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ABSTRACT Multiple-input multiple-output (MIMO) sparse code multiple access (SCMA) is of great
interest for future wireless networks to achieve higher spectral efficiency and support massive connectivity.
In this paper, we investigate the key problems of user clustering and downlink beamforming for MIMO-
SCMA in a cloud radio access network (C-RAN). Using channel state information available at the
central processor, an efficient user clustering algorithm based on the constrained K-means method is
proposed. Subsequently, two iterative algorithms for beamforming design are developed by minimizing
the total transmission power under quality-of-service (QoS) and fronthaul capacity constraints. In the
first approach, we approximate the continuous non-convex constraints by convex conic ones using first-
order Taylor expansion and iteratively solve a sequence of mixed-integer second order cone programs
(MI-SOCPs) to achieve high quality solution, but with higher complexity. In the second approach, a two-
stage low-complexity solution is developed in which beamforming matrices obtained from each stage are
combined to form a single beamformer for each user. In the first stage, cluster beamformers are designed
by taking advantage of block diagonalization, while in the second stage, user-specific beamformers are
determined by minimizing transmission power. The performance of the proposed user clustering and
downlink beamforming approaches for MIMO-SCMA in C-RAN is validated through simulations over
mmWave channels. Compared to benchmark approaches, the results show significant improvements in terms
of transmit power and spectral efficiency.

INDEX TERMS MIMO-SCMA, mmWave, C-RAN, downlink beamforming, user clustering, constrained
K-means.

I. INTRODUCTION

IN mobile wireless networks, multiple access technolo-
gies are of crucial importance to meet performance re-

quirements in terms of data throughput, network capacity,
device connectivity and energy consumption. Recently, the
application of non-orthogonal multiple access (NOMA) tech-
niques to fifth generation (5G) and beyond 5G (B5G) wire-
less networks has received considerable attention. In effect,
NOMA allows multiple users to access overlapping time and
frequency resource elements in the same spatial layer [1].
Hence, this technology has the potential to provide higher
spectral efficiency and meet the massive connectivity demand
needed for machine-to-machine (M2M) communications and
internet of things (IoT) in future wireless networks [2].

NOMA techniques can be classified into three main cat-
egories, namely: code domain, power domain and multiple
domain [3]. In code domain NOMA, different codes are ap-
plied to modulate the data streams of the users over multiple
resource elements in a sparse manner. Hence, the processed
data of different users can be multiplexed over the same
resource elements, wherein the induced sparsity allows the
control of interference. Power domain NOMA relies on the
use of superposition coding strategies, wherein user signals
are simultaneously broadcast with different power levels at
the transmitter, while successive interference cancellation
(SIC) techniques are employed to separate them at the re-
ceiver. In multiple domain NOMA, such as pattern division
multiple access (PDMA) and lattice partition multiple access
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(LPMA), multiple user signals are superimposed in multiple
domains, including power, code, and spatial domains.

Sparse code multiple access (SCMA) is a code domain
NOMA scheme inspired from the well-known code division
multiple access (CDMA) technique. While CDMA extends
each information symbol (taken, e.g., from a quadrature
amplitude modulation (QAM) constellation) into a finite
sequence of complex symbols by using orthogonal or near
orthogonal spreading codes, SCMA directly maps each group
of bits into a sequence of complex symbols by merging
together the symbol mapper and the CDMA spreader. The
overall process can be interpreted as a coding procedure from
the binary domain to a multidimensional complex domain,
which in turn raises new problems in terms of codebook
design [4].

As an emerging network architecture for 5G and B5G,
cloud radio access network (C-RAN) offers several benefits,
e.g., improved energy efficiency, ability to handle interfer-
ence on a larger scale and increased network capacity [5].
The C-RAN architecture consists of three main components,
namely: the central processor, the remote radio heads (RRH)
and the fronthaul links. The central processor, which is
located in one or more data centers within the cloud, is re-
sponsible for all the baseband processing. The RRHs connect
wireless devices to the network, alike base stations in current
cellular networks. The fronthaul link provides connectivity
(e.g., via dedicated optical fiber or microwave links) between
the central processor and the RRHs. The C-RAN architecture
concentrates the baseband processing in the central processor
and coordinates the operation of the RRHs. This separation
of the central processor and RRHs functionalities reduces the
power consumption and complexity of the RRHs, since the
latter only need to perform basic transceiver operations.

A. RELATED WORKS
There have been extensive studies devoted to the design
of multidimensional constellations for downlink and uplink
SCMA systems. In [6], the performance of a systematic sub-
optimal design for the mother constellations (from which the
individual user codebooks are derived) is investigated and a
unified metric is proposed to obtain the optimum codebooks
using a specific mother constellation. The authors in [7] eval-
uate the average bit error rate (BER) performance of SCMA
systems in which codebooks are based on star-QAM sig-
naling constellations. Multidimensional constellations with
a low number of projections are designed in [8] based on
the extrinsic information transfer (EXIT) chart using a mul-
tistage optimization. Subsequently, an appropriate labeling
method based on the EXIT chart is optimized for the resulting
constellation. In [9], the design of SCMA codebooks based
on star-QAM constellations is addressed and an analytical
approach to obtain the theoretical BER performance over
Rayleigh fading channels is proposed. The design of an
efficient suboptimal SCMA codebook is proposed in [10] for
a large scale scenario with growing number of resources and
users.

The use of multiple antennas along with multiple-input
multiple-output (MIMO) techniques can lead to significant
performance improvements in terms of user capacity, spectral
efficiency, and peak data rates, by taking advantage of spatial
diversity, multiplexing or beamforming gains. In [11], a
joint sparse graph is constructed for a MIMO-SCMA sys-
tem model, and the corresponding virtual SCMA codebooks
are designed for the detector, wherein the message passing
algorithm (MPA) is employed to reconstruct the transmitted
data bits. In [12], a joint decoding algorithm is proposed
for MIMO-SCMA systems based on space frequency block
codes (SFBC), which exhibits lower computational complex-
ity than MPA and yet achieves a similar block error rate
(BLER). A novel downlink MIMO mixed-SCMA scheme
is proposed in [13], such that the transmitted codewords
for each user over different antennas come from different
codebooks. The authors in [14] propose near-optimal low-
complexity iterative receivers based on factor graph for a
downlink MIMO-SCMA system over frequency selective
fading channels.

Recently, the C-RAN architecture has aroused great inter-
est for the implementation of MIMO-NOMA transmission
schemes. In [15], a novel framework for C-RAN is proposed
in which two users are scheduled over the same resources ac-
cording to power domain NOMA, while the performance of
cell-edge users is further enhanced by means of coordinated
beamforming. Stochastic geometry is used to analyze the
outage probability of NOMA under C-RAN in [16], where
power domain multipexing along with SIC are employed to
increase downlink system capacity. The application of beam-
forming along with power domain NOMA is investigated for
cache-enabled C-RAN in [17]. The design of robust radio
resource allocation and beamforming approaches for MIMO-
SCMA systems under C-RAN is studied in [18], where the
aim is to maximize the total sum rate of users subject to a
minimum required rate for each slice.

B. MOTIVATIONS AND CONTRIBUTIONS
MIMO-SCMA combines MIMO techniques, which increase
capacity by transmitting different signals over multiple an-
tennas, and SCMA which improves spectral efficiency and
device connectivity by transmitting multiple user signals
over the same radio resources. As seen in works related to
power domain NOMA [19]- [20], the joint application of
spatial user clustering along with beamforming techniques in
MIMO-SCMA systems has the potential to improve spectral
efficiency and reduce the total transmit power. Additionally,
when considered within a C-RAN architecture, this approach
makes it possible to increase the number of supported users
in the network by using a common codebook for users in
different clusters, while the effect of inter-cluster interference
can be eliminated by centralized beamformer design and
coordinated RRH operation. In spite of its importance, the
joint problem of user clustering and beamforming has not
received considerable attention in the literature on MIMO-
SCMA, let alone C-RAN.
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Motivated by the above considerations, we propose
energy-efficient user clustering and downlink beamforming
approaches for MIMO-SCMA in C-RAN. Our main contri-
butions in addressing the above challenges are summarized
as follows:

1) We approach the user clustering problem by modifying
the widely-used K-means method from the field of
machine learning, in order to limit the number of users
in each cluster. Specifically, the proposed constrained
K-means algorithm uses the Euclidian metric to char-
acterize the similarities between the user channel vec-
tors and the cluster centers, and seeks to group users
with channel vectors exhibiting large correlation. The
elbow method is utilized to find the optimum number
of clusters for the network.

