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Choroid neovascularization (CNV) is one of the blinding ophthalmologic diseases.

It is mainly caused by new blood vessels growing in choroid and penetrating

Bruch’s membrane. Accurate segmentation of CNV is essential for ophthalmologists

to analyze the condition of the patient and specify treatment plan. Although many

deep learning-based methods have achieved promising results in many medical image

segmentation tasks, CNV segmentation in retinal optical coherence tomography (OCT)

images is still very challenging as the blur boundary of CNV, large morphological

differences, speckle noise, and other similar diseases interference. In addition, the lack of

pixel-level annotation data is also one of the factors that affect the further improvement

of CNV segmentation accuracy. To improve the accuracy of CNV segmentation, a

novel multi-scale information fusion network (MF-Net) based on U-Shape architecture

is proposed for CNV segmentation in retinal OCT images. A novel multi-scale

adaptive-aware deformation module (MAD) is designed and inserted into the top of the

encoder path, aiming at guiding the model to focus on multi-scale deformation of the

targets, and aggregates the contextual information. Meanwhile, to improve the ability of

the network to learn to supplement low-level local high-resolution semantic information to

high-level feature maps, a novel semantics-details aggregation module (SDA) between

encoder and decoder is proposed. In addition, to leverage unlabeled data to further

improve the CNV segmentation, a semi-supervised version of MF-Net is designed based

on pseudo-label data augmentation strategy, which can leverage unlabeled data to

further improve CNV segmentation accuracy. Finally, comprehensive experiments are

conducted to validate the performance of the proposed MF-Net and SemiMF-Net. The

experiment results show that both proposedMF-Net and SemiMF-Net outperforms other

state-of-the-art algorithms.

Keywords: choroid neovascularization, OCT images, multi-scale information fusion network, segmentation,

convolutional neural networks

INTRODUCTION

Choroidal neovascularization (CNV), also known as subretinal neovascularization, is a basic
pathological change of various intraocular diseases such as age-related macular degeneration,
central exudative chorioretinopathy, idiopathic choroidal neovascularization, pathological myopic
macular degeneration, and ocular histoplasmosis syndrome (DeWan et al., 2006; Abdelmoula et al.,
2013; Jia et al., 2014; Liu et al., 2015; Zhu et al., 2017). It often involves the macula, causing
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serious damage to the central vision. In the early stage of
CNV, there are usually no abnormal symptoms. Along with
the gradual expansion of neovascular leakage and rupture, it
may cause vision loss, visual distortion, or central scotoma
(Freund et al., 1993; Grossniklaus and Green, 2004). CNV
can persist for months or years and then gradually become
steady (Zhu et al., 2017). The macula of the patients with
recurrent symptoms are seriously damaged, which may cause
permanent visual impairment. Optical coherence tomography
(OCT) is a non-invasive imaging technology proposed by Huang
et al. (1991), which can capture high-resolution cross-sectional
retinal structure. It plays an important role in the diagnosis and
monitoring of retinal diseases (Shi et al., 2014; Chen et al., 2015;
Wang et al., 2021a). In addition, fluorescence angiography (FA)
and indocyanine green angiography (ICGA) are also important
diagnostic imaging modalities for the detection of retinal diseases
in clinical practice, and there are many works to analyze CNV
based on FA and ICGA (Talisa et al., 2015; Gao et al., 2016;
Corvi et al., 2020). However, FA and ICGA can only capture
one 2D fundus image, which may cause the loss of internal
structure information of CNV (Zhang et al., 2019). Besides, FA
and ICGA are invasive and may cause nausea and other allergic
reactions due to intravenous injection of dye (Jia et al., 2014).
Instead, OCT is non-invasive and can obtain high-resolution
cross-sectional images of the retina with a high speed (Talisa
et al., 2015; Corvi et al., 2020). Therefore, accurate segmentation
of CNV in OCT images is essential for ophthalmologists to
analyze the condition of the patient and specify treatment plan.
There are also previous studies that have been proposed for
CNV segmentation in retinal OCT images (Xi et al., 2019;
Zhang et al., 2019). Zhang et al. (2019) designed a multi-scale
parallel branch CNN to improve the performance of CNV
segmentation in OCT images. Xi et al. (2019) proposed an
automated segmentation method for CNV in OCT images using
multi-scale CNN with structure prior, in which a structure
learning method was innovatively proposed based on sparse
representation classification and the local potential function to
capture the global spatial structure and local similarity structure
prior. However, CNV segmentation in retinal OCT images is still
very challenging as the complicated pathological characteristics
of CNV, such as blur boundary, large morphological differences,
speckle noise, and other similar disease interference. Multi-
scale global pyramid feature aggregation module and multi-scale
adaptive-aware deformation module are proposed to segment
corneal ulcer in slit-lamp image in our previous study (Wang
et al., 2021b). Therefore, to tackle these challenges and improve
the CNV segmentation accuracy, a novel multi-scale information
fusion network (MF-Net) is proposed for CNV segmentation in
retinal OCT images. Our main contributions are summarized
as follows,

