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ABSTRACT 5G millimeter wave (mmWave) application in mobile connectivity to realize high-speed,
reliable communication is attributed with high path loss. This paper presents a detailed 3D ray-tracing
technique at 28 GHz for Lagos Island to investigate five unique path loss scenarios: path loss, free space
path loss with antenna pattern, free space path loss without antenna pattern, excess path loss with antenna
pattern, and the excess path loss without antenna pattern for an urban environment. The Close-In (CI) model,
Floating Intercept (FI) path loss model, and a root mean square error (RMSE) are used to model and evaluate
the best path loss model for Lagos Island. The average achieved FI (α, β, σ ) parameters were 189.92352,
0.1654, and 0.66948, While the average CI (η,Xσ ) parameters were 2.309355 and 56.236425. From all the
scenarios evaluated, the lowest path loss exponent achieved was 0.45, while the highest path loss exponent
was 3.8. We have established that the FI path loss model accurately characterizes path loss for the Lagos
Island environment with the lowest RMSE of 0.0359 dB and the highest RSME of 0.0997 dB. In contrast,
the CI model over-predict the path loss at 28 GHz with the lowest RMSE of 0.0495 dB and the highest
RMSE of 2.2547 dB. This work opens up a new area of research on mm-Wave at 28 GHz in Lagos Island,
and the results obtained from this work can be used to benchmark future studies on mmWave in a similar
environment.

INDEX TERMS 5G, close-in model, floating intercept model, millimeter-wave, path loss model.

I. INTRODUCTION
The exponential growth in data demand, communication
infrastructure, mobile subscription, and high mobile and IoT
devices penetration has significantly stretched the cellular
bandwidth requirements. Future communication technology
needs to improve spectral efficiency, increase the bandwidth
and improve the spectrum reuse technology to overcome the
current technology limitations. 5G mm-Wave communica-
tion promises diverse user applications like smart cities, IoT,
industrial automation, and vehicular communication, this is
due to its ultra-low latency and massive network capac-
ity associated with higher performance and improved effi-
ciency. Despite the high expectation of 5G, mm-Wave suffers
two major drawbacks; high path loss and high penetration
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losses. The mm-Wave has been shown to operate in extreme
power-limited regimes with limited freedom to utilize spa-
tial antenna layout and enhanced bandwidth freedom [1].
Research on adopting artificial neural network (ANN) and
deep learning network algorithms like convolutional neural
network (CNN) to establish the relationship between the
propagation channel features is gaining traction to achieve
the expected performance. One possible solution to com-
pensate for the high path loss and penetration losses is to
use many antenna elements in a small cell setup. To over-
come this challenge, Bao, et al. [2] proposed a novel deep
CNN model for precoding channel parameters to optimize a
combiner neural network architecture aimed at maximizing
the spectral efficiency per small cell. The 5G vision is to
achieve a flexible radio access scheme supporting massive
machine-type communications. 5G mm-Wave communica-
tion has been associated with high path loss, high absorption
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rate, and critical loss through the foliage. Chen [3] proposed
developing a 28 GHz 5G small cell mm-Wave platform to
overcome the 5G shortcomings. For optimal location and
coverage of transmitter antenna in the mm-Wave network,
path loss modeling is crucial. Many approaches have been
developed to model path loss using empirical, deterministic,
and artificial neural network (ANN) based models. Path loss
prediction techniques are valuable tools that can help network
optimization engineers deploy base stations, determine base
station setup location, transmitting/receiver antenna selec-
tion, operating frequency, and interference feasibility studies.
Radio propagation models are grouped into empirical and
deterministic models. Deterministic models are theoretically
based on diffraction principles [4], integral equation [5], ray
tracing [6], and parabolic equations [7]. Empirical models
are based on drive test measurement of the target areas,
examples include; Okumura-Hata [8], standard propagation
model [9], and COST 231-Hata model [10]. These models are
computationally easy to implement in time and cost-effective.
However, they are not as accurate as alternative models as
they cannot be adopted for a new environment without adjust-
ment. Cheerla, et al. [11] developed an optimized COST
231-Walfisch-Ikegami (CWI) model using Newton’s method
at frequencies 800 and 1800 MHz. This method proved
efficient to accurately predict path loss than the empirical
CWI model while validated using actual field measurements.
Therefore, it is imperative to study the environment and carry
out detailed simulations before conducting a pilot study and
implementing the capital-intensive mm-Wave infrastructure.
Hence, this research aims to perform a detailed 3D ray-
tracing simulation of Lagos Island, Nigeria, at 28 GHz.
Erunkulu, et al. [12] grouped simulated path loss models
into three categories depending on the carrier frequencies,
for 28 GHz, the Close-In, Alpha-Beta-Gamma (ABG), and
Floating Intercept models are used to characterize path loss at
the transmitter to receiver height of 30 m to 2 m respectively.
In this work, we present a thorough path loss analysis usingCI
and FI path loss model at 28 GHz for a transmitter-to-receiver
(TR/RX) height of 20/2 m. Other researchers and service
providers can adapt the results obtained from this work before
implementing 5G network infrastructure to benchmark their
study for a similar environment. Table 1 presents the abbre-
viations and acronyms used in this work. This article aims to
develop a new path loss model at 28 GHz specifically tuned to
fit Lagos Island’s unique terrain comprising high-rise build-
ings and highly clustered buildings.The objectives of this
article are to: (i) Investigate the large-scale path loss effect
of Lagos Island at 28 GHz mmWave considering five dif-
ferent scenarios. (ii) Develop a deterministic path loss model
using a 3D ray-tracing technique to establish a generic path
loss model at 28 GHz to represent South-Western Nigeria.
(iii) Calculate the path loss exponent, shadow factor, Mean
Absolute Error (MAE), Mean Square Error (MSE), and Root
Mean Square Error (RMSE) values to characterize path loss.
(iv) Determine the appropriate model amongst Close-In (CI)
path loss model and Floating Intercept (FI) path loss model

TABLE 1. Abbreviations and acronyms taxonomy.

representing Lagos Island. (v) To determine the optimum
TX-RX distance to guide the actual implementation of 5G
mm-Wave infrastructure.