2) We formulate the beamforming design and RRH se-
lection as a non-convex mixed-integer nonlinear pro-
graming (MINLP) optimization problem, aiming to
minimize the total transmit power while satisfying
the signal-to-interference-plus-noise ratio (SINR) and
fronthaul capacity constraints. We then propose trans-
formations to reformulate the problem as a differ-
ence of convex functions (DC) program and derive
two algorithms for solving the problem. In the first
algorithm, we iteratively approximate the continuous
non-convex constraints by convex ones using first-
order Taylor expansion and solve a sequence of mixed-
integer second-order cone programing (MI-SOCP) us-
ing dedicated solvers. This algorithm entails high com-
putational complexity, yet it can achieve high quality
solution.

3) The second algorithm is based on a two-stage low-
complexity beamforming approach wherein the beam-
forming matrices obtained from each stage are multi-
plied to form the final beamformer. In the first stage,
specifically, a block diagonalization (BD) technique is
adopted to design the cluster beamformers (one for
each cluster), which remove the inter-cluster interfer-
ence and thus enhance the quality-of-service (QoS)
for intra-cluster users. In the second stage, the user-
specific beamformers are designed along with RRH
selection by employing a smoothed `0-norm approxi-
mation. The resulting optimization problem is solved
via the convex-concave procedure (CCCP) with guar-
anteed convergence [21].

4) We evaluate the performance of the proposed algo-
rithms for user clustering and downlink beamform-
ing using in-depth simulations of MIMO-SCMA in
C-RAN with mmWave channel models and different
parameter configurations. The results illustrate the con-
vergence behavior of the new algorithms and the ef-
fect of various parameters on the system performance,
while providing useful insights into the advantages of
the proposed approaches over competing ones from the
literature.

C. ORGANIZATION
The rest of the paper is organized as follows: Section II
introduces the MIMO-SCMA system model under C-RAN
and describes the problem under consideration. The proposed
constrained K-means algorithm for user clustering is intro-
duced in Section III. The two-stage energy-efficient beam-
forming approach for eliminating inter-cluster interference
and minimizing total transmit power is developed In Section
IV. The results of our simulation experiments are presented
in Section V, followed by the conclusion in Section VI.

Notations: Scalars, vectors and matrices are respectively
denoted by lower case, boldface lower case and boldface
upper case letters. For a matrix A, [A]i,j denotes its (i, j)th
entry, while AT and AH denote its transpose and conjugate
transpose, respectively. The operators ‖.‖2 and ‖.‖0 denote
the Euclidean and zero norms of a vector, respectively. For
a set A, |A| denotes its cardinality. Cm×n (Rm×n) denotes
the space of m × n complex (real) matrices. Bm×n denotes
binary matrices of size m × n where the set B = {0, 1}.
We use CN (µ, σ2) to denote a complex circular Gaussian
random variable with mean µ and variance σ2.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION
We consider downlink transmission in a MIMO-SCMA sys-
tem under C-RAN, as illustrated in Figure 1. The sys-
tem consists of L RRHs, each equipped with M antennas,
and J single-antenna users. The RRHs indexed by l ∈
L , {1, . . . , L}, are connected to the central processor via
limited-capacity fronthaul links. Due to the fronthaul con-
straint, each user is cooperatively served by a specific subset
of RRHs through joint beamforming. Moreover, the users
are partitioned into K non-overlapping clusters, indexed by
k ∈ K , {1, . . . ,K} with the kth cluster comprising Jk
users such that J =

∑K
k=1 Jk. Below, we provide further

Figure 1: The MIMO-SCMA system model under C-RAN.
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details on the SCMA encoder, mmWave channel, received
signal model, and problem description. For convenience, we
list the key notations of this paper in Table 1.

A. SCMA ENCODER
In SCMA, contiguous groups of data bits from each user
are directly mapped to sparse N -dimensional codewords
selected from a predefined codebook and then transmitted
over N radio resources, e.g., orthogonal frequency division
multiple access (OFDMA) subcarriers. The SCMA encoder
for the ith user can be defined as fi : BU → Xi which
is a one-to-one mapping from the set of U -bit tuples to a
codebook Xi ⊂ CN of N -dimensional codewords, with car-
dinality |Xi| = 2U . Specifically, for b = [b1, ..., bU ] ∈ BU ,
the corresponding codeword is obtained as,

x = fi(b) = [x(1), ..., x(N)] (1)

where x is a sparse vector with C < N non-zero elements.
Each user is assigned C subcarriers such that no two users

occupy the same set of subcarriers. Hence, only q users can
be supported by SCMA, as given by [22],

q =

(
N
C

)
=

N !

C!(N − C)!
. (2)

In this work, we group users into K clusters of size Jk ≤
q and remove inter-cluster interference so that the users in
different clusters can use common codebooks.

Referring to (1), we can associate to each codeword x a
vector y containing its C non-zero elements in the same or-
der, i.e., y is obtained from x by removing its zero elements.

Table 1: Summary of key notations

Notation Description
L Number of RRHs
M Number of transmit antennas per RRH
K Number of non-overlapping clusters
J Total number of users
Jk Number of users in the kth cluster

L,J ,K Index set of RRHs/users/clusters
N Number of subcarriers
C Number of non-zero elements for each codeword
q Maximum number of supported users via SCMA
F Factor graph matrix
P Number of NLOS paths in mmWave channel

α(p), a(lp)jk (n), θ(lp)jk

Path loss exponent/complex gain/normalized
direction for the pth path in mmWave channel

hjk(n), wjk(n)
Network-wide channel/beamforming vector for the
jth user in the kth cluster over the nth subcarrier

σ2
jk Noise power
dj Normalized channel vector for clustering
ck Center of the kth cluster
WK Sum of the normalized within-cluster SSE distance

γjk(n)
SINR of the jth user in the kth cluster over
the nth subcarrier

γmin Minimum required SINR

Rjk(n)
Transmission rate of the jth user in the kth cluster
over the nth subcarrier

Cmax Maximum capacity constraint for each RRH
Pmax Maximum available total transmit power
Bk(n) First stage (cluster) beamforming matrix
vjk(n) Second stage (user-specific) beamforming vector

For convenience, we represent this operation by the function
φ : CN → CC , so that y = φ(x) = [y(1), . . . , y(C)].
Through this operation, the original codebook Xi ⊂ CN
is transformed into a constellation of C-dimensional code-
words, i.e., Yi ⊂ CC , where Yi = {φ(x) : x ∈ Xi}. We also
let gi = φ ◦ fi : BU → Yi denote the composite mapping of
fi and φ, so that for any b ∈ BU , and x = fi(b), we have,

y = φ(x) = gi(b). (3)

From this perspective, the SCMA encoder can be redefined
as fi(b) = Sigi(b), where matrix Si ∈ BN×C maps
a C-dimensional constellation point to an N -dimensional
codeword. Note that Si contains N − C all-zero rows and
hence, all the codewords in codebook Xi contain 0 in the
same N −C positions. Moreover, an identity matrix of order
C is obtained by removing the all-zero rows from Si.

The set of resources occupied by user i is determined by
the positions (or indices) of the non-zero elements of the
binary indicator vector fi = diag(SiS

T
i ) ∈ BN×1. In effect,

the complete SCMA encoder structure for q users and N
subcarriers can be represented by a factor graph, with asso-
ciated matrix F = [f1, ..., fq] ∈ BN×q . In this interpretation,
subcarrier node n and user node i are connected if and only
if the corresponding element of matrix F is equal to 1, i.e.,
[F]n,i = 1.

