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Abstract: Many indoor fingerprinting localization methods are based on signal-domain distances
with large localization error and low stability. An improved fingerprinting localization method using
a clustering algorithm and dynamic compensation was proposed. In the offline stage, the fingerprint
database was built and clustered based on offline hybrid distance and an affinity propagation
clustering algorithm. Furthermore, clusters were adjusted using transition regions and a given
radius, as well as updating the corresponding position and fingerprint of the cluster centroid. In the
online stage, the lost received signal strength (RSS) in the reference fingerprint would be dynamically
compensated by using a minimum RSS value, rather than a fixed one. Online signal-domain distance
was calculated for cluster identification based on RSS readings and compensated reference fingerprint.
Then, K reference points with minimum online signal-domain distances were selected, and affinity
propagation clustering was reused by position-domain distances to choose the position-concentrated
sub-cluster for location estimation. Experimental results show that the proposed method outperforms
state-of-the-art fingerprinting methods, with the mean error of 2.328 m, the root mean square error of
1.865 m and the maximum error of 10.722 m in a testbed of 3200 square meters. The improvement
rates, in terms of accuracy and stability, are more than 21% and 13%, respectively.

Keywords: indoor positioning; fingerprinting localization; affinity propagation; dynamic compensa-
tion; signal-domain distance; position-concentrated sub-cluster

1. Introduction

Indoor positioning has been vigorously developed for around 20 years. Wireless
fidelity (WiFi) [1], inertial measurement unit [2], Bluetooth [3], geomagnetic field [4], ultra-
wide band [5], etc., have been widely utilized for indoor positioning and navigation. With
the requirements of cost and precision, WiFi has the opportunity to become a feasible
and cost-effective technique for indoor localization among them. WiFi indoor positioning
includes two kinds of methods, one is fingerprinting, and the other one is multilateration.
A series of wireless signals will be detected at a certain location. These wireless signals form
together a signal pattern, similar to a fingerprint on a human finger, known as a fingerprint.
Of course, fingerprints are not limited to wireless signals, but can also be a free combination
of WiFi, Bluetooth, communication, geomagnetic and other signals. The localization
method with the help of signal fingerprint is called as fingerprinting localization. The
two most representative approaches for indoor fingerprinting localization are based on
received signal strength (RSS) [1,6,7] and channel state information (CSI) [8,9]. Time of
arrival (TOA) [10], angle of arrival (AOA) [10,11], time difference of arrival (TDOA) [12,13]
and CSI [14] are usually used for multilateration. However, the acquisition of TOA, AOA,
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TDOA and CSI need dedicated equipment, which limits their large-scale application.
Besides, WiFi fine timing measurement (FTM) [15,16] was used for indoor positioning.
Nevertheless, WiFi FTM needs to build connection between the receiver and transmitter,
and it cannot support simultaneous use of many users. Moreover, WiFi FTM also needs
dedicated hardware. Compared to TOA, AOA, TDOA, CSI and FTM, RSS measurements
can be easily obtained by WiFi integrated mobile devices in current public wireless local
area networks.

RSS-based ranging indoor positioning approaches rely on measured distances by
using the path loss model, while the fingerprinting approaches utilize signal correlation
for matching. Due to the variable and unpredictable radio channel attenuation, signal
shadowing, multipath interference and even the dynamic indoor environment [1,6,17,18],
range-based indoor positioning approaches usually have poor accuracy, while a finger-
printing approach exhibits better performance. Therefore, the fingerprinting approach
is one of the most feasible solutions for WiFi indoor localization, without knowing the
locations of access points (APs) in advance. The fingerprinting localization contains the
offline stage and the online stage. Its basic idea is similarity comparison between the online
RSS readings and offline prebuilt fingerprint database. The fingerprint database includes
a large number of reference points (RPs). In the online stage, machine learning methods
can be employed for estimating a target’s position between RSS readings and fingerprint
database, such as Gaussian process regression [19,20], neural network [21,22], support
vector machine (SVM) [23,24] and k-nearest neighbor (KNN) [1]. In reference [20], Gaus-
sian process regression models are utilized for predicting RSS distribution in uncalibrated
domain to reduce the workload of fingerprint database construction, and similarity KNN
is used for determining position. In reference [22], one dimensional convolutional neural
network with stacked auto-encoder is adopted for achieving high-precision positioning
results. In reference [23], SVM with three kinds of kernel functions are investigated and
compared in a real indoor environment. Indoor positioning methods by using neural
network and SVM could obtain results with high accuracy, as well as high complexity.
Because of low complexity and easy implementation, KNN is the most common method for
existing fingerprinting localization, meeting the accuracy requirements of most situations.

When the system covers a large area, a fingerprint database will include many APs
and a large amount of RSS measurements, causing huge computational cost and large
positioning errors. Therefore, clustering algorithms are introduced into fingerprinting
localization for dividing fingerprint database in the offline stage, such as DBSCAN [6,7],
K-means [25], fuzzy c-means [26] and affinity propagation clustering (APC) [27]. Among
them, DBSCAN and APC could automatically generate clusters without specifying the
number of clusters at first. Additionally, two hyper-parameters greatly affect the clustering
effect of DBSCAN. In the online stage, the online RSS readings are used for selecting
a cluster to which it belongs, and then, an important task is to calculate the similarity
between online RSS readings and RPs only in the matched cluster rather than the whole
fingerprint database, which aims to increase the positioning accuracy and reduce the com-
putation burden. Due to the fluctuation of RSS [6], these fingerprint clustering localization
methods based on signal-domain distance usually do not conform to indoor spatial lay-
out. A hybrid distance [28], the fusion of signal-domain and position-domain distances,
was introduced into clustering algorithms, causing better clustering results than single
distance. Moreover, because of the dynamic and complex wireless environment, there are
no absolutely separated cluster margins for fingerprints, and the transition region should
exist between adjacent clusters. Those cluster algorithms ignoring the transition region
will cause identification errors. Therefore, algorithms dedicated to maximum margin are
not suitable for fingerprint clustering localization. Meanwhile, weighted KNN (WKNN)
algorithm with fixed K value usually achieves large positioning errors [1]. An enhanced
weighted KNN (EWKNN) [29] technique was proposed to choose several RPs for calculat-
ing weighted coordinates based on the signal filter. Due to the neglect of RPs’ real spatial
distribution, larger localization errors and instability emerged. Then, an adaptive WKNN
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(AWKNN) [30] method was put forward to acquire a location-concentrated sub-cluster
for high accuracy and stability based on APC, signal-domain and position-domain dis-
tances. However, the suitable sub-cluster was selected by some heuristic conditions based
on position-domain distance rather than some rules, achieving non-global optimization
performance under some situations. Generally speaking, RSS located far from AP is very
weak or even non-existent. The lost RSS is usually replaced with a fixed value [1,29], such
as −95 or −100 dBm, which will introduce errors into the fingerprint matching operation.

