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This paper presents a framework to alleviate the Deep Reinforcement Learning (DRL)
training data sparsity problem that is present in challenging domains by creating a DRL
agent training and vehicle integration methodology. The methodology leverages
accessible domains to train an agent to solve navigational problems such as obstacle
avoidance and allows the agent to generalize to challenging and inaccessible domains
such as those present in marine environments with minimal further training. This is done by
integrating a DRL agent at a high level of vehicle control and leveraging existing path
planning and proven low-level control methodologies that are utilized in multiple domains.
An autonomy package with a tertiary multilevel controller is developed to enable the DRL
agent to interface at the prescribed high control level and thus be separated from vehicle
dynamics and environmental constraints. An example Deep Q Network (DQN) employing
this methodology for obstacle avoidance is trained in a simulated ground environment, and
then its ability to generalize across domains is experimentally validated. Experimental
validation utilized a simulated water surface environment and real-world deployment of
ground and water robotic platforms. This methodology, when used, shows that it is
possible to leverage accessible and data rich domains, such as ground, to effectively
develop marine DRL agents for use on Autonomous Surface Vehicle (ASV) navigation. This
will allow rapid and iterative agent development without the risk of ASV loss, the cost and
logistic overhead of marine deployment, and allow landlocked institutions to develop
agents for marine applications.

Keywords: autonomous surface vehicle (ASV), navigation and control, reinforment learning, autonomous vehicle
navigation, marine robot navigation, cross-domain deep reinforcement learning

1 INTRODUCTION

Mobile robots are emerging as powerful tools for scientific exploration in response to societal needs.
Robots such as Autonomous Surface Vehicles (ASV), Autonomous Ground Vehicles (AGV), and
Unmanned Aerial Vehicles (UAV) have pushed the boundaries of autonomous activity in the water,
ground, and air domains respectively. Many applications of autonomous vehicles are mission specific
and require retasking, recharging, and reprogramming betweenmissions or activities. For a system to
be truly autonomous it must be able to solve navigational problems and avoid obstacles by thinking,
planning, and acting and do so across different missions and environments without human
intervention. This issue is present across all domains where mobile autonomous robots are deployed.
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ASVs are no exception to the rule. While ASVs have been
deployed on missions requiring complex navigation such as
monitoring coastal ecosystems (Nicholson et al., 2018),
exploring coastal waterways (Han et al., 2019), and inland
waterways (Karapetyan et al., 2021) they struggle to generalize
between these environments and require retasking between
deployments in dynamic, rapidly changing, and challenging
environments. In general, ASVs have historically struggled to
complete missions in such environments like rivers and obstacle
ridden littoral waters. For example, an ASV traversing inter-tidal
zones will require the ability to sense and rapidly react to
obstacles that are exposed with an outgoing tide that it did
not experience traversing the area during high-tide. This
requires that a vehicle have the ability to robustly process high
dimensional and complex environmental data to rapidly make
decisions to avoid unknown obstacles that exist in or enter a
mission area.

Recent advances in computational power, sensor quality, and
algorithms have enabled the application of Deep Learning (DL) to
solve the navigation and obstacle avoidance problem in dynamic
environments (Giusti et al., 2016; Kahn et al., 2017; Woo and
Kim, 2020). A common approach for training DL models is
through supervised learning, where a model is fitted to a set of
inputs and desired outputs either by classification or regression
on predetermined data sets. However, this requires existing data
of vehicle navigation. Unlike supervised learning methods,
Reinforcement Learning (RL), specifically Deep Reinforcement
Learning (DRL), was developed to enable an agent to
continuously improve itself through experienced interactions
with its environment and thus does not need preexisting datasets.

Large strides in DRL have been realized over the last decade
with breakthroughs in an agent’s ability to learn and complete
complex tasks such as playing video games (Bellemare et al.,
2013), playing board games such as Chess and Go (Silver et al.,
2018), and robot body simulations (Todorov et al., 2012).
Recently work has shifted towards applying DRL to
autonomous vehicle control in real-world situations. The
application of deep reinforcement learning to mobile robot
navigation and obstacle avoidance has been explored for air
(Singla et al., 2021), ground (Lei et al., 2018), and water
domains (Cheng and Zhang, 2018; Woo and Kim, 2020; Zhou
et al., 2020).

DRL implementations require a significant amount of
experiential learning to generalize, which creates a training
bottleneck in challenging domains such as water surface and
subsea. Access to such domains for training can be exceedingly
expensive, logistically challenging, require extensive human
presence, be weather dependant, and be potentially dangerous
for the vehicle. In contrast, deployment of AGVs and UAVs is
comparatively easy, inexpensive, and poses little hazard to
vehicles. This has lead to a disparity in data quantity (dataset
sizes) and quality (annotated). Many large publicly available
datasets are available for terrestrial applications (Cordts et al.,
2016; Kellenberger et al., 2018; Perera et al., 2018), while only
smaller and more sparse datasets are available for the marine
environment (Bovcon et al., 2019; Taipalmaa et al., 2019).
Leveraging data rich environments to train DRL agents for

data poor environments provides an opportunity to drastically
cut developmental times and costs.

Despite the promising application of deep reinforcement
learning to autonomous navigation problems, there is limited
real-world implementation, especially in the marine
environment. The lack of real-world implementation is due
to multiple factors, in particular: 1) the significant
environmental interaction data required for agent
generalization is hard, expensive, and logistically
challenging to collect, 2) the constraints of agent training in
environments where failure can be detrimental to the vehicle,
and 3) implementations can suffer from differences in agent
prediction, and vehicle actuation frequencies (Dulac-Arnold
et al., 2019).