B. CHANNEL MODEL
Due to the propagation characteristics at such high frequen-
cies, the application of MIMO-SCMA communication in the
mmWave band is more challenging than in a conventional
low-frequency scenario. The mmWave-based channel vector
h
(l)
jk (n) ∈ C1×M from the lth RRH to the jth user in the
kth cluster over the nth subcarrier can be expressed as the
discrete sum of a line-of-sight (LOS) and P non line-of-sight
(NLOS) components [23]- [24], i.e.,

h
(l)
jk (n) =

P∑
p=0

√
Ma

(lp)
jk (n)a(θ

(lp)
jk )

√
P + 1(1 + (d

(l)
jk )α(p))

(4)

where: p is the path index, with p = 0 corresponding to LOS
and p ≥ 1 to NLOS paths; d(l)jk is the distance between the
RRH and the user; α(p) is the path loss exponent; a(lp)jk (n)
denotes the complex gain for the pth path which follows
a complex circular Gaussian distribution, i.e., a(lp)jk (n) ∼
CN (0, 1); and a(θ

(lp)
jk ) ∈ C1×M is the antenna array steering

vector. In the case of a uniform linear antenna array, the
steering vector is given by,

a(θ
(lp)
jk ) =

1√
M

[1, e−jπθ
(lp)
jk , ..., e−jπ(M−1)θ

(lp)
jk ] (5)

where θ(lp)jk is the normalized direction of the pth path. The
latter can be expressed as,

θ
(lp)
jk =

2d

λ
sin(φ

(lp)
jk ) (6)
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where φ(lp)jk ∈ [0, 2π] is the angle of departure (AoD) of the
pth path, d is the inter-antenna element spacing, and λ is the
wavelength at the operating frequency.

In MIMO systems operating at mmWave frequencies, a
single-path model is often adopted for the channel vectors by
retaining only one dominant path in (4) [25]. In most cases,
the latter will be the LOS path, whose gain can be as much as
20dB stronger than that of NLOS paths [26]. However, when
there is no LOS path due to blockage, the dominant NLOS
path can be considered instead. Hence, the mmWave channel
model can be simplified to,

h
(l)
jk (n) =

√
Ma

(l)
jk (n)

(1 + (d
(l)
jk )α)

a(θ
(l)
jk ) (7)

where, for simplicity of notation, the superscript p for the
path index has been removed.

C. SIGNAL MODEL

Let xjk(n) ∈ C denote the codeword element intended
for the jth user in the kth cluster over the nth subcarrier.
Due to the sparsity of the SCMA encoder, xjk(n) can be
either 0, or a non-zero element with normalized power, i.e.,
E{|xjk(n)|2} = 1. Codeword element xjk(n) is transmitted
from the M antennas of the lth RRH by employing the beam-
forming vector w

(l)
jk (n) ∈ CM×1. Hence, the transmit signal

of the lth RRH over the nth subcarrier can be expressed as,

z(l)(n) =
K∑
k=1

∑
j∈Un,k

w
(l)
jk (n)xjk(n) (8)

where Un,k denotes the set of users in the kth cluster oc-
cupying the nth subcarrier. Owing to the limited-capacity
fronthaul link, only a selected group of RRHs serve a specific
user cooperatively. The process of RRH selection for trans-
mission can be performed through beamforming. That is,
‖w(l)

jk (n)‖2 = 0 implies that the lth RRH does not participate
in the transmission for that user over its assigned subcarrier.
Hence, the corresponding network-wide beamforming vec-
tor, wjk(n) = [w

(1)
jk (n)T , ...,w

(L)
jk (n)T ]T ∈ CLM×1 may

be sparse.
Let hjk(n) = [h

(1)
jk (n), ...,h

(L)
jk (n)] ∈ C1×LM denote the

network-wide channel vector for the jth user in the kth clus-
ter and z(n) = [z(1)(n)T , ..., z(L)(n)T ]T ∈ CLM×1 denote
the network-wide transmit signal over the nth subcarrier. The
received signal at the jth user in the kth cluster over the nth
subcarrier is given by,

rjk(n) =hjk(n)z(n) + njk (9)

where njk ∼ CN (0, σ2
jk) is an additive noise term. We can

express the received signal of this user as a sum of the desired
signal, the interference from the other users in that cluster

(intra-cluster interference), the inter-cluster interference and
the noise, i.e.,

rjk(n) =hjk(n)wjk(n)xjk(n)

+
∑

j′ 6=j,j′∈Un,k

hjk(n)wj′k(n)xj′k(n)

︸ ︷︷ ︸
Intra-cluster Interference

+
∑
k′ 6=k

∑
j∈Un,k′

hjk(n)wjk′(n)xjk′(n)

︸ ︷︷ ︸
Inter-cluster Interference

+njk.

(10)

The SINR of the jth user in the kth cluster over the nth
subcarrier with non-zero codeword element is given by,

γjk(n) =
|hjk(n)wjk(n)|2

I
(1)
jk (n) + I

(2)
jk (n) + σ2

jk

(11)

where the first term in the denominator represents the intra-
cluster interference and the second term represents the inter-
cluster interference, i.e.,

I
(1)
jk (n) =

∑
j′ 6=j,j′∈Un,k

|hjk(n)wj′k(n)|2 (12)

I
(2)
jk (n) =

∑
k′ 6=k

∑
j′∈Un,k′

|hjk(n)wj′k′(n)|2. (13)

The total transmit power for the whole network over N
subcarriers is given by,

PT =
N∑
n=1

E{z(n)Hz(n)} =
N∑
n=1

L∑
l=1

E{z(L)(n)Hz(L)(n)}.

(14)

Upon substitution of (8) into (14) and assuming that the
transmitted codewords xjk(n) from different sources are
uncorrelated and have zero mean and unit variance, we can
write the total transmit power as,

PT =
∑
n

∑
l

∑
k

∑
j

‖w(l)
jk ‖

2 =
∑
n

∑
k

∑
j

‖wjk‖2,

(15)

where the last equality follows from the definition of the
network-wide beamforming vector.

D. PROBLEM DESCRIPTION
In this work, our objective is to group users into non-
overlapping clusters and design beamformers such that the
total transmit power is minimized while constraining the
inter-cluster interference, the user SINRs and the fronthaul
capacity. Indeed, removing inter-cluster interference not only
enhances the SINR at the user terminal, but also allows the
transmitter to use a common SCMA codebook to serve users
in different clusters, which in turn boosts network capacity.
To further satisfy the requirements imposed by the limited-
capacity fronthaul links of C-RAN, dynamic RRH selection
is taken into consideration in our formulation.
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In order to address the above challenges and obtain the
desire solution, we conceive efficient algorithms for user
clustering and beamforming design with low complexity.
Specifically, we propose an efficient user clustering algorithm
based on the constrained K-means method in Section III.
Then, the beamformer design is addressed in Section IV by
means of a two-stage energy-efficient approach wherein the
inter-cluster interference is removed using a BD technique in
the first stage and the total transmit power is optimized under
SINR and fronthaul capacity constraints in the second stage.

III. USER CLUSTERING
In this section, we first introduce the proposed constrained
K-means algorithm for user clustering. We then apply the
elbow method to determine the number of clusters. Finally,
we evaluate the computational complexity of the proposed
algorithm.

A. CONSTRAINED K-MEANS CLUSTERING
K-means is a celebrated method for grouping inharmonious
multi-dimensional data points into K clusters such that a
similarity criterion within clusters is maximized [27], [28]. In
effect, K-means attempts to group J data points (or vectors)
{d1,d2, ...,dJ} into K clusters by finding cluster centers
{c1, c2, ..., cK} such that similarities between the points
in the same group are high while similarities between the
points in different groups are low. Two key factors in the K-
means method are the number of clusters K, which is pre-
determined, and the similarity metric [29].

In the current MIMO-SCMA application, high correlation
between the channel vectors of the users in a cluster can
provide a better beamforming performance. Indeed, if users
in a cluster have highly correlated channels, more degrees of
freedom will be left for the inter-cluster interference cancel-
lation (as explained in Section IV). In this work, we utilize
the Euclidian distance as a similarity metric to measure the
correlation between a user’s channel vector and the cluster
centers. Moreover, to account for variations of channel gains
due to fading and other propagation effects, the channel vec-
tors are normalized, averaged over subcarriers, and treated as
the data points in the application of the K-means method,
i.e.,

dj =
1

N

N∑
n=1

hj(n)

‖hj(n)‖2
(16)

where hj(n) ∈ C1×LM for j ∈ J , {1, ..., J} are the
known network-wide channel vectors of all users prior to
clustering.

The K-means method can be presented as an optimization
problem for finding the K best centers such that the sum of
squared Euclidean (SSE) distance between the data points
and their nearest cluster centers is minimized. Specifically,
this optimization problem can be expressed as follows,

min
C

∑
j

min
k∈K
‖dj − ck‖22 (17)

where C , {ck|k ∈ K}.