In this paper, our contributions include; (a) developing a
unique deterministic path loss model using the ray-tracing
simulation technique at 28 GHz for Lagos Island, Nigeria.
The proposed path loss model has been tuned to fit the target
environment by calculating the path loss exponent, shadow
factor, the random Gaussian standard deviation parameters.
(b) Further to this, close-in (CI) and floating intercept (FI)
path loss models have been computed for various scenarios
to decide the best model to represent large-scale path loss
at a 28 GHz environment. (c) Lastly, this work opens up
a new area of research on mm-Wave at 28 GHz in Lagos
Island and the surrounding environment by using the results
obtained in this work to benchmark future works in research,
5G pilot study, and infrastructure implementation. The rest
of this paper is organized as follows: Section II discusses the
background and related works and depicts a tabular review of
key parameters considered in this work. Section III presents
the methodology. Section IV presents the results and dis-
cusses the results obtained in different scenarios. Section V
concludes the article.

II. BACKGROUND AND RELATED WORKS
5GmmWave are associated with high path losses and absorp-
tion losses. However, reflection and scattering allow wireless
links to be established between the transmitter and receiver
in LoS and NLoS. Due to mmWave small wavelength,
air and water’s molecular size greatly determines the free
space achievable across the mmWave spectrum. Temperature
and humidity impact the excess attenuation resulting from
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absorption. Higher mmWave band suffers from very high
excess attenuation over distance. Rappaport, et al. [13]
attribute the absorption losses to excess path loss caused
by oxygen absorption and environmental factors. The excess
path loss causes an additional effect on the propagation chan-
nel by adding attenuation in the link. The excess path loss
for a 60 GHz channel results in an additional 28 dB to the
free space path loss. One recommended way to overcome the
mmWave path loss is by increasing the antenna size at either
the receiver or transmitter. Antenna gain is limited to the
effective surface area of the antenna, which directly relates
to the permissible path losses. In an LoS mmWave channel,
the most effective communication with a directional antenna
occurs in the boresight alignment; therefore, the antenna posi-
tion, location, and pattern affect the communication channel
by either increasing the path loss or lowering the path losses.
For antennas with a fixed beam pattern, the transmitter should
be physically pointed toward the receiver to minimize path
losses. In NLoS communication channels, effective commu-
nication is best when the antenna pointing is toward one or
more dominant reflections within a single beam. The NLoS
channel is best when there is a complicated beam pattern that
can place energy on multiple propagation paths. The antenna
used for NLoS requires some adaptivity to achieve a desirable
NLoS channel. Future mmWave antenna should be adap-
tive with high antenna gain, beamwidth, and beam pointing
mechanism to offset and adjust to specific interference levels.
Throughout this work, we refer to NLoS environment as path
loss scenario, LoS environment as FSPL, which evaluate the
effect of antenna pattern on path loss. Hence we consider
the case of LoS as FSPL with antenna pattern and FSPL
without antenna pattern. The absorption loss is referred to as
excess path loss with antenna pattern and excess path loss
without antenna pattern. An LoS environment is character-
ized by a direct non-obstructed path between the transmitter
and receiver; an NLoS environment is when the channel has
no direct unobstructed path between receiver and transmitter.

Path loss prediction is the ability to forecast the attenu-
ation effect on radio signal propagation with a good level
of precision [14]. It is crucial for network planning in
wireless communication systems [15]. Extensive field cam-
paigns measuring RSS from the transmitter station to the
receiver station helps to generate data needed for propaga-
tion path loss determination of a desired wireless network
[12], [16]–[18] in a densified cellular network infrastruc-
ture [19]. Al-Samman, et al. [20] proposed a path loss
prediction model for 5G mm-Wave and future 6 GHz wire-
less communication. The authors developed a new path loss
model to account for the path loss associated with 5G net-
works by introducing a frequency-dependent attenuation fac-
tor. Grøtli and Johansen [21] proposed using UAVs for data
collection to find the fastest path to solve multi-task missions
for direct and multi-hop communication applications. This
work concluded that it is possible to improve the propa-
gation signal strength by adopting multiple UAVs for path
planning before network infrastructure deployment. Path loss

distribution depends on the general characteristics of the area
under study[22].