This paper proposes a methodology for building and
implementing well studied DRL agents into mobile robots in
such a way that the agent can solve navigation problems and
generalize across domains by 1) using an action space that is
present in all domains, 2) integrating with a vehicle at a high level
through path planning by generating waypoints, and 3)
leveraging low-level control for vehicle dynamics and
actuation. Following such a methodology that separates the
DRL agent from robotic dynamics, an agent can generalize
across simulation to real and real to real domain shifts
utilizing inexpensive Commercial Off-The-Shelf (COTS)
vehicles for initial risky training, can predict at a slower rate
than vehicle actuation, and can use accessible domains such as
ground to complete training before implementation in hazardous
and costly domains such as water. To test the proposed method’s
ability to allow cross-domain generalization, a simple Deep Q
Network (DQN) is assembled and trained to avoid obstacles on
an AGV in a virtual environment and then implemented without
alteration or retraining in a simulated water surface environment,
on a real-world AGV, and on a real-world ASV for further
validation, Figure 1. Both real-world robotic platforms are
low-cost COTS systems that operate autonomously using an
in-house hardware and software setup developed for multi-
domain use.

The success of the proposed methodology will help alleviate
domain disparities and decrease the time required for DRL agents
to generalize on ASVs by enabling ground and virtual training to
be directly applied to the water domain. Knowing that agents
trained in simulation and on the ground have a high likelihood of
real-world generalization enables confidence in rapid DRL agent
iteration on said domains. Lastly, utilizing this methodology
landlocked institutions can develop autonomous agents for
deployment in marine domains without the need for
relocation to coastal areas.

The remainder of this work covers a review of related RL
implementations for obstacle avoidance and other related cross-
domain ML work in Section 2. Theoretical review of deep neural
networks and reinforcement learning methodologies utilized are
presented in Section 3. The methodology utilized in DRL agent
implementation, the software and hardware package utilized in
real-world testing, and a description of the robotic platforms used
is detailed in Section 4. The results of agent-testing in simulated
and real-world environments are presented in Section 5. Finally a
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conclusion of the paper and future work are presented in
Section 6.

2 RELATED WORK

Traditional methods for navigation, obstacle avoidance, and
control such as SLAM (Yu et al., 2018), multi-layer controllers
(Ferreira et al., 2007), PID control (Caccia et al., 2008), and
integral line-of-sight (Fossen et al., 2015) have been extensively
studied. While these methods generalize well across domains,
customized implementations are required for different vehicles
(dynamic differences) and missions (environmental differences).
Traditional navigation and control strategies are able to perform
adequately in their design scenarios but after customization
encounter issues in dynamic environments, incursions by other
agents, and upon encountering random obstacles (Gupta, 2013).

Recently there has been increasing effort to solve the issues
that traditional controllers experience in dynamic environments
with machine and reinforcement learning. Both supervised
machine learning and reinforcement learning have typically
learned control policies that govern vehicle actuation based on
high dimensional sensor data (Mancini et al., 2017; Zhu et al.,
2017; Woo and Kim, 2020). These types of ML agents utilize an
observation space encompassing the vehicles location,
orientation, and its surrounding environment and typically an
action space of vehicle actuation commands such as yaw rates and
translational speed. Such implementations are considered to be
End-to-End.

End-to-End ML and RL implementations think, plan, and act.
An agent interfaces with all levels of control. This methodology
constrains a trained agent to the specific vehicle it was trained on
as it has learned not only how to avoid obstacles and adapt to a
changing environment, but also a vehicle’s unique specific
dynamics (Cheng and Zhang, 2018; Codevilla et al., 2018;
Zhang et al., 2020; Zhou et al., 2020). These implementations
would likely struggle generalizing in any cross-vehicle or cross-
domain implementation without re-training of the agent.

Some work on DRL implementation has been done in a way
that leverages traditional navigational controllers and trains an
agent in only the think and plan aspects of autonomous control.
Implementations can have the DRL agent switch between path
planners to avoid discrete obstacle avoidance scenarios (Woo and
Kim, 2020), utilize large action spaces to add 3-D path sub-tasks
for tracking (Sun et al., 2020), and utilize higher level
Convolution Neural Networks (CNN) to prescribe an
observation space for path DRL agents (Yan et al., 2019).
These works provide methodologies for indirectly altering the
path of a vehicle using typical low-level control, thus providing an
agent which could generalize across vehicles. However, they are
not made for and are not built to specifically facilitate
generalization across domains.

Cross-domain training is not new to the machine learning
field. There are many examples of using data gathered in one
domain to train an agent designed for implementation in another
environment. For example, images and video can be recorded
from a car or bike and used in off-line training of convolution
neural networks and image recognition nets for a drone

FIGURE 1 | Trained DQNmodel performing cross-domain obstacle avoidance during (A) an AGV simulation, (B) ASV simulation, (C) AGV real-world mission, and
(D) ASV real-world mission. All images show execution of the same trained DRL agent.
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(Loquercio et al., 2018). Furthermore, significant work has been
done to allow training of agents in a simulated environment with
the goal of implementing a trained agent in the real-world (Zhu
et al., 2017; Cheng and Zhang, 2018; Osinski et al., 2020; Zhou
et al., 2020). However, such an approach typically suffers from the
shift between simulation and reality and may still require data
gathering in the real-world for full generalization (Zhu et al.,
2017).

In addition to cross-domain training, generalizing neural
networks between simulation and real-world domains has seen
significant work recently under the broad ideology of sim2real.
Sim2real implementations do this through training neural
networks in randomly generated simulated environments
(Tobin et al., 2017), approximating real-world dynamics and
textures (Kaspar et al., 2020), or learning high-level control
policies (Hong et al., 2018; Müller et al., 2018). Unlike this
work, such implementations are typically either end-to-end, or
take place in environments with well established environmental
dynamics and are used to generate mission paths in a local space
rather than augment traditionally globally generated ones.