Therefore, an improved indoor fingerprinting localization method using a clustering
algorithm and RSS dynamic compensation was proposed. In the offline stage, a fingerprint
database was firstly built as a set of many maps between media access control (MAC)
and RSS and locations at RPs. Then, APC was conducted to adaptively divide fingerprint
database into several clusters based on offline hybrid distance. Meanwhile, clusters were
adjusted considering the transition region and given radius. In the online stage, dynamic
compensation for fingerprint at RP was carried out. After cluster identification and selecting
K RPs with minimum online signal-domain distances, APC was reused to generate several
sub-clusters by position-domain distances. The objective is to select the optimal sub-
cluster that minimizes the sum of squared online hybrid distances. Finally, online signal-
position distance was used for weighted location estimation. The proposed method can
obtain results with better positioning accuracy and stability. Besides, it is able to maintain
positioning accuracy so that it is basically changeless, effectively avoiding the influence of
fixed K values.

The remainder of this paper is organized as follows. Section 2 shows the overview
of the improved fingerprinting localization method using clustering algorithm and RSS
dynamic compensation. Section 3 describes the proposed method in detail. Section 4 intro-
duces experimental testbed and evaluates and analyzes the performance of the proposed
method. Section 5 conducts a discussion. Finally, conclusions are made in Section 6.

2. The Overview of Improved Localization Method

The overview of the improved localization method is shown as Figure 1. As other
fingerprinting localization methods, it consists of two stages, offline and online stages.
The core and improved components, filled in orange, are APC and adjusting clusters in
the offline stage, as well as dynamic compensation, APC and sub-cluster selection in the
online stage.
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After collecting RSS measurements at some point in a period, many pairs of key values
with MAC and RSS through average processing are named as the fingerprint, expressed as
R =[mac1, rss1; mac2, rss2; · · · ; macn, rssn], where mac1 denotes MAC of the first detected
AP, rss1 is the corresponding RSS mean value, and n is the number of detected MACs. The
fingerprint database can be constructed by combining all mappings between fingerprints



ISPRS Int. J. Geo-Inf. 2021, 10, 613 4 of 20

and coordinates at different locations. Locations of the i th and j th RP are denoted as li and
lj, respectively, a vector of x and y. Ri and Rj are a fingerprint of i th and j th RP, respectively.
The detailed form of table of fingerprint database can be found in literature [30]. Position-

domain distance can be expressed as dpos
(
li, lj

)
=
√(

xi − xj
)2

+
(
yi − yj

)2, and signal-

domain distance in the offline stage is doff
sig
(
Ri, Rj

)
=

√
∑m

k=1

(
rssk

i − rssk
j

)2
/m, where li

and lj are different locations, many different MACs appear in only one of Ri and Rj, m

is the number of MACs appeared in both fingerprints, rssk
i and rssk

j are corresponding
RSS values of k th MAC. Then, the hybrid distance in the offline stage can be obtained by
Equation (1), where Nor() is the normalized function.

doff
hyb
(
RPi, RPj

)
= Nor

(
doff

sig
(
Ri, Rj

))
× Nor

(
dpos

(
li, lj

))
(1)

In the offline stage, APC is conducted by using the above hybrid distance as a similarity
description. It automatically forms clusters and selects cluster centroids by means of
similarities among RPs. These clusters are distinct. In order to improve the accuracy of
cluster identification in the online stage and make full use of fingerprint data, a transition
region between two adjacent clusters is created by absorbing RPs within a given radius.
The union of the cluster and transition region is the adjusted cluster. Meanwhile, the
centroid of adjusted cluster should be updated with equal weight for each RP.

In buildings where APs are heavily deployed, real-time-acquired RSS readings usu-
ally include many MACs in the online stage. The online signal-domain distance can be
calculated based on real-time RSS readings. Because of the limited radio propagation,
fingerprint at RP inevitably lacks some MACs. These lost RSS values of a fingerprint
could be dynamically compensated by the minimum of fingerprint at RP. Then, online
signal-domain distance between real-time RSS readings and RPs or centroids can be ex-

pressed as doff
sig(Ri, r) =

√
∑t

k=1

(
rssk

i − rssk
)2

, where r denotes the real-time RSS readings,

r =[mac1, rss1; mac2, rss2; · · · ; mact, rsst], rssk denotes RSS value of k th MAC, t is the num-
ber of detected RSS during testing measurement. The online hybrid distance (don

hyb) can
be calculated by don

sig and dpos based on Equation (1). By calculating and sorting all online
signal-domain distances between r and cluster centroids, the cluster with minimum don

sig is
objective in cluster identification. Online signal-domain distances between r and RPs in
the objective cluster are calculated. If K is a pre-specified value, K RPs with minimum don

sig
are selected. Position-domain distances between the K selected RPs are further utilized by
APC to adaptively divide into several sub-clusters. Based on optimization rule and online
hybrid distance, the optimal sub-cluster can be selected to realize location estimation.

3. Improved Indoor Fingerprinting Localization Method

This section is set to introduce the core components of the improved fingerprinting
localization method in detail, such as APC, clusters adjustment, dynamic compensation
and optimal sub-cluster selection.

