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Abstract—Errors in soil moisture adversely impact the 

modeling of land-atmosphere water and energy fluxes and, 

consequently, near-surface atmospheric conditions in atmospheric 

data assimilation systems (ADAS). To mitigate such errors, a land 

surface analysis is included in many such systems, although not yet 

in the currently operational NASA Goddard Earth Observing 

System (GEOS) ADAS. This study investigates the assimilation of 

L-band brightness temperature (Tb) observations from the Soil 

Moisture Active Passive (SMAP) mission in the GEOS weakly-

coupled land-atmosphere data assimilation system (LADAS) 

during boreal summer 2017. The SMAP Tb analysis improves the 

correlation of LADAS surface and root-zone soil moisture vs. in 

situ measurements by ~0.1-0.26 over that of ADAS estimates; the 

unbiased root-mean-square error (ubRMSE) of LADAS soil 

moisture is reduced by 0.002-0.008 m3/m3 from that of ADAS. 

Furthermore, the global land average RMSE vs. in situ 

measurements of screen-level air specific humidity (q2m) and 

daily maximum temperature (T2mmax) is reduced by 0.05 g/kg and 

0.04 K, respectively, for LADAS compared to ADAS estimates. 

Regionally, the RMSE of LADAS q2m and T2mmax is improved by 

up to 0.4 g/kg and 0.3 K, respectively. Improvement in LADAS 

specific humidity extends into the lower troposphere (below ~700 

mb), with relative improvements in bias of 15-25%, although 

LADAS air temperature bias slightly increases relative to that of 

ADAS. Finally, the root-mean-square of the LADAS Tb 

observation-minus-forecast residuals is smaller by up to ~0.1 K 

than in a land-only assimilation system, corroborating the positive 

impact of the Tb analysis on the modeled land-atmosphere 

coupling. 

 
Index Terms—Microwave remote sensing, soil moisture, data 

assimilation, soil moisture active passive (SMAP). 

I. INTRODUCTION 

OIL moisture plays an important role in the Earth’s energy, 

water, and carbon cycles through its control on 

photosynthesis and evapotranspiration, which in turn impact 

atmospheric boundary layer dynamics. Consequently, the 

accurate modeling of soil moisture is critical for improving 

weather and seasonal climate predictions [1]-[5]. But soil 
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moisture processes and land-atmosphere interactions are highly 

complex and heterogeneous, and current models are subject to 

large uncertainties [6]. Errors in modeled land surface fields can 

be reduced through the assimilation of land surface 

observations [7]. For example, near-surface air temperature and 

humidity are sensitive to soil moisture under certain 

atmospheric conditions. Since the 1990s, many weather centers 

have been using screen-level (2-m) temperature and humidity 

measurements to constrain the simulated soil moisture and 

thereby improve medium-range forecasts of near-surface 

temperature and precipitation in their operational data 

assimilation systems [8]-[16]. 

More recently, satellite observations suitable or specifically 

designed for the estimation of global surface soil moisture have 

become available. The sensors and platforms of most relevance 

for land assimilation include the Advanced Scatterometer 

(ASCAT; since 2007) [17], [18], the Soil Moisture and Ocean 

Salinity (SMOS) mission (since 2010) [19], [20], and the Soil 

Moisture Active Passive (SMAP) mission (since 2015) [21], 

[22]. ASCAT measures C-band (5.3 GHz) radar backscatter, 

which is sensitive to moisture in the top ~1 cm soil layer, 

whereas SMOS and SMAP collect L-band (1.4 GHz) passive 

microwave brightness temperature (Tb) observations, which are 

highly sensitive to moisture in the top ~5 cm soil layer. Soil 

moisture retrievals from these sensors are now assimilated in 

the operational data assimilation systems at several weather 

centers, with positive or neutral impact on short- and medium-

range forecasts of screen-level temperature and humidity [12], 

[16], [23]-[26]. 

SMAP observations have been used operationally since 2015 

in the NASA Goddard Earth Observing System (GEOS) land 

data assimilation system (LDAS) to generate the SMAP Level-

4 Soil Moisture (L4_SM) product [27]. Using ensemble-based 

techniques, the L4_SM algorithm optimally combines the 

information from SMAP Tb observations, the land surface 

model, and its surface meteorological forcing data. The 

resulting L4_SM soil moisture estimates have the advantage of 
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complete coverage in space and time, including the propagation 

of surface layer information from SMAP observations into 

deeper soil layers, and were shown to improve upon model-only 

soil moisture estimates [28], [29]. 

The L4_SM algorithm is a stand-alone, land-only data 

assimilation system forced with surface meteorological data 

from the quasi-operational, near-real time GEOS Forward 

Processing (FP) atmospheric data assimilation system (ADAS) 

[30]. The L4_SM information does not, however, feed back into 

the FP ADAS, which does not yet include a land surface 

analysis. Likewise, the GEOS ADAS version that generates the 

Modern-Era Retrospective Analysis for Research and 

Applications, version 2 (MERRA-2) [31] product does not 

include a land surface analysis, although the MERRA-2 system 

uses gauge-based precipitation to force the land surface, which 

mitigates some of the errors in the modeled soil moisture [32]. 

To explore the potential benefit of assimilating land surface 

observations in future NASA reanalyses, [33] (hereinafter 

DR19) developed a weakly coupled GEOS land-atmosphere 

data assimilation system (LADAS). In this weakly coupled 

framework, the atmospheric analysis and the land surface 

analysis are performed separately, without sharing observation 

or model background error information. The two-way 

interactions of the LDAS and ADAS subsystems in the LADAS 

are predicated on the 6-hour ADAS assimilation cycle and 

consist of (i) forcing the LDAS with surface meteorological 

data from the ADAS and (ii) forcing the ADAS with soil 

moisture correction terms generated by the LDAS (section II). 

With the ADAS subsystem of their LADAS configured to 

match that of MERRA-2, DR19 showed that the assimilation of 

soil moisture retrievals from ASCAT and SMOS improved 

estimates of screen-level temperature and humidity in the 

LADAS when compared to the control ADAS experiment 

without a land surface analysis. 

SMAP can provide more accurate and more spatially 

complete soil moisture information than ASCAT or SMOS 

[34]-[36]. The primary objective of the present paper is to 

determine by how much the assimilation of SMAP Tb 

observations in the GEOS LADAS can improve the simulated 

soil moisture and near-surface atmospheric variables. The 

design of the LADAS and the overall experimentation approach 

are as in DR19. However, the present study differs from DR19 

in three key aspects. First, the LDAS used here employs a 

spatially distributed (“3-dimensional”) land analysis and 

directly assimilates SMAP Tb observations (that is, radiances) 

after a seasonally varying Tb bias correction as in the L4_SM 

algorithm (section II-B), whereas DR19 used a local (“1-

dimensional”) assimilation of ASCAT and SMOS soil moisture 

retrievals after cumulative distribution function matching [37]. 