Proposition 1 Given dj and ck ∈ C1×LM , we have,

min
k∈K
‖dj − ck‖22 = min

{ιj,k|k∈K}

K∑
k=1

ιj,k‖dj − ck‖22 (18a)

s.t.
K∑
k=1

ιj,k = 1 (18b)

ιj,k ≥ 0, ∀k ∈ K. (18c)

Proof. The result follows directly from the linear program-
ming duality theory [30].

By introducing selection variables ι , {ιj,k|j ∈ J , k ∈
K} and using Proposition 1, we can reformulate problem (15)
as the following problem,

min
ι,C

∑
j

∑
k

ιj,k‖dj − ck‖22 (19a)

s.t.
∑
k

ιj,k = 1, ∀j ∈ J (19b)

ιj,k ≥ 0, ∀j ∈ J , k ∈ K (19c)

where ιj,k = 1 if the jth data point is closest to the kth cluster
center, i.e., belongs to the kth cluster, and ιj,k = 0 otherwise.

While the K-means method does not involve a priori
constraint on the number of users in each cluster [31], the
SCMA encoder in the current application can support at most
q users over N subcarriers. To avoid solutions with more
than q data points in a cluster, we propose adding explicit
constraints to problem (19) so that each cluster contains at
most q data points, i.e.,

min
ι,C

∑
j

∑
k

ιj,k‖dj − ck‖22 (20a)

s.t. (17b), (17c) (20b)∑
i

ιj,k ≤ q, ∀k ∈ K. (20c)

The constrained K-means algorithm solves problem (20)
iteratively by uncoupling cluster center and selection vari-
ables. Specifically, in each iteration, this algorithm alternates
between solving a linear program for variable ι with fixed
c and solving a problem for c with fixed ι. The overall
constrained K-means algorithm for solving problem (20) is
summarized in Algorithm 1, where the superscript t denotes
the iteration index.

Proposition 2 There exists an optimal solution for the
cluster assignment subproblem in Algorithm 1 such that
ιj,k ∈ {0, 1}.

Proof. See Appendix A.

According to Proposition 2 and Appendix A, we can use
the network simplex algorithm which is faster than mixed in-
teger solvers for tackling the cluster assignment subproblem.
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Algorithm 1: The proposed constrained K-means
algorithm for user clustering.

Initialization: Initialize cluster centers c(0) = {c(0)1 ,
c
(0)
2 , . . . , c

(0)
K } by selecting K data points from the

dataset randomly. Set t = 0.

Repeat:
1) Cluster assignment: Solve the following linear

program with fixed c(t).

ι(t) = arg min
ι

∑
j

∑
k

ιj,k‖dj − c
(t)
k ‖

2
2

s.t. (19b), (19c), (20c).

2) Cluster update: Update the cluster centers as,

c
(t+1)
k =

∑
j ι

(t)
j,kdj∑
j ι

(t)
j,k

, ∀k ∈ K.

3) Set t← t+ 1.

Until: c
(t)
k = c

(t−1)
k ,∀k ∈ K.

Proposition 3 The constrained K-means algorithm termi-
nates in a finite number of iterations at a cluster assignment
that is locally optimal. That is, the limit point of the iterates
generated by the constrained K-means algorithm is a sta-
tionary point that satisfies the Karush-Kuhn-Tucker (KKT)
conditions for problem (20).

Proof. At each iteration, the cluster assignment step cannot
increase the objective function of (20). The cluster update
step will either strictly decrease the value of the objective
function of (20) or the algorithm will terminate since,

c(t+1) = arg min
c

∑
j

∑
k

ι
(t)
j,k‖dj − ck‖22 (21)

is a strictly convex optimization problem with a unique global
solution (as shown in the cluster update step in Algorithm
1). Thus, the objective of (20) is strictly non-increasing and
bounded below by zero. Moreover, there are a finite number
of ways to assign J points toK clusters such that each cluster
has at most q points and Algorithm 1 does not permit repeated
assignments. Consequently, the algorithm must terminate at
some cluster assignment that is locally optimal.

B. NUMBER OF CLUSTERS
The choice of the number of clusters K plays a key role in
the performance of K-means clustering [32]. An appropriate
number of clusters can accurately reflect specific distribution
characteristics of users in the network. While the number of
clusters cannot exceed the number of users, it should also
satisfy the constraint on the maximum number of users in
each cluster. However, finding the optimal K is a major
challenge in clustering analysis, and there is no definitive

solution. To address this problem, a number of approaches
have been proposed such as the elbow [33], silhouette [34],
and gap statistic [35] methods. Among these, the elbow
method is possibly the most well-known and utilized as it
entails the lowest computational complexity while providing
very good performance.

Herein, we employ the elbow method to determine the
number of clusters. The elbow method is a heuristic method
which involves running the clustering algorithm on the
dataset and evaluating a clustering criterion for different
values of K. The plot of the clustering criterion versus the
number of clusters resembles an arm in which the elbow
point (the point of discontinuity in the slope of the curve)
determines the appropriate number of clusters for the dataset.
The sum of the normalized within-cluster SSE distance is a
common clustering criterion for applying the elbow method
along with K-means.

In a given cluster Ck, the within-cluster SSE distance
between the data points is given by,

Dk =
1

2

∑
di∈Ck

∑
di′∈Ck

‖di − di′‖22. (22)

Hence, the sum of the normalized within-cluster SSE dis-
tances can be expressed as,

WK =
K∑
k=1

1

|Ck|
Dk (23)

where |Ck| shows the cardinality of the cluster Ck. It should
be noted that although the sum of the normalized within-
cluster SSE distance can give a proper measure of the com-
pactness of the clustering, we may encounter cases with more
than one elbow point or no elbow point. In such cases, other
reliable methods mentioned before can be used to find the
best K.

C. COMPLEXITY ANALYSIS
In this subsection, we analyze the computational complexity
of the proposed constrainedK-means algorithm by consider-
ing the number of required operations (e.g. complex addition
and multiplication) in each step and in each iteration of the
algorithm. Specifically, we divide the operations for each
iteration into three steps:
• Calculation of Euclidean distances: The complexity of

calculating the Euclidean distance between the data
points and the cluster centers is O(JKLM).

• Cluster assignment: The complexity of solving cluster
assignment subproblem via network simplex algorithm
is O(J3K2(log(J))2) (See Appendix A).

• Cluster update: The complexity of updating the cluster
centers is O(JKLM).

Assuming that the algorithm converges after TK iterations.
The overall complexity of Algorithm 1 can be expressed as,

CC , O(TKJ
3K2(log(J))2 + TKJKLM). (24)

7
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IV. DOWNLINK BEAMFORMING
In this section, we first formulate the beamforming design as
a non-convex mixed-integer nonlinear programing (MINLP)
optimization problem, aiming to minimize the total trans-
mit power while satisfying the QoS and fronthaul capacity
constraints. We then propose transformations and convex
approximation techniques to derive two iterative algorithms
for solving the problem. In the first algorithm, we approxi-
mate the continuous non-convex constraints by convex ones
using first-order Taylor expansion. Hence, we are able to
arrive at a sequence of mixed-integer second-order cone
programing (MI-SOCP), for which dedicated solvers are
available. Although the MI-SOCP algorithm entails high
computational complexity, it is shown that it can achieve
high quality solution [36]. Hence, in this paper, we use MI-
SOCP algorithm as a benchmark. A simplified suboptimal
approach is also proposed which designs the beamformers in
two stages to achieve lower complexity. In the first stage, the
cluster beamformers are determined by taking advantage of
BD to remove intercluster interference. In the second stage,
we obtain the user-specific beamformers with the aid of
CCCP method to minimize the total transmit power. Finally,
the convergence and the computational complexity of the
proposed algorithms are discussed.