3.1. Affinity Propagation Clustering Algorithm

Affinity propagation algorithm connects all sample points into a network. Each
sample point is potential cluster centroid. Two kinds of messages, responsibility r(i, j) and
availability a(i, j), are exchanged between sample points. During the message-passing
procedure, differences between cluster centroid and affiliated points are continuously
enlarged, so as to determine clusters and their centroids. The clustering process can
be completed automatically without specifying the number of clusters. Because of the
complex indoor wireless environment, it is difficult to accurately reflect signal distribution
by determining the number of clusters based on experience or indoor layout. It seems that
APC could meet the demand of fingerprint database clustering.
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Similarity s(i, j) describes how well the j th point is suitable to be the cluster centroid
for the i th point, where i is not equal to j and s(i, j) is set to be a negative value. s(j, j) is
called preference. In the APC algorithm, the number of clusters depends on preference
and the messages-passing procedure between sample points. The larger the preference is,
the more likely the sample point is selected as the cluster centroid. At the beginning of
APC, preference can be set as the median or minimum of s(i, j). If preference is median,
the appropriate number of clusters will be obtained. When it is minimum, the number of
clusters is small.

Responsibility r(i, j) is the message sent to the j th point from the i th point. It reflects
the accumulated evidence for how well-suited the j th point is to serve as the alternative
cluster centroid for the i th point in case of considering the other potential cluster centroid,
j′ th point. The j th point will contend the i th point with the j′ th point. r(i, j) can be
calculated by Equation (2), where s(i, j′) is the similarity between the i th point and the j′

th point.
r(i, j) = s(i, j)−max

j 6=j′

{
a
(
i, j′
)
+ s
(
i, j′
)}

(2)

Availability a(i, j) is the message sent to the i th point from the j th point. It reflects
the accumulated evidence for how appropriate it will be for the i th point to choose the
j th point as the cluster centroid. Then, a(i, j′) in Equation (2) is availability about the
i th point and j′ th point. Normally, availability is initialized to zero, a(i, j) = 0. For
j = i, self-responsibility r(j, j) is set to preference s(j, j) minus the maximum of similarities
between the i th point and all other alternative cluster centroids, as shown in Equation (3).

r(j, j) = s(j, j)−max
j 6=j′

{
s
(
i, j′
)}

(3)

The above update of responsibility allows all alternative cluster centroids to compete
for the i th point. The following update of availability shows whether each alternative
cluster centroid is qualified. As shown in Equation (4), a(i, j) is set to r(j, j) plus the sum
of positive responsibilities max{0, r(i′, j)} for alternative cluster centroids received from
other sample points. The self-availability a(j, j) is updated by Equation (5).

a(i, j) = min

0, r(j, j) + ∑
i′ 6=i,j

max
{

0, r
(
i′, j
)} (4)

a(j, j) = ∑
i′ 6=i,j

max
{

0, r
(
i′, j
)}

(5)

If similarities are known, the above equations can be used to exchange messages
between sample points. Responsibilities and availabilities are combined to identify cluster
centroid. For the i th point, the j th point that maximizes r(i, j) + a(i, j) either identifies the
i th point as a cluster centroid if j = i, or identifies the j th point that is the cluster centroid
for the i th point. The message-passing procedure may be terminated after a fixed number
of iterations, after changes in the messages fall below a threshold, or after cluster centroids
stay constant for some number of iterations.

3.2. Adjusting Clusters Considering Transition Region and Given Radius

Due to the continuous radio propagation, it is very hard to divide an indoor environ-
ment into distinct clusters. Traditional clustering algorithms in fingerprinting localization
are devoted to maximum margin between clusters, leading to cluster identification errors.
As is shown in Figure 2, there are two adjacent clusters named as Cluster1 and Cluster2,
respectively. Squares and circles indicate RPs, and the distance between two RPs represents
sampling interval. Considering the workload of fingerprint collection in the offline stage,
the sampling interval should not be too small. If the test point is located in the middle of
two adjacent clusters, no matter which cluster the test point is assigned to, there are few
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RPs that are truly adjacent to it. In addition, more far away RPs will be involved in location
estimation due to the fixed K value. As a result, a large positioning error will occur. If there
is a transition region between two adjacent clusters, marked in Figure 2 by a dashed box,
RPs in this area belong to not only Cluster1 but also Cluster2. RPs around the test point
in each cluster are increased. Even if there is a misidentification of adjacent clusters, the
positioning error will be lower than that without a transition region.
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Therefore, adjusting clusters considering transition region and given radius is pro-
posed, and the detail is as follows.

1. Nc is the number of clusters generated by APC, and the given radius is rtr. Traverse
all clusters and select the i th and (i + 1) th cluster, i ∈ [1, Nc − 1].

2. Select the last two RPs (RPl
1 and RPl

2) in the i th cluster. Additionally, select the first

two RPs (RP f
1 and RP f

2 ) in the (i + 1) th cluster.

3. Select all RPs within rtr of either RP f
1 or RP f

2 in the i th cluster. The set Ci+1 is combined
after the removal of repetition.

4. Select all RPs within rtr of either RP f
1 or RP f

2 in the (i + 1) th cluster. The set Ci+1 is
combined after the removal of repetition.

5. Add RPs in Ci to the (i + 1) th cluster, and add RPs in Ci+1 to the i th cluster.
6. Repeat the above steps from (b) to (e) until the traversal is complete.
7. Traverse the Nc cluster. Update all cluster centroids after calculating the mean coordi-

nate and fingerprint of all RPs in each cluster.

The given radius can be specified as any value. However, the suggestion to the given
radius is the accuracy of the fingerprinting localization, such as 2 m. As we all know, some
fingerprinting localization methods can achieve high accuracy, but they are often covering
very small areas. The convincing accuracy of fingerprinting localization is from 2 to 3 m
in a large area. It is necessary to ensure the differences between adjacent clusters, while
increasing the number of RPs in transition region. If the radius is set too large, two adjacent
clusters will become the same one, which is the contrary to the original intention of the
previous clustering operation. Therefore, we suggested that the radius is set as 2 m.

The above process can be clearly illustrated by Figure 3. From the viewpoint of
APC, cluster centroid is one of the sample points. Thus, the pentagram denotes cluster
centroid, overlapping one RP. In Figure 3, (a) shows two adjacent clusters, (b) represents
selecting two RPs that meet the requirement of above step 2 from each cluster, (c) represents
selecting RPs within rtr from Cluster2, (d) represents selecting RPs within rtr from Cluster1,
(e) represents the combination of origin clusters and transition region, and (f) represents
the update of the cluster centroid.
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3.3. Online Dynamic Compensation of Reference Fingerprint for RSS Lost by Using
Minimum Value

Due to complex structure and layout, as well as dynamic environment, it is very
difficult to detect the same APs anywhere in a building. Meanwhile, a wireless signal is
easily influenced by unpredictable channel attenuation, signal shadowing and multipath
interference. Some APs are not detected, without obtaining the corresponding RSS values.
For convenience, this phenomenon is called RSS lost.