Both radiance and retrieval assimilation are commonly used, 

although the two approaches differ in how the observations add 

value to the system [38].  Second, compared to DR19 the 

LADAS used here includes improved atmospheric and land 

models [28], [39], and the atmospheric analysis in the ADAS 

now assimilates an expanded suite of atmospheric observations 

(section II-B). Third, unlike DR19, the present study does not 

use gauge-based precipitation to force the land surface because 

the present study focuses on the near-real time GEOS FP 

weather analysis, for which the gauge-based precipitation data 

do not meet latency requirements. The latter two differences 

from DR19 have a competing impact on the ADAS baseline 

skill against which improvements from SMAP data assimilation 

are measured.  

As will be demonstrated in this study, SMAP assimilation in 

the LADAS yields improved estimates of soil moisture and 

near-surface atmospheric variables compared to the ADAS 

baseline, and the skill improvements from SMAP assimilation 

are slightly better than those documented by DR19 for ASCAT 

and SMOS assimilation. An enhanced GEOS land-atmosphere 

analysis has the potential to improve a range of GEOS data 

products, including the near-real time GEOS FP weather 

analysis and prediction products, the GEOS subseasonal-to-

seasonal forecasts, and future GEOS-based reanalysis products.  

The paper is organized as follows. Section II describes the 

data and methods that are used in the data assimilation 

experiments and for the evaluation. Section III assesses the 

results of the assimilation experiments. Finally, section IV 

provides a summary and plans for future development.  

II. DATA AND METHODS 

A. SMAP Observations 

Since 31 March 2015, the SMAP observatory has been 

measuring L-band (1.4 GHz) passive microwave Tb with full 

global coverage every 2-3 days. The SMAP Tb observations are 

highly sensitive to surface soil moisture and temperature in 

regions with less than ~5 kg m-2 vegetation water content. The 

SMAP Tb observations used here are from the L1C_TB 

Version 4 product [40] on the 36-km Equal Area Scalable Earth 

version 2 (EASEv2) grid [41]. Prior to assimilation, we average 

the fore- and aft-looking Tb data. We assimilate horizontally 

(H) and vertically (V) polarized Tb observations from 

descending and ascending half-orbits (~6am/pm local equator 

overpass time, respectively). 

The total Tb observation error standard deviation is 

prescribed to a constant value of 4 K, which includes the 

instrument error and the representativeness error associated 

with the forward radiative transfer model that converts the 

simulated soil moisture and temperature into model Tb 

estimates (section II-B). The observation errors of H- and V-

polarization Tb are assumed to be uncorrelated. The Tb 

observations are screened in a quality control procedure before 

they are accepted into the assimilation. For instance, we exclude 

observations that are flagged for non-optimal quality in the 

L1C_TB product or fall outside the natural range (100-320 K). 

Moreover, we exclude observations for times and locations with 

frozen or snow-covered surface conditions (based on soil 

temperature and snow mass estimates in the LDAS) when the 

radiative transfer model is not valid [28]. On average during the 

June–August (JJA) 2017 experiment period, approximately one 

pair of H- and V-polarization observations from each 36-km 

land grid cell in the L1C_TB product was assimilated every day 

in the mid-latitudes, with higher counts in the high latitudes and 

lower counts in the Tropics owing to SMAP’s orbital 
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characteristics. 

B. Data Assimilation Systems 

1) Atmospheric Data Assimilation 

In this study, we used the GEOS ADAS version 5.26.4. As 

in MERRA-2 and DR19, the AGCM was set up on a 0.5-degree 

resolution (“c180”) cubed-sphere horizontal grid with 72 

hybrid-eta levels from the surface to 0.01 hPa, with a lowest 

atmospheric model layer centered at ~40-60 m above the 

surface.  Model output was written on a 0.5-degree by 0.625-

degree latitude-longitude grid. The latter grid was also used for 

the atmospheric data assimilation, which used a 3-dimensional 

variational deterministic (3D-Var) analysis. Each 6-hour 

assimilation cycle starts with an atmospheric analysis that 

merges observations with a model background from the 

previous cycle’s AGCM “first guess” background forecast (or 

“Predictor” segment) and thereby produces atmospheric 

correction terms (or “increments”). Next, another AGCM 

simulation (or “Corrector” segment) for the same 6-hour period 

is forced with tendency terms derived from the atmospheric 

analysis increments. Finally, the next Predictor segment (i.e., an 

AGCM forecast for the next 6-hour period) is generated to 

complete the cycle. See Fig. 1 of [42] for a schematic. 

Whereas the ADAS resolution and the 3D-Var atmospheric 

analysis method used here match that of MERRA-2 and DR19, 

the ADAS version 5.26.4 used in the present study includes 

several important upgrades from that of MERRA-2 and DR19 

(version 5.12.4). Specifically, the AGCM used here includes 

important upgrades in the land physics [28], [43], the 

atmospheric physics and radiation [39], [44], [45], and the 

atmosphere-ocean interface parameterization [46]. 

Furthermore, the atmospheric analysis now benefits from an 

expanded set of assimilated atmospheric observations taken 

here from the GEOS operational data stream as in FP (most 

notably, now including data from the Special Sensor 

Microwave Imager Sounder), an ocean skin temperature 

analysis [46], re-tuned background error covariances, the use of 

inter-channel observation error correlations for handling data 

from the Atmospheric Infrared Sounder and the Infrared 

Atmospheric Sounding Interferometer [47], and the application 

of a digital filter to the atmospheric analysis tendencies in the 

incremental analysis update procedure [48], [49]. Finally, 

unlike MERRA-2 and DR19, the present study does not use 

gauge-based precipitation data to correct the land surface 

forcing in the ADAS (to be consistent with FP latency 

requirements). 

 

2) Land Data Assimilation 

The GEOS LDAS consists of a stochastic ensemble Kalman 

filter (EnKF) [38], [50], [51] and the Catchment land surface 

model [52], [53]. Unlike traditional, layer-based land surface 

models, the Catchment model explicitly accounts for spatial 

variations in soil moisture and water table depth within each 

“tile” (or computational unit) of a watershed based on its 

topographic statistics. Specifically, the Catchment model 

simulates soil moisture in three nested layers for the surface (0-

5 cm), root-zone (0-100 cm), and profile (0 cm to bedrock), 

based on the spatially varying equilibrium soil moisture profile 

(where gravity balances capillary forces) and deviations thereof 

in the surface and root-zone layers. The model prognostic 

variables accounting for these deviations are the “surface 

excess” and “root-zone excess”, respectively. A third model 

prognostic variable, the “catchment deficit”, tracks the amount 

of water that would be needed to bring the catchment to full 

saturation. Volumetric soil moisture estimates in the three 

nested layers are diagnosed from these three model prognostic 

variables. The model also includes a six-layer heat diffusion 

model for soil temperature and a three-layer snow model 

component that describes the state of the snowpack in terms of 

snow water equivalent, snow depth, and snow heat content [54]. 

The core of the observation operator is a zero-order ‘‘tau-

omega’’ radiative transfer model [55] that converts the 

simulated soil moisture and temperature into model estimates 

of the observed L-band Tb. Key input parameters to the 

radiative transfer model, such as the microwave surface 

roughness, vegetation structure parameters, and scattering 

albedo were calibrated using multi-angular SMOS Tb 

observations [28], [56]. 