In this work, a neural network implementation methodology
is proposed whereby any high-level dynamic-independent neural
agent can be trained in simulation and readily accessible real-
world areas (ground and air) and then integrated into existing
and proven marine systems (surface and subsea) without altering
low level systems. The goal is not to provide another approach to
either create realistic simulations that approximate the variances
of real-world interaction or generalize neural networks from
simulation to the real world through end-to-end visually
identified waypoint navigation. Integrating into existing and
expensive marine systems to extend their capabilities without
training in real and dangerous environment saves time and
protects robotic hardware. This work uses the implementation
of a DQN trained to avoid obstacles in simulation, on an AGV,
and ASV as a case study to prove the viability of the methodology.

3 REINFORCEMENT LEARNING AND DEEP
Q NETWORK IMPLEMENTATION

The problem of sensing and avoiding obstacles can be represented
as a Markov Decision Process (MDP). Q-Learning is a form of
reinforcement learning that maps the vehicle’s reward through all
possible state transitions and actions in such a Markov Decision
Process. Deep Q-Learning Networks (DQN) (Mnih et al., 2015)
are a form of Q reinforcement learning that utilize Q-Learning
and Deep Q-Networks to learn the optimal Q-value function and
solve the MDP problem in a stable fashion. Policy-based methods
like policy gradient (Silver et al., 2014) solve the MDP problem by
finding the optimal policy. In this paper a static obstacle avoiding
DQN is used to study and demonstrate the ability of a neural net
trained in one domain to be implemented and validated for
functionality in another domain. Policy gradient methods require
trajectories generated by the current policy, thus are more sample
inefficient and are require more training steps to converge and
were thus not utilized for implementation in this work.
Furthermore, While more advanced DQN implementation

strategies such as Double DQN (van Hasselt et al., 2016),
Dueling DQN (Wang et al., 2016), and Rainbow (Hessel et al.,
2018) exist, a simple DQN was utilized for a proof of concept of
cross-domain use on mobile robots.

In the DQN (Mnih et al., 2015), each action (a) enacted at an
agent’s current state (s) has an unknown probability to go to a
new state (s′) that has associated rewards (positive feedback) and
penalties (negative feedback). This positive and negative
reinforcement of the action leading to the realized state is
called the reward function [R(s, a, s′)] and is calculated with
respect to the old and new state based on a user defined system
that incorporates states to achieve (objectives) and states to avoid
(obstacles). A very basic example reward function is shown in Eq.
1 and shows the reward for transitioning from state s to state s′
through action a.

R(s, a, s′) �
+50 (Goal reward)
−100 (Collision penalty)
RθRd (Position reward)

⎧⎪⎨⎪⎩ (1)

Rθ and Rd are the heading reward and distance reward
respectively and are defined in Eq. 2. θ is the yaw offset from
the goal, Dc is the current distance to the goal, and Dg is the initial
distance to the goal.

Rθ � 5 1 − 2
π
|θ|( ) (2)

Rd � 2
Dc
Dg (3)

Each such unique transition and reward of all future
transitions is called a Q-value and can be calculated iteratively
using the Q-Value Iteration Algorithm in Eq. 4 (Aurelien, 2019).

Qk+1(s, a)←∑
s′

T(s, a, s′)

× R(s, a, s′)+[ cmax
a′

Qk(s′, a′)] for all (s′, a) (4)

Where T(s, a, s′) is the unknown probability of achieving a new
state (s′) from an old state (s) through action (a), c is a discount
factor to discount potential future rewards caused by the current
state transition, and a′ is the optimal action to take after achieving
s′. By calculating the potential vehicle reward of every possible
Q-value, an optimal vehicle policy simply selects the state action
pair (s, a) that deliver the highest possible sum of all discounted
future rewards and enacts it. The learning of the unknown
probabilities occurs during vehicle deployment as the vehicle
either enacts its optimal policy or randomly explores state action
pairs and then chooses between the two with an epsilon (ϵ) greedy
policy.

While Q-learning creates a very stable prediction agent for
learning completion, it is impractical in real-world applications
with high numbers of state action pairs (Aurelien, 2019). Thus, to
improve real-world applications a Deep Neural Network is used
as a function approximator [Qθ(s, a)] to give a Q-value for any
input state action pair, such a Deep Neural Network is referred to
as a DQN. Thus the goal of agent training is to recursively train
the neural network to accurately approximate Q-values.
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Qtarget(s, a) � r + c ·max
a′

Qθ(s, a) (5)

During agent operation the DQN follows the same principles
as Q-Learning: it observes the state, chooses an optimal or
uniform random action as dictated by ϵ greedy policy,
transitions to the next state, and receives a reward. The agent
stores its interactions with the environment in an experience
replay buffer. During training, these interactions—in the form of
[s, a, s′, R(s, a, s′)]–are randomly extracted in batches and
replayed for the DQN, which predicts the reward of the state
action pair [Qθ(s, a)]. With the predicted value and a target
reward (Eq. 5, with r being recorded rewards) Mean Squared
Error (MSE) loss and a RMSprop optimizer the DQN model can
be iteratively trained. The better trained the DQN network
becomes, the more able it is to select an optimal action that
maximizes the sum of all future rewards Eq. 4.