Figure 4 shows collection of RSS values at a frequency of 1 Hz in two minutes. If there
is no RSS lost, all detected RSS numbers of MAC1, MAC2 and MAC3 should be 120. In fact,
the detected RSS numbers of MAC1, MAC2 and MAC3 are 120, 39 and 93, respectively.
Additionally, the corresponding mean RSS values are −26, −74 and −83 dBm, respectively.
The blank space in Figure 4 means RSS lost. The more blank space there is, the more serious
RSS is lost. Although MAC2 has a larger RSS value than MAC3, MAC2 has a more serious
RSS lost. If these three RSS values are used for real-time location estimation, it may not
be wise to discard missing RSS values when RSS lost appears. At the first second, RSS of
MAC1 is detected, while the others are lost, the estimated location only based on the RSS
of MAC1 will contain a large error. If RSS compensated for the lost MAC2 and MAC3, a
more precise location could be estimated. If a fixed value is used for compensation, as in
the previous methods, e.g., −95 or −100 dBm, positioning errors and even identification
errors will be attendant.

RSS loss occurs throughout both offline and online stages. Fingerprints are obtained
by averaging process for collections over a long period of time in the offline stage, so
RSS compensation value for fingerprints can be set as −100 dBm or other fixed values.
When RSS readings are collected at a target location in a big building, some detected
MACs in RSS readings may not appear in the list of reference fingerprint. Meanwhile,
real-time RSS readings are easily influenced by dynamic environment in the online stage.
The reasons for RSS lost may be multipath effect, sheltering, far away from access point
or beyond the sensitivity of the receiver. Experimental tests find that RSS loss usually
occurs in the case of relatively small RSS values. Once RSS values from different APs
are collected, the minimum one of RSS values can be selected. There will be a new
minimum RSS value in the next RSS collection. In other words, the minimum RSS value
is dynamically changing all the time. The absolute difference between compensated RSS
and the corresponding offline RSS is smaller than others, which can help find adjacent RPs
more accurately. It is very unreasonable to replace RSS loss with fixed values. Therefore,
the minimum RSS of reference fingerprint is utilized for dynamic compensation when
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online signal-domain distance is calculated by comparing differences between RSS readings
and reference fingerprint. Additionally, it is worth noting that signal-domain distance is
calculated after dynamic compensation during the whole online stage.
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3.4. The Selection of Optimal Sub-Cluster by APC for Location Estimation

After compensating reference fingerprint by minimum value, online signal-domain
distances between RSS readings and each cluster centroid can be calculated. The selected
cluster corresponds to the minimum online signal-domain distance. RPs in the selected
cluster will be further analyzed for choosing an optimal sub-cluster to improve positioning
accuracy and stability.

Similarity between two fingerprints is represented by distance. The smaller the
distance is, the more similar two fingerprints are. To describe how sub-cluster close to
pre-estimated position, the online hybrid distance is adopted. After calculating hybrid
distances between K RPs in sub-cluster and pre-estimated position, the sum of squared
hybrid distances can be calculated by Equation (6). Where N is the sum of the squared
online hybrid distances in a sub-cluster, ∑() denotes the sum function, s is the number
of RPs in a sub-cluster, don

hyb denotes the online hybrid distance. The sub-cluster with the
minimum sum of squared hybrid distances can be selected as the optimal one. The criteria
for selecting optimal sub-cluster is the least squares by minimizing the sum of the squared
online hybrid distances, which can be expressed as Equation (7). Where the optimal sub-
cluster is expressed by Csub

opt , argmin() is the function to return the corresponding index of
the minimum value. In other words, the sub-cluster with minimum squared online hybrid
distances is the optimal one.

N =
s

∑
i=1

(
don

hyb

)2
(6)

Csub
opt = Csub

argmin
j
(N) (7)

The inverse distance weight method is used for location estimation, which can be
expressed as Equation (8), where l̂ is the estimated location, xi and yi are coordinate of the
i th RP, the i th weight ωi is the inverse of online signal-domain distance, ω is the sum of
all weights.

l̂ = (x̂, ŷ) =


s
∑

i=1
(xi ∗ωi)

ω
,

s
∑

i=1
(yi ∗ωi)

ω

 (8)
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The detailed description of selecting optimal sub-cluster by using APC for location
estimation is as follows.

(a) K is set as a big value, but smaller than the number of RPs (Ns) in the selected cluster.
Calculate all online signal-domain distances between RSS readings and RPs.

(b) Calculate the pre-estimated position (lp) by using Equation (8). Meanwhile, calculate
the equal weighted average fingerprint (R) based on fingerprints of RPs, forming the
mapping of lp and R.

(c) Calculate position-domain distances between K RPs. They are introduced into APC
as similarities. K RPs are automatically divided into S sub-clusters (Csub).

(d) If S equals to 1, the pre-estimated position (lp) will be treated as the final estimated
position (l f ). Otherwise, go to the next step.

(e) Obtain online hybrid distances between K RPs and lp by using Equation (1).
(f) Calculate the sum of squared online hybrid distances in S sub-cluster s, respectively.

Additionally, select the sub-cluster with minimum sum of squared online hybrid
distances as the optimal sub-cluster by Equation (7).

(g) l f can be calculated by Equation (8).