The LDAS used here matches that of the Version 4 L4_SM 

algorithm [28], except that here the Catchment model is set up 

in the 1/2-degree cube-sphere tile space, uses look-up table 

values for tree height to compute surface aerodynamic 

roughness lengths, and employs the Helfand surface turbulence 

scheme [28], [43]. These modifications are necessary to make 

the Catchment model version and configuration in the LDAS 

fully consistent with that in the AGCM of the ADAS. The 

Catchment model is driven with surface meteorological forcing 

data from the ADAS. Ensemble spread in the land states is 

achieved by applying random perturbations to select surface 

meteorological forcing data and land model prognostic 

variables as described in [27]. Every 3 hours, the available 

SMAP Tb observations and corresponding model forecasts are 

used in an EnKF analysis, which computes increments for the 

surface excess, root-zone excess, surface temperature, and 

surface soil heat content of each ensemble member. These 

increments are then immediately applied to correct the soil 

moisture and temperature state in the respective Catchment 

model ensemble members. 

Seasonally-varying bias in the modeled Tb is addressed prior 

to data assimilation by converting the Tb observations and the 

model-simulated Tb into anomalies from their respective mean 

seasonal cycles. This is done separately for each grid cell, 

polarization, and orbit direction [38]. Here, the required mean 

seasonal cycles were estimated from SMAP observations 

available for the period from April 2015 to June 2020. The 

mean seasonal cycles for the model-simulated Tb were sampled 

at the times and locations of the SMAP overpasses from an 

“Open Loop” ensemble simulation of the land modeling system 

(that is, with the application of perturbations but without SMAP 

Tb assimilation; section II-C). This approach ensures a largely 

unbiased land surface analysis, at the expense of not correcting 

potential errors in the model’s mean seasonal cycle. 
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3) Coupled Land and Atmospheric Data Assimilation 

The GEOS LADAS used here is built on the recent GEOS 

ADAS and LDAS versions described above but otherwise 

follows the basic structure described in DR19; their Fig. 1 

provides a schematic diagram. Building on the 6-hour 

Predictor/Corrector cycle of the ADAS described above, the 

ADAS and LDAS subsystems are weakly coupled through the 

land-atmosphere interactions encoded in the AGCM, which 

provides surface meteorological forcing data to and receives 

land analysis increments from the LDAS subsystem. 

Specifically, in parallel to the atmospheric analysis, surface 

meteorological forcing data from the previous cycle’s AGCM 

background forecast (i.e., Predictor segment) are used to drive 

a Catchment model ensemble simulation in the LDAS for the 

current 6-hour analysis period. As part of this simulation, the 

LDAS assimilates the available SMAP observations and 

produces land analysis increments in two 3-hourly land analysis 

steps. The AGCM simulation during the Corrector segment is 

then forced with these land increments as well as the 

atmospheric tendency terms derived from the atmospheric 

analysis.  

C. Experiment Design 

A suite of three data assimilation experiments, summarized 

in Table I, was carried out to determine the impact of SMAP Tb 

assimilation on the skill of the simulated soil moisture and near-

surface atmospheric variables. The control experiment (ADAS) 

assimilates the full stream of atmospheric observations as in FP 

operations, albeit in the coarser-resolution, 3D-Var ADAS 

configuration described above (section II-B). The ADAS 

experiment does not assimilate SMAP Tb. The second 

experiment (LADAS) is like the ADAS control experiment but 

with the additional assimilation of SMAP Tb observations in 

the weakly coupled LADAS configuration (section II-B). The 

LADAS experiment includes two-way feedback between the 

assimilation of SMAP Tb observations at the land surface and 

the atmospheric model and analysis. (Note that the ADAS 

control experiment is identical to running the LADAS without 

SMAP Tb assimilation because the only impact from the LDAS 

on the ADAS subsystem within the LADAS is through the soil 

moisture and temperature increments generated in the SMAP 

Tb analysis.) Finally, for reference we also conducted a land-

only (“offline”) assimilation experiment (LDASoffl) that is 

forced with surface meteorological data from the Predictor 

segment of the ADAS control experiment and assimilates only 

SMAP Tb observations without feeding back on the 

atmospheric model or analysis. 

The experiment period for the three data assimilation 

experiments is JJA 2017. To allow for spin-up, the AGCM in 

the ADAS control experiment was initialized on 1 April 2017 

at 2100 UTC from MERRA-2 except for the land surface, 

which was initialized from a separate Catchment model 

simulation to address the structural land model changes 

between MERRA-2 and the recent GEOS version used here 

(section II-B). The latter, land-only, multi-decadal spin-up 

simulation consisted of a single member without perturbations 

and was driven with surface meteorological forcing data from 

MERRA-2 through 2014 and from FP thereafter. The AGCM 

in the LADAS experiment was initialized from that of the 

ADAS control experiment on 3 May 2017 at 2100 UTC, 

allowing for a 4-week spin-up of the land analysis feedback. 

The 24-member land ensemble of the LDAS subsystem in the 

LADAS experiment was initialized from the LDAS ensemble 

Open Loop simulation (see section II-B), which was in turn 

initialized on 1 January 2015 at 0000 UTC from the above-

mentioned land-only spin-up simulation. Finally, the LDASoffl 

experiment was initialized on 31 May 2017 at 2100 UTC from 

the LDAS ensemble in the LADAS experiment (Table I).    

 

D. Data and Methods for Evaluation 

This section describes the metrics and independent in situ 

measurements used to evaluate the output from the assimilation 

experiments. Depending on the variable, the performance 

metrics used here include the bias, unbiased root-mean-square 

error (ubRMSE, or standard deviation of the error) [57] and 

correlation (R) vs. the in situ measurements. We also estimate 

95% confidence intervals for soil moisture correlation and 

ubRMSE following [28]. Estimates of soil moisture bias 

computed from point-scale in situ measurements are dominated 

by the large and unavoidable systematic errors in spatial 

upscaling, even for the locally dense SMAP core validation 

sites described below [58]. Hence, statistical confidence 

intervals are not shown for soil moisture bias estimates, and the 

differences in soil moisture bias estimates seen below are not 

considered statistically significant. 

The in situ soil moisture measurements used here fall into 

two categories: (i) SMAP core validation sites with locally 

dense sensor networks that provide in situ measurements at the 

scale of the satellite measurements and model estimates [59]-

[74] and (ii) so-called sparse networks with typically just one 

or two point-scale sensor profiles per satellite footprint, 

including the USDA Natural Resources Conservation Service 

Soil Climate Analysis Network (SCAN) [75], the U.S. Climate 

Reference Network (USCRN) [76], [77], the Oklahoma 

Mesonet [78], the SMOSMANIA network in the southwest of 

France [79], and the OzNet network in Australia [80]. 

Here, we use upscaled (33-km) surface (root-zone) soil 

moisture measurements for 12 (6) core sites. The sites match 

those in Table 1 of [81], except here we do not use surface 

measurements from Reynolds Creek, Ngari, St Josephs, Tonzi 

Ranch, Niger and Benin or root-zone measurements from 

Yanco for lack of sufficient in situ data during the JJA 2017 

experiment period. Processing of the core site measurements 

follows [27]. The simulated soil moisture values are mapped to 

the core site locations using nearest-neighbor interpolation. 