For basic obstacle detection and localization we used LiDAR to
provide environmental state sensing, and GPS, digital compass,
and IMU to provide vehicle state sensing. The entire state input
for our DQN is given in Eq. 6 where θ1 is the desired heading to
the mission objective (as dictated by mission path), d1 is the
distance to the mission objective, θ2 is the heading to an observed
obstacle, d2 is the distance to said obstacle, and L1 through L24 are
ranges provided by an on-board LiDAR at 24 linear spaced
intervals in the 120° field of view in front of the vehicle. All of
the measurements are normalized on [0, 1] before being fed into
the DQN neural net.

s � [θ1, d1, θ2, d2, L1, L2, . . . , L24]T (6)

a � [HLT, LT, S, RT,HRT]T (7)

The DQN’s action space is comprised of five discrete actions
(a ∈ R5). These actions are discrete vehicle commands (Eq. 7)
which can be qualified as Hard Left Turn (HLT), Left Turn
(LT), Straight (S), Right Turn (RT), and Hard RightTurn
(HRT). This small subset of actions are chosen to reduce
complexity of the neural network and are interpreted as five
vehicle heading augmentations between ± 80° with 40° of
separation. These augmentations when combined with
vehicle heading are used to define a new waypoint. Larger
action spaces will provide smoother paths at the cost of more
complex networks. As described earlier action selection is done
by selecting the action that has the highest approximated
Q-value. While a large continuous action space such as
linear and rational rates (a ∈ R) is common in DRL
applications it does not work in this instance as it requires
the DRL agent to directly control the agents movements at a
low level. Furthermore the base DQN utilized within this work,
and other value-based DRL agents, are not capable of
outputting continuous actions.

4 METHODOLOGY

To facilitate cross-domain training and implementation we have
created a DRL agent that interfaces with the a given robotic
platform at a high level and enables the agent to operate without

regard or understanding of the underlying vehicle dynamics. To
achieve this, the DRL action space includes path augmentation
commands instead of steering and throttle control commands.
Simplification of the observation space through sensor state
normalization also enables cross-domain generalization. This
freedom allows agent abstraction from both vehicle and
domain allowing cross-vehicle and cross-domain learning and
implementation.

4.1 Agent Implementation
In our methodology, the DRL agent described in Section 3 is
implemented as a tertiary level in a multi-level control
strategy. This tertiary level serves as both a path augmentation
agent for obstacle avoidance and a watchdog for control state
switching when an obstacle is sensed in the surrounding
environment. As shown in Figure 2, the DRL agent as well as
the traditional path planning controller receive commandedmission
waypoints (shown in red). While the mission planner always
provides a path for the entirety of the mission utilizing a
traditional path assembly method, the DRL agent does not
provide any input until an obstacle is sensed.

Algorithm 1. Path Augmentation and Waypoint Insertion for
Obstacle Avoidance initialization;

In the event that an obstacle in the environment is sensed in the
observation space by the trained DRL agent (Eq. 6), the agent will
provide an action from the action space (Eq. 7) which will be given
to the path planner. The path planner interprets the DRL agent
action into a temporary waypoint which is injected into themission
path. The path planner and follower ceases following the mission
path and begins providing low-level control references towards the
temporary waypoint, thus navigating away from the nominal path
and onto a dynamic path. The temporary waypoint used to build
the new path is updated upon every prediction created by the DRL
agent (1–2 Hz). This process is shown in Algorithm 1, where the
function destination_point is represented by Eq. 8 through Eq. 10,
(Veness, 2010). These function will translate DRL actions (Eq. 7)
into waypoints. Subscripts of 1 represent the location of the
autonomous agent, subscripts of 2 represent the new waypoint
being created, λ represents radians of longitude, Ψ represents
radians of latitude, Θ1 is the current heading of the
autonomous agent in the global reference frame, D is the user
set distance away from the boat to create the waypoint (considered
2 m in this work), and R is the radius of the earth if represented as a
perfect sphere.
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ϕ � 3 − ai( ) × 40( ) + Θ1

where ai is the action indexwith respect to Eqn. 7
(8)

Ψ2 � asin(sin Ψ1( ) · cos D

R
( ) + cos ψ1( ) · sin D

R
( ) · cos(ϕ)) (9)

λ2 � λ1 + atan2 sin(ϕ) · sin D

R
( ) · cos Ψ1( ), cos D

R
( )(

− sin Ψ1( ) · sin(Ψ2)) (10)

The DRL agent essentially acts with a carrot and stick strategy,
leading the lower control levels where it deems the vehicle should
go by redrawing the vehicle path through waypoint creation, but
not directly controlling vehicle movement. By focusing on high-
level processes the DRL agent leaves real-world dynamic
responses to lower level controllers. A PID switching function
is implemented on the low level controller to change the
aggressiveness of heading error tracking when an obstacle is
observed versus not.

The heading reward (Eq. 2) is calculated with respect to the
prescribed path, in addition the DRL agent has no insight into the
total mission path. This means the DRL is rewarded for following
the prescribed path (θ1 in Eq. 6) when no obstacle is present,
which creates a redundant value for vehicle control at the expense
of power consumption and heat production. Thus, the
predictions of the DRL agent ceases when either no obstacle is
perceived or the mission is completed. Once prediction stops, the
vehicle re-affixes to the original mission path to resume a nominal
trajectory.

The low-level controller receives its reference tracking values
from the path planner and has no insight if the reference value is
from a nominal mission path or an augmented one. This
methodology is implementable in any domain under the
assumption that all actuation and path generation is 2-
dimensional, as such any 2-D path generation can be utilized

with this methodology that allows for dynamic re-planning.
This is the case for ground and water vehicles as well as
aerial and subsea vehicles operating at constant depth/
altitude. The only aspect of this methodology that does not
carry between vehicles and domains is the low-level controller.
However, such controllers are typically already implemented in
commercial autonomous vehicles or can be easily created
and tuned.

4.2 Autonomy Package
To facilitate the rapid development of low-cost machine
learning capable vehicles across multiple domains a generic
and open sourced autonomy package has been developed. The
package consists of vehicle and environmental state sensing
equipment, communication equipment, and a distributed
processing center, Figure 3. The entire package is contained
within a splash proof container that can be seamlessly
integrated into any AGV or ASV with a 12 V power supply.
Implementation in Autonomous Underwater Vehicles or other
vehicles is also possible with minimal component packaging
modifications.

