking the value
ranges for green leaves and heads with different colours
(Figure 3(b)).

After applying the GEMI OTSU and NDVI,, thresh-
olds, binary images mainly representing head clusters were
generated (Figure 3(c)). Morphological opening and closing
operations were then implemented to refine the binary
images for the preparation of head detection and count.
The position of sorghum heads was then determined by
searching the bright pixel cluster and drawing contours for
each cluster. The number of head clusters (single, double,
or triple head cluster) was determined by the number of
contours found in the plot.

Circularity was selected as a shape descriptor to quantify
the difference between the head clusters. Theoretically, a sin-
gle near-circle sorghum head presents circularity close to
one. When single heads overlap with adjacent heads, the cir-
cularity of the groups will decrease. A kernel density esti-
mate scheme was employed to automatically determine the
threshold(s) for separating the groups. To implement this,
the circularity for each head cluster was calculated. A Gauss-
ian kernel was then applied to each cluster, and the kernels
were aggregated to generate the densify function. The local
minimums were searched and taken as threshold values to
separate the cluster into different groups (Figure 4). The
total number of heads in each plot was then calculated
as the "number of single head clusters + the number of double
head clusters x 2 + the number of triple head clusters x 3.”
Clusters with more than three heads were rare in this
dataset.

2.2.7. Validation and Analysis. To evaluate the performance
of the pipeline, the derived sorghum plant and head maps
were first intensively checked visually against the corre-
sponding nadir image for the plots. Objects subjected to
overdetection or missed detection were traced along the
pipeline to check the possible causes. The pipeline-derived
results for the 120 manually labelled plots were compared
with the manual counts. Statistics including the coefficient
of determination (R*) and root mean square errors (RMSEs)
were calculated to evaluate the accuracy.
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3. Results

3.1. Reverse Calculation for Plot Nadir Image. At the early
vegetative stage (26 November 2019), a total of 1034 UAV
image captures were collected across the trial, with 854 plots
being completely captured. Most of the plots (548 plots,
Figure 5) were completely captured in only one capture,
and 258 plots were completely captured in two captures.
Only one plot was captured in five captures (Figure 6).

Due to the low flight altitude (20 m) and insufficient overlap-
ping of images along and across the flight path, the remain-
ing 226 plots were not fully captured in single images.

The reverse-calculated nadir image was selected for the
plant detection test. As shown in Figure 6, the emerging
plants in the nadir image presented fewer overlaps than
the non-nadir images. The comparison also revealed that,
as the position of the plot moved towards the margin of
the images, the quality of the image decreased, and the
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(b)

FIGURE 7: Reverse-calculated row images for head detection. (a) One plot captured in six raw images and (b) the derived plots, with

increasing distance to the image centre.

plants became blurred. In addition, the reverse calculation-
derived row boundaries also shifted for the plots located
away from the image centres, which could be attributed to
the increased distortions towards image margins.

Similarly, at the heading stage (19 February 2020), a total
of 1588 UAV captures were collected across the trial, with
1049 plots completely captured in the images. Most of the
plots (498 plots, Figure 5) were completely captured at least
twice. One plot, shown in Figure 7, was captured six times.
Due to increased capture overlap along the flight path (com-
pared to the 26 November flight), only 31 plots were not
fully captured.

The plot images that were reverse calculated from the
calibrated images presented good quality overall, regardless
of their distance to the image centre. However, significant
differences in canopy and sorghum head characteristics were
observed between the nadir and non-nadir images. Specifi-
cally, the nadir image viewed from the top of the plot pre-
sented an overall smaller canopy coverage when compared
to non-nadir plot images (Figure 7). The sorghum heads
from the nadir image showed a near-cycle shape and were
relatively easy to distinguish when combined (e.g., head clus-
ters with two or three heads). This was key to the fundamen-
tal method of using circularity to identify single and
overlapping double and triple heads within the plots. How-
ever, the non-nadir images viewed from the side of the can-
opy showed elongated, eclipse shapes with substantial
variations, which made it difficult to use a simple shape
parameter for distinguishing head clusters and affected the
results, as seen in Section 3.3.