Figure 5 shows the illustration of selecting optimal sub-cluster by using APC for
location estimation. There are nine RPs participating for further selection and four kinds of
points marked with different shapes. Solid dot, rectangle, pentacle and triangle represent
the selected RP, pre-estimated position, cluster centroid and final estimated position,
respectively. The connecting polyline denotes a sub-cluster.
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4. Experiments and Analysis

This section shows experimental setup and the results of clustering and identification
and evaluates positioning performance of the proposed method. To evaluate the position-
ing performance fairly, WKNN, EWKNN, AWKNN and SVM methods are introduced. For
WKNN, K is chosen with best positioning accuracy, while K is adaptively determined in
EWKNN and AWKNN. Hyperparameters of SVM are optimized by Bayesian optimization
algorithm. Mean error (ME), root mean square error (RMSE) and maximum error (MaxE)
are introduced as quantitative indexes to represent positioning performance. ME is an
arithmetic average of the absolute errors, which can be the Euclidean distance between real
coordinates and estimated ones. While RMSE represents the square root of the quadratic
mean of differences between real coordinates and estimated ones. Accuracy and stability
can be reflected by ME and RMSE, respectively. In this section, experimental setup, clus-
tering results and analysis, cluster identification and comparisons of positioning accuracy
and efficiency are conducted one by one.
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4.1. Experimental Setup

As is shown in Figure 6, the experimental testbed mainly contains a corridor and
rooms with the area of almost 3200 square meters. Fifty-two APs are installed in the
corridor, and 4 are in room A409. During fingerprint collections, pedestrians are moving
with normal activities. Three hundred and fifty-two RPs are uniformly deployed with the
interval of 1.2 m in the testbed, marked by solid rectangle. At each RP, 60 samples are
collected at a frequency of 1 Hz along some movement direction, as shown in Figure 6.
Eighty-two test points are evenly distributed in the testbed to evaluate the performance of
different positioning methods. At each test point, 10 samples are collected with the same
frequency and direction as offline collection, resulting in 820 samples. Each sample will
cause a positioning result, similar to real-time localization.
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4.2. Results and Analysis of Offline Fingerprint Clustering

K-means and FCM are two well-known clustering algorithms. They need to specify
the number of clusters at first. Additionally, it is difficult to reasonably divide into partitions
by experience for indoor environment with large coverage area. APC could adaptively
generate clusters by means of the message-passing procedure between RPs, which is no
need to appointing the number of clusters. Therefore, only APC is used to carry out into
the clustering experiment without comparisons of the above two algorithms.

The offline hybrid distance is assigned as similarity. At the beginning of APC, pref-
erence is chosen as the minimum of similarities, leading to a small number of clusters.
Considering a better accuracy of fingerprinting localization, the given radius is set as two
meters. Clustering results based on offline signal-domain distance and hybrid distance, as
well as adjusted clusters with transition region, are shown in Figure 7. Each shape denotes
one cluster, the pentacle denotes the cluster centroid.
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In Figure 7a, 15 clusters are formed based on signal-domain distance. There are messy
intersections between clusters. Some clusters also have outliers. The effect of clustering is
poor, with a significant difference between clustering results and actual layout, reflecting a
dynamic and complex radio environment at the same time. The number of RPs in clusters
are at most 43 and at least 13. In Figure 7b, 8 clusters are generated based on hybrid
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distance. Outliers and messy intersections are disappeared. Additionally, clustering results
reflect actual distribution. The number of RPs in clusters are at most 56 and at least 28. In
Figure 7c, the number of clusters is unchanged. However, the coverage area of clusters are
enlarged based on transition region and given radius. The bigger given radius is, the larger
enlarged coverage area is. Selection in a dashed box is adjusted to the transition region.
Overlapping RPs belong to both adjacent clusters. The number of RPs in clusters are at
most 58 and at least 34. There are more RPs in each cluster with the possibility of reducing
cluster identification errors and improving positioning accuracy. Besides, cluster centroids
have been updated in terms of position and signal. In Figure 7d, 7 clusters are generated
by using hybrid distance in reference [30]. Although reference [30] also employed hybrid
distance, signal-domain distance in the offline stage is calculated without replacing the
lost RSS values in reference [30]. Additionally, the fingerprint database employed in this
experiment is different from the reference [30] in direction, the former is in 1 direction,
while the latter is in 4 directions. Several clusters have outliers, leading to the failure
of the adjustment between clusters. Figure 7d behaves a big difference from results in
reference [30].

By comparing with other clustering results, signal-domain distance in the offline stage
with replacing the lost RSS values and adjusting clusters with transition regions could reflect
the actual distribution of RPs and increase the possibility of reducing localization error.
Due to several outliers and the failure of adjustment between clusters in Figure 7d, the
following positioning evaluation is performed by using the clustering results of Figure 7c.

4.3. The Effect on Cluster Identification of Adjusted Clusters and RSS Dynamic Compensation

Clusters based on offline hybrid distance behave better than that on offline signal-
domain distance. In order to evaluate the performance of adjusted clusters and RSS dy-
namic compensation, comparisons of cluster identification based on results of Figure 7b,c
with different online signal-domain distances are, respectively, carried out. For convenient
expression, clusters of Figure 7b,c are, respectively, denoted as Cluster b and Cluster c.
Online signal-domain distances calculated by using RSS compensation with a fixed value
and minimum value are, respectively, denoted as don

fix and don
min. Accuracy of cluster identi-

fication (ACI), rate of adjacent cluster (RAC) and error of cluster identification (ECI) are
treated as statistical indicators. They can be calculated by Equation (9), where Nid is the
number of TPs that are accurately identified, Ntp is the total number of TPs, i.e., 820, Nad is
the number of TPs that are identified as belonging to adjacent cluster, Nm is the number
of misidentified TPs. It is easy to understand the definitions of ACI and ECI, which are
rates of accurate identification and misidentification. If a test point actually belongs to a
cluster, the identified result still belongs to this same cluster, then it is called as accurate
identification; otherwise, it is a misidentification. ACI can be calculated by the number of
accurate identification dividing total number of test points. Similarly, ECI can be calculated
by the number of misidentification dividing total number of test points. In fact, however,
there are situations where test points are located in two adjacent clusters, as shown in
Figure 2. Test point belongs to neither Cluster1 nor Cluster 2. In our opinion, it belongs
to the adjacent cluster. Then, RAC can be calculated by the number of identified adjacent
clusters dividing the total number of test points.