The path loss value depends on the propagation environ-
ment; urban, suburban, and rural areas are estimated to have
different path loss exponents. An urban environment is esti-
mated to experience a path loss of 30-50 dB generated due
to high-rise and other city buildings. The ground terrain is
estimated to generate a path loss of 90 dB for every 1 km
covered [23]. The effect of path loss on sea and ocean surfaces
has been reported by [24], Also, Hrovat, et al. [25] research
shows that path loss is experienced in tunnels used for metro
stations and trains caused by obstacles and traffic in the
road and railway tunnel which results to additional signal
attenuation, increasing the propagation signal’s delay spread.
Also, moving objects in the tunnel causes additional path
loss accounting for poor communication quality in the tunnel
environment. In practice, cellular coverage prediction can be
achieved through geometric mathematical models using com-
puter simulations for ray tracing. Using a high computational
computer to run cellular coverage prediction saves on time
and cost of the incurred drive test. Several vendors have devel-
oped 3D modeling software that has been adopted in various
works. There are twomain models adopted to model path loss
prediction: a) drive test measurement campaign, b) propaga-
tion simulation modeling using ray tracing and ray launching.
In drive test campaigns, sophisticated software and measur-
ing tools are used to measure the propagation characteris-
tics. Presently, ray tracing techniques have been extended to
model ANN and CNN-based path loss prediction models by
combining 3D models with 2D satellite imagery to develop
generic path loss prediction methods [26]–[29] and [30].
While considering 3D digital maps, a given map’s accu-
racy depends on how the terrain, foliage, and city buildings
are portrayed; also captured detailed features like building
footprints, building edges, facades, street features, vertical
and horizontal, and the transmitting and receiving antennas
position. Lastly, the path loss prediction by the 3D ray-tracing
simulation method offers flexibility and controllability in
changing model parameters that are impossible to tune and
calibrate in field first-hand practice and serve as a testbed for
emulation studies. The main disadvantage of running the 3D
ray-tracing simulations is the high computational complexity
and time associated with simulations. Ahmadien, et al. [26]
proposed using 2D satellite image models based on convo-
lutional neural networks to overcome this challenge. Their
works showed that path loss distribution could be predicted
for wireless networks’ various frequencies under varying
transmitter and antenna heights. To save on the computational
complexity of 3D tracing, Ates, et al. [31] proposed a deep
learning model using convolutional neural networks (CNNs)
with 88% accuracy on path loss exponent and 76% accuracy
on large-scale shadowing factor. The author used 3D ray
tracing to train and test the model after extracting the relevant
features in the 2D satellite images. The deep neural network
takes a 2D satellite image as the input and returns a channel
parameter prediction. For successful deep learning modeling,
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TABLE 2. Taxonomy of related research on path loss modeling parameters at mm-Wave band.

a large dataset is needed for the training and testing set.
In 3D modeling, ray tracing is effective in obtaining path
loss value and bit error rate (BER). An efficient deep learn-
ing model requires massive data to train, test, and validate
the model. This data can be generated via a 3D ray-tracing
simulation of the target area using propagation modeling
software.

Other researchers have applied 3D ray-tracing to model
path loss propagation [32]. Charitos, et al. [33] adopted a 3D
ray-tracing channel to predict the spatial and temporal mul-
tipath ray components of radio propagation between an LTE
base station and a vehicle. These simulation results are then
compared to the actual drive test measurement conducted
in the exact area covered by the simulation. This virtual
drive test results in higher reliability and repeatability with
an accuracy higher than of measured value. The simulation
of path loss using a 3D ray-tracing model offers a powerful
and cost-effective alternative to on-street drive test campaigns
as several parameters can be modeled. Thrane, et al. [34]
compared the effectiveness of using deep learning techniques
utilizing drive test measurement data and satellite images for
ray tracing to model path loss models. The developed deep
learning model improved path loss prediction with over 1 dB
for the cellular network at 811MHz and 4.7 dB at 2630MHz.
A comprehensive review of the existing path loss model
based on the ray-tracing model was done [34]. This review
focused on the path loss accuracy achieved by adopting 3D
tracing techniques on outdoor propagation scenarios. The
authors concluded that digital maps introduce a certain level
of uncertainty in the ray tracing models. Still, they offer the
best possible and reliable path loss predictions despite the
high computational requirements. Han, et al. [35] proposed
a novel double regression model utilizing an NS-2 simula-
tor that allowed the sender and receiver to move without
abrupt changes in the correlated space path loss. The author
aimed to overcome the difficulties introduced by sender and

receiver in motion by producing spatially correlated path
loss in mobile-to-mobile simulation. Themodel accuracy was
validated using drive test campaigns that maintained a spatial
correlation of path loss to the empirically observed indoor and
outdoor scenarios.

Path loss and atmospheric absorption are significant
sources of propagation loss in mm-Wave wireless communi-
cation[13]. Maccartney, et al. [36], conducted an extensive
ultra-wideband mm-Wave propagation measurement cam-
paign at 28 and 73 GHz in New York. This work showed
that novel large-scale path loss models are more straight-
forward and more physically based than previous 3GPP
and ITU indoor propagation models. Other similar work
by Sun, et al. [37] to investigate the prediction accuracy
of 5Gwireless communication concluded that the alpha-beta-
gamma (ABG) model of large-scale path loss model in the
microwave and mm-Wave under-predicts path loss, while
relatively close to the transmitting antenna and over-predict
path loss while far from the transmitter. Further, the results
indicated that the physically based two-parameter CI model
and three-parameter CIF model offer computational simplic-
ity. In the sequel to this work, Rappaport, et al. [38] conducted
extensive measurement campaigns for typical base station-to-
mobile access scenarios in dense urban environments. This
work showed that path loss exponent was immense in a highly
populated urban environment like New York City than in
Austin. With extensive propagation measurement, it is pos-
sible to introduce new path loss models that predict signal
strength as a function of distance from the transmitter and the
transmission frequency for both indoor and outdoor scenar-
ios. Bhuvaneshwari, et al. [39] suggested a hybrid model that
combined the Walfisch-Ikegami model and ray-tracing tech-
niques to simulate path loss prediction. This hybrid model
reduced the path loss prediction error by 69.9% and relative
error by 7.31%. These results was validated by conducting
a field campaign in Hyderabad, India, on a GSM 900 MHz
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TABLE 3. Taxonomy of related empirical and deterministic path loss models at mm-Wave band.

network. Table 2 summarises various research conducted at
mm-Wave bands.