The distributed processing equipment comprises two low-
cost single board computers and a computer capable of
running the DQN serves as a computational engine
operating together in a distributed processing environment
managed by the Robotic Operating System (ROS). Each
processing module operates at a different level of vehicle
abstraction. The package’s two Raspberry Pi’s operate as a
frontseat-backseat duo, while the DRL agent provides
prediction and insight into the vehicle’s changing
environment. The ROS implementation also allows
simulation of the frontseat and backseat by including their
respective nodes into a simulated environment.

The backseat (Path Planner and Follower in Figure 2) uses a
commanded mission profile (GPS waypoints and times) to

FIGURE 2 | Illustration showingmethodology of tertiary controllers integration of the DRL agent and lower level controllers. All processing components are shown in
green, autonomy package items are within the black bounding box, mission waypoint flow is shown in red, flow of state information from sensors is shown in magenta,
and DRL actions/predictions are shown in blue. Reference headings are shown in black and are based on the DRL action when an action is provided and on the mission
path when one is not.
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generate a path for completion of a delivered mission. This
mission path can be a smooth trajectory such as a Dubins
path (Dubins, 1957) or straight line between way-points. For
this specific work, a line of sight path between waypoints was used
for simplicity and construction of missions that force vehicle
avoidance around obstacles.

The backseat controller monitors path progression and
provides corrected desired bearings to follow the path with an
ILOS control strategy (Fossen et al., 2015) as given in Eq. 11.

ϕD � cP + tan−1 − 1
Δye − β̂( ) (11)

Where ϕD is the desired heading, cP is projected heading obtained
from the desired path, ye (cross-track error) is the length of the vector
from the vehicle to the prescribed path which intersect the path at a
right angle, β̂ is the estimate of sideslip angle, and Δ is the lookahead
distance, which can be set by the user or dynamically updated.

The frontseat (Low-Level Control & Reference Tracking in
Figure 2) interfaces with vehicle state sensing and localization
using the on-board digital compass, and GPS receiver. The
frontseat takes the desired compass bearing and desired velocity
provided from the backseat to calculate a desired rotational and
linear velocity with two PID controllers that are tuned to the
dynamics of the vehicle equipped with the autonomy package.

A graphical representation of autonomy package items,
connections, and modularity is shown in Figure 3. The core

components and associated cost of the autonomy package are
listed in Table 1. The low-cost of the package allows reproduction
and repairs to be made quickly and efficiently in the event of a
catastrophic failure due to improper agent predictions. This
alleviates real-world training risks of vehicle loss. To provide
observation space (Eq. 6) values, LiDAR measurements were
obtained from a Hokuyo UTM-30LX-EW LiDAR module that
was connected to the autonomy package’s network for this series

FIGURE 3 | Illustration showing components which comprise the autonomy package. Blue items comprise computational processing items, orange items
comprise fixed back-end sensors that are utilized for mid and low-level control, green items are mission specific modular components that can be integrated with
computational components over USB (purple lines) or ethernet (green lines), grey items represent network management items that create a local network for distributed
computation and sensing.

TABLE 1 | Itemized list of Autonomy Package components.

Item Number

Raspberry Pi B+ 2
NVIDIA Jetson Nano 2
Gumstix Pre-Go GPS Module 1
GPS Patch Antenna 1
HMC6343 Digital Compass 1
Adafruit BNO055 IMU 1
DMC60C Motor Controllers 2
Splash-Proof Enclosure 1
TP-Link N450 WiFi Router 1
TP-Link TL-SG105 Switch 1
5x Ethernet Cables 1
BESTEK 500W Power Inverter 1
LM2596 DC-DC Converter 1
DROK DC-DC Converter 1
6AWG Power quick disconnect cabling 1
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of tests. No other sensors were utilized for these tests, but could be
integrated with the autonomy package due to its modular
design. Any USB capable or network capable sensor can be
integrated without any physical package modifications, only a
ROS wrapper is required to make sensor data accessible to the rest
of the autonomy package. Thus more complex sensors such as 3D
LiDAR, monocular cameras, sonar, and even stereo cameras can be
easily incorporated into the architecture to increase the
environmental state information available to the DRL agent.

The presented methodology for autonomous vehicle control
creates a layered architecture with increased levels of abstraction
from the vehicles state while also providing layers of interrupt
priority ensuring vehicle safety from obstacles while still fulfilling
mission priorities. The DRL agent implementation has scope into
the entire state of the vehicle and its surrounding environment
allowing sensing of obstacles. The frontseat-backseat controllers in
the autonomy package have scope of all environmental and
mission variables to manage mission objectives and planned paths.

4.3 Robotic Platforms
To validate the DRL agent’s ability to generalize across domains
two robotic platforms were chosen to utilize the autonomy
package to perform autonomous obstacle avoidance dependent
missions on the water and ground domains. Both platforms were
chosen such that control was achieved through differential
steering and had a base platform cost under $900.00 USD.
The autonomy package was utilized with both systems to
deliver autonomous navigation capability.

For the water domain BREAM (Boat for Robotic Engineering
and Applied Machine-Learning) (Lambert et al., 2020) was
chosen as an ideal platform. BREAM is a low-cost and
versatile Autonomous Surface Vehcile (ASV). The low-cost
and modular vehicle is driven by two external trawling motors
providing differential steering controlled by the Autonomy
Package. All components are mounted on a commercial off-
the-shelf (COTS) inflatable catamaran hull that provides a total
payload capacity of 100 kg in its current configuration. The
autonomy package and motors are powered by two 12 V
AGM deep cycle marine batteries connected in parallel.
Figure 4A shows BREAM with the autonomy package in

action. The vehicle has over 60 h of open water operational
time completing missions prior to this work.