ACI = Nid
Ntp

RAC = Nad
Ntp

ECI = Nm
Ntp

(9)

Table 1 shows statistics of identification based on different clusters and signal-domain
distances. The accuracy of identification based on the original cluster (Cluster b) is lower
than that on the adjusted cluster (Cluster c). The former mean ACI is 84.3%, while the latter
is 93.55%. It fully demonstrates that the adjusted cluster is helpful to improve the accuracy
of cluster identification. For adapting the same cluster (Cluster c), the ACI based on don

fix
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and don
min are 92.9% and 94.2%, respectively. It means that only 1.3% accuracy improvement

is obtained by using RSS compensation. However, accuracy reduction and ECI based on
the original cluster (Cluster b) and don

min are emerged. The main reason is that the centroid
of Cluster b is RP itself, its fingerprint is not able to represent the entire radio environment
of cluster. In addition, adjacent cluster identified as the real one is reality. RAC based on
Cluster b is up to 13.7%, while the mean RAC based on Cluster c is about 7.1%. Since
adjusted clusters contain some RPs of adjacent ones, a positioning error is not good for
adjusted clusters, even if misidentification as an adjacent cluster occurs. The ACI based
on Cluster b and don

fix is 86.3%, while the one on Cluster c and don
min is 94.2%. Accuracy

is improved with 7.9% by using adjusted clusters and signal-domain distances with RSS
dynamic compensation. Therefore, adjusted clusters and RSS dynamic compensation have
a better effect on cluster identification.

Table 1. Statistics of identification based on different clusters and signal-domain distances (%).

Indicators Cluster b and don
fix Cluster c and don

fix Cluster b and don
min Cluster c and don

min

ACI 86.3 92.9 82.3 94.2
RAC 13.7 7.1 5.2 5.8
ECI 0 0 12.5 0

4.4. Positioning Results and Analysis
4.4.1. The Improvement of Positioning Accuracy by Adjusted Clusters

For fair comparisons of positioning accuracy, the only one, WKNN is introduced to
calculate localization results, using the common same distance. Meanwhile, to avoid the
effect of cluster identification on positioning accuracy, the actual results by artificial identi-
fication are utilized. Minimum positioning errors with different K values of WKNN are
based on a fingerprint database without clustering. Cluster b and Cluster c are summarized
in Table 2. In other words, when K is, respectively, set as 4, 3 and 3, these WKNN methods
are based on different clusters to achieve the best positioning performance. Among them,
ME, RMSE and MaxE of WKNN based on Cluster c are all the minimum, 3.155, 3.116 and
16.141 m. Compared with WKNN based on the fingerprint database without clustering,
ME, RMSE and MaxE of WKNN based on Cluster c are decreased by 17%, 7.7% and 8%,
respectively. Because the adopted identification results are really accurate, it is not enough
to demonstrate the superiority of adjusted clustering. Compared with WKNN based on
Cluster b, ME, RMSE and MaxE of WKNN based on Cluster c are decreased 5.1%, 5.7% and
8.8%, respectively. The only difference between the two methods is whether the clusters
are adjusted. It is evident that adjusted clusters can improve the positioning accuracy and
stability, limiting the maximum error.

Table 2. Statistics of positioning errors of WKNN based on different clusters and actual identification
results (m).

Indicators No Cluster (K = 4) Cluster b (K = 3) Cluster c (K = 3)

ME 3.756 3.326 3.155
RMSE 3.378 3.306 3.116
MaxE 17.552 17.698 16.141

4.4.2. The Improvement of Positioning Accuracy by the Proposed Method

To evaluate the positioning accuracy of the proposed method, WKNN without a
clustering fingerprint database, SVM without a clustering fingerprint database, EWKNN
with adjusted clusters, AWKNN with adjusted clusters, and SVM with adjusted clusters
are introduced to conduct comparisons. WKNN and SVM without a clustering fingerprint
database denote that positioning methods determine a position throughout the whole
fingerprint database. EWKNN, AWKNN and SVM with adjusted clusters denote that
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the positioning methods determine a position based on cluster identification results and
adjusted clusters. The initial K of EWKNN, AWKNN and the proposed method is set as 9.

Figure 8 shows cumulative distribution functions (CDFs) of positioning errors cor-
responding to the above six methods, which are orderly denoted as a red line marked
by circles, a magenta line marked by inverted triangles, a blue line marked by squares, a
black line marked by crosses, a cyan line marked by diamonds and a green line marked by
regular triangles. The cyan line is shorter than the others. The blue line is the longest. It
seems that the cyan one has a smaller range of errors than the others. SVM with adjusted
clusters has a minimum MaxE. Above all, MaxEs of the blue one and the black one are
larger than 20 m, while the cyan and green ones are close to 10 m. At the same time, the
green one is higher than the cyan, blue, red, magenta and black ones all the time. The
proposed method illustrates results with higher accuracy than the others.
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Table 3 shows statistics of positioning errors of WKNN without clustering, SVM with-
out clustering, EWKNN, AWKNN, SVM with adjusted clusters and the proposed method.
MEs of the above six methods are 3.756, 3.865, 3.481, 3.553, 2.981 and 2.328 m, respectively.
The RMSEs of those are 3.378, 2.734, 3.443, 3.229, 2.130 and 1.865 m, respectively. MaxEs of
those are 17.552, 13.348, 20.417, 20.155, 9.369 and 10.772 m, respectively. Compared with
WKNN, EWKNN, AWKNN and SVM positioning accuracy of the proposed method is im-
proved by 38.0%, 33.1%, 34.5% and 21.9%, and stability is improved by 44.8%, 45.8%, 42.2%
and 12.6%. Meanwhile, MaxE is decreased by 38.9%, 47.5% and 46.8%, compared with
WKNN, EWKNN and AWKNN. Among these six methods, SVM with adjusted clusters
behaves better in terms of MaxE. Compared with the proposed method, MaxE is reduced
by about 1.353 m. In general, the proposed method achieves better positioning performance
among these six methods. The reason for effective improvement of positioning accuracy
is the adoption of adjusting clusters, dynamic RSS compensation and further selection of
nearest RPs. Additionally, the main reason for effective improvement of stability and the
limitation of larger error is selecting position-concentrated RPs for estimating a position.
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Table 3. Statistics of positioning errors of six methods (m).