Surface (root-zone) soil moisture measurements were available 

and used here from 360 (228) sparse network sites, which were 

grouped into 108 (76) clusters for the purpose of computing 

average metrics (for details, see section 6.3 and Table 2 of [81]). 

The in situ soil moisture measurements provide invaluable 

information but are subject to measurement errors and offer 

very limited coverage outside of the contiguous United States. 

Following DR19, the simulated screen-level (2-m) specific 
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humidity (q2m) and air temperature (T2m) are evaluated vs. in 

situ measurements collated by the Hadley Centre Integrated 

Surface Database (HadISD version 3.1.1.202007p) [82], [83] 

and the Global Historical Climatology Network (GHCN; 

GHCN-DAILY version 3.26) [84], respectively. HadISD 

provides sub-daily (between hourly and 6-hourly), station-

based, quality-controlled q2m data from ~7,000 stations during 

JJA 2017. GHCN provides station-based, quality-controlled 

measurements of daily maximum T2m (T2mmax) from ~12,000 

stations. The stations in HadISD and GHCN are unevenly 

distributed across the globe, with good coverage in much of 

North America and Eurasia but generally poor coverage in the 

high latitudes, South America, Africa, the Tibetan Plateau, and 

central Australia (not shown). The AGCM-simulated q2m and 

T2m are diagnosed (interpolated) from the corresponding 

values at the surface and in the lowest atmospheric model layer 

using stability functions. The simulated q2m is written out at 

hourly intervals, mapped to each station location using a 

nearest-neighbor approach, and compared to the HadISD q2m 

whenever an observation is available. For each day and model 

grid cell, the simulated T2mmax is determined from hourly 

AGCM output and mapped from the model grid to the GHCN 

station location using a nearest-neighbor approach. To improve 

the clarity of the illustrations, the metrics from the individual 

stations are averaged and plotted on a 2-degree latitude-

longitude grid. 

The 6-hour AGCM forecasts that provide the model 

background state during each assimilation cycle (section II-B; 

see Fig. 1 of DR19 for a schematic diagram) contain crucial 

information about the cumulative impact of the observations 

that were assimilated in all preceding cycles. Ideally, these 

forecasts match – within the assumed (that is, prescribed) model 

and observation error statistics – the corresponding 

observations, which have not yet been assimilated. The 

forecasts should be unbiased, and more accurate forecasts 

generally indicate a higher-quality analysis. We therefore 

examine key statistics of the observation-minus-forecast (OmF) 

residuals for the simulated L-band land surface Tb and 

atmospheric profiles of air temperature and humidity, including 

their mean, root-mean-square (RMS), and standard deviation. 

The OmF statistics for the L-band Tb are computed using 

SMAP Tb observations (after the climatological adjustment 

applied prior to assimilation; section II-B). The OmF statistics 

for air temperature and humidity profiles are computed against 

6-hourly radiosonde observations at 6 vertical levels between 

1000 and 300 mb from 397 locations over continental land, 

which we obtained from the NOAA Meteorological 

Assimilation Data Ingest System (http://madis.ncep.noaa.gov). 

III. RESULTS AND DISCUSSION 

A. Tb Residuals and Soil Moisture Increments 

The LDAS subsystem in the LADAS is designed to minimize 

the disagreement between the SMAP-observed and model-

simulated Tb. The proper functioning of the LDAS in its land-

only configuration was thoroughly verified during repeated 

validation of the L4_SM product [27]-[29], [51]. Since here the 

LDAS is used within the coupled LADAS, at a different 

resolution, and in the Catchment model’s cube-sphere tile space 

(section II-B), this section confirms the proper functioning of 

the LDAS subsystem by briefly examining the Tb residuals and 

the resulting soil moisture analysis increments. 

Fig. 1 shows the daily global mean and RMS of the Tb OmF 

residuals from the LADAS, along with the same for the Tb 

observation-minus-analysis (OmA) residuals. Whereas OmF 

residuals provide independent verification of the model forecast 

Tb (section II-D), OmA residuals are computed by differencing 

a SMAP Tb observation and a model forecast that was informed 

by this very observation. The daily variations in the OmF and 

OmA statistics are primarily caused by seasonal and weather-

driven changes in land surface conditions. The daily coverage 

changes stemming from SMAP’s 8-day exact repeat orbit play 

only a minor role. Across the experiment period, the daily mean 

Tb OmF and OmA values (cyan and orange bars, respectively) 

typically range from -0.5 to 0.5 K, with time series averages of 

-0.11 K for the OmF and -0.08 K for the OmA residuals (Fig. 

1). The small magnitude of the mean Tb OmF residuals 

confirms that the Tb analysis largely free of bias, which is 

primarily a consequence of the climatological adjustment of the 

SMAP Tb observations prior to their assimilation (section II-

B).  

The daily global RMS of the Tb OmF residuals (blue bars in 

Fig. 1) ranges from 5 to 7.5 K, with a time series average 

(computed in quadrature) of 6.0 K. These values measure the 

typical misfit between a SMAP Tb observation and the 

corresponding model forecast for a given time and location. 

Finally, the daily RMS of the Tb OmA residuals (red bars) 

ranges from 3.5 to 4.5 K, with a time series average of 4.1 K; 

the reduction by ~2 K from the Tb OmF RMS is the result of 

the Tb analysis, which by design brings the model estimate 

closer to the assimilated observation. The OmF and OmA 

statistics seen here are fully consistent with those of the SMAP 

L4_SM algorithm [28]. This finding provides confidence in the 

proper workings of the LDAS subsystem in the cube-sphere tile 

space employed here (as opposed to the 9-km EASEv2 grid 

setup of the L4_SM algorithm). 

Next, Fig. 2 illustrates the monthly mean of the analysis 

increments for the total profile soil moisture in equivalent flux 

units (mm d-1), separately for June, July, and August 2017. The 

3-hourly soil moisture increments underpinning the graphic 

were computed by the LDAS subsystem and then applied to the 

AGCM’s land surface states in the ADAS subsystem of the 

LADAS. Owing to the nearly bias-free Tb analysis (Fig. 1), the 

soil moisture increments mostly vanish when averaged across 

longer periods [28]. For individual months, however, the 

monthly mean soil moisture increments typically range 

from -1.5 to 1.5 mm d-1. For example, in June 2017 there is a 

strong negative (drying) increment in the center of the 

continental US (Fig. 2(a)), whereas in August 2017 the same 

region experiences a strong positive (wetting) increment (Fig. 

2(c)). Compared to the monthly mean soil moisture increments 

of DR19 (their Fig. 5) for summer 2013, the increments seen 

here are more variable in space and time. This is primarily a 

consequence of the different bias correction strategies. DR19 
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assimilated soil moisture retrievals after cumulative distribution 

function matching [37]. Their approach does not remove 

seasonally-varying bias, which, if present, can dominate the 

signal in the soil moisture increments. Here, this mean seasonal 

bias is removed and only the anomaly signal in the SMAP Tb 

observations is assimilated (section II-B). 