A. BEAMFORMING PROBLEM
Our objective is to optimize the total transmit power through
joint design of the dynamic RRH selection scheme and
the beamforming vectors subject to the QoS and fronthaul
capacity constraints on each individual RRH. Let the binary
variable s(l)j,k(n) = 1 indicate that the lth RRH participates
in transmission for the jth user in the kth cluster over
the nth subcarrier and s

(l)
j,k(n) = 0 otherwise. Hence, our

optimization problem can be mathematically formulated as,

min
wjk(n),s

(l)
j,k(n)

∑
n

∑
k

∑
j

‖wjk(n)‖2 (25a)

s.t. hj′k′(n)wjk(n) = 0, ∀ k′ 6= k (25b)

γjk(n) ≥ γmin, ∀n ∈ Njk (25c)∑
k

∑
j

s
(l)
j,k(n)Rjk(n) ≤ Cmax, ∀l, n (25d)

‖wl
jk(n)‖2 ≤ s(l)j,k(n)Pmax, ∀l, n (25e)∑

l

s
(l)
j,k(n) ≥ 1, ∀n ∈ Njk (25f)

s
(l)
j,k(n) ∈ {0, 1} (25g)

where Rjk(n) = log2(1 + γjk(n)) denotes the transmission
rate, Njk shows the set of subcarriers occupied by the jth
user in the kth cluster, γmin, Cmax, and Pmax are the minimum
required SINR for the user over the subcarrier, the maxi-
mum capacity constraint for each RRH over the subcarrier,
the maximum available total transmit power, respectively.
Constraints (25b) and (25c) guarantee QoS by removing the

inter-cluster interference and satisfying SINR requirements,
respectively. The constraint (25d) shows that the sum-rate
of the users served by the lth RRH over the nth subcarrier
should be smaller than the maximum fronthaul capacity
Cmax. Constraint (25e) utilizes the so-called Big M method
which indicates that the beamformer ‖wl

jk(n)‖2 = 0 if the
lth RRH does not participate in transmission for the jth user
in the kth cluster over the nth subcarrier, i.e., s(l)j,k(n) = 0,
but leaves the beamformer "open" otherwise. Therefore, Pmax
can be any large number. Constraint (25f) guarantees that
each user is served by at least one RRH. Although constraint
(25f) appears to be redundant, it is added to reduce the size
of the feasible set of the associated problem which in turn
improves the convergence time of the solver. We refer the
interested reader to [37] for additional details.

Problem (25) is a non-convex MINLP problem, which can
be considered as an NP-hard problem in general and is one
of the most challenging class of mathematical optimization
problems [38]. Obtaining its optimal solution is challeng-
ing due to the non-convexity of the SINR constraints, the
combinatorial nature of the RRH selection variable s(l)j,k(n),
and the coupling between the variables s(l)j,k(n) and Rjk(n)
in the fronthaul constraint. Even when the RRH selection
scheme s(l)j,k(n) is given, problem (23) is still non-convex and
computationally difficult. In the following subsections, we
develop two beamforming approaches to find a suboptimal
solution.

B. MI-SOCP BEAMFORMING APPROACH
In this section, we first reformulate the problem (25) into a
more tractable form. We then solve the resulting optimiza-
tion problem via a CCCP-based algorithm with guaranteed
convergence to a local stationary solution of the transformed
problem.

Without loss of optimality, SINR constraint (25c) can be
rewritten as the following second-order cone (SOC) con-
straint,√

I
(1)
jk (n) + I

(2)
jk (n) + σ2

jk ≤
hjk(n)wjk(n)
√
γmin

(26)

where I
(1)
jk (n) and I

(2)
jk (n) are the intra- and inter-cluster

interference as expressed in (12) and (13) respectively. We
have restricted hjk(n)wjk(n) to be positive real, which
incurs no loss of optimality since we can always phase-rotate
the vector wjk(n) such that hjk(n)wjk(n) is positive real
without affecting the cost function or the constraints.

Let us introduce the auxiliary variables uj,k(n) and vj,k(n)
as the upper bounds on the SINR and transmission rate for
the jth user in the kth cluster over the nth subcarrier. Hence,
constraint (25d) can be rewritten as follows,

γjk(n) ≤ ujk(n) (27)

log2(1 + ujk(n)) ≤ vjk(n) (28)∑
k

∑
j

s
(l)
j,k(n)vjk(n) ≤ Cmax. (29)

8
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Since the expression of γjk(n) is in fractional form, the
constraint in (27) is difficult to handle. Therefore, we intro-
duce the auxiliary variables lj,k(n) as the lower bound of
the denominator, and then equivalently transform (27) as the
following two constraints,

|hjk(n)wjk(n)|2 ≤ ljk(n)ujk(n), (30)

ljk(n) ≤ I(1)jk (n) + I
(2)
jk (n) + σ2

jk. (31)

From the above discussion, we can finally reformulate the
problem (25) into an equivalent problem as given below,

min
∑
n

∑
k

∑
j

‖wjk(n)‖2 (32a)

s.t. (25b),(25e)-(25g),(26) (32b)√
4|hjk(n)wjk(n)|2 + (ljk(n)− ujk(n))2 ≤

ljk(n) + ujk(n) (32c)

ljk(n) ≤ I(1)jk (n) + I
(2)
jk (n) + σ2

jk (32d)

1 + ujk(n) ≤ 2vjk(n) (32e)∑
k

∑
j

(s
(l)
j,k(n) + vjk(n))2 − 4Cmax ≤∑

k

∑
j

(s
(l)
j,k(n)− vjk(n))2. (32f)

where the identity 4xy = (x+y)2−(x−y)2 is used to obtain
(32f). We note that even by continuous relaxation of binary
variables s

(l)
j,k(n), optimization problem (32) is still non-

convex due to constraints (32d)-(32f). However, the latter can
be expressed as differences of two convex functions. Thus,
the obtained optimization problem can be efficiently solved
using the iterative CCCP.

Basically, CCCP iteratively solves a sequence of convex
subproblems, each of which is constructed by linearizing the
concave part of the DC constraints using their first-order
Taylor expansions [21]. Specifically, the first-order Taylor
expansion of the right side of constraint (32d) around the
current point ŵjk(n) is expressed as,

z(wj′k(n); ŵj′k(n)) =
∑

j′ 6=j,j′∈Un,k

[−|hjk(n)ŵj′k(n)|2

+ 2<{ŵH
j′k(n)hHjk(n)hjk(n)wj′k(n)}]

+
∑
k′ 6=k

∑
j′∈Un,k′

[−|hjk(n)ŵj′k′(n)|2

+ 2<{ŵH
j′k′(n)hHjk(n)hjk(n)wj′k′(n)}]

(33)

where <{.} denotes the real part of its argument. In the same
way, we convexify the right side of constraints (32d) and
(32e) by using the first-order Taylor expansions around the
current points v̂jk(n), ŝ(l)j,k(n), and v̂jk(n) as,

Γ(vjk(n); v̂jk(n)) = 2v̂jk(n) + (ln 2)2v̂jk(n)(vjk(n)− v̂jk(n)),
(34)

Algorithm 2: MI-SOCP beamforming algorithm.
Initialize the algorithm with feasible points ŵjk(n),
ŝ
(l)
j,k(n), and v̂jk(n). Set iteration index t = 0 and

termination threshold ε > 0.
Repeat

1) Update ŵjk(n), ŝ(l)j,k(n), and v̂jk(n) by solving
problem (36).
2) Set t = t+ 1.

Until: Termination criterion is met: ∆PT < ε.

Ω(s
(l)
j,k(n), vjk(n); ŝ

(l)
j,k(n), v̂jk(n)) = −(ŝ

(l)
j,k(n)− v̂jk(n))2

+ 2(ŝ
(l)
j,k(n)− v̂jk(n))(s

(l)
j,k(n)− vjk(n)).

(35)

By applying the above approximations to the non-convex
constraints (32d)-(32f), we can formulate the convex approx-
imation of problem (32) as shown below,

min
∑
n

∑
k

∑
j

‖wjk(n)‖2 (36a)

s.t. (23b),(23e)-(23g),(24),(30c) (36b)

ljk(n) ≤ z(wj′k(n); ŵj′k(n)) + σ2
jk (36c)

1 + ujk(n) ≤ Γ(vjk(n); v̂jk(n)) (36d)∑
k

∑
j

(s
(l)
j,k(n) + vjk(n))2 − 4Cmax ≤

Ω(s
(l)
j,k(n), vjk(n); ŝ

(l)
j,k(n), v̂jk(n)). (36e)

Hence, based on CCCP, we solve subproblem (36) at each
iteration. Problem (36) is a MI-SOCP which can be solved
via modern solvers such as MOSEK [39] or GUROBI [40].
The proposed iterative algorithm is summarized in Algorithm
2. The algorithm terminates if the variation of the total transit
power, i.e., ∆PT , is less than a preset threshold ε.
Initialization: Choosing a feasible point for ini-

tialization of Algorithm 2 is essential. For this pur-
pose, we simply set v̂jk(n) = log2(1 + γmin) and
then solve the following feasibility problem P =

find{s(l)j,k(n)|(25f),(25g),
∑
k

∑
j s

(l)
j,k(n)v̂jk(n) ≤ Cmax}

which is a mixed-integer linear program which can be
solved optimally by off-the-shelf solvers such as MOSEK
or GUROBI. Subsequently, we solve the following quadratic
program with fixed ŝ

(l)
j,k(n) via any general-purpose solver

using interior-point method,

ŵjk(n) = arg min
wjk(n)

∑
n

∑
k

∑
j

‖wjk(n)‖2

s.t. (25b), (26),

‖wl
jk(n)‖2 ≤ ŝ(l)j,k(n)Pmax.