1) A multi-scale adaptive-aware deformation module (MAD) is
used and inserted at the top of encoder path to guide the
model to focus on multi-scale deformation of the targets and
aggregates the contextual information.

2) To improve the ability of the network to learn to supplement
low-level local high-resolution semantic information to

high-level feature maps, a novel semantics-details aggregation
module (SDA) between encoder and decoder is designed.

3) Based on a U-shape architecture, a novel MF-Net integrated
MAD module and SDA module are proposed and applied for
CNV segmentation tasks. In addition, to leverage unlabeled
data to further improve the CNV segmentation accuracy, a
semi-supervised version of MF-Net is proposed by combining
pseudo-data augmentation strategy named as SemiMF-Net.

4) Extensive experiments are conducted to evaluate the
effectiveness of the proposed method. The experimental
results show that, compared to state-of-the-art CNN-
based methods, the proposed MF-Net achieves higher
segmentation accuracy.

RELATED WORK

Recently, deep learning-based method has been proposed for
image segmentation and achieved remarkable results. Long
et al. (2015) proposed a fully convolutional networks (FCN)
for semantic segmentation, which removed the full connection
layer and could adapt to any input size. Although FCN has
achieved satisfactory performance in semantic segmentation,
the capacity of FCN to capture contextual information still
needs to be improved as the limitation of convolutional layers.
To tackle these problems, there are many methods that use
pyramid-based modules or global pooling to aggregate regional
or global contextual information (Chen et al., 2017; Zhao et al.,
2017). Zhao et al. (2017) proposed a pyramid scene parsing
network (PSPNet) based on pyramid pool modules, which
aggregated context information from different regions to learn
global context information. Chen et al. (2017) further proposed
DeepLab v3 for semantic segmentation by introducing atrous
convolution and atrous spatial pyramid pooling (ASPP). In
addition, many attention mechanism-based methods have been
explored to aggregate heterogeneous contextual information (Li
et al., 2018; Oktay et al., 2018; Fu et al., 2019). However,
these methods are mainly applied to the segmentation tasks
with obvious features. In additional, there are also many deep
learning-based methods have been proposed for medical image
segmentation (Ronneberger et al., 2015; Gu et al., 2019; Feng
et al., 2020). Although these methods have achieved impressive
results, their performance of CNV segmentation in OCT images
with large morphological differences, speckle noise, and other
similar disease interference features has been reduced. Therefore,
to improve the segmentation accuracy and tackle the challenges
of CNV segmentation in retinal OCT images, a novel multi-
scale information fusion network (MF-Net) is proposed for CNV
segmentation in retinal OCT images.

METHOD

As shown in Figure 1, the proposed encoder-decoder structure-
based multi-scale information fusion network (MF-Net) consists
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FIGURE 1 | Architecture of the proposed MF-Net.

of three parts: encoder-decoder network, multi-scale adaptive-
aware deformation module (MAD), and semantics-details
aggregation module (SDA). Specifically, the encoder-decoder
network is used as our backbone network. MAD is inserted at the
top of the encoder to guide the model to focus on the multi-scale
deformation maps and aggregate the contextual information,
while SDA is applied as a variant of skip connection of the whole
network to fuse multi-level semantic information.