Finally, Fig. 3 shows the standard deviation of the surface 

soil moisture analysis increments, which measures the typical 

3-hourly correction in the 0-5 cm surface layer resulting from a 

SMAP Tb analysis. (The statistic excludes increments that are 

trivially zero because at the time and location there was not a 

SMAP overpass within the ~1.25-degree radius of influence, or 

because the SMAP Tb observation did not pass quality control 

[51].)  Regions with larger typical increments tend to be in the 

transition zones between wet and dry climates, including central 

North America, the Sahel, central Eurasia, and India (Fig. 3). 

These regions also coincide with croplands (e.g., Fig. A2.2 of 

[85]), where agricultural practices such as tilling, harvesting, or 

irrigation impact the SMAP Tb observations but are not 

represented in the LDAS modeling system, which can result in 

large Tb OmF values and, ultimately, large soil moisture 

increments (even though some systematic errors are removed 

through the climatological rescaling of the Tb observations 

prior to their assimilation into the land surface model; section 

II-B).  Like the Tb OmF statistics, the spatial pattern and typical 

magnitudes of the increments standard deviation are consistent 

with those seen in the L4_SM algorithm [28] (their Fig. 7c). But 

the pattern is different from that seen for profile soil moisture 

increments in DR19 (their Fig. 5), which were relatively large 

throughout the high latitudes. The likely reason for the 

difference in the patterns is the aforementioned difference in the 

bias correction strategy applied prior to assimilation in DR19’s 

retrieval assimilation. 

B. Evaluation Using In Situ Measurements 

Fig. 4 illustrates, for a representative location, the impact of 

the SMAP Tb assimilation on the quality of the simulated soil 

moisture and q2m in the LADAS experiment. During the JJA 

2017 experiment period, the error in the ADAS-simulated 

(control) surface soil moisture vs. in situ measurements from 

the Waurika (WAUR) station in the Oklahoma Mesonet ranges 

from -0.15 to 0.1 m3 m-3, with a bias of -0.065 m3 m-3 and an 

ubRMSE of 0.055 m3 m-3 (Fig. 4(a)). (Note that the point-scale 

measurements provided by the station are not necessarily 

representative of the simulated grid-cell scale time average 

conditions.)  The SMAP Tb assimilation in the LADAS reduces 

the surface soil moisture error by ~30%, resulting in a bias 

of -0.043 m3 m-3 and an ubRMSE of 0.040 m3 m-3 for the 

LADAS. The improvements extend to the simulated q2m (Fig. 

4(b)); at a nearby HadISD station (#723510), the q2m bias is 

reduced from -0.91 g kg-1 in the ADAS control to -0.48 g kg-1 

in the LADAS, and the q2m ubRMSE is slightly reduced from 

1.53 g kg-1 in the ADAS control to 1.48 g kg-1 in the LADAS. 

There is good temporal consistency in the soil moisture and 

q2m improvements; errors in both variables are most reduced 

during the first half of July and in the second half of August. 

 

1) Evaluation of Soil Moisture 

The errors shown in Fig. 4 are just a representative example 

for a single location. Next, we examine the correlation, 

ubRMSE, and bias of the simulated, 3-hourly soil moisture 

when averaged across the sparse network sites and (separately) 

the core validation sites (Fig. 5). LADAS correlation skills for 

surface and root-zone soil moisture are ~0.5 at the sparse 

network sites and ~0.7-0.8 at the core sites (Fig. 5(a),(d)). At 

the sparse network sites, the correlation skill of surface and 

root-zone soil moisture in the LADAS exceeds that of the 

ADAS control by ~0.1. The skill increase is even larger at the 

core sites, with the LADAS correlation exceeding that of the 

ADAS control by 0.17 for surface and 0.26 for root-zone soil 

moisture. Because the estimated 95% confidence intervals do 

not overlap, the surface soil moisture skill improvements in the 

LADAS can be considered statistically significant, despite the 

relatively small sample size (owing to the short record and few 

stations available for validation). 

The ubRMSE of the LADAS surface (root-zone) soil 

moisture is 0.043 (0.024) m3 m-3 at the sparse network sites and 

0.034 (0.022) m3 m-3 at the core sites (Fig. 5(b),(e)). The 

LADAS ubRMSE values are all smaller than those of the 

ADAS control. Whereas the ubRMSE reductions are small 

(0.002-0.008 m3 m-3) and not statistically significant, they are 

consistent across surface and root-zone soil moisture and for the 

sparse network and core validation sites. The LADAS soil 

moisture is generally wetter than indicated by the in situ 

measurements, with an average bias in the surface (root-zone) 

soil moisture of 0.041 (0.027) m3 m-3 at the sparse network sites 

and 0.021 (0.039) m3 m-3 at the core sites (Fig. 5(c),(f)). 

Compared to the ADAS control, the LADAS bias is improved 

for surface soil moisture but degraded for root-zone soil 

moisture, consistently for sparse network and core validation 

sites. The generally larger soil moisture bias seen here 

(compared to that of the L4_SM product) is mainly because the 

land model precipitation forcing here is not corrected with 

gauge-based data. For root-zone soil moisture, the bias even 

exceeds the random error component (i.e., the ubRMSE).  

 

2) Evaluation of Screen-Level Humidity and Temperature 

Recall that the only difference between the ADAS subsystem 

within the weakly-coupled LADAS and the stand-alone ADAS 

is the additional forcing of the AGCM during the Corrector 

segment with the soil moisture increments generated by the 

SMAP Tb analysis in the LDAS subsystem (section II-B). That 

is, the SMAP Tb analysis impacts the simulated q2m and T2m 

primarily through the land-surface interactions encoded in the 

AGCM; the LDAS does not generate q2m or T2m increments, 

nor are q2m and T2m measurements assimilated in the ADAS 

control or LADAS. Consequently, we can use q2m and T2m 

measurements for an independent assessment of the quality of 

the simulated q2m and T2m and thereby determine the impact 

of SMAP Tb assimilation on the simulated screen-level 

estimates. 

Fig. 6 shows the RMSE, bias, and ubRMSE of the ADAS-

simulated (control) q2m vs. HadISD measurements in the left 

column and the difference between the LADAS and ADAS 
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control metrics in the right column. (For the bias, the difference 

is computed after taking the absolute value, to determine which 

bias is smaller in magnitude, independent of the sign of the 

bias.)  The RMSE of the q2m estimates from the ADAS control 

experiment typically ranges between 1 and 3 g kg-1, with values 

exceeding 2.5 g kg-1 in some regions, somewhat lower values 

in the Southern Hemisphere mid-latitudes, and a global land 

average RMSE of 1.70 g kg-1 (Fig. 6(a)). The ADAS-simulated 

q2m is generally too moist by ~0.5-1 g kg-1 in the higher 

latitudes and too dry by ~1-2 g kg-1 in the Subtropics and 

Tropics, with a global average dry bias of -0.38 g kg-1 (Fig. 

6(c)). Consequently, the q2m ubRMSE values are only 

somewhat smaller than the RMSE values, with a global average 

of 1.38 g kg-1 (Fig. 6(e)). 

Overall, the assimilation of SMAP Tb in the LADAS 

improves the q2m estimates compared to those of the ADAS 

control. The q2m RMSE is considerably improved by ~0.3 g 

kg-1 in the Northern Great Plains (incl. Canadian Plains), the 

western Sahel, and northern India along the Himalayas (Fig. 