3.2. Automated Detection of Sorghum Plants. The number of
green plants determined with the proposed method agreed
well with the manually counted results, with the distribution
of the scatterplots aligning relatively well with the 1:1 line
(R*=0.90, Figure 8). However, some plots showed large

uncertainties (e.g., the indicated dot in Figure 8). The main
reason for this seems to be the failure to detect the extremely
small emerging plants, which consisted of only a few pixels.
It is possible that these few green pixels were masked during
the thresholding procedure or eliminated during morpho-
logical operations.

The plant detection examples shown in Figure 9 further
demonstrate the performance of the proposed method.
Overall, the method worked efficiently in detecting most
green plants of moderate to large sizes with few overlaps.
Some overestimations were observed mainly due to the weed
plants distributed close to the sorghum plants (e.g., green
plants located in the green triangles in Figure 9). Missed
detections were also observed, which can be attributed to
(1) failed detection of extremely small plants (Figure 8 and
Figure 9) or (2) the overlapping of plants detected as one
plant (Figure 9).

3.3. Automated Detection of Sorghum Heads. Detection was
based on the spectral differences of head pixels from their
complex backgrounds, and the proposed method worked
relatively well in separating the head pixels. The detection
results agreed well with the manually counted results,
regardless of the size, density, and colour of the heads
(R*=0.86, RMSE=7.8 heads per plot, Figures 10 and
11(a)). The best detection results were achieved in plots with
a moderate plant density and with genotypes with relatively
large and compact heads (e.g., Figures 12(a), 12(b), and
12(e)). The selected shape parameter of circularity per-
formed well in identifying the differences among single, dou-
ble, and triple head clusters (e.g., Figures 12(e) and 12(f)).
The method also successfully detected the head clusters in
plots showing different head colours (e.g., white in
Figure 12(g)). Relatively poor results were observed in plots
with large but open heads (Figure 12(d)), where the thresh-
olding procedure failed to generate complete pixel clusters.
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Only the connected portions of the head were kept during
thresholding, and it became difficult to identify the heads
using circularity. When investigating the head detection
results against labelled plots, the number of heads was
slightly underestimated compared to the observed number
in some plots. Specifically, some triple heads were identified
as double heads and some double heads as single heads.
Green heads that had just appeared could not be clearly
detected, which was mostly due to aligning the timing of
the flight with the phenology stage (Figure 11(b)).

4. Discussion

In this study, an HTP pipeline was developed for detecting
sorghum organ traits, i.e., the number of plants and heads.
Specifically, this study (i) derived high spatial and spectral
information from single UAV multispectral imagery and
(ii) discriminated crop components from the surrounding
background based on high-resolution spectral signals. This
framework provides high accuracies similar to those of
recent studies that focused on the implementation of pure
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double head, and blue indicate a triple head.

machine learning algorithms but had less demand on label-  mosaics for HIP purposes is limited due to “ghost effects”
ling and computing resources. surrounding plant canopies that are introduced during

stitching procedures, which typically average the pixel values
4.1. Inversing Matrix of the Spatial and Spectral Attributes  across slightly misaligned images [37, 40, 46]. This study
from Single UAV Imagery. The use of UAV-derived ortho-  derived the nadir images from calibrated multispectral
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UAV imagery, which could provide an efficient pipeline
for HTP applications, including sorghum plant and head
extractions. The derived approach had no coregistration
with adjacent images, which is one of the main causes of
“ghost effects” in orthomosaics, while keeping the high
spatial and spectral resolutions of the original individual
raw image [38, 47].

In addition, the transformation matrix utilised in this
study generated the relative relationships between the band
pairs using visible features across all bands and therefore
required no additional reference information from ground
measurements. Furthermore, the rich spectral information
was reserved at each pixel by aligning the multispectral
bands. Another advantage of this approach is that the trans-
formation matrix shows some stability during a flight unless
the UAV platform undergoes shock events [48]. Therefore,
depending on the available computation resources, band
alignment can be implemented either using a single transfor-
mation matrix applied to all flight captures or calculating
individual matrices for each capture and implementing
transverse alignments accordingly.