Backbone
Recently, the encoder-decoder structure is proved to be an
efficient architecture for pixel-wised semantic segmentation.
Most of the state-of-the-art segmentation networks are based
on encoder-decoder structures, including AttUNet (Oktay et al.,
2018), CE-Net (Gu et al., 2019), and PSPNet (Zhao et al., 2017)
that have achieved remarkable performances in medical image
segmentation. The encoder-path is mainly used to extract rich
semantic information and global features from the input image
and down sample the feature maps layer by layer, while the
decoder-path aims to up sample the feature maps with strong
semantic information from higher level stage, and restore the
spatial resolution layer by layer.

To maximize the use of the information provided by the
original image, the same encoder-decoder path is used as our
backbone network. Unlike CE-Net, which send, the output of
the encoder-path to dense atrous convolution (DAC) followed by
residual multi-kernel pooling (RMP), the output is directly sent
to the decoder-path. In addition, the skip-connection between
the same level of encoder and decoder in CE-Net is also deleted
in our backbone network.

Multi-Scale Adaptive-Aware Deformation
Module (MAD)
It has been demonstrated that themulti-scale feature can improve
the CNV segmentation accuracy in Zhang et al. (2019) and
Xi et al. (2019). Therefore, to tackle the problems of large
morphological differences of CNV in retinal OCT images, aMAD
module is embedded at the top of the encoder-path to guide
the model to focus on multi-scale deformation of the targets
and aggregate the contextual information. As can be seen from
Figure 2 that the MAD module contains four parts: parallel and
deformable convolutionmodule, multiple global spatial attention
module, multiple global channel attention module, and adaptive
residual module as shown in Figure 2.

Parallel and Deformable Convolution Module

After features are encoded by Encoder 4 (E4), they are fed into
parallel and deformable convolution module to augment the
spatial sampling locations in the modules by additional offsets
of kernel size in horizontal and vertical direction. As shown in
Figure 2, the output of Encoder 4 (E4) is simultaneously fed into
four 1×1 convolutional layers. Four dilation convolutions with
rate 1, 3, 5, and 7 are, respectively, further used after the four
parallel layers to squeeze the channel and to extract global context
information from different levels of feature maps, and then,
the feature maps are concatenated and fed into a deformable
convolution to compute B ∈ Rc×h×w. Finally, B ∈ Rc×h×w are fed
into the parallel-linked multiple global spatial attention module,
multiple global channel attention module, and adaptive residual
module, respectively. The parallel and deformable convolution
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FIGURE 2 | Architecture of the proposed multi-scale adaptive-aware deformation module (MAD).

module can be summarized as

B = Convdeformconcat
4
k=1

(

convdilation@2k−1

(

Ak
))

, (1)

where Ak ∈ Rc×h×w denotes the output of 1×1 convolutional
layers in k-th parallel branch, and @2k−1 represents the
convolution with a dilation rate of 2k− 1.

Multiple Global Spatial Attention Module

Max-pooling and average pooling are commonly used operations
in convolutional neural networks, since they can reduce the sizes
of feature maps and keep significant spatial response information
in each channel; nevertheless, noise may also be kept due to the
different sizes and shapes of the lesion. To reduce the influence
of the irrelevant significant spatial response information in all
channels, average pooling can be used to compute the mean
value of all channels in the corresponding position in the input
feature maps. Therefore, 2D average-pooling and max-pooling
are performed simultaneously in our multiple global spatial
attention module to get the most significant spatial response
information in all channels and suppress noise interference. B are
fed to the maximum map branch and the mean map branch in
parallel to generate attentionmap S1 ∈ R1×h×w and S2 ∈ R1×h×w,
respectively, and then are concatenated in channel dimension.
Then, a convolutional operation is applied to squeeze the channel
of concatenated maps. Finally, a sigmoid function is used to
generate the final attention feature map S ∈ R1×h×w,

S = sigmoid
(

conv
(

concat
(

S1, S2
)))

. (2)

This module can get the response of each feature map in all
channels and suppress noise interference.