An Autonomous Ground Vehicle (AGV) (Figure 4B)
comprised of a COTS chassis and differential drive system was
utilized for ground based DRL training and actuation. The base
vehicle consists of a chassis, two omni-directional wheels, two
pneumatic drive wheels, two brushed DC motors, and a single
AGM deep cycle battery. By controlling the vehicle through the
autonomy package the vehicle was made fully operational without
any modification to the COTS chassis and was able to complete
missions autonomously after 15 h of tuning and adjusting low-level
control parameters through full deployment in the real-world

FIGURE 4 | ASV and AGV low-cost COTS vehicles built for use in cross-domain DRL development. Both vehicles utilize the Autonomy Package detailed in
Section 4.2.

FIGURE 5 | Real-world AGV obstacle avoidance mission showing
mission waypoints as green squares, placed obstacles as red squares, DRL
agent augmented paths for avoidance in red, and the vehicle trajectory
following themission path in blue. The sample mission shown took 250 s
and covered 120 m. The mission trajectory starts at the bottom left mission
waypoint and progresses counter-clockwise.
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environment. Further development allowed completion of
missions as shown in Figure 5.

In the event that the DRL agent fails to ensure vehicle safety during
training/testing both of the high-value low-cost robotic platforms will
not put unduefinancial stress on users. These systems serve as low-risk
tools for the rapid development and testing of DRL agents in the real-
world. The modularity, inexpensiveness, and simplicity of the
autonomy package means that a lost or damaged platform can be
easily rebuilt or repaired rapidly for continued testing. Once training is
completed and agent confidence is high then the agent can be
transplanted to a final platform capable of operation in a specific
environment that is desired (off-road, blue water, etc.).

5 EXPERIMENTAL RESULTS AND
DISCUSSION

To test the proposed methodology’s abilities to allow cross-domain
generalization a simple DQN is assembled and trained to avoid
obstacles on an AGV and then implemented without alteration in a
simulated water surface environment and in the real work for further
validation. In each case a mission path was constructed by
connecting goal waypoints by line-of-sight bearings that connect
subsequent waypoints, either in open or closed paths. To
quantitatively categorize the amount of deviation from the
optimal path (line-of-sight between goal waypoints) cross-track
error was utilized as a metric. Initial DRL training was done with
a simulated AGV and environment within the Gazebo simulation
software. The DRL agent was also implemented on an ASV
simulation and on an AGV for operation in urban environments.
A comparison between trajectories at different training episodes is
utilized to evaluate the DRL agent’s performance. The results for
each simulated and real implementation are then discussed.

The DQN model itself is implemented in Python using
Tensorflow (Abadi et al., 2016) and Keras. The network itself
is contained with a ROS node. Training is done on a desktop
computer with a GeForce 2080 GPU and an Intel Core i7-8700

CPU. The AGV testing is done on a laptop with an UHD 620
GPU and an Intel Core i5-5200U CPU. To make the systemmore
compact and protect the computer from water damage, the ASV
testing utilized a Nvidia Jetson Nano with a 128-core Maxwell
GPU and a Quad-core ARM A57 CPU. The Nano is the end-use
computational device for the Autonomy package.

The DQN model has 3 ReLu dense layers, a dropout layer
with a dropout rate of 0.2, and a output layer using linear
activation function. The learning rate for the DQN is chosen as
2.5 × 10−4. The greedy policy used for state exploration ϵ starts at
1 and updates every episode. ϵ decay rate is set to 0.99 for greater
exploration of state spaces. RMSprop is used for optimization.
Models will be saved every 10 episodes. An episode is terminated
after a collision or if 6,000 steps have occurred (a step
takes 0.1 s).

5.1 Ground Domain Implementation
To test the autonomy package and train theDQNmodel, we created a
simulation environment using Gazebo. Figure 1 shows the simulated
vehicles and obstacles with LiDAR data and target position
visualization. The simulated robot receives its position and heading
from the gazebo environment. The Gazebo environment contains
obstacles andwalls that enclose the test area. AnAGVmodel based on
the real-world test AGV platform was created using SolidWorks to
better simulate the behavior of the AGV’s dynamics. The vehicle
consists of an off-the-shelf chassis, four wheels, and twomotors which
operate in a differential drive configuration. Video of AGV obstacle
avoidance can be seen in https://youtu.be/IDkI6rXP1r8.

The obstacles have different shapes and sizes and are placed
between mission waypoints. The DQN model is trained during
execution of the waypoint navigation tasks. The AGV starts at the
first waypoint, and begins moving to all subsequent mission
waypoints that are present. If a collision occurs, the AGV
model will reinitialize at the origin and another simulation begins.

It can be seen in Figure 6 that after more than 350 training
episodes, the average max Q-value reaches 220 and the total reward
reaches approximately 2,400, showing that the average max Q-value
and reward increases with respect to training episodes. A reward
value of 2,400 contains goal reward values from 1,500 to 2000 (30–40
achieved waypoints) and step reward values of 900–400. A model
with such a total reward can avoid obstacles until simulation timeout
at 6,000 steps. Figure 7 compares the behavior of the DQNmodel at
different episodic training intervals. At 50 training episodes collisions
occurred three times. The average cross-track error was 1.10m the
average deviation across DRL agent avoidance was 1.14 as shown in
Table 2, while at 350 episodes the AGV avoided all obstacles and the
DQN gave a more optimized trajectory around the obstacles. The
average cross-track error was 0.68m and the average cross-track
error across DRL agent avoidance was 0.89m. When the AGV
executed the mission without obstacles, the average cross-track error
was 0.16 m. The simulated ground environment formed a baseline
model for cross-domain testing.

To show that the model trained in the simulated environment is
valid in the real-world, the trained DQN model was integrated into
an experimental AGV platform, Figure 4B and tested. The AGV
utilizes the mid and low-level control framework of the autonomy
package but a differentmission to the simulation. The course utilized

FIGURE 6 | Average max Q-value and total reward across training
episodes. Showing the Average max Q-value and the total reward at 50 and
350 episodes.
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for testing is comprised of four waypoints that make up the vertices
of a 40 by 40m2.