6(b)). Smaller improvements are seen across much of central 

Eurasia, and only a few small areas show a degradation in the 

LADAS q2m RMSE, including a slight degradation in the 

southeastern United States. In the global land average, the q2m 

RMSE is slightly reduced by 0.05 g kg-1. Much of the q2m 

RMSE improvement is from a reduction in the (absolute) bias, 

especially in central Eurasia and Eastern Europe, although some 

increase in the absolute bias is seen in smaller regions scattered 

across the globe (Fig. 6(d)). In contrast, the q2m ubRMSE 

shows a smaller improvement across the globe, particularly in 

the regions where the RMSE is improved the most, including 

the Northern Great Plains (incl. Canadian Plains), northern 

India, and central Eurasia (Fig. 6(f)). Like the q2m RMSE, the 

ubRMSE improvement is very consistent; there is almost no 

degradation in the LADAS statistic seen anywhere across the 

globe. 

Next, Fig. 7 illustrates the impact of the SMAP Tb 

assimilation on T2mmax; the figure again shows the ADAS 

control metrics in the left column and the LADAS minus ADAS 

differences in the metrics in the right column. The T2mmax 

RMSE for the ADAS ranges from ~1-2 K in much of Europe 

and Australia to ~3.5 K elsewhere, with a global average of 2.77 

K (Fig. 7(a)). The ADAS T2mmax estimates are too cold by 0.7 

K on average; they are too cold by ~2 K at the majority of the 

GHCN stations but too warm 1-2 K in some regions, including 

the southwestern US and the western Sahel (Fig. 7(b)). The 

T2mmax ubRMSE is 1.77 K on average and ranges between 0.5 

and 1.5 K in much of Europe and Australia and between 1.5 and 

3 K in the Americas and Africa (Fig. 7(c)). 

On average, the T2mmax RMSE in the LADAS is slightly 

improved compared to that of the ADAS control, by 0.04 K. 

The largest RMSE reductions of up to 0.4 K, or ~20% of the 

RMSE, are seen in the central US, the western Sahel, across 

several subregions of Eurasia, and in central Australia; but there 

is also some degradation, most notably in Argentina (Fig. 7(b)). 

The net improvement in the (absolute) bias is 0.02 K on 

average, with a spatial pattern of change like that seen for the 

RMSE. The ubRMSE in the LADAS is reduced from that of the 

ADAS control by 0.03 K on average, with improvements of up 

to ~0.3 K in the above-mentioned regions that showed 

noteworthy RMSE reductions. The T2mmax ubRMSE 

improvement is also very consistent across the globe; there is 

only some scattered degradation, typically by less than 0.2 K. 

Moreover, the improvements in the LADAS T2mmax estimates 

are consistent with those in q2m, as evidenced by their very 

similar spatial pattern (compare the metrics difference plots of 

Figs. 6 and 7). This pattern is also consistent with that of the 

typical magnitude of the soil moisture increments (Fig. 2). 

The q2m and T2m skill metrics (Figs. 6 and 7) seen here are 

comparable to those of DR19 for mid-April through August of 

2013 (their Figs. 9 and 10), with generally consistent spatial 

patterns. This suggests that the improved modeling system used 

here at least partly compensates for not using the gauge-based 

precipitation corrections employed in DR19. Moreover, the 

improvements in the LADAS q2m and T2mmax estimates seen 

here are also comparable in magnitude to those of DR19 for 

their ASCAT and SMOS retrieval assimilation. In both studies, 

the bias improvements contribute more to the RMSE reduction 

than do the ubRMSE improvements. However, the LADAS 

improvements seen here include fewer regions of degraded skill 

and are overall more coherent than those of DR19. Possible 

reasons for this include the two studies’ differences in the bias 

correction method applied prior to assimilation, the spatially 

distributed vs. local soil moisture analysis approach, and the 

generally better soil moisture information provided by the 

SMAP Tb observations compared to that of the ASCAT and 

SMOS retrievals. 

C. Impact on Atmospheric Background States 

In this section, we investigate the impact of the SMAP Tb 

analysis on the atmospheric background forecast in the ADAS 

subsystem of the LADAS. The black dots in Fig. 8 show 

vertical profiles of the JJA 2017 mean and standard deviation 

of specific humidity and air temperature OmF residuals from 

the ADAS control experiment, computed using radiosonde 

observations over continental land only. On average, the ADAS 

background forecast is too dry by 0.2 g kg-1 at the surface (Fig. 

8(a)), which is consistent with the q2m station comparison of 

Fig. 6(c). In the lower and middle troposphere, however, the 

ADAS specific humidity is too moist by 0.1 g kg-1 (Fig. 8(a)). 

There is also a cold bias in the ADAS air temperature of ~0.3 K 

at the 850-1000 mb levels (Fig. 8(c)), which is consistent with 

the screen-level T2mmax being too cold on average (Fig. 7(c)). 

The OmF standard deviation for specific humidity is ~1.5 g kg-1 

below 500 mb (Fig. 8(b)), and the OmF standard deviation for 

air temperature ranges from nearly 2 K close to the surface to 

~1 K through the mid-troposphere (Fig. 8(d)). 

The blue bars in Fig. 8 indicate the relative skill differences 

in percentage units between the LADAS and ADAS statistics, 

with negative values indicating that the (absolute) mean or 

standard deviation of the LADAS OmF is reduced (improved) 

from that of the ADAS control experiment and positive values 

indicating degradation. For specific humidity estimates from 

the LADAS, the OmF (absolute) mean is improved by 15-25% 

and the standard deviation is improved slightly by 1-2% in the 
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lower troposphere (Fig. 8(a),(b)), with a largely neutral impact 

in the mid-troposphere. Near the surface (850-1000 mb), this 

translates into an improvement of ~0.02-0.03 g kg-1 in the 

(absolute) mean and an improvement of ~0.01-0.02 g kg-1 in the 

standard deviation, which is consistent with that seen in the 

evaluation against screen-level measurements (Fig. 6). In 

contrast, air temperature estimates from the LADAS show a 

small degradation (increase) of 2-3% in the (absolute) bias and 

a slight improvement of ~0.5% in the standard deviation in the 

lower troposphere, but both relative differences translate into 

minimal changes of less than 0.01 K. Similarly, the ~10% 

improvement in the LADAS air temperature bias from that of 

the ADAS control at 400-500 mb is minimal (less than 0.01 K) 

and, given the mixed results in the lower tropospheric 

temperature, this nominal improvement is most likely noise and 

not related to the SMAP Tb analysis. In summary, the impact 

of the SMAP Tb analysis on the atmospheric background 

forecasts in the LADAS is, as expected, most prominent and 

beneficial for specific humidity near the surface and mostly 

neutral in the mid-troposphere.   

D. Weakly Coupled vs. Stand-alone Land Analysis 

The positive impact of the SMAP Tb analysis on soil 

moisture, q2m, and T2mmax seen above may also improve the 

quality of the land surface meteorological forcing data in the 

LADAS, including precipitation, radiation, air temperature, 

humidity, and wind in the lowest model layer of the AGCM. 