Multiple Global Channel Attention Module

Two parallel branches with global pooling are also constructed.
The featuremaps B are fed into a global max-pooling operation to
obtain global channel maximum value maps C1 ∈ Rc×1×1, while
B are also fed into a global average-pooling operation to obtain
global channel mean value maps C2 ∈ Rc×1×1. Then, C1 and C2

are concatenated and fed into a convolution layer to smooth and
squeeze the feature maps. Finally, the results are reshaped and
fed into a fully connected layer followed by a sigmoid function to
obtain the final feature map C ∈ Rc×1×1,

C = sigmoid
(

FC
(

conv
(

concat
(

C1,C2
))))

. (3)

This module can get the response of each feature map in all
channels and suppress noise interference.

Adaptive Residual Module

The output of parallel and deformable convolution module B ∈

Rc×h×w is multiplied by feature maps frommultiple global spatial
attention module S ∈ R1×h×w spatial-wisely and feature maps
from multiple global channel attention module C ∈ Rc×1×1

channel-wisely, respectively. Then, pixel-wise addition operation
followed by a convolutional layer is applied as

O = B⊕ conv
((

λB⊗spatial (S)
)

⊕ (γB⊗channel (C))
)

, (4)

where ⊗spatial and ⊗channel denote spatial-wise and channel-wise

multiple, respectively. O ∈ Rc×h×w represents the output of the
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adaptive residualmodule.⊕ represents pixel-wise addition. λ and
γ are learnable parameters and are initialized as a non-zero value
(1.0 in this study). Finally, pixel-wise addition is used to add the
original feature maps to the smoothed feature maps to get the
final output of multi-scale adaptive-aware deformation module
O ∈ Rc×h×w to the decoder-path.

Semantics-Details Aggregation Module
(SDA)
Skip-connection can fuse the strong semantic information of the
decoder-path with the high-resolution feature of the encoder-
path. It is a commonly used structure in encoder-decoder-based
network and further promotes the applications of the encoder-
decoder structure. However, directly sending the high-resolution
features of the encoder to the decoder will introduce irrelevant
clutters and result in incorrect segmentation. Therefore, a novel
semantics-details aggregation module (SDA) has been proposed
as a variant of skip-connection to enhance the information that is
conducive to segmentation and suppress invalid information. As
can be seen in Figure 1, two SDA modules have been introduced
between encoders and decoders. The structure of the proposed
SDA module is shown in Figure 3. In the SDA module, the
skip-connection is reconstructed by combining the feature map
of encoder, decoder, and upper-level decoder. For example, the
left of Figure 3 shows the structure of SDA 1. First, output
feature maps of the Decoder 3 are upsampled followed by 3
× 3 convolutional layers to squeeze the channel. Then, the
obtained feature maps and the output of the Encoder 2 are
multiplied pixel-wisely to filter the detailed information that is
conducive to segmentation. Finally, the filtered feature maps and
the output of theDecoder 2 are added pixel-wisely to fuse detailed
information and high-level semantic information. Above all, each
SDA module in different stages can be summarized as

Sk = Conv
(

Fk@2

)

⊗ E3−k ⊕ D3−k, k = 1, 2, (5)

where Sk denotes the output of the k-th SDA module, and @2

represents the upsampling operation with rate of 2. Ek and Dk

denote the output feature maps of the k-th Encoder and Decoder.
F1 and F2 represent the output feature maps of the Decoder 3

and SDA 1, respectively. Sk denotes the output of the k-th SDA
module. It is worth noting that no skip-connection is introduced
after Encoder 3 and Encoder 4, because the detailed information
may be gradually weakened when transmitted to the deeper
layers, and also, it can save computing resources.