The simulation model’s performance can be validated with
actual field measurement for an urban area, using models like
COST-231 Walfish-Ikegami (COST-WI). COST-WI consid-
ers the hard to find finite details of the environment like road
width, heights of buildings, streets orientations, and foliage,
limiting the use of such models in other areas. Other models
include COST-231 [10]. Batalha, et al. [48] conducted an
extensive measurement campaign for an indoor scenario at
mm-Wave frequencies. Field measurement data was used to
develop a path loss adjusting model through the minimum
mean square error (MMSE) method for a close-in path loss
model in LoS and NLoS conditions. The author proposed
modeling the path loss using 28 GHz frequency for indoor
environment, and using the 3D ray-tracing model can achieve
this. Degli-Esposti, et al. [49] evaluated indoor propagation

at mm-Wave by adopting a 3-D ray-tracing model in a small
office setup. Using a customized 3D tracing software with
three reflections and one transmission, enabled internal office
object diffraction and single-bounce diffuse scattering. Later,
using the effective roughness model to factor the propa-
gation environment, they considered the best compromise
between the accuracy of the results and the central processing
unit (CPU) computational requirements. Table 3 represents
a taxonomy of related empirical and deterministic path loss
models at mm-Wave band.

III. METHODOLOGY
3D ray tracing is a state-of-art deterministic path loss mod-
eling technique. It provides detailed site-specific information
necessary to simulate an accurate path loss model [61], [62].
Ray tracing engines offer the flexibility of changing the car-
rier frequency, transmit, and receiver antennas. In principle,
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FIGURE 1. Study area.

deterministic methods offer higher accuracy than empirical
models as they are based on geometric optics. Still, the high
computational requirement and time required to model path
loss is a factor to consider. Ray tracing methods depend on
a precise 3D map model of an area of interest encompassing
terrain databases, buildings, and foliage databases.

They use an optimization algorithm that calculates the
minimum mean square error with the least standard devi-
ation to form the best fit. Ref [57]–[59], [63] proposed
a ray tracing simulation technique to model path loss at
28 GHz. Kamboh, et al. [64] carried out a 3D ray-tracing
at 60 GHz mm-Wave using a simulation model developed
in MATLAB. The author used the 5G 3GPP propagation
model to compute the received signal strength and path
loss. We present a large-scale path loss model at 28 GHz
using a 3D map of Lagos Island as a study area, covering
coordinates of 6.271735 N to the north, 6.27437 N to the
south, 3.235466 E to the southeast, and 3.234122 E to the
west. The 28 GHz carrier frequency was preferred for it gives
a good tradeoff between unfavorable channel characteristics
like path loss, rain fading, propagation loss, transmission
through foliage loss, and atmospheric absorption effect.
This frequency band has been piloted and implemented in
Korea, the US, China, and Japan for the outdoor environ-
ment [65]. To achieve high data throughput in a small cell
operating on short distances, 28 GHz offers the best carrier
frequency [66]. One of the shortcomings of this frequency is
susceptibility to high path loss and atmospheric absorption.
To overcome the high path loss effect, Karthikeya, et al. [67]
proposed the design of a co-polarized stacked antenna with
a pattern diversity for indoor base stations. Similarly, [68]
proposed the use of large-scale antenna arrays to extend
the 5G mm-Wave band coverage to lower the effect of
path loss. Figure 1 shows the 3D map and the google
earth map of the study area. Figure 1(a) depicts the exact

position of our study area marked by the green grid bound
at coordinates 6.272192/3.234164, 6.271736/3.235836,
6.270134/30235321, and 6.270655/3.233879. The study area
covers a distance of 560m with an average elevation of 2.4 m,
elevation gain of 11.4m, amaximum slope of 5.7%-8.7%, and
an average slope of 1.3%-0.9%.

Figure 2 presents a step-by-step simulation block dia-
gram. First, we imported a 3D map into the software, then
the terrain, building, and foliage databases were loaded.
For terrain, the material used was dielectric half-space of
type ITU dry earth for 28 GHz. The building material
considered was a one-layered dielectric of ITU concreate
28 GHz type. The signal waveform applied was a sinu-
soid, with a carrier frequency of 28 GHz and effective
bandwidth of 3000MHz. Four transmitting 30 dBm half-
wave dipole antenna with the 28 GHz sinusoid waveform
base stations were set up with the coordinates grid edges
at the origin longitude of 3.39219575502601 and origin
latitude of 6.4562764716583. Receivers were positioned in
the XY grid at the height of 2 meters with a spacing of
5 meters.

Figure 3 represents the study grid with the base station and
receiver layout and a google map showing the study map.
Wireless Insite software runs on several propagation models;
amongst them, An X3D study simulation was set to utilize
the APG acceleration technique with two diffractions and six
reflections on an intel-based Graphic Processing Unit (GPU)
workstation running Nvidia GeForce 1050 architecture. The
study setup was configured to extract five scenarios of path
loss data: path loss, free space path loss with antenna pat-
tern, free space antenna without antenna pattern, excess
path loss with antenna pattern, and excess path loss without
antenna pattern. Also, other extracted data were received
power files, interference and noise data associated with each
TX antenna.
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FIGURE 2. Simulation procedure block diagram.

A. SIMULATION SETUP: POINT-TO-MULTIPOINT
In this scenario, the aim was to study the effect of differ-
ent path loss scenarios in a 5G mm-Wave communication
considering the effect of the antenna pattern in the channel
throughput and capacity. For this setup, four half-wave dipole
transmitter antennas were fixed, as shown in Figure 4. In this
scenario, the study focussed on path loss, excess path loss
without antenna pattern, excess path loss with antenna pat-
tern, free space path loss without antenna pattern, and free
space power without antenna pattern. The TX antennas were
labeled TX1, TX2, TX3, TX4, as presented in Figure 4 (b).

