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Abstract—Security attacks on intelligent transportation sys-
tems (ITS) may result in life-threatening situations. Combining
deep neural networks with reinforcement learning (RL) models
called DRL shows promising results when applied to urban
Traffic Signal Control (TSC) for adaptive adjustment of traffic
light schedules. In this paper, first, we explore the security
vulnerabilities of DRL-based TSCs in the presence of adversarial
attacks. We investigate the impact of the two distinct threat
models with two state-of-the-art adversarial attacks using white-
box and black-box settings. The attacks are simulated on different
DRL-based TSC algorithms in a single intersection and multiple
intersections. The results show that the performance of the DRL
learning agent decreases in both adversarial attack models with
white-box and black-box settings resulting in higher levels of
traffic congestion. After analysing the adversarial attack models,
we explored several sequential anomaly detection models. While
sequential anomaly detection models minimizes the detection
delays, it also achieves lower false alarm rates due to cumulative
anomaly inspection. We also proposed an ensemble model that
works with all the attack models without any model assumption.
The results of anomaly detectors indicates that low-cost ensemble
model achieves the best anomaly detection performance in all
attack models and DRL settings.

Index Terms—Deep reinforcement learning, Statistical
Anomaly Detection, Traffic signal control, Adversarial attack,
Security.

I. INTRODUCTION

In recent years, data-driven approaches are often used
to drive the design and performance evaluation of different
control algorithms in Intelligent Transportation System (ITS).
With the proliferation of such data-driven models and commu-
nication technologies, Information and Communication Tech-
nology (ICT) have revolutionized ITS by connecting different
components: vehicles, road-side units and sensors, cameras,
loop detectors and control modules such as ramp meters, traffic
signal controllers via vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications. In addition, some in-
vehicle and road-side units are also connected to wide-area
Internet via 4G/5G cellular technologies.
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Learning-based control mechanisms in ITS, such as traf-
fic flow control systems, travel demand prediction, and au-
tonomous vehicles, take action based on real-time data from
the environment. Traffic signal controller (TSC), which sched-
ules the green/yellow/red phases at road intersections, plays a
critical role in ITS, especially in busy urban settings. Control
loops like TSCs often use real-time traffic information (e.g.,
captured by local cameras/sensors or broadcast messages from
vehicles) to perform intelligent control decisions. This opens
up the attack surface. Cybersecurity attacks such as falsified
data may lead to erroneous control decisions, jeopardizing
the safety and efficient operation of the transportation system
corridor. Mitigating risks due to those issues remains an open
and active research area.

Machine learning (ML)-based learning models are classified
into supervised learning, semi-supervised learning, unsuper-
vised learning, and reinforcement learning (RL). The first
three approaches use labeled or unlabeled training datasets to
identify patterns and create models to discriminate between
different output classes. On the other hand, RL learns by
interacting with the environment and the actions are rewarded
or penalized. The environment is typically stated in the form
of a Markov decision process (MDP). RL agents exploit the
knowledge to make cognitive choices, such as decision making
and scheduling [1]. Today, popular learning-based controller
approaches combine deep neural networks (DNN) with RL,
referred as DRL, in which policy estimation is performed
by neural networks. One good example application of such
methods in ITS is estimating the optimal light schedules of
TSCs. In general, learning-based TSCs perform better than
standard dynamic TSCs in terms of delay and throughput for
isolated single-intersection and multi-intersection settings [2].

Learning based intelligent TSC agent collects messages
from environment and schedules the traffic according to
demand. Recently, many DRL-based data driven solution
methods are proposed in the literature for controlling TSCs
in a network of intersections and a successful cyber-attack
targeting such TSCs can cause chaos in cities. Regardless of
the underlying technology (WAVE or 5G) for V2V or V2I
communications, the defense mechanisms of learning based
TSCs needs thorough investigation.