Positioning Methods ME RMSE MaxE

WKNN(K = 4) without clustering 3.756 3.378 17.552
SVM without clustering 3.865 2.734 13.348

EWKNN with adjusted clusters 3.481 3.443 20.417
AWKNN with adjusted clusters 3.553 3.229 20.155

SVM with adjusted clusters 2.981 2.130 9.369
Proposed method 2.328 1.865 10.722

Positioning errors of the proposed method with different K values are illustrated by
Figure 9. The red line in the blue box denotes median error, the red square in the blue box
represents ME, and the red plus outside of the blue box presents outliers with large errors.
Although there are different performances on median errors and outliers with larger errors,
the MEs of proposed method with different K values are rather close to each other, when
K is less than 10. Statistics of positioning errors of the proposed method with different
K values are shown in Table 4. ME is about 2.3 m when K is less than 10. It can be found
from both Figure 9 and Table 4, when K are set as 11 and 13, MEs become larger, as well as
RMSEs. It means that the increase in K value does not bring an improvement in positioning
accuracy and stability. On the contrary, the larger K values, the larger computation and
errors. Therefore, large K values are not recommended. When K value is less than 10,
the proposed method can keep positioning accuracy constant and avoid the influence of
K value on it. However, when K is 9, RMSE is minimum. The number of red pluses outside
of the blue box in Figure 9 could represent the distribution of large errors to some extent.
The redder the plus, the larger the errors. Although the MaxE is minimum when K is 7,
the number of red pluses is obviously smaller than others when K is 9. As a consequence,
when K is 9, the proposed method achieves better localization performance with the ME of
2.328 m and the RMSE of 1.865 m. This is also the reason for the recommendation to set K
to 9.
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Table 4. Statistics of positioning errors of the proposed method with different K values (m).

Indicators K = 3 K = 5 K = 7 K = 9 K = 11 K = 13

ME 2.362 2.315 2.342 2.328 2.661 2.493
RMSE 2.040 2.027 1.948 1.865 2.293 2.192
MaxE 10.620 11.110 9.767 10.722 11.008 10.718

4.4.3. The Effect on Cluster Identification and Positioning Accuracy of Radius

In the previous section, 2 m is recommended to set as the given radius for adjusting
clusters. However, what is the effect of radius size on cluster identification and positioning
accuracy? The radius is set to increase the number of RPs in a cluster, which are located
in the margin of adjacent clusters. In this case, when the real location of the test point is
located in the margin of adjacent clusters, more nearby RPs can participate into the location
estimation, and the positioning result will not be too bad. However, it does not mean
that the more RPs in the margin of clusters, the better the positioning performance. A
comprehensive consideration of the accuracy of cluster identification and localization is
required to determine the radius size.

The interval between two adjacent RPs is often determined by experimenters according
to actual situation and demands. It could be 0.5 m, 1 m, 2 m or even 10 m. If the radius
is set as several-fold intervals, the radius is changing, as well as the effect on cluster
identification and positioning accuracy, and optimal results cannot always be obtained. A
fixed radius based on fingerprinting localization accuracy can avoid this phenomenon. The
convincing accuracy of fingerprinting localization is from 2 to 5 m in a large area. Under
the consideration of clusters’ range and difference, as well as computation load, larger
distances are not recommended. Therefore, 2 m, 3 m, 4 m and 5 m are taken as the radius
to test effects on the accuracy of cluster identification and localization.

When the radius is set as different values, locations and fingerprints of cluster centroids
are also updated accordingly, resulting in a different performance of cluster identification
and localization. Table 5 shows the statistics of cluster identification and localization with a
different radius from 2 to 5 m, where the positioning method is the proposed one and K is
9. When the radius is set from 2 to 5 m, the rate of cluster misidentification is all 0. This is
strong evidence that adjusting clusters could improve the accuracy of identification. When
the radius is set as 2 m, ACI is the maximum, 94.2%. As the radius increases, the accuracy
of cluster identification decreases gradually, and RAC is also increasing. The main reason
is that differences between the fingerprints of cluster centroids are decreasing with the
increase in radius, when they are less than 5 m. It is worth noting that when the radius is
set from 2 to 5 m, MEs are about 2.3 m, RMSEs are about 1.8 m, while MaxEs are the same.
That is, accuracy and stability of localization are basically constant when the radius is less
than 5 m. However, there are differences in computation load. Obviously, the larger the
radius, the heavier the computation load. The strongest suggestion is to set the radius as
2 m.

Table 5. Statistics of cluster identification and localization with different radius.

Indicators rtr = 2 rtr = 3 rtr = 4 rtr = 5

ACI (%) 94.2 93.4 92.6 92.2
RAC (%) 5.8 6.6 7.4 7.8
ECI (%) 0 0 0 0
ME (m) 2.328 2.352 2.330 2.321

RMSE (m) 1.865 1.881 1.830 1.847
MaxE (m) 10.722 10.722 10.722 10.722

4.5. The Efficiency of the Proposed Localization Method

In addition to positioning accuracy and stability, efficiency is also a common indicator
of positioning methods. Average handling time is used to reflect efficiency. The shorter the
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average handling time, the higher the efficiency. WKNN without a clustering fingerprint
database, EWKNN with adjusted clusters, and AWKNN with adjusted clusters are also
introduced to evaluate the efficiency of the proposed localization method. The whole eval-
uation includes cluster identification and location estimation, without involving processes
during the offline stage. SVM-based positioning methods usually occupy a huge amount
of computing resources and spend a long time on model training during the offline stage.
Therefore, the average handling time of an SVM-based positioning method is not used for
statistics and comparison.

Table 6 shows the statistics of the average handling time of four methods, where K is 4
in WKNN without clustering, K is 9 in EWKNN, AWKNN and the proposed method based
on adjusted clusters. The average handling time is obtained by ten operation times on the
simulation platform, MATLAB 2016a. Each operation can generate positioning results of
820 samples. The processor model is Intel i7-9700k with the main frequency of 3.6 GHz.
Among them, AWKNN with adjusted clusters has the longest average handling time,
10.637 s; WKNN without clustering has a long average handling time, 9.457 s; EWKNN
with adjusted clusters has the shortest one, 1.750 s; the proposed method has the middle
one, 5.078 s. The reason for WKNN algorithm with a long average handling time is that
traversing all RPs in the whole area is very time-consuming. While the reason for using
the AWKNN algorithm with the longest average handling time is multiple conditional
judgments to find the empirically optimal sub-cluster. The average handling time can
be greatly shortened with the help of clustering. EWKNN with adjusted clusters is the
most efficient, while WKNN is in low efficiency. To our knowledge, WKNN is a common
and effective method. While the efficiency of the proposed method is 1.862 times that of
WKNN; therefore, the proposed method is also an effective one.