Following the steps highlighted in figure 2, the simula-
tion was implemented using a Windows 10 OS, Intel Core
i7-8750 H CPU 2.2 GHz, 2208 MHz, 6 Cores, 12 logical
processors, Intel Optane+932 GBHDD, and Nvidia GeForce
GTX 1050 Graphic Processor with 4 GB dedicated memory.
The simulated path loss data were extracted in a text file
format and later converted to a CSV file. Table 4 shows the
statistical analysis of the simulated path loss data extracted at
various transmitter points.

B. 28GHz LARGE SCALE PATH LOSS MODEL FOR URBAN
SMALL CELLS ANALYSIS
Path loss is defined as the power loss attenuation between the
transmitter and the receiver station[14].i.e.,

PL (dB) = Transmitted power (Pt) dB – Received
power (Pr) dB

PL (dB) = 10log10

(
Pt
Pr

)
(1)

where Pt is the power transmitted while Pr is the power
received at the close-in reference point.

Free space path loss is a non-negative number defined as
the power loss attenuation between the transmitter and the
receiver station while path gain is a negative path loss.

PL (dB) = 10log10

(
Pt
Pr

)
= −10 log10GtGr

(
λ

4πR

)2

(2)

where, Pr is the power at the receiving antenna, Pt is the
output power of the transmitting antenna, Gt ,Gr is the gain
of the transmitting and receiving antenna respectively, λ is
the signal wavelength and R is the distance between the
transmitter and receiver.

Free space path loss with antenna pattern scenario is
achieved when the antenna pattern is included in the com-
munication system design, the free space loss is calculated
from the equation (2) by assuming that the transmitter and
receiver antenna polarization match perfectly, the space loss
in free space reduces to:

LFSPL with AP(dB) = −10 log10

(
λ2GtGr
(4π)2 R2

)
. . .+ GT ,max(dBι)+ GR,max(dBι) (3)

Free space path loss without antenna patterns occurs when
the antenna pattern is ignored and an isotropic pattern is
assumed, the free space reduces to:

LFSPL without AP(dB) = −10 log10GtGr

(
λ

4πR

)2

(4)
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FIGURE 3. Simulated study area.

FIGURE 4. Point-to-multipoint simulation.

where LFSPL (dB) is the free space path loss with the antenna
patterns. similarly, the excess path loss with antenna pattern
scenario is defined as a measure of the loss above that due to

free space losses, Its derived as:

LExcess Pl with AP = L path(dB) − LFSPL with AP(dB) (5)
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TABLE 4. Statistical analysis of the simulated path loss data.

The excess path loss without antenna pattern (dB) is the
measure of the loss above that due to the free space without
antenna pattern losses. derived as:

LExcess Pl without AP = L path(dB) − LFSPL without AP (6)

Also, equation (2) can be extended to factor in the effect
of shadowing factor to describe the path loss model at a
reference distance d0.

PL (d) (dB) = PL (do)+ 10ηlog10

(
d
d0

)
+ Xσ (7)

where PL(d) represents path loss (dB) at transmitter distance
(d), while PL(d0) is the path loss associated with the reference
distance d0.Xσ is a randomGaussian variablewith zeromean
and standard deviation representing shadowing factor in the
environment. η is the path loss exponent[69]. In urban areas,
shadowing describes the random variable about the distant-
dependent large-scale path loss model. This effect is caused
by obstruction from buildings, foliage, and other structures,
causing random propagation effects. Shadow fading is an
essential statistical parameter to model large-scale fading for
simulation purposes. It describes the possible path loss value
expected while using a distant dependent path loss model
without prior knowledge of the site-specific details of an
environment. Shadow fading is accurately represented as a
log-normal distribution about a distant-dependent mean path
loss[69]. Also, path loss can be expressed as:

P̄L (d) (dB) = α + β10log10 (d) (8)

where PL (dB) present the mean path loss over the distances
in dB, while α is the floating intercept (FI) in dB. β is the

path loss exponent expressed as the linear slope and can be
extracted using a best fit linear regression to equation (8), and
d represents the TX-TR separation distance. From equations
(7) and (8), we can derive shadow factor as:

Xσ = PL (d) (dB)− P̄L (do)− 10ηlog10

(
d
d0

)
(9)

Similarly, path loss values are calculated from the mea-
sured power delay profile (PDPs) by integrating the area
under the PDP to obtain the received power at each location
and antenna pointing angle. These calculated values are nor-
malized to obtain a channel graph at each antenna pointing
combination[41]. The linear slope value β of the path loss
exponent η is derived as:

β =

∑n
i
(
di − d̄

)
x
(
PL i − P̄L

)∑n
i (di − d̄)

2 (10)

where di is the separation distance between the antenna and
the receiver, d is the average distance of all di Values in dB,
PLi is the iterated path loss value of all the measured data
set as a distance-dependent variable. The floating intercept
α (dB) represents the tilt in the path loss model of equation
(11). It is calculated by substituting equation (8) into (7) and
making α (dB) the subject as in equation (11).

α = P̄L (dB) + β. ¯10log10 (d) (11)

The standard deviation σ (dB) (random Gaussian variable)
of the path loss models can be calculated as:

σ (dB) =

√∑ (
PL i − P̄L

)2
N

(12)
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FIGURE 5. Path loss model versus modified path loss models for TX1.

where N is the total number of receiver points in the XY grid,
adopting the formulated equations expressed in equation (1)
to equation (12). MATLAB was used to model the regression
fit for the various path loss scenarios as discussed in Figure 5,
Figure 6, Figure 7, and Figure 8

C. ACCURACY EVALUATION OF LARGE SCALE mmWave
PATH LOSS MODEL
To evaluate the accuracy of the CI and FI model developed,
statistical error for each scenario was calculated using the
mean absolute error (MAE), mean square error (MSE), and
the root mean square error (RMSE), as shown in the following
equations:

MAE =
1
n

n∑
i=1

(
PlSi − Pl

P
i

)
(13)

MSE =
1
n

n∑
i=1

(
PlSi − Pl

P
i

)2
(14)

RMSE =

√√√√1
n

n∑
i=1

(
PlSi − Pl

P
i

)2
(15)

where PlSi denote the simulated path loss measurement, Pl i
present the predicted path loss data using the CI and FI path
loss models, and PlS−Meani represents the mean of simulated
path loss data.