The improved forcing data may then, in turn, result in improved 

Tb background forecasts in the LDAS subsystem of the 

LADAS. Since the latter is forced with data from the AGCM’s 

Predictor segment in the LADAS, the supplemental, land-only 

LDAS experiment (LDASoffl) was driven with surface 

meteorological forcing data from the Predictor segment of the 

ADAS control experiment (section II-B, Table I). If the SMAP 

Tb analysis does indeed improve the surface meteorological 

forcing data in the LADAS, the typical magnitude of the Tb 

OmF residuals in its LDAS subsystem should be smaller than 

that of the Tb OmF residuals in the LDASoffl experiment. This 

expectation is confirmed in Fig. 9, which shows a mostly 

negative difference in the RMS of the Tb OmF residuals 

between the LADAS and LDASoffl experiments. The difference 

is very small during June 2017 but generally increases during 

the experiment period, which suggests that the LADAS may 

still be spinning up during much of the JJA experiment period. 

By August 2017, the typical Tb OmF residuals from the 

LADAS are smaller by up to ~0.1 K than those from LDASoffl. 

This difference is comparable to the reduction in the Tb OmF 

RMS achieved with the Catchment model improvements 

introduced with Version 4 of the L4_SM product [28]. 

The improvements seen in Fig. 9 indicate that it is beneficial 

to conduct the SMAP Tb analysis in the weakly coupled system, 

permitting feedback from the improved soil moisture estimates 

on the surface meteorological forcing data, which in turn 

improves the land surface analysis beyond what is possible with 

“fixed” forcing from an entirely separate ADAS. Further 

indication of the improvements associated with this coupling is 

seen in Fig. 5, which includes skill metrics for the LDASoffl 

experiment in addition to those of the ADAS control and 

LADAS experiments that were discussed above (section III-B). 

Whereas the skill differences between the LADAS and 

LDASoffl soil moisture estimates are very small and not 

statistically significant, the surface and root-zone soil moisture 

ubRMSE for LADAS is slightly but consistently better than that 

of the LDASoffl experiment for both the core validation and 

sparse network sites (Fig. 5(b),(e)). Compared to LDASoffl, the 

LADAS also has somewhat better root-zone soil moisture 

correlation skill at the core sites (Fig. 5(d)) and lower bias at the 

sparse network sites (Fig. 5(c),(f)), although the LADAS has 

slightly worse correlation at the sparse network sites (Fig. 

5(a),(d)) and slightly worse bias at the core sites (Fig. 5(c),(f)). 

The relatively small magnitude of the differences between the 

LADAS and LDASoffl metrics are consistent with the multi-step 

nature of the soil moisture feedback on the atmospheric forcing 

[86].   

IV. SUMMARY AND CONCLUSION 

SMAP has been providing L-band microwave brightness 

temperature observations of unprecedented quality that are 

highly sensitive to surface soil moisture unless the soil is frozen 

or obscured by dense vegetation. This study’s main objective is 

to examine the impact of assimilating SMAP Tb observations 

in a weakly-coupled land-atmosphere data assimilation system. 

To this end, we use the recently developed GEOS LADAS, 

which couples the SMAP Tb analysis from the land-only 

L4_SM algorithm with the GEOS ADAS used for weather 

analysis. We use the latter in 3D-Var configuration as in 

MERRA-2, but with the model and atmospheric analysis 

improvements implemented since MERRA-2. By comparing 

the LADAS results to those from stand-alone ADAS and 

LDASoffl experiments, we demonstrate that the SMAP Tb 

analysis improves the LADAS-simulated soil moisture, screen-

level atmospheric variables, and near-surface atmospheric 

humidity and temperature profiles. 

Specifically, we find that the SMAP Tb analysis in the LDAS 

subsystem of the LADAS yields statistics of the Tb OmF 

residuals and soil moisture analysis increments like those 

generated by the well-tested, land-only L4_SM algorithm (Figs. 

1-3), which confirms the proper functioning of the LDAS 

subsystem, especially its setup in the cube-sphere tile space 

used here and its coupling to ADAS subsystem.  

Validation vs. in situ measurements of surface and root-zone 

soil moisture, q2m, and T2mmax demonstrates the beneficial 

impact of the SMAP Tb analysis in the LADAS. LADAS-

simulated surface and root-zone soil moisture has higher 

correlation and lower ubRMSE than corresponding ADAS 

control estimates when validated against in situ measurements 

from 12 SMAP core sites and 360 stations across five sparse 

networks (Fig. 5). The benefit of the SMAP Tb analysis seen 

here is fully consistent with prior validation results of the 

L4_SM product [28]-[29]. We further show that LADAS-

simulated q2m and T2mmax have, on average, slightly lower 

RMSE, ubRMSE, and (absolute) bias than corresponding 

ADAS control estimates (Fig. 6-7). There are very few 

instances of degraded performance, and RMSE values are 
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improved by up to 0.3 g kg-1 for q2m and up to 0.4 K for T2mmax 

in some regions. Improvements are relatively larger in q2m than 

T2mmax, which is consistent with the fact that SMAP primarily 

provides information about the water cycle. The smaller 

improvements in LADAS screen-level temperature and 

humidity estimates compared to those in soil moisture estimates 

are consistent with the fact that soil moisture is only one factor 

determining T2m and q2m. Errors in the model 

parameterization of the coupling between soil moisture and 

screen-level parameters, for example, are not corrected through 

the assimilation of SMAP Tb measurements.   

An examination of the OmF residuals for Tb (using SMAP 

observations) and atmospheric specific humidity and air 

temperature profiles (using radiosonde measurements) further 

illustrates that the benefit of the SMAP Tb analysis in the 

weakly coupled LADAS is not limited to soil moisture but also 

improves near-surface atmospheric humidity and temperature 

through the dynamic interactions between the land surface and 

the atmosphere (Figs. 8-9). This result is also confirmed by a 

comparison of the Tb OmF residuals and soil moisture skill 

metrics from the LADAS with those from the land-only 

LDASoffl experiment (Figs. 5 and 9), which indicate slightly 

better skill in the LADAS compared to LDASoffl. 

The results of this study are largely consistent with those of 

DR19, although it is difficult to compare their results to ours. 

DR19’s experiment period in 2013 precedes the launch of 

SMAP. Moreover, DR19 used gauge-based precipitation 

corrections, which increase soil moisture simulation skill in 

well-observed regions such as the United States and Western 

Europe, although they have limited impact on skill across much 

of the globe [29]. Compared to the MERRA-2 baseline system 

of DR19, however, the present study used an improved version 

of the GEOS ADAS, making it harder for the SMAP Tb 

analysis to yield improvements. Nevertheless, the assimilation 

of SMAP Tb observations improved the LADAS-simulated soil 

moisture and near surface air humidity and temperature by at 

least as much as did the assimilation of ASCAT and SMOS soil 

moisture retrievals in DR19, presumably owing to (i) the higher 

quality of the assimilated SMAP data and (ii) the improved, 

spatially distributed, radiance-based Tb analysis of the L4_SM 

algorithm. A follow-up investigation of the separate and joint 

assimilation of ASCAT, SMOS, and SMAP observations in the 

current version of the LADAS promises to yield further insights 

but was beyond the scope of the present study, given the 

considerable computational demands of the LADAS. 