Four corrugated cardboard boxes were utilized as obstacles for
this test. Each boxes is 35 long × 35 wide × 30 cm tall. To better test
the model’s performance, obstacles were purposefully placed along
the AGV’s prescribed mission path, with one obstacle on each side
of the prescribed course during operation to ensure that DRL agent
avoidance occurred. Obstacle positions were obtained and overlaid
with the AGV’s resulting path, Figure 5. As presented in Table 2,
the trajectory has a mean cross-track error of 1.80 m and an
average cross-track error from obstacle avoidance of 1.93m.The
trajectory plot shows that the AGV is able to navigate through an
environment with static obstacles without collision and find a path
to its goals. In contrast, the mean cross-track error is 0.56 when no
obstacles were within the mission environment.

5.2 Water Domain Implementation
To validate the ability of the DQN model implementation
methodology to generalize across different domains, a
simulated ASV was tested in a marine environment created in

the Virtual RobotX (VRX) simulator (Bingham et al., 2019). To
facilitate rapid development of water simulation an open source
ASV model of the WAM-V was utilized.

The WAM-V dynamics model was coupled with the DQN agent
trained in the AGV simulation and tested on the real-world AGV, as
well as themid and low-level controllers of the autonomy package. The
simulation was also given appropriate sensors for environmental and
position feedback, specifically a 2-D LiDAR, GPS, and IMU. Gazebo
“buoyancy” and “ASV dynamics” plugins were used to simulate the
marine environment and dynamic behavior of the vehicle. The
simulation used a constant wind disturbance of 5 m per second
along the minus y axis. Due to the different physical properties of
AGV and ASV, larger course and obstacles were setup. All
obstacles have a radius of 4 m. The max LiDAR scan range was
changed from 3 to 15m for the ASV to sense and decide whether to

FIGURE 7 | Obstacle avoidance mission comparison at different training episodes in the AGV simulation. (A) is at 50 episodes and (B) is at 350 episodes. Mission
waypoints are shown as green squares, obstacles are shown in red, DRL agent augmented paths for avoidance in red, and the vehicle trajectory following the mission
path in blue. The AGV starts from the top right waypoint and then goes to the bottom right, top left, bottom left, and top right in sequence.

TABLE 2 | Cross-track error of different tests. ye column lists the average cross-
track errors across the entire mission, ye(activated) column lists the average
cross-track errors when the DRL agent is activated, and max(ye) column lists the
max cross-track error observed during the entire test. Tests with no obstacles are
not shown within this work.

Test ye ye(activated) max(ye)

agv_sim_50_eps 1.10 1.14 3.40
agv_sim_350_eps 0.68 0.89 1.85
agv_sim_no_obstacle 0.16 N/A 0.34
agv_real 1.80 1.93 2.70
agv_real_no_obstacle 0.56 N/A 2.91
asv_sim_with_wind 5.99 7.78 15.59
asv_sim_with_wind_no_obstacle 3.01 N/A 4.98
asv_real_square 1.39 4.88 7.75
asv_real_triangle 1.81 5.66 7.80
asv_real_no_obstacle 0.75 N/A 7.90

FIGURE 8 | Simulated ASV obstacle avoidance mission showing
mission waypoints as green squares, obstacles in red, DRL agent augmented
paths for avoidance in red, and the vehicle trajectory following themission path
in blue. The trajectory runs counter-clockwise from the top center
mission waypoint.
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react to obstacles and augment the prescribed mission path earlier
in the path. However, this did not affect the agent’s trained DQN
weights as the observations space values are normalized.

After loading the agent trained from Section 5.1 and tuning the
low level PID controller of the autonomous package to the WAM-V
dynamics, the ASV is able to finish the waypoint navigation task
without any collisions. The trajectory is shown in Figure 8. As listed in
Table 2, the average cross-track error was 5.99m, a maximum
deviation from the optimal path of 15.59m, and an average cross-
track error across DRL agent avoidance was 7.78m. This validation
shows that theDQN agent is able to rapidly generalize across domains
for the obstacle avoidance task that it was trained to do with only
extremelyminimal low level controller changes regarding how rapidly
the vehicle alters course to path augmentations. The PID tuning in this
case only took approximately 2 h before the ASV was avoiding
obstacles as well as the AGV did in real-world implementations. A
mission without obstacles was utilized to test the controller’s
performance. The average cross-track error was 3.01m.

To test the DRL agent’s ability to generalize across domains
without additional training in a real water environment the
BREAM ASV described in Section 4.3 was used. Like the
WAM-V model used in the water surface simulation, BREAM is
a differentially actuated catamaran ASV. However, unlike the
WAM-V (Pandey and Hasegawa, 2015), BREAM is able to be
deployed from shore, and is small enough for transportation
without a trailer and testing in small lakes or ponds. Furthermore
grounding of aWAM-V due to DRL agent failure could prove costly
and repairs could be difficult or take a significant amount of time.

To verify obstacle avoidance a mission and associated course
was set up at Fairfield Lakes Park in Lafayette, with the resulting
course being rectangular in shape with side lengths of 60 and
100 m. This can be seen in Figure 9A. The DRL agent that was
trained in the AGV simulation and tested on the real-world AGV
and ASV simulation was utilized for this test without any further
training on the real-world ASV.

Eight inflatable open water marker buoys were utilized as
obstacles for this test, four red and four yellow. Each buoy is

spherical with an inflated diameter of 51 cm and is constructed of
durable plastic. Each obstacle placed on the course was composed
of two such buoys tied together and anchored to the lake bottom
with a weight in such a way that minimal slack was present in the
anchor line to prevent obstacle drift.