(37)

9
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C. TWO-STAGE BEAMFORMING APPROACH
In order to reduce the computational complexity, we propose
a two-stage energy-efficient beamforming approach such
that,

wjk(n) = Bk(n)vjk(n) (38)

where Bk(n) ∈ CLM×a is the kth cluster beamformer
obtained in the first stage which should eliminate the inter-
cluster interference and vjk(n) ∈ Ca×1 is the user-specific
beamformer for the jth user in the kth cluster optimized in
the second stage.

Using channel state information (CSI) available at the cen-
tral processor, BD beamforming can be adopted in a MIMO-
SCMA system to remove the inter-cluster interference and
enhance the QoS for intra-cluster users [41]. Hence, the users
in different clusters can share codebooks. Although BD algo-
rithm does not work well in the presence of imperfect CSI,
we considered a second stage for beamforming in which the
QoS can be guaranteed. Specifically, the BD beamforming
projects the transmitted signal onto the null-space of the
interfering channels and hence eliminates the inter-cluster
interference.

To find the corresponding null-space, let us define,

Hk(n) = [h1k(n)T . . .hJk(n)T ] ∈ CLM×Jk (39)

H−k(n) = [H1(n) . . .Hk−1(n) Hk+1(n) . . .HK(n)]
(40)

where k ∈ K and H−k(n) ∈ CLM×(J−Jk) is the matrix
containing all interfering channels for the kth cluster. We
seek Bk(n) orthogonal to the column span of H−k(n), i.e.,
H−k(n)TBk(n) = 0. Here, it is assumed that the total
number of antennas LM is larger than the total number of
users J .

The singular value decomposition (SVD) can be employed
to calculate the cluster beamformers. Applying the SVD to
H−k(n) yields,

H−k(n) = Uk(n)Σk(n)Vk(n)H (41)

where Uk(n) ∈ CLM×LM and Vk(n) ∈ C(J−Jk)×(J−Jk)

are unitary matrices and Σk(n) ∈ RLM×(J−Jk) is the
rectangular diagonal matrix of singular values. Let r denote
the rank of matrix H−k(n), which corresponds to the number
of non-zero diagonal entries in Σk(n). The null-space of the
interfering channel matrix H−k(n) is spanned by the left
singular vectors (i.e. columns of matrix Uk(n)) associated
to the zero singular values of H−k(n). We can express the
kth cluster beamformer as,

Bk(n) = [ur+1,k(n) ur+2,k(n) . . .uLM,k(n)] (42)

where ui,k(n) denotes the ith column of Uk(n).
As mentioned before, constraint (25e) implies that

‖w(l)
jk (n)‖2 = 0 if s(l)j,k(n) = 0. Without loss of optimality,

the binary RRH selection variable s(l)j,k(n) can be replaced by

‖ ‖w(l)
jk (n)‖22 ‖0, as in [42], [43]. Therefore, upon substitu-

tion of (38) and `0-norm, problem (25) can be rewritten as,

min
vj,k(n)

∑
n

∑
k

∑
j

‖wjk(n)‖2 (43a)

s.t. wjk(n) = Bk(n)vjk(n), ∀ j, k, n (43b)

γjk(n) ≥ γmin, ∀n ∈ Njk (43c)∑
k

∑
j

‖ ‖w(l)
jk (n)‖22 ‖0Rjk(n) ≤ Cmax, ∀l, n (43d)

It should be noted that the fronthaul capacity constraint (43d)
which is expressed in the form of `0-norm, indicates the
inherently dynamic RRH selection. That is, owing to this
fronthaul constraint, the network-wide beamforming vectors
wjk(n) may have a sparse structure. Although the number of
constraints is reduced and the binary RRH selection variable
is removed, problem (43) is still non-convex due to con-
straints (43c) and (43d).

As mentioned before, using cluster beamformer Bk(n) ob-
tained from BD can remove inter-cluster interference. Hence,
the SINR of the jth user in the kth cluster over the nth
subcarrier can be expressed as,

γjk(n) =
|hjk(n)wjk(n)|2∑Jk

j′ 6=j |hjk(n)wj′k(n)|2 + σ2
jk

(44)

where the inter-cluster interference term in the denominator
is removed. Consequently, SINR constraint (43c) can be
rewritten as follows,√√√√ Jk∑

j′ 6=j

|hjk(n)wj′k(n)|2 + σ2
jk ≤

hjk(n)wjk(n)
√
γmin

(45)

which is a SOC constraint.
To address the non-convexity of constraint (43d), we first

introduce the auxiliary variables uj,k(n), vj,k(n), and t(l)j,k(n)
as the upper bounds of the SINR, transmission rate, and `0-
norm for the jth user in the kth cluster over the nth subcarrier.
Hence, constraint (43d) can be rewritten as follows,

γjk(n) ≤ ujk(n), (46)

log2(1 + ujk(n)) ≤ vjk(n), (47)

‖ ‖w(l)
jk (n)‖22 ‖0 ≤ t

(l)
j,k(n), (48)∑

k

∑
j

t
(l)
j,k(n)vjk(n) ≤ Cmax. (49)

We then propose to approximate the non-convex `0-norm by
a reweighted `1-norm as follows [44],

‖ ‖w(l)
jk (n)‖22 ‖0 ≈ β

(l)
jk (n)‖w(l)

jk (n)‖22. (50)

β
(l)
jk (n) is a constant weight which is updated in each iteration

according to,

β
(l)
jk (n) =

1

‖ŵ(l)
jk (n)‖22 + τ

(51)
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Algorithm 3: Proposed CCCP-based iterative algo-
rithm for beamforming.

Initialization: Initialize v̂jk(n) randomly. Calculate
ŵjk(n), t̂(l)j,k(n) and β(l)

jk (n). Set iteration index t = 0
and termination threshold ε > 0.
Repeat

1) Update ŵjk(n), t̂(l)j,k(n), and v̂jk(n) via solving
problem (52).

2) Calculate β(l)
jk (n).

3) Set t = t+ 1.
Until Termination criterion is met: ∆PT < ε.

where ŵ
(l)
jk (n) is obtained from previous iteration and τ is a

small constant regularization factor controlling the smooth-
ness of the approximation. Based on the updating rule (51),
β
(l)
jk (n) is inversely proportional to the transmit power level
‖ŵ(l)

jk (n)‖22. Hence, the RRHs with lower transmit power for
the jth user in the kth cluster would have higher weights and
hence would be forced to further reduce its transmit power
and eventually be dropped out of the group of participating
RRHs for that user.

We can employ the approach mentioned in IV.B to deal
with the non-convexity of the constraints and use CCCP to
solve the optimization problem. Hence, based on CCCP, we
solve the following subproblem at each iteration,

min
vjk(n)

∑
n

∑
k

∑
j

‖wjk(n)‖2 (52a)

s.t. (30c),(34c),(34d),(36),(41b),(43) (52b)

β
(l)
jk (n)‖w(l)

jk (n)‖22 ≤ t
(l)
j,k(n) (52c)∑

k

∑
j

(t
(l)
j,k(n) + vjk(n))2 − 4Cmax ≤

Ω(t
(l)
j,k(n), vjk(n); t̂

(l)
j,k(n), v̂jk(n)). (52d)

Problem (52) is convex and can be solved via any general-
purpose solver using interior-point methods [45]. The pro-
posed CCCP-based iterative algorithm is summarized in Al-
gorithm 3.
Initialization: In this case, an initial point for Algorithm

3 is obtained by generating v̂jk(n) randomly. Then, ŵjk(n)

and β(l)
jk (n) are calculated as in (38) and (51) respectively.

t̂
(l)
j,k(n) is set to ‖ ‖ŵ(l)

jk (n)‖22 ‖0, and v̂jk(n) is set to the
transmission rate calculated using ŵjk(n).