IV. RESULTS AND DISCUSSION
Large-scale path loss experienced between the transmitter
and receiver stations is represented as a function of distance
using a path loss exponent value. The acceptable path loss
is between 2.7 to 3.5 for urban areas, 3 to 5 for shadowed
areas, 2 for in buildings LoS, for obstructed in-building is

between 4 to 6, and 2 to 3 for an obstructed environment with
factories[69]. For LoS mmWave at 28 GHz, the acceptable
path loss is between 1.8 and 2.2 but changes to 4 and 5 in
NLoS conditions or LoS when the transmitter and receiver
are not in boresight alignment[13]. In this work, the achieved
path loss varies between 0.45 dB to 3.8 dB. Lagos Island can
be categorized as an urban environment with high-rise build-
ings causing shadowing and propagation signal obstruction;
also, there are a number of large warehouses and factories
within Lagos Island, thus fitting the acceptable environment
to calculate the path loss exponent from all the scenarios
presented in this work, the derived path loss exponent is
within the range of acceptable path loss exponent.

Figure 5 presents a path loss model at 28 GHz as a function
of the distance between the transmitter at TX1 to the receiver
grid. For this scenario, the TX-RX is 10.13 m to 488.292 m.
The simulation measures the various path losses associated
with the 7300 receivers in the grid. Figure 5(a) represents
the path loss scenario data point. In contrast, Figure 5(b)
shows the resultant modified path loss model with floating
intercept and shadow factor computed to develop a matching
path loss model at 28 GHz for Lagos Island. The calculated
path loss exponent for path loss, FSPL with antenna pat-
tern, FSPL without antenna pattern, Excess path loss with
antenna pattern, Excess path loss without antenna pattern for
TX1 were 1.46, 2.1974, 2.2019, 3.0098, and 3.0143, while
the corresponding shadow factors were 34.7234, 52.2174,
52.3254, 71.5225 and 71.5225, respectively. The difference
in path loss across the 5-scenarios is as discussed in Table 5.
The transmitter TX2 was positioned in a highly developed
area with multiple high-rise buildings, and some receivers
were obstructed from the TX2 line of sight. In this sce-
nario, the magenta color represents the high path loss effect
attributed to the high-rise buildings. Figure 6(a) illustrates the
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TABLE 5. Transmitter point TX1 key parameters.

FIGURE 6. Path loss model versus modified path loss models for TX2.

path loss models for TX2. However, the impact of path loss
was reduced after modifying equation (4) to introduce the
shadow factor, as shown in Figure 6(b).

The path loss exponent for the various models is 0.4503,
0.7544, 0.7571, 0.9891, 0.9865 for path loss, FSPL with
antenna pattern, FSPL without antenna pattern, Excess
path loss with antenna pattern, Excess path loss with-
out antenna pattern, respectively, while the show factor is
11.1472, 18.6742, 18.7394, 24.4187, 24.4839, respectively.
Table 6 presents the parameters for this setup.

Popoola, et al. [70], while determining the optimal param-
eter for an ANN-based path loss prediction model, concluded
that the TX-RX distance is a significant parameter. From this
work, it can be shown that a receiver in the LoS distance
resulted in lower path loss presented in the yellow color of
Figure 7 than the NLoS scenario presented in magenta color.

The path loss model represented in Figure 7(a) indicates
the simulated value, while Figure 7(b) illustrates the mod-
ified path loss model for the various case considered in
TX3 as shown in Figure 7. The calculated shadow factor
for this scenario were 34.7234, 52.2174, 52.3254, 71.6305,
and 71.5225 for path loss, FSPL with antenna pattern, FSPL
without antenna pattern, Excess path loss with antenna pat-
tern, Excess path loss without antenna pattern, respectively.

The corresponding critical parameters for these scenarios are
represented in Table 7.

For transmitter point TX4, the path loss exponent calcu-
lated using equation (7) for the various scenarios is 1.7734,
2.0781, 2.7180, 3.8098, and 3.8000, while the shadow factor
was 43.5272, 66.4687, 66.7102, 93.5086, and 93.2670 for
path loss, FSPL with antenna pattern, FSPL without antenna
pattern, Excess path loss with antenna pattern, Excess path
loss without antenna pattern. Figure 8(b) shows that the mod-
ified path loss model had improved exponent and shadow
factor hence the lower path effect. Table 8 represent the
TX4 key parameter adopted to develop Figure 8.

1) FI PATH LOSS MODEL AND CI PATH LOSS MODEL
ANALYSIS
The FI model is obtained by performing a least square regres-
sion of the simulated path loss in the various scenarios. The
key parameters for the FI model are (η, β, σ ). The CI model
is obtained from simulated data by calculating the path loss
exponent (η) and shadow factor Xσ .

Figure 9(a) represents the path loss model, the close-in
(CI), and the floating intercept (FI) path loss model for
TX1. The FI (α, β, σ ) parameters are 211.9816, 0.1387,
and 0.4061, respectively, while the CI (η,Xσ ) parameters
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FIGURE 7. Path loss model versus modified path loss models for TX3.