Learning-based TSCs may make wrong decisions or take
wrong actions in the presence of adversarial attacks. In more
advanced attack models known as insider attacks, attacker
falsifies the data input by considering the target DNN structure
of the learning model. There are two distinct adversarial attack
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settings on learning agents: white-box attack where attackers
have access to the training model of learning agent and
interacts with target model for generating adversarial inputs,
and black-box attack where malicious inputs are generated
from an estimated training model which is close to the true
target model of learning agent [3]. In this paper, we thoroughly
investigate security vulnerabilities of DRL based TSCs under
two adversarial attack models namely Fast Gradient Sign
Method (FGSM) [4] and Jacobian-based Saliency Map Attack
(JSMA) [5] with white-box and black-box settings. We, then,
propose an online anomaly detection algorithm for detecting
such adversarial attacks.

A. Adversarial Attacks on DRL-TSCs

The falsified data attacks generally designed with opti-
mization techniques to identify which feature to perturb [6].
Similar to this analogy, the attack strategy in DRL targets
DNN structures where policy of learning agent is calculated
to find the minimum perturbation amount. There are two
possible threat models for DRL-based TSCs; attack may be
carried out in the cyber domain by directly accessing the
input pipeline of DRL agent or attack may be launched over
the communication network by releasing falsified data from
actual devices or Sybil devices to mislead the learning agent.
Since FGSM attack perturbs all the input features only a slight
amount, this attack can be launched purely in the cyber-domain
without considering physical traffic conditions by accessing
the input gate of the DRL agent. On the other hand, JSMA
adversarial attack selects specific feature dimensions to perturb
based on the constructed saliency map. JSMA can achieve this
by using compromised vehicles or creating Sybil vehicles to
send falsified data to TSCs.

In order to assess the impact of these adversarial attacks
on different DRL-based TSCs, we consider both value-based,
namely Deep Q Network (DQN), and policy-gradient with
actor-critic-based, advantage actor-critic (A2C), DRL algo-
rithms. We simulate the following: (i) single-intersection TSC
scenario trained with DQN and A2C approaches, and (ii)
multi-agent grid like 4-intersection TSC scenario trained with
A2C approach, referred to as MA2C-DRL. Since the black-
box attack assumes attacker does not have access to the actual
target DNN model, we trained a separate DRL agent with
different traffic demands and DNN settings for black-box
attack. All the experiments are performed using a realistic
SUMO traffic simulator. Detailed analysis shows that DRL-
based TSCs are vulnerable to cyber-attack with or without
knowledge of the trained DNN models.

B. Defense Mechanisms Against Adversarial attacks on DRL-
TSCs

Adversarial attack surface for targeting DRL agents is very
broad. Therefore protecting DRL agents against adversarial
attacks is a challenging task. There are two general pro-
tection mechanism for DRL agents: (i) the agent builds a
defense mechanism within the agent model that increases the
robustness of DRL agent against the attacks, (ii) the agent is
equipped with an external detection mechanism that detects the

anomalies and raises an alarm. One possible mitigation strat-
egy for external anomaly detectors is changing the controller
model from learning-based one to another model such as max-
pressure TSC [7] or actuated TSC [8]. Since gradient-based
adversarial attacks such as FGSM and JSMA generally have a
minimal perturbation on the data, it is also hard to differentiate
adversarial samples from real samples with standard anomaly
detectors.

Given the adversarial attacks FGSM and JSMA for single
intersection and multi-intersection scenarios discussed in the
previous subsection, we studied the performance of statis-
tical anomaly detectors to detect even infinitesimally small
anomalies. An ensemble anomaly detector that combines two
sequential anomaly detection models and an autoencoder-
based anomaly detection model with CUSUM-like detection
model is evaluated on the gradient-based adversarial attacks.
The experiments show that proposed ensemble sequential
anomaly detection model achieves the best detection rate with
different DRL agents and TSC scenarios.

C. Contributions
In this paper, we characterize the impact of two state-of-

the-art adversarial attack models on DRL-TSCs and evaluate
multiple statistical anomaly-based detection techniques. Our
ensemble detection mechanism outperforms the other statisti-
cal anomaly detection models. The contributions of this paper
can be summarized as follows.
• We demonstrate experimentally that both FGSM and

JSMA adversarial attacks degrade the performance of
DRL-based TSC agents as long as attack continues.
White-box and black-box FGSM attacks have similar
effects on TSC. However, black-box JSMA attack is less
effective compared to white-box JSMA attacks.