Loss Function
Image segmentation tasks can be analogized to pixel-level
classification problems. Therefore, the binary cross-entropy loss
LBCE, commonly used in classification tasks, is adopted to guide
the optimization of our proposed method. However, LBCE only
be adopted to optimize segmentation performance in pixel level,
ignoring the integrity of the image level. Therefore, to tackle
this problem, the dice loss also be introduced to optimize our
proposed method. The joint loss function as

LReal = LDice + LBCE, (6)

LDice = 1−
∑

h,w

2 |X × Y|

|X| + |Y|
, (7)

LBCE = −
∑

h,w

(

Y logX + (1− Y) log (1− X)
)

, (8)

where X and Y denote the segmentation results and the
corresponding ground truth, and h and w represent the
coordinates of the pixel in X and Y .

SemiMF-Net
In medical image segmentation tasks, the lack of pixel-level
annotation data has always been one of the important factors
that hinder the further improvement of segmentation accuracy,
and it is expensive and time-consuming to obtain these label
data. Therefore, it has always been an urgent problem in the field
of medical image segmentation to use unlabeled data combined
with limited labeled data to further improve segmentation
performance. To this end, based on the newly proposed MF-
Net, a novel SemiMF-Net is further proposed by combining the
pseudo-label augmentation strategy to leverage unlabeled data
to further improve the CNV segmentation accuracy, as shown
in Figure 4. It can be seen from Figure 4 that our proposed

FIGURE 3 | Architecture of the proposed semantics-details aggregation module (SDA).
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FIGURE 4 | Architecture of the proposed SemiMF-Net.

semi-supervised framework of SemiMF-Net mainly consists of
three steps: (1) Limited labeled data are adopted to pre-train
MF-Net to segment unlabeled, and these segmentation results
are employed as pseudo-labels for unlabeled data. (2) Unlabeled
data with pseudo labels and labeled data are mixed to re-train
the MF-Net based on the objective function LPseudo + βLReal in
a semi-supervised way, where LPseudo and LReal are the joint loss
function as Equation (6), and β is a weight paramter (1.0 in this
study). (3) Finally, the SemiMF-Net that can accurately segment
CNV in retinal OCT images is obtained.

EXPERIMENTS

Dataset
In order to accurately segment CNV and evaluate the
performance of the proposed method, experienced
ophthalmologists annotate pixel-level ground truth for the
1,522 OCT images with CNV collected from the UCSD public
dataset (Kermany et al., 2018), which collected by the Shiley
Eye Institute of the University of California San Diego (UCSD)
and all of the images (Spectralis OCT, Heidelberg Engineering,
Germany) were selected from retrospective cohorts of adult
patients without exclusion criteria based on age, gender, or race.
In addition, to evaluate the performance of the proposed method
and all comparison algorithms comprehensively and objectively,
four-fold cross-validation is performed in all experiments, in
which each fold contained 380 OCT images except the fourth
fold that had 382 OCT images. In addition, 2,560 retinal OCT
images from the remaining 35,683 OCT images are randomly
selected as unlabeled data to participate in SemiMF-Net training.
The details for data strategies are listed in Table 1.

TABLE 1 | The details of data strategies.

Supervised Semi-supervised

Training Retinal OCT images with ground

truth from three folds.

Retinal OCT images with

ground truth from three

folds+2,560 retinal OCT

images with pseudo labels.

Testing Retinal OCT images with ground

truth from the remaining one fold.

Retinal OCT images with

ground truth from the

remaining one fold.

Implementation Details
Binary cross-entropy loss and dice loss are jointly used as the loss
function to train the proposed network. The implementation of
our proposed MF-Net is based on the public platform Pytorch
and NVIDIA Tesla K40 GPU with 12GB memory. Adam is used
as the optimizer. Initial learning rate is set to 0.0005, and weight
decay is set to 0.0001. The batch size is set as 4 and epoch is 50.
To be fair, all experiments adopt the same data preprocessing and
training strategy.

Evaluation Metrics
To comprehensively and fairly evaluate the segmentation
performance of different methods, three indicators including
dice similarity coefficients (DSC), sensitivity (SEN), and Jaccard
similarity coefficient (JSC) are adopted to quantitatively analyze
the experimental results, among which JSC and DSC are the
most commonly used indices in validating the performance
of segmentation algorithms (CE-Net, CPFNet, PSPNet, and
DeepLabV3). In addition, the SEN is always adopted to evaluate
the recall rate of abnormal conditions, which is essential for
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accurate screening of abnormal subjects and has been applied
in many medical segmentation tasks (CE-Net, CPFNet, and
AttUNet). The formulas of the three evaluation metrics are
as follows

Dice =
2TP

FP + 2TP + FN
, (9)

SEN =
TP

TP + FN
, (10)

JSC =
TP

FP + TP + FN
, (11)

where TP represents the number of true positives, FP represents
the number of false positives, and FN represents the number of
false negatives.