Table 6. Statistics of average handling time of four methods (s).

Indicators WKNN EWKNN AWKNN Proposed Method

average handling time 9.457 1.750 10.637 5.078

5. Discussion

Google has adjusted the Android operation system from level 26 and made a limitation
on WiFi scanning, resulting in four RSS scanning in 2 min. However, most smartphones still
use the original operating system without restrictions. Moreover, APs that support FTM
measurements are very expensive. Due to the need to establish the connection between
the AP and smartphone in advance, it is still not easy to obtain FTM measurements. So
far, applications on a large scale are very difficult. The real-time RSS-based fingerprinting
method is still an effective approach of indoor positioning.

Continuous propagation of wireless signals makes the clustering boundary difficult
to determine. Hard divisions are avoided by absorbing the number of RPs in adjacent
clusters within a given radius to construct transition regions. Positioning errors of test
points on the clustering boundary can be decreased by more RPs in adjusted clusters, even
if there are adjacent cluster identification errors. Generally speaking, the more RPs adjusted
clusters have, the higher the positioning accuracy is. However, clusters with many RPs is
unrealistic. In view of the optimal accuracy of fingerprint positioning, it is recommended
to set the given radius as 2 m.

RSS is very sensitive to the indoor environment and layout. It is advisable to obtain
the mean RSS by data collection during a long period of time. There is no doubt that to
replace the loss RSS with a fixed value in the offline stage is correct. The coverage area of an
AP is limited. The number of detected APs at the target location is usually different from
RPs. In other words, some detected APs at the target location do not appear in the list of
scanned APs at RPs. Due to the dynamic environment, it is a mistake to adopt a fixed value
to replace. Experiments of cluster identification and localization have demonstrated that it
is an effective approach to utilize the minimum RSS value to dynamically compensate the
reference fingerprint.
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For WKNN and EWKNN, K has an important effect on positioning accuracy. The
proposed method chooses the optimal sub-cluster that is with the minimum sum of squared
distance by APC from K first-selected RPs. No matter what the value of K is, the proposed
method can obtain the optimal sub-cluster with position-concentrated RPs for estimating
the location, so that MEs are insensitive to the K value, as is shown in Table 4. However, if
K is greater than 10, MEs will become greater than that of less than 10. Furthermore, if K is
set as an even value, APC will report error messages. Therefore, K values keeping MEs
basically constant are confined to odd values from 3 to 9.

Differences between AWKNN in reference [30] and the proposed method are RSS
compensation producing different signal-domain distances in offline and online stages and
the way to select the optimal sub-cluster. Offline signal-domain distance leads to different
clustering results from that in reference [30]. Online signal-domain distance, the way to
select the optimal sub-cluster and a fingerprint database in one direction jointly make
AWKNN have worse positioning performance than the proposed method. Compared
with AWKNN, the proposed method achieves reductions in mean positioning error, RMSE
and MaxE with 34.5%, 42.2% and 46.8%. Additionally, the average handling time of the
proposed method is reduced by 52.3%.

Compared with WKNN, EWKNN, AWKNN and SVM, the proposed method is a
significant improvement, achieving good performance of accuracy, stability and efficiency.
An idea of deeply mining information between reference points is provided. Additionally,
this is a good attempt to estimate location using fingerprints in a large-scale area. Therefore,
the proposed method will provide reference for researchers and production personnel.
Because the proposed method belongs to wireless fingerprinting localization one, it should
be of interest to readers, researchers and production personnel in the areas of indoor
positioning based on WiFi, BLE and other wireless sensor networks in a large-scale area.
Additionally, we believe that better positioning performance can be achieved with the
suggested parameters, such as minimum RSS value for compensation, a radius of 2 m and
a K value of 9.

However, the above result is a simulation rather than an exact real-time online posi-
tioning test. Compared with the simulation, the real-time online positioning test usually
behaves a little bit worse in accuracy, stability and efficiency. WiFi fingerprint positioning
methods still face multiple challenges in real-time online application, such as workload of
collecting signal fingerprint and the effect on RSS of changing environment and pedestrian
and the user’s movement. As a result, large errors are obtained in some locations, exceeding
10 m in maximum, resulting in poor experience of location-based service. This raises the
need for the fusion of some high-precision and continuous positioning techniques. Inertial
sensors or PDR [16] computer vision [31] could be introduced to obtain good positioning
results in indoor positioning and indoor navigation.

6. Conclusions

This study proposes an improved fingerprinting localization method by using clus-
tering algorithm and dynamic compensation, with an ME of 2.328 m, RMSE of 1.865 m
and MaxE of 10.722 m in a testbed of 3200 squared meters. By comparing with WKNN,
EWKNN and AWKNN methods, ME, RMSE and MaxE are reduced by at least 33.1%, 42.2%
and 38.9%, respectively. Compared to the SVM method with adjusted clusters, ME and
RMSE are reduced by about 21.9% and 12.6%. Although the MaxE of the proposed method
is larger than that of SVM with adjusted clusters, it is obvious that the proposed method
outperforms other methods in positioning accuracy and stability, as well as the limitation
of maximum error. Moreover, the proposed method keeps positioning accuracy basically
constant within odd values from 3 to 9, which avoids the fluctuation of positioning accuracy
caused by K value. Reasons for the above outcomes are hybrid distance by using dynamic
compensation to more accurately characterize the similarity between two fingerprints, the
adjustment of clusters considering transition region to avoid larger error causing by cluster
misidentification and the criteria of the least squared online hybrid distances for further
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clustering to obtain an optimal sub-cluster, selecting position-concentrated RPs to achieve
higher accuracy and stability. The proposed method could be applied in the areas of indoor
positioning and indoor navigation based on WiFi, Bluetooth and other wireless sensor
networks in a big building, for example, shopping mall, museum, airport, train/subway
station and other GNSS-denied space.
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