D. CONVERGENCE AND COMPLEXITY ANALYSIS
With a feasible initial point, repeated application of the
CCCP iteration is guaranteed to converge to a stationary
solution of the problem with DC constraints. It can be seen
that the optimal solution obtained from the previous iteration,
i.e., ŵjk(n), is feasible for the convex subproblem at the next
iteration for both algorithms. The achieved objective at the

current iteration cannot be greater than the one at the previous
iteration. Since, the objective function is non-increasing and
bounded below by zero, it follows that both algorithms will
converge to a point that according to [46] is locally optimal.
We refer the interested reader to [46] for a rigorous proof of
the convergence.

For Algorithm 2, the overall complexity is dominated by
solving the MI-SOCP problem in (36). In particular, there
are JLN binary variables s(l)j,k(n), resulting in 2JLN combi-
nations for all the binary variables. Thus, assuming that MI-
SOCP algorithm terminates after TM iterations, the worst-
case complexity can be written as

CM , O(TM2JLN (JCLM)3). (53)

At each iteration, the CCCP-based algorithm solves the
convex subproblem (52) which can be approximated by
a sequence of SOCPs via the successive approximation
method. Each SOCP can then be solved via a general-
purpose solver, e.g., SDPT3 in CVX [47] with a complexity
of O((JCLM)3). Assuming that the CCCP terminates after
TC iterations, the worst-case computational complexity is
therefore given by,

CB , O(TC(JCLM)3). (54)

V. SIMULATION RESULTS
In this section, numerical experiments are carried out to illus-
trate the performance of the proposed energy-efficient user
clustering and downlink beamforming for MIMO-SCMA in
C-RAN.

A. METHODOLOGY
In our simulations, unless otherwise specified, we consider
a network with L = 3 RRHs, each equipped with M = 5
antennas and serving J = 12 single-antenna users. The
RRHs and the users are independently distributed in a square
area [−50, 50] × [−50, 50] meters. The RRHs are connected
to the central processor via a limited-capacity fronthaul link
with maximum capacity Cmax = 50 bps/Hz. The maximum
available total transmit power is Pmax = 50 dBm.

We consider the channel model as described in Section II.B
with bandwidth of W = 2 GHz and carrier frequency of 28
GHz. The AoDs are assumed to follow a uniform distribution
in [0, 2π]. The inter-antenna spacing is d = λ/2 to reduce the
effect of mutual coupling and correlation among neighbour-
ing antenna elements. The noise figure is Nf = 40 dBm,
hence, the noise power is σ2

jk = −174 + 10 log10(W ) +Nf
dBm [23]. The pathloss exponent of the LOS and NLOS
paths in (4) are α(0) = 2 and α(p) = 3, respectively. For
SCMA encoder, the number of subcarriers is N = 4, and the
number of non-zero elements for each codeword is C = 2.
The corresponding factor graph matrix is,

F =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 . (55)
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Table 2: Simulation setting parameters

Notation Description Value
L Number of RRHs 3
M Number of antennas per RRH 5
J Total number of users 12
N Number of SCs 5
C Number of non-zero elements for a codeword 2
α(0) path loss exponent of the LOS path 2
α(p) path loss exponent of the NLOS path 3
Cmax Maximum capacity constraint for each RRH 50 bps/Hz
Pmax Maximum available total transmit power 50 dBm
ε Termination threshold 10−6

It should be noted that the structure of the factor graph matrix
with fixed N and C does not affect system performance
significantly. Table 2 summarizes the simulation setting pa-
rameters.

We use Monte Carlo experiments to evaluate the perfor-
mance of the proposed algorithms for user clustering and
downlink beamforming. The total transmit power and sum
rate are measured for different parameter configurations and
the results are compared with benchmark approaches in the
literature.

B. RESULTS AND DISCUSSION
Figures 2a and 2b find the optimal number of clusters K
and evaluate its impact on the performance of the proposed
scheme. In Figure 2a, we plot the sum of the normalized
within-cluster SSE distance which serves as clustering crite-
rion in the elbow method described in Section III.B. It can be
seen WK decreases when K increases and the elbow point
can be found at K = 41. To gain further insight into the
impact of the number of clusters, we investigate the transmit
power performance versus target SINR, γmin in Figure 2b,
where the number of clusters increases from 2 to 6. It is
observed that the total transmit power increases monotoni-
cally as γmin increases. Moreover, the best performance is
achieved when the number of clusters is K = 4. On one
hand, forK < 4, an increase in the number of users in a clus-
ter results in larger intra-cluster interference which results
in higher transmit power. On the other hand, increasing the
number of clusters intensifies inter-cluster interference which
increases power consumption in the first stage beamforming
for interference cancellation. We thereby observe that better
user clustering with lower total transmit power can be found
at K = 4 and the elbow method can efficiently find the
optimal number of clusters in this case.

Figures 3a and 3b present the convergence behaviour of
the proposed constrained K-means and CCCP-based algo-
rithms. Figure 3a shows the objective value achieved by the
constrained K-means algorithm with three different initial
points. In this regards, J = 12 users are grouped into K = 4
non-overlapping clusters of size less than 6, i.e., q = 6.

1Due to space limitation, we omit the results on the Silhouette and gap
statistic methods here for brevity However, it should be noted that using
each of these methods for determining the optimal number clusters gives the
same result while elbow method entails lower computational complexity.

(a) Elbow method.

(b) Transmit power versus target SINR γmin.

Figure 2: The impact of the number of clusters.

We observe that the algorithm converges rapidly in a few
steps and the gap between final results of different initial
points is small. In Figure 3b, the convergence performance
of the CCCP-based algorithms is investigated for the case of
γmin = 3 dB. It can be seen that the algorithm converges
in less than 15 iterations monotonically to a same value for
different initial points.

In Table 3, we present the run-time comparison between
the proposed two-stage approach and the MI-SOCP beam-
forming for different values of γmin. The results2, show
that the complexity of the proposed two-stage beamforming
algorithm is much less than that of the MI-SOCP approaches,

2Based on the use of a desktop computer equipped with 8th Generation
Intel i7-8700 6-core processor (12M Cache, 4.6 GHz) and 32GB RAM.
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(a) The constrained K-means algorithm.

(b) The CCCP-based iterative algorithm.

Figure 3: The convergence of the proposed algorithms.

Table 3: Run-time of different beamforming approaches

γmin

0 2 4 6
Two-Stage approach 3.6108 4.3852 5.7032 7.0414
MI-SOCP approach 182.3750 238.3348 323.9511 397.0151

owing to the use of the smoothed `0-norm approximation.
In Figure 4, we compare the transmit power versus sum

rate among different clustering and beamforming algorithms.
The cluster-head approach proposed in [48] is used as a
benchmark for user clustering which selects theK users with
the highest channel gains as the cluster centers. The cluster
assignment is then used to group users into clusters. We
also consider the performance of the MIMO-SCMA system

Figure 4: Transmit power versus sum rate for different clus-
tering and beamforming approaches.

with exhaustive and random clustering. The combination
of exhaustive search for user clustering and MI-SOCP for
beamforming is shown to attain the best performance among
all the algorithms. However, this comes at the cost of high
computational complexity. As it can be seen from Figure
4, the proposed constrained K-means clustering algorithm
exhibits better performance compared to random search and
cluster-head approach and can partition users more effi-
ciently. Regarding the beamforming algorithms, it is shown
in Figure 4 that the suboptimal solution achieved by the
proposed two-stage beamforming is very close to the high-
quality solution obtained by MI-SOCP.

To better appreciate the benefits of the proposed MIMO-
SCMA scheme in terms of spectral efficiency, we examine
the achievable sum rate of the users within the network.
We consider orthogonal multiple access (OMA) and power
domain NOMA as benchmarks with similar parameters ex-
cept the number of multiplexed signals over each subcarrier.
Specifically, in OMA, each user is assigned only one subcar-
rier such that no interference occurs with other user signals.
Hence, the maximum number of users in each cluster is equal
to the number of subcarriers, i.e., q = N . In power domain
NOMA, all users have access to all the subcarriers and no
constraint is applied to the maximum number of users in a
cluster. In this section, we refer to power domain NOMA
simply by NOMA.