TABLE 6. Transmitter point TX2 key path loss parameters.

TABLE 7. Transmitter point TX3 key parameters.

are 1.4612 and 34.7234. similarly, Figure 9(b) represents
TX2, the FI (α, β, σ ) parameters are 236.0442, 0.1135, and
0.1304, the CI (η,Xσ ) parameters are 0.4503 and 11.1472.
Figure 9 (c) shows the TX3 FI (α, β, σ ) parameters with
211.8493, −0.1946, and 0.8398 respectively. The CI model
for this scenario has an exponent (η) value of 1.744 and a
shadow factor of 42.8493. For transmitter point TX4, the CI
model and FI model is represented by Figure 9(d), the path
loss exponent for this scenario is 1.7734 with a shadow
factor of 43.5272, the FI model gives a floating intercept
of 197.4515, a standard deviation of 0.5091 and a random
gaussian variable of 0.3676. comparing FI and CI models,
we conclude that the FI model gives a better approximation
of the path loss effect while the CI model increases the path
loss.

Table 9 presents a statistical summary of the CI model
and FI model key parameters as represented in Figure 5 to
Figure 8, showing the simulated path loss model, close-in
model, and the floating intercept model for TX1, TX2, TX3,
and TX4.

2) MODIFIED AVERAGE FI AND CI PATH LOSS MODELS
According to [14] the average path loss at a distance (d) also
called local mean attenuation (LMA) decreases with distance
due to the free space path loss and signal obstruction. Path
loss model has been represented using CI model and FI
model as discussed by [36]–[46], and [47] using equation
(1) to equation (7) as discussed in the previous section.
From this premise, we develop generic path loss models by
taking the average values of each scenario simulated and
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FIGURE 8. Path loss model versus modified path loss models for TX4.

TABLE 8. Transmitter point TX4 key path loss parameters.

TABLE 9. Summary of the CI model and FI model key parameters.

representing TX1, TX2, TX3, and TX4 as a single value,
as shown in Table 10.

For a CI model, we use the average value for η and
Xσ to calculate a regression fitting model to develop
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FIGURE 9. Path loss model, CI, and FI path loss model for all TX points.

TABLE 10. Modified average CI and FI path loss model.

equation (16)

(PL)CI dB = PL (d) (dB)+ 10.η.log10 (d)+ Xσ
CI (16)

where PL(d) dB is the average path loss at each transmission
station, η is the average path loss exponent, d is the average
distance between the transmitter and the receiver point, and
Xσ is the average shadow factor for the transmitter points.

Taking the average CI parameters and substituting them in
equation (16) results in a new CI path loss model for Lagos
Island at 28 GHz. PL(d) dB is the average path loss for
corresponding TX points as shown from equation (17) to
equation (20)

TX1C I = 250+ 23.7692log10 (d) (17)
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FIGURE 10. Average modified CI and FI path loss models.

TX2C I = 296.0041+ 7.8748log10(d) (18)

TX3C I = 250.18356 + 31.1116log10(d) (19)

TX4C I = 250 + 29.6186log10 (d) (20)

For the FI model, we compute the average values as repre-
sented in Table 10 to develop equation (21) as:

(PL)FI dB = α + βFI .10.log10(d)+ σFI (21)

where PL (dB) is the developed path loss model, α gives the
average floating intercept value of the transmission points,
βFI represent the average slope of the TX scenario points
and σFI represent the average random Gaussian parameter
expressed as a standard deviation of the Gaussian random
variable of the simulated data. For each transmitter point, this
is calculated as shown in equation (22) to (25):

TX1F I = 188.81684+ 0.22554log10 (d) (22)

TX2F I = 227.16132+ 0.1693log10 (d) (23)

TX3F I = 182.85312− 0.34704log10 (d) (24)

TX4F I = 163.53226+ 0.61380log10 (d) (25)

Figure 10 shows the corresponding plots of the developed
CI and FI path lossmodel. The newly definedCImodel and FI
models show the optimal path loss for each transmitter point.

3) PERFORMANCE EVALUATION OF THE LARGE SCALE
mmWAVE PATH LOSS MODEL
The prediction accuracy of the path loss model is evaluated
using the RMSE. The best performance is exhibited when
the RMSE values are close to 0 dB. However, the acceptable
RMSE values for urban areas are 6-7 dB, while suburban
areas range between 10-15 dB [69]. Table 11, Table 12,
Table 13, and Table 14 represent the statistical error evalua-
tion value for the simulated data against the CI and FI path
loss model developed for TX1, TX2, TX3, and TX4. The
RMSE value for the TX1 path loss was 0.4061 dB, while the

134284 VOLUME 9, 2021



S. K. Hinga, A. A. Atayero: Deterministic 5G mmWave Large-Scale 3D Path Loss Model for Lagos Island, Nigeria

TABLE 11. Path loss performance evaluation.

TABLE 12. TX2 path loss performance evaluation.

CI resulted in 0.8656 dB, and the FI model had 0.0484. For
FSPLwithout antenna pattern and FSPLwith antenna pattern,
the RMSE values are 1.3044dB, 1.3018 dB for the CI model,
and 0.0705 dB and 0.0727 dB for the FI model. The RMSE
value for the excess path loss with antenna pattern and excess
path loss without antenna pattern is 1.7830 dB and 1.7857 dB
for the CI model and 0.0996 dB and 0.0997 dB for the FI path
loss model.