• We developed and applied a sequential anomaly detection
mechanism to the FGSM and JSMA adversarial attack on
DRL-TSC scenarios with single intersection and multiple
intersection models. The method combines multiple de-
tection models in a computationally efficient method.

• The ensemble anomaly detection method is agnostic to
both the model of the neural network policy and the
type of adversary. Hence, the detection algorithm protects
the DRL-TSC agents against different adversarial attack
models.

• While different sequential anomaly detection models
achieve the best performance on different attacks and
DRL settings, our proposed ensemble model achieves the
best detection performance on all the scenarios.

The rest of the paper is organized as follows. Section II
discusses related work while Section III provides background
for DRL learning agents and TSC settings. We present our
adversarial attack models in Section IV and statistical anomaly
detection model in V. We discuss our adversarial attack and
defense results in Section VI and Section VII, respectively.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Adversarial machine learning is an active research field for
data scientists. Many attack models and defense mechanisms
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have been studied by researchers for different ML models
including DNNs [9]. DRL agents are vulnerable to different
kind of adversarial attacks and detecting such adversarial
attacks is a challenging task. In this section, we review the
existing works on security of TSCs, DRL adversarial attacks
and potential detection models.

A. Security of TSCs

Initial studies on adaptive TSC methods are rule-based or
threshold-based control methods where predefined values of
different traffic parameters such as queue or delay can trigger
adaptive rules [10]. Lately, many machine learning-based TSC
control mechanisms have been proposed. One such approach
leverages DNN in a RL agent referred to as DRL and applies
it to a network of traffic intersections [2]. The performance of
learning based TSCs are generally better than standard TSC
controllers.

There are many security analysis papers in literature for
different type of TSCs. In [11], the authors identified some
of the underlying threats against TSCs and proposed a game-
theoretic risk minimization model without specifying the type
of TSC. The study assumes that attacker has access to the con-
trol center and manipulates the traffic lights directly. Security
of single intersection and multiple intersection back-pressure
based TSCs is studied in [12]. The same group later extended
their study with multiple attack strategies with several protec-
tion algorithms [13]. With the advanced vehicular and com-
munication technologies, vehicles expected to communicate
with the TSCs through Vehicular Ad Hoc Network (VANET).
The security vulnerabilities of such VANET-based TSCs are
investigated without considering a signal control mechanism
in [6] where adversary uses decision three ML model to find
the optimum perturbation. Although machine learning-based,
especially DRL TSCs, offer promising performance gain, their
security vulnerabilities need to be studied carefully. Apart
from TSCs, there are various other studies on assessing the
vulnerability of different ML-based ITS control mechanisms.
Autonomous vehicles need to have a perfect perception while
driving. Hence, deep learning has been exploited to process
high-dimensional data. Since securing autonomous vehicles
against malicious activities is an important and challenging
task [14], the effects of adversarial attacks on DNN structures
are studied in [15] where LIDARs of autonomous vehicles are
under attack.

B. Adversarial attacks on DRL

There have been numerous studies on the adversarial attack
models on the DNN policies of DRL agents. Adversarial at-
tacks targeting DNNs are generally applicable to DRL agents.
However, most of the DRL attack models are not applicable
to DRL-TSC settings because it requires access to multiple
parts of learning agent such as state, action and rewards and
directly accessing the DRL-TSC components are challenging.

One of the earlier generative adversarial attack [16] targets
the DNN classifier by perturbing the input data. The attack
model is designed with constrained minimization approach

using L2 norm. Another constraint optimization adversarial at-
tack for image classification task is proposed in [17]. Gradient-
based adversarial attack models have promising results on
DNN classifiers. Two well know gradient based adversarial
attacks are FGSM [4] and JSMA [5] which deteriorate the
performance of DNNs by crafting data input geared towards
confusing the neural networks. These discussed adversarial
attacks are know as the state of the art sequential adversarial
attacks mainly proposed for DNNs.