Figure 5 compares the total transmit power versus achiev-
able sum rate among the proposed SCMA, power domain
NOMA and OMA schemes. Two different channel models
are considered for this purpose, one with no NLOS path, i.e.,
P = 0, and the other with P = 3 NLOS components. It
is observed that in both cases, the results of the proposed
SCMA scheme outperforms other schemes in terms of sum

13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3104259, IEEE Access

S. Norouzi et al.: Energy-Efficient User Clustering and Downlink Beamforming for MIMO-SCMA in C-RAN

Figure 5: Transmit power versus sum rate for different trans-
mission schemes.

rate and the performance gap gets larger as the transmit
power increases. Moreover, we observe that the transmit
power for NOMA is more than that of OMA. However, as the
sum rate increases, the results for OMA exhibits a noticeable
increase in transmit power compared to NOMA.

To investigate the impact of imperfect CSI on the proposed
user clustering and downlink beamforming, we model the
estimated channel vector as follows,

ĥjk(n) = hjk(n) + ∆jk(n) (56)

where hjk(n) is the actual channel vector and ∆jk(n) is
CSI error with i.i.d. entries following a complex Gaussian
distribution, i.e., ∆jk(n) ∼ CN (0, σ2

eI).
Figure 6 shows the transmit power comparison for the

channel model with P = 3 NLOS paths, where the perfect
and imperfect CSI with different σe scenarios are considered.
It can be seen that the system performance is sensitive to
the CSI accuracy. This is due to the fact that the channel
correlation is used as the similarity metric for the proposed
constrained K-means algorithm, which largely depends on
the obtained CSI at the central processor. Moreover, the BD
algorithm does not work well in the presence of imperfect
CSI and can not remove inter-cluster interference totally.
In order to enhance the performance of the proposed user
clustering and downlink beamforming in the presence of
imperfect CSI, one can use a more sophisticated similarity
metric in the clustering algorithm or robust beamforming
in the second stage of the proposed approach [49]–[51].
However, these considerations are beyond of the scope of this
work.

Figure 7 presents the average number of associated RRHs
per user versus the fronthaul link capacity for different target
SINRs, γmin. It can be seen that due to the limitation on the

Figure 6: Transmit power versus sum rate for perfect and
imperfect CSI.

Figure 7: Average number of associated RRHs versus fron-
thaul link capacity for M = 20.

capacity of the fronthaul links, each user can be only served
by a small group of RRHs. For fixed γmin, the number of
RRHs associated with each user will increase as the fronthaul
link capacity grows. Moreover, for a fixed fronthaul link
capacity, the group of associated RRHs will increase as γmin
gets smaller. In fact, the data rate of each user will become
smaller for a lower γmin. Thus, each RRH can serve more
users with lower data rate.

Figure 8 shows the total transmit power versus number of
antennas M for different target SINRs, γmin. In this regard,
the channel model with P = 3 NLOS paths is considered
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Figure 8: Transmit power versus number of antennas.

and J = 18 users are grouped into K = 4 clusters. It
is worth noting that the number of clusters are determined
through the elbow method for this case. For larger M , better
beamforming results are expected as more degrees of free-
dom will be left for inter-cluster interference cancellation.
We can observe that the total transmission power decreases
as the number of antennas increases which is a consequence
of narrower beamforming.

Figure 9 shows the total transmit power versus total num-
ber of users J for different target SINRs, γmin. In this regard,
the channel model with P = 3 NLOS paths is considered
and the users are grouped into K = 4 clusters. As the results
indicate, the total transmission power depends on the number
of users and γmin. As the number of users or the target SINR
increases, larger total transmission power is needed to satisfy
QoS and fronthaul capacity requirements.

VI. CONCLUSION
In this work, the design of user clustering and beamforming
approach was investigated for MIMO-SCMA in C-RAN. We
proposed a constrained K-means algorithm for user clus-
tering. By taking advantage of CSI available at the central
processor, this algorithm was applied to partition users into
non-overlapping clusters based on the correlation between
channel vectors. The beamforming design was formulated
as an optimization problem, with the aim to minimize the
total transmit power under the SINR and fronthaul capacity
constraints, and two iterative algorithms were proposed for
its solution. In the first approach, the high-quality solution
was achieved by solving a MI-SOCP in each iteration via
dedicated solvers. In the second approach, a two-stage low-
complexity beamforming design was proposed where in the
first stage, the BD was employed to obtain the cluster beam-
formers, while in the second stage, the design of user-specific

Figure 9: Transmit power versus total number of users.

beamformers was formulated as an optimization problem.
Through simulations, it was shown that the proposed user
clustering and beamforming approaches for MIMO-SCMA
systems can effectively decrease total transmit power, elim-
inate inter-cluster interference, and improve spectral effi-
ciency compared to the benchmark approaches.

.

APPENDIX A PROOF OF PROPOSITION 2
In order to prove proposition 3.2, we first transform the clus-
ter assignment subproblem in Algorithm 1 into its equivalent
form as a minimum cost flow (MCF) linear network opti-
mization problem. We then show that the optimal selection
variable ιj,k is binary, which can be found using fast network
simplex algorithms instead of complex mixed integer linear
programming [52].

In general, a MCF problem has an underlying directed
graph structure G = (V, E) defined by a set of vertices
(nodes), V , and a set of edges (arcs), E . For each node
ν ∈ V , we associate a value b(ν) indicating whether it is
a supply node (b(ν) > 0), a demand node (b(ν) < 0), or a
transshipment node (b(ν) = 0). For each edge (ν, ω) ∈ E , we
associate a flow of f(ν, ω) on the edge with cost of c(ν, ω)
per unit flow. The optimization model for the MCF problem
can be formulated as,

min
∑

(ν,ω)∈E

f(ν, ω)c(ν, ω) (57a)

s.t.
∑
ω

f(ν, ω)−
∑
ν

f(ω, ν) = b(ν), ∀ν ∈ V (57b)

0 ≤ f(ν, ω) ≤ u(ν, ω), ∀(ν, ω) ∈ E (57c)

where u(ν, ω) is the maximum capacity of flow on the edge
(ν, ω) ∈ E . The problem is feasible if the sum of the supplies
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Figure 10: The MCF equivalent directed graph structure.

equals the sum of the demands, i.e.,∑
ν∈V

b(ν) = 0. (58)

Let each data point dj correspond to a supply node with
b(dj) = 1 and each cluster center ck correspond to a demand
node with b(ck) = −q. The cost of the edge (dj , ck) can be
expressed as,

c(dj , ck) = ‖dj − ck‖22. (59)

To satisfy the feasibility constraint of the problem, we con-
sider an articial supply node, a, such that,

b(a) = −J +Kq. (60)

This artificial node has no edge to or from data points, while
the cost of edge form node a to cluster center ck is zero,
i.e. c(a, ck) = 0 ∀k ∈ K. These identifications establish
the equivalence between the MCF and the cluster assignment
subproblem in Algorithm 1 in which the selection variable
ιj,k corresponds to flow f(dj , ck). The MCF equivalent
directed graph structure is shown in Figure 9.

According to [52, Proposition 5.4], since b(dj), b(ck), and
b(a) are all integers, the optimal flow solution is integer-
valued. Since the selection variable ιj,k corresponds to flow
f(dj , ck), and since

∑
k f(dj , ck) = 1, the optimal ιj,k is

integer with maximum value equal to 1, i.e. ιj,k ∈ {0, 1}.
The MCF formulation allows one to solve the cluster as-

signment subproblem via network simplex algorithm which
is faster than general linear programming codes. Specifically,
the complexity of solving cluster assignment subproblem via
network simplex algorithm is given by [52],

O(|V||E|2(log(|V|))2) (61)

where the number of vertices |V|, and number of edges |E| in
our case are,

|V| = J +K + 1, (62)

|E| = JK +K. (63)

It is of interest to investigate the asymptotic complexity of
the algorithms when J andK are large, i.e., when we let J >

K →∞. Under this condition, we can obtain the asymptotic
complexity as,

C , O(J3K2(log(J))2). (64)
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