The updated GEOS LADAS is therefore a promising tool for 

use in the near-real time GEOS FP weather analysis and future 

GEOS-based reanalysis products. Additional validation and 

development, however, is needed. For example, tower-based 

measurements of evapotranspiration and sensible heat fluxes 

were not yet publicly available in sufficient quantity for the JJA 

2017 experiment period. Once such records become available, 

it is important to assess the impact of the SMAP Tb analysis on 

the quality of the simulated surface turbulent fluxes. 

Alternatively, evapotranspiration data derived from thermal 

infrared satellite observations could be used [87]. Moreover, the 

impact of the SMAP Tb analysis on medium-range weather 

forecasts (as opposed to the 6-hour atmospheric background 

forecasts that are part of the atmospheric analysis) needs to be 

assessed. 

Finally, the weakly-coupled LADAS needs to be tested in the 

context of the quasi-operational, near-real time, 12.5-km 

resolution GEOS FP weather analysis, which uses a hybrid 4-

dimensional ensemble variational (Hybrid 4D-EnVar) 

approach [88]. Preliminary results (not shown) derived using a 

prototype LADAS version based on the Hybrid 4D-EnVar 

ADAS are encouraging, but more development is needed. The 

coupling of the ensemble-based LDAS subsystem to the 

ensemble-based atmospheric analysis involves a slew of design 

choices and opportunities. First, having access to an ensemble 

of surface meteorological forcing data from the Hybrid 4D-

EnVar should provide a more realistic representation of 

uncertainty in the surface meteorological forcing of the land 

than do the purely statistical perturbations used heretofore in 

the LDAS [89]. Second, the ensemble of land increments can 

be fed back into the ensemble of AGCM simulations of the 

Hybrid 4D-EnVar ADAS (rather than feeding only the 

ensemble-average LDAS increments back into the ADAS). 

Clearly, continued development of the LADAS is needed to 

further constrain errors in soil moisture and near-surface 

atmospheric variables, thereby improving analysis estimates 

and medium-range forecasts of T2m, q2m, surface fluxes, and 

land surface conditions. More generally, the weakly coupled 

LADAS presented here is just one small step towards the 

community’s ultimate objective of a fully coupled Earth system 

analysis. 
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TABLE I 
EXPERIMENT OVERVIEW.  

Experiment 

name 

System or 

subsystem; 

model 

Analysis 

algorithma 

Assimilated  

observations 

Surface 

meteorological 

forcing 

Experiment 

period 

Start of spin-

up period 

Model initial conditions: 

Atmosphere Land 

ADAS ADAS; 
AGCM 

3D-Var Operational 
FP data stream  

ADAS AGCM 
(Corrector) 

JJA 2017 1 Apr 2017 MERRA-2 Land model 
spin-up 

LADAS ADAS; 

AGCM 

3D-Var Operational 

FP data stream 

LADAS 

AGCM 
(Corrector) 

JJA 2017 3 May 2017 ADAS 

experiment 

ADAS 

experiment 

LDAS; 

Catchment 

EnKF  

(Nens=24)  

SMAP Tb LADAS 

AGCM 

(Predictor) 

JJA 2017 3 May 2017 n/a LDAS 

Open Loop 

LDASoffl LDAS; 

Catchment 

EnKF  

(Nens=24) 

SMAP Tb ADAS 

(Predictor) 

JJA 2017 n/a  n/a LADAS 

experiment 

LDAS Open 

Loop 

LDAS; 

Catchment 

n/a   

(Nens=24) 

n/a FP (Corrector) Apr 2015–

Apr 2020  

1 Jan 2015 

(ensemble) 

n/a Land model 

spin-up 

ADAS and LADAS output examined in this study is from the AGCM Corrector segment. 
aNumber of land ensemble members is denoted with Nens. 
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Fig. 1. Daily global mean and RMS of L-band Tb observation-minus-forecast (OmF) and observation-minus-analysis (OmA) residuals from the LDAS subsystem 

in the LADAS experiment for JJA 2017. OmF and OmA residuals computed after climatological rescaling of SMAP Tb observations.  
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Fig. 2. Monthly mean of ensemble-average profile soil moisture increments in equivalent flux units (mm d-1) in the LADAS experiment for (a) June, (b) July, and 

(c) August 2017. 
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Fig. 3. Time series standard deviation of ensemble-average analysis increments for surface soil moisture (m3 m-3) in the LADAS experiment for JJA 2017. 
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Fig. 4. Daily averaged analysis error (model minus measurement) for (a) surface soil moisture (m3 m-3) and (b) q2m (g kg-1) from the (dashed blue lines) ADAS 

control and (solid brown lines) LADAS experiments near 34N, 98W in Oklahoma US for JJA 2017. Error computed vs. in situ measurements from the Oklahoma 

Mesonet Waurika station for soil moisture and from HadISD station #723510 for q2m. 

  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3118595, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XXXXX 
 

20 

 
  

 
 

Fig. 5. (a,d) Correlation (dimensionless), (b,e) ubRMSE (m3 m-3), and (c,f) bias (model minus measurement; m3 m-3) for (a-c) surface and (d-f) root-zone soil 

moisture from the ADAS control,  LADAS, and LDASoffl experiments. Metrics are computed vs. in situ measurements from sparse networks (first group of bars) 
and SMAP core validation sites (second group of bars) for JJA 2017. Nsparse and Ncore indicate the number of sites used to compute the metrics. Error bars indicate 

95% confidence intervals (see text for details).  Note that the sparse network and core sites differ in their coverage across land surface conditions and climate 

zones. 
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Fig. 6. Left column shows (a) RMSE, (c) bias (model minus measurement), and (e) ubRMSE of 2-m specific humidity from the ADAS control experiment vs. 

HadISD measurements. Right column shows LADAS-minus-ADAS difference in the performance statistics for (b) RMSE, (d) absolute bias, and (f) ubRMSE, 
with red colors in (b,d,f) indicating that LADAS has better skill than ADAS. All statistics are calculated for JJA 2017. 
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Fig. 7. As in Fig. 6 but for 2-m maximum daily air temperature evaluated against GHCN measurements. 
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Fig. 8. Black dots show atmospheric profiles of the (a,c) mean and (b,d) standard-deviation of OmF residuals from the ADAS control experiment for (a,b) specific 

humidity (g kg-1) and (c,d) air temperature (K) across global continental land for JJA 2017. OmF residuals were computed using radiosonde observations. Blue 
bars indicate corresponding relative skill difference (LADAS vs. ADAS) in OmF (a,c) absolute mean and (b,d) standard deviation in units of percent. Blue bars 

with negative (positive) percentage values indicate better (worse) performance of LADAS compared to ADAS. 
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Fig. 9. Daily RMS of SMAP Tb observation-minus-forecast residuals from LADAS minus same from LDASoffl for JJA 2017. Negative values indicate that the Tb 
background forecasts in the LADAS are closer to the SMAP Tb observations than are those of the LDASoffl experiment. 

  