For the best results, flight heights, flight path overlaps,
and flight times need to be carefully designed during flight
scheduling. To implement the proposed framework for all
plots across the field, it is important to ensure that each plot
is completely captured in at least one image. For instance, in
this study, in the flight data collected on 29 November 2019,
only two-thirds of the plots had derived single plot images
due to insufficient overlaps. For operationalising this
approach, options to segment all plots are threefold: (i) to
increase the flight frontal and side overlap, (ii) to increase
the flight height so that the FoV covers larger areas with
enough spatial resolution, and (iii) to add functionality to
segment a plot from adjacent images in cases where the plots
were not fully visible in one image. The number of plants in
some of the plots in this study was also underestimated due
to the relatively large size of plants in these plots and the
plants being overlapped. An earlier flight might provide
better plant detections for these plots. Similarly, for head
detection, the method failed to count the plots with opening
heads, which might be partially attributed to the time the
images were captured.

4.2. Multispectral Data for Characterising Crop Traits. Previ-
ous research studies in the domain of remote sensing appli-
cations in vegetation inferred the importance of spectral
information in discriminating between crop canopies and
noncanopy and/or soil features [49, 50]. With this under-
standing, the proposed approach does not require extensive
labelling of individual canopy components in each plot. This
is different from the RGB UAV-based analysis [22] or deep
learning- (DL-) focused methods [41]. Although the perfor-
mance of these methods has dramatically improved, there
remains a large labour and computing cost to achieve peak
predictive performance. For example, the DL methods need
extremely large training sets for training and thus increased
accuracy. Such training sets are enormously time and labour
intensive to create. Here, the developed method showed
significant efficacy in (i) separating the canopy organs
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(e.g., green leaves and heads) without the need for includ-
ing an extensive labelling approach. The significantly high
agreement between the derived results from this frame-
work and the manually counted number of sorghum
plants and heads exemplified that the rich spectral infor-
mation derived from the multispectral sensors provides
sufficient skill in characterising plant organ-related traits.

In addition, this approach can also be adjusted to
account for merged heads and/or plants, which allows for
further out-scaling across variable organ types and colours.
For example, in Ghosal et al. [41], images with white sor-
ghum heads were not included in their training, which led
to poor performance when applying their model to plots
with white heads. The scalability of current DL feature
extraction methods across a wide range of plant organ types
remains a challenge and needs to include the full range of
variations associated with the targeted plant traits [51]. In
this study, the spectral signal of white sorghum heads still
shows sufficient distinction from the green canopy to use a
threshold to separate the two. The segmentation of head
pixels was based on their unique spectral characteristics in
comparison to soil and green canopy backgrounds. Its per-
formance dropped when there was a significant number of
green heads in the plots (Figure 11(b)).

Finally, the proposed approach does not require the
adjustment of threshold values when applied to different
plots with changing light and canopy densities. Threshold-
ing methods to detect plant traits from the colour, shape,
and size of the canopy features showed a significant ability
to derive plant organs [22]. However, their performance
was highly dependent on the selection of the thresholds,
and the optimum threshold values for each plot differed
due to light conditions, as well as differences in genotype
by environment. The derived approach overcame manual
thresholding by harnessing the unique spectral signal of can-
opies, thus allowing the application of a fully automated
OTSU thresholding algorithm to select the optimum thresh-
old for each single image inside each plot without any man-
ual intervention [43, 52]. However, OTSU thresholding did
not allow for a clear separation between weed areas and sor-
ghum plants in some cases. Higher spatial and spectral
information will be required to identify the subtle differences
between the plants. Instead of manually buffering rows with
known row widths (e.g., 20 cm), as done in this study, David
et al. [53] developed an automated approach to accurately
determine row locations and directions, which could be
adapted for extracting precise cropping rows. This would
increase the accuracy and scalability of the proposed
framework.

4.3. Morphology Attributes for Detecting Overlapping
Sorghum Heads. Accurately counting the number of heads
when they overlap, due to pixel resolution during flight
period, remains a challenge [20, 22]. Here, the circularity
of the detected head blobs was used to successfully identify
the presence of single and overlapping double and triple
heads. Circularity was selected because it is a metric inde-
pendent of the size of the heads. Other morphological
metrics, such as area and perimeter, were further tested but
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showed poor accuracy. This was mainly due to attributes like
area and perimeter of the head blobs changing both within a
plot and across multiple plots [22]. This made it difficult to
implement an automated thresholding algorithm for plant
detection, while an arbitrarily determined threshold would
fail in plots with significantly changed sorghum heads.