Results
The proposed MF-Net and SemiMF-Net are compared with
state-of-the-art methods, including UNet (Ronneberger et al.,
2015), CE-Net (Gu et al., 2019), CPFNet (Feng et al., 2020),
AttUNet (Oktay et al., 2018), DeepLab v3 (Li et al., 2018), and
PSPNet (Chen et al., 2017), as shown in Table 2. Compared to
the backbone, CE-Net achieves an increase of 0.21% for the main
evaluation metric DSC, due to the combination of dense atrous
convolution (DAC) and residual multi-kernel pooling (RMP).
The performance of CPFNet is comparable with the proposed
MF-Net as for the insertion of global pyramid guidance (GPG)
module, which combines multi-stage global context information
to reconstruct skip-connection and provide global information
guidance flow for the decoder.

It is worth noting that both proposed MF-Net and SemiMF-
Net achieves better performance than all of the above methods.
As shown in Table 2, the DSC, SEN, and JSC of MF-Net achieves
92.90, 93.01, and 86.80%, respectively. Compared to MF-Net,
the average values of DSC, SEN, and JSC of the proposed
SemiMF-Net have been improved to 93.07, 93.26, and 87.07%,
respectively. These experimental results show that our proposed
SemiMF-Net can leverage unlabeled data to further improve the
segmentation performance.

It can be seen from Table 2 that our proposed method takes
slightly longer time than backbone due to the introduction
of MAD and SDA in MF-Net. However, it can still meet
the requirement of real-time processing. These experimental
results show that compared with other CNN-based methods,
our proposed MF-Net and SemiMF-Net can achieve better
segmentation performance with similar efficiency.

Furthermore, to demonstrate the effectiveness of the proposed
method, the qualitative segmentation results are also given in
Figure 5. The proposed SemiMF-Net is more accurate and has
better robustness in the CNV segmentation task.

Statistical Significance Assessment
We further investigate the statistical significance of the
performance improvement for the proposed MF-Net and
SemiMF-Net by the paired t-test, and these p-values are listed in
Tables 3, 4, respectively.

TABLE 2 | The result of comparison experiments and ablation studies

(mean ± SD).

Methods DSC SEN JSC Time (s)

UNet 92.38 ± 0.31 92.44 ± 0.97 85.92 ± 0.53 0.1158

CE-Net 92.73 ± 0.23 92.82 ± 0.81 86.52 ± 0.41 0.0921

CPFNet 92.77 ± 0.22 92.96 ± 0.52 86.58 ± 0.38 0.1053

AttUNet 92.31 ± 0.14 92.22 ± 0.37 85.81 ± 0.25 0.1289

DeepLabV3 92.73 ± 0.19 92.75 ± 0.25 86.55 ± 0.35 0.1316

PSPNet 92.62 ± 0.37 92.79 ± 0.29 86.32 ± 0.62 0.2237

Backbone 92.46 ± 0.29 92.56 ± 0.44 86.05 ± 0.50 0.0789

Backbone+MAD 92.71 ± 0.28 92.81 ± 0.39 86.48 ± 0.48 0.0842

Backbone+SDA 92.76 ± 0.18 92.69±0.68 86.57 ± 0.33 0.0711

MF-Net 92.90 ± 0.21 93.01 ± 0.50 86.80 ± 0.37 0.0895

SemiMF-Net 93.07 ± 0.18 93.26 ± 0.45 87.07 ± 0.31 0.0895

As shown in Table 3 that compared with other CNN-based
methods, except for the significance compared with PSPNet and
DeepLab v3 is not obvious, all the improvements for JSC andDSC
of MF-Net are statistically significant with p < 0.05. The results
further prove the effectiveness of the proposed MF-Net. Table 4
lists the p-values of the proposed SemiMF-Net compared with
MF-Net and other CNN-based methods. All the improvements
for JSC and DSC of SemiMF-Net are statistically significant with
p < 0.05. The results further prove that the proposed SemiMF-
Net can leverage unlabeled data to further improve the CNV
performance significantly.