For transmitter TX2, the simulated path loss RMSE value
CI had 0.2673 dB. The FI model had 0.0360 dB, the FSPL
with antenna pattern, FSPL without antenna pattern, excess
path loss without antenna pattern, and excess path loss with
antenna pattern had 0.4493 dB, 0.4477 dB, 0.5855 dB, and
0.5870 dB for the CI model. In comparison, the FI model
had 0.0595 dB, 0.0603 dB, 0.0789 dB, and 0.0791 dB for the
FI model. Table 12 presents the MAE, MSE, and RMSE for
TX2 scenarios.

TheRMSEvalues for the CImodel at TX3were 0.8771 dB,
1.4698 dB, 1.4667 dB, 1.1466 dB, and 2.0056 dB for the
path loss, FSPL without antenna pattern, FSPL with antenna
pattern, excess path loss without antenna pattern, and the
excess path loss with antenna pattern, respectively. The FI
model had 0.0359 dB, 0.0642 dB, 0.0601 dB, 0.0820 dB and
0.0822 dB as presented in Table 13.

TABLE 13. TX3 path loss performance evaluation.

TABLE 14. TX4 path loss performance evaluation.

In Table 14, the FI model had 0.1180 dB, 0.1776 dB,
0.1801 dB, 0.2528 dB, and 0.2534 dB for path loss, FSPL
without antenna pattern, FSPL with antenna pattern, excess
path loss without antenna pattern, and for the excess path
loss with antenna pattern, respectively. The CI model had
1.0495 dB, 1.6085 dB, 1.6027 dB, 2.2489 dB, and 2.2547 dB
for the scenarios presented in Table 14.

Comparing the CI and FI model RSME values for all
scenarios, the FI path loss scenario had the lowest RMSE
of 0.0484 dB, 0.036 dB, 0.0359 dB, 0.1180dB for TX1, TX2,
TX3, and TX4. In comparison, the excess path loss with
antenna pattern resulted in the highest RMSE of 0.0997 dB,
0.0791 dB, 0.0822 dB, and 0.2534 dB, respectively. The CI
model had RMSE value of 0.8656 dB, 0.2673 dB, 0.8771 dB,
and 0.0495 dB for TX1, TX2, TX3, and TX4. The highest
RMSE value for the CI model was under the excess path
loss with antenna scenarios with 1.7857 dB, 0.5870 dB,
2.0056 dB, and 2.2547 dB for the TX1, TX2, TX3, and TX4,
respectively. Table 11, Table 12, Table 13, and Table 14 show
that the FI model had the smallest RMSE value (dB) than the
CI model for all the scenarios across all TXs. This signifies
that the FI model gives the best path loss prediction across
all the scenarios considered in this work. The CI model
had a considerably higher RMSE value(s) (dB) in all cases.
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Therefore it overpredicted the corresponding path losses in
all the considered scenarios. Hence, we report that for Lagos
Island, the FI path loss model accurately predicts path loss at
28 GHz for a transmitter height of 20 m and receiver height
of 2 m.

Comparing the path loss models presented by [36],
[37], [40], [41], [44], and [47] with our path loss model, our
model shows an optimistic advantage over all reviewed pieces
of literature. Our research conducted a large-scale path loss
modeling. The simulation model was configured to consider
the path loss at any receiver point in the XY grid from the
four-transmitter station, the path loss exponent for all the
scenarios presented here is with an exponent of 0.45 at TX2,
the highest path loss exponent factor was 3.8 at TX4 under
the excess path loss with antenna pattern scenario. Ref. [40]
model of 28 GHz resulted to a path loss of 0.6 which is higher
than our lowest path loss exponent. Ref. [41] reported a path
loss exponent of 4.51 at a transmitter height of 17 meters and
a receiver height of 1.5 meters. Our model’s highest path loss
exponent is 3.9888 at Excess path loss with antenna pattern
in TX3 at a transmitter height of 20 meters and 2 meters for
the receiver grid. The average path loss exponent from all our
simulation scenarios is 2.309355, which is less than reported
by [36], [41] and [52]. Maccartney, et al. [36] achieved a
shadow factor of 10.8 at 28 GHz for the close-in path loss
model; this work achieved a shadow factor of 11.1472 with
a corresponding linear slope of 0.1135, which is less than
achieved by [43] and [45] at mmWave frequency. From the
figures presented in this research, the FI model accurately
fits the simulated environment, while the CI model gives
a pessimistic representation of the study area. The results
obtained from this work align with the standard path loss
model developed by [36], [40], and [41]. Comparing this
work with research done at different mm-Wave band pre-
sented in Table 2 shows that this work can be adopted by
researcher considering to study path loss in Lagos Island in
the 2-73 GHz band.

V. CONCLUSION
Large-scale path loss modeling in the mm-Wave band
requires calibration and tuning for the case of the field
campaign. This work adopted a 3D ray-tracing deterministic
method to model a 5G communication testbed for Lagos
Island, Nigeria, using Remcom ray tracing suite, Wireless
Insite engine. To the best of our knowledge, no similar work
has been carried out in the study area at 28 GHz, making
this research relevant to 5G communication service providers
intending to carry pilot study or actual implementation and
other researchers in this domain. From the CI/FI model anal-
ysis, we have established that the FI model has the lowest
RMSE value (dB) than the CI model for the scenarios con-
sidered and exhibits the best prediction model to perfectly
characterize the Lagos Island environment. Lagos Island is
an urban area comprising high-rise buildings and highly pop-
ulated areas; it is necessary to investigate how shadow fading
affects the path loss models in such an environment. The

shadow factor presented in our model depicts an advantaged
model compared to other existing research work done at
28 GHz. This model can guide other researchers working
in the mm-Wave band for Lagos Island and can be adapted
to other areas. For future work, an actual field campaign at
28 GHz in both LoS and NLoS scenarios with and without
antenna patterns will be carried out. Also, a similar study
will be conducted to cover the four geographical regions in
Nigeria.
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