To overcome this, a Gaussian kernel density function
was utilised to automatically determine the presence of
overlapping heads in the plots. Traditionally, thresholds for
identifying clusters are determined by examining the shape
of the histogram. However, a major problem with histo-
grams is that, depending on the number of bins, the choice
of binning can have a disproportionate effect on the results.
The Gaussian kernel density created a smooth density esti-
mator as a powerful nonparametric distribution of the circu-
larity levels within a plot. With continuous distribution, it
was possible to find the thresholds for single, double, and
triple heads by searching for the local minimums.

There are some limitations to this method. First, the
highest number of overlapping heads considered in this
study was set at three. For this study, after some inspection,
the number of overlapping heads was limited to three, since
higher numbers of overlapping heads were extremely rare
and would reduce the overall accuracy. Second, circularity
works well in identifying circular single heads and overlap-
ping circular heads, which were observed in most nadir
images where the heads had clear near-circular boundaries.
However, it failed in cases where a nadir image was not
available, and the heads were captured from an oblique
angle. In this case, the heads presented an elongated shape
and therefore decreased circularity, which might be identi-
fied as overlapping heads instead. In addition, the circularity
parameter might have a lower ability in cases where heads
do not correspond closely to a circular shape. Further
research is needed to address this issue.

4.4. Implications for Crop Breeding Efforts and Limitations.
Knowing the number of plants and heads in sorghum breed-
ing plots is important for the selection of varieties that are
higher yielding across different environments [12, 21, 23,
31, 32]. In this study, the proposed method showed good
efficacy in detecting plant organs, thus counting sorghum
plants and heads. Apart from that, the method showed an
appreciably good ability to detect plant organs across a wide
range of genotypes and emergence conditions and therefore
is likely to provide breeders with better information and
knowledge of crop adaptation across other environments
and management practices.

Furthermore, the estimation of plant and head numbers
also provides an estimate of tiller number and hence the
propensity to tiller of a genotype, which is known to have
a beneficial impact on yield [54, 55]. In these experiments,
the tiller number per plant (approximated by the number
of detected heads divided by the number of plants inside a
plot) ranged between 0.5 and 2, which is well within the
range for tillering reported elsewhere for sorghum [56]. In
addition, the derived number of tillers per plant per plot
agreed well with the calculations from manually counted
plants and heads for the plots (R* = 0.58). Our study exem-
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plified the utility of a proximal sensing framework on board
a UAV to derive not only plant and head counts but also til-
ler numbers at much faster turnaround times. It is also more
cost-effective with appreciably higher accuracies compared
to manually collected field data.

5. Conclusion

Using UAV imagery to characterise crop traits has become a
focus in developing timely, accurate, and cost-effective phe-
notyping platforms. While approaches using RGB photos
collected with UAVs have been commonly developed for
crop plant and head detections, fewer studies have focused
on the applications derived from multispectral imagery.
The latter has the advantage of capturing additional spectral
wavelength information, which can likely be utilised to
enhance the ability to detect plant organs. However, to effec-
tively harness the increased spectral range and information,
a single image scale approach is required. Here, to detect the
number of sorghum plants and heads from a multispectral
camera, a semiautomated HTP pipeline that utilises a single
image per plot was developed, thus preserving spatial and
spectral data integrity. The approach showed a significant
ability to align the spectral bands, calibrate the reflectance,
and extract a singular nadir image for each plot through
the implementation of a reverse calculation approach. The
methods applied here performed appreciably well in separat-
ing green plants from the soil background and sorghum
heads from the complex canopy backgrounds. The number
of plants and heads counted from nadir images showed high
prediction accuracies when compared with observed data.
Coefficients of determination were 0.90 and 0.86 for plants
and heads, respectively. Finally, the proposed HTP frame-
work developed here showed reasonable specificity for a
wide range of plant densities, head sizes, and head colours.
It is envisaged that this approach can be applied rapidly
and cost effectively across many sorghum breeding plots,
resulting in accurate information of crop responses to differ-
ent environments for a wide range of genotypes.
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