Ablation Study
To verify the validity of the proposed MAD module and SDA
module, we also conduct ablation experiments. As shown in
Table 2, the embedding of MAD module (Baseline + MAD)
achieves substantial improvement over the backbone in terms
of all metric, which proves that multi-scale deformation features
and adaptively aggregate contextual information are conducive
for segmentation.

Furthermore, numerical results show that, the embedding
of SDA (baseline + SDA) also contributes to the performance
improvement, suggesting that well-designed skip connections
can extract detailed information that is more conducive to
segmentation, thereby improving the accuracy of segmentation.
Especially, our proposed MAD module and SDA module can
be easily introduced into other encoder-decoder network, which
is our near future work. Furthermore, the proposed MF-Net
achieves the highest DSC, and these results further demonstrate
the effectiveness of our proposed method.

CONCLUSION

Choroid neovascularization segmentation is a fundamental task
in medical image analysis. In this study, we propose a novel
encoder-decoder based multi-scale information fusion network
named MF-Net. A multi-scale adaptive-aware deformation
module (MAD) and a semantics-details aggregation module
(SDA) are integrated to the encoder-decoder structure to fuse
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FIGURE 5 | Examples of CNV segmentation. From left to right are original image, CE-Net, CPFNet, DeepLab v3, PSPNet, backbone, and our proposed method

SemiMF-Net. Yellow represents the correctly segmented region, while red and blue are the results of false-positive segmentation and false-negative

segmentation, respectively.

TABLE 3 | Statistical analysis (p-value) of the proposed MF-Net compared with

other CNN-based methods.

Method JSC DSC

MF-Net-UNet (Ronneberger et al., 2015) 0.015 0.018

MF-Net-AttUNet (Oktay et al., 2018) 0.001 0.001

MF-Net-CE-Net (Gu et al., 2019) 0.001 <5E-4

MF-Net-PSPNet (Chen et al., 2017) 0.069 0.069

MF-Net-CPFNet (Feng et al., 2020) 0.004 0.003

MF-Net-DeepLab v3 (Li et al., 2018) 0.122 0.118

MF-Net-Backbone 0.002 0.002

multi-scale contextual information and multi-level semantic
information that is conducive to segmentation and further
improve the segmentation performance. Furthermore, to solve
the problem of insufficient pixel-level annotation data, based
on the newly proposed MF-Net, SemiMF-Net is proposed by
introducing semi-supervised learning to leverage unlabeled

TABLE 4 | Statistical analysis (p-value) of the proposed SemiMF-Net compared

with other CNN-based methods.

Method JSC DSC

SemiMF-Net-UNet (Ronneberger et al., 2015) 0.013 0.014

SemiMF-Net-AttUNet (Oktay et al., 2018) <5E-4 <5E-4

SemiMF-Net-CE-Net (Gu et al., 2019) 0.011 0.009

SemiMF-Net-PSPNet (Chen et al., 2017) 0.042 0.040

SemiMF-Net-CPFNet (Feng et al., 2020) 0.005 0.004

SemiMF-Net-DeepLab v3 (Li et al., 2018) 0.051 0.041

SemiMF-Net-Backbone 0.007 0.007

SemiMF-Net- MF-Net 0.046 0.038

data to further improve the CNV segmentation accuracy. The
comprehensive experimental results show that the segmentation
performance of the proposed MF-Net and SemiMF-Net
outperforms other state-of-the-art algorithms.
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There is still a limitation on this study that the proposed MF-
Net is designed based on the encoder-decoder structure, and
cannot effectively prove its generalization on different backbone
networks. In future work, we will extend the proposed MAD
and SDA to various backbones to further prove its stability and
versatility, and strive to reduce the number of parameters.
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