One obstacle was placed on each side of the prescribed course,
with the obstacles on the longer sides being set approximately at the
midpoint of the side and obstacles on the shorter sides being placed
close to the goal waypoint defining one of the course vertexes. The
ASV prescribed mission was done so that the ASV traversed in the
counter-clockwise direction. The results of the test are shown in

FIGURE 9 |Real-world ASV obstacle avoidance test. Mission waypoints as shown as green squares, placed obstacles as red circles, DRL agent augmented paths
in red, and the vehicle trajectory following the mission path in blue. An example trajectory from the test is shown (A) and took 252 s and covered 320 m. In total this
mission ran for 19 min without collision (B) and only stopped due to a human command to stop actuation. The augmented path shown close to the bottom left waypoint
(−30, −50) was caused by a passing boat. The mission trajectory starts at (20, 70) and first goes to the top right mission waypoint (30, 50) and progresses
counter-clockwise.

FIGURE 10 | Real-world ASV obstacle avoidance test utilizing a manned
boat to inject obstacles into the vehicles path. Mission waypoints are shown in
green, ASV DRL agent augmented paths are in red, and the ASV trajectory
following the mission path is in blue. The manned boat trajectory is shown
in pink and locations where it was first identified as an obstacle by the DRL agent
are shown as red circles. Both trajectories start at the bottom left and progress
counter-clockwise. The mission shown took 310 s and covered 398 m.
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Figure 9 with image A showing a single lap around the course, and
image B showing 19min of continual operation around the course.
In total two independent tests were done comprising 52min and 15 s
of continuous avoidance, covering over 3.5 km. Video of ASV
obstacle avoidance on a rectangular obstacle avoidance test can
be seen in https://youtu.be/IDkI6rXP1r8?t�53.

Throughout the test shown in Figure 9 and Table 2 the
average cross-track error was 1.39 m, a maximum deviation
from the optimal path of 7.75 m, and an average cross-track
error across DRL agent avoidance was 4.88 m.

To demonstrate the generalization of the proposedmethod across
dissimilar objects andmission paths a triangularmission was created
at Fairfield Lakes,Figure 10. Themission course was run a total of 15
times, however only a single lap is shown for visual clarity. In-place
of geometrically simple marker buoys a manned boat was used to
intersect the ASV’s path. Themanned boat presented an asymmetric
surface with both convex and concave surfaces of non-uniform
reflectively and color for theASV to react to.Manned incursions into
the vehicle’s path was done to create an unpowered drifting obstacle
for avoidance by either crossing or nearly crossing the path. On two
occasions during testing contact between vehicles did occur, however
this is likely due to the drifting of the manned boat as the DRL agent
was not trained to recognize or react to dynamic obstacles. The
cross-track error of the mission shown in Figure 10 and Table 2. It
was similar to the first ASV mission with a mean cross-track error
of 1.81 m, a maximum error of 7.80 m, and an average cross-track
error from obstacle path augmentations of 5.66 m. In comparison,
the average cross-track error was 0.75m when the ASV executed a
different mission without obstacles. The maximum cross-track
error without obstacles was caused by the behaviors and limitations
of under-actuated vehicle dynamics when completing a turn-
around maneuver. This shows that the effectiveness of the DRL
agent is irrespective of obstacle shape or path simplicity.

Throughout testing the largest source of error was the
inclination angle and stiffness of the 2-D LiDAR Hokuyo
sensor mount on the ASV. With the sensor mounted
approximately 30 cm above the waterline the sensor had to
be angled properly to allow the 2-D environmental slice to
intersect with the water at a proper distance in front of the
ASV. Additional problems occurred when the ASV encounter
waves and the azimuth of the LiDAR scan relative to the water
surface changed. This caused either false positive obstacle
readings, or false negative readings depending on the
direction of boat pitch. To fix this issue the LiDAR system
was mounted on a motorized gimbal to adjust then affix the
LiDAR scan azimuth before the start of each test for optimal
LiDAR performance. In the future this issue will be solved
further by utilizing a 3-D scanning LiDAR.

6 CONCLUSION AND FUTURE WORK

In this paper, a cross-domain capable obstacle avoidance DRL
agent is presented. The agent is implemented utilizing a
methodology that facilitates cross-domain training and
operation. The methodology includes a tertiary multilevel
controller and an autonomy package. The tertiary controller

enable the DRL agent to be separated from vehicle dynamics and
environmental constraints. The autonomy package provides
controllers and electrical hardware to rapidly turn off-the-shelf
robots into autonomous DRL agents. The cross-domain obstacle
avoidance ability of the methodology was validated with a DQN on
an AGV and ASV simulation as well as on a real AGV and ASV. The
ASV DRL implementation was also validated with dissimilar
obstacles. In each case the DRL agent was able to successfully
provide path augmentations to steer robotic platforms clear of
obstacles encountered during a mission with minimal path
deviation. The results detailed within this work show that the
prescribed methodology not only aids in generalizing between
ground and water domains but also helps bridge the simulation
real-world gap. Thus enabling a reduction in time and cost overhead
associated with training in challenging real-world domains.

Future work on this project is extensive. The tests will be
expanded to validate the proposed methodology on more
advanced DRL models such as Actor-Critic and Double DQN
and on higher-dimension sensors such as 3-D LiDAR. These
more advanced methods will be used to handle more complex
navigational problems such as dynamic obstacles and long-term
deployments. The methodology detailed in this work also shows
promise in allowing training of complex models in the underwater
domain through aerial deployment and overall simulation to real-
world transfer. However, further investigation is required to verify
the feasibility of transitioning between the domains in more
complex settings. In each of these more advanced cases it is
improbable that an agent will be able to immediately generalize
to its operational domain. A study to determine how well certain
observation and action spaces transition between domains and the
training required in each case for goal domain generalization is
needed in the future. While future work is required, this
methodology will serve as a starting point for further cross-
domain agent development, which will expand the use of
reinforcement learning agents on real-world robotic platforms
in challenging environments such as ASVs in the water domain.
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