Authors, in [18], presented a strategic attack reducing the
number of attack times for DRL agents using random noise
and FGSM attack strategies. With the transferability of neural
networks, similar attack concepts can be extended to black-box
attacks [19] and can target directly the DRL agents [20]. Since
DRL agents estimate state values or policy values using DNNs,
they are also vulnerable to adversarial attacks with white-
box attack settings [21] and black-box attack settings [20].
A sequential adversarial attack for DRL agents is proposed in
[22] in which adversarial samples are generated using adver-
sarial transformer networks [23] on white-box attack strategy.
Another strategic timing and target specific adversarial attack
model for DRL agents is presented in [24]. The authors
perturbed the input states selectively to reduce the visibility
of attacker while achieving higher attack performance. Similar
to our black-box attack settings, the authors in [25] injects
perturbations from imitatively learned black-box model. There
are also other adversarial attack models which are specific to
application areas such as multi-agent robot interactions and
path findings [26], [27].

C. Defense models for DRL
There are multiple defense options for the DRL agents

including adversarial training, defensive distillation and ad-
versarial detection. Adversarial training idea trains the learn-
ing model with adversarial samples that makes the learning
model more robust. Several adversarial training-based defense
mechanisms exist in literature for DRL agents [18], [28], [29].
However, adversarial training is attack dependent and it is easy
to fool the model with a different attack strategy. Another
defense model is called defensive distillation that trains the
DRL policy with a different DNN model and transfers pre-
trained soft-max layer from the other trained model to increase
the robustness of DRL agents [30]. However it is already
proven that bypassing the defensive distillation method is
easy with various techniques [17]. The other security model,
which is more aligned with our proposed detection model, is
adversarial detection that distinguishes the adversarial samples
from the clean samples without modifying the DRL model.
One of the earlier adversarial attack detection mechanism for
DRL agents is proposed in [31] where a defense mechanism
detects the adversarial samples and suggests alternative actions
for the DRL agent instead of the wrong action. A DNN-based
adversarial sample detection model for DNNs is presented
in [32]. The adversarial samples are classified and rejected
by DNN models using the autoencoder reconstruction error
similar to the robust autoencoder model [33].

Statistical properties of input data are susceptible to di-
vergence after the perturbation. The study in [34] analyzes
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two statistical distance measures, maximum mean discrepancy
and energy distance, for detecting adversarial samples against
several adversarial attacks including FGSM and JSMA. There
are several adversarial detection models for DNN classifiers
applicable to DRL agents [35], [36]. Sophisticated adversarial
detection models for DRL agents are also proposed in litera-
ture [37], [38].

D. Summary

To date, there remains a limited understanding of the
security vulnerabilities of learning-based ITS controllers and
their impact on various operational performance metrics. In
our paper, we experimented another research direction of ITS
security where we characterize the security vulnerabilities
of TSCs when implemented with DRL model and proposed
a novel statistical detection model. Main-stream adversarial
attack models continuously inject adversarial samples to the
learning models and expects to fool the model quickly. To pro-
tect the DRL-TSC learning model we propose to use statistical
sequential detection models with a novel ensemble detection
algorithm that achieves the best detection performance in all
cases.

III. OVERVIEW OF DRL-BASED TRAFFIC SIGNAL
CONTROLLERS

A. Deep Reinforcement Learning

Reinforcement learning (RL) is a trial-and-error based learn-
ing algorithm where agent interacts with the environment and
takes action to maximize cumulative reward. Mathematical
formulation of RL is based on Markov Decision Process
(MDP). In general RL agent interacts with the environment
and receives a numerical positive reward (penalty if it is
negative). Continuously observing the state of the environment
defined by st, taking action at, and receiving reward (or
penalty) from the environment rt, RL agent learns an action
policy which defines how to behave by computing action value
function Q(st, at) after each iteration. In high dimensional
environments, RL agent cannot estimate this action value func-
tions easily. Through non-linear approximation, deep learning
can easily estimate this function. Controlling RL agents with
deep neural network based function approximations is called
DRL. In this section, we explain how two popular DRL
algorithms, DQN and A2C, work in the context of TSCs.

1) Deep Q-Network: Deep learning extracts the features
from data with multi-layered neural networks. Tabular Q-
learning method stores every state-action pair in a q-table,
however, controlling agents in high dimensional systems with
tabular methods is not tractable. The pioneering algorithm
called Deep Q-Network (DQN) approximates state-action
value function Q(st, at) using non-linear DNN models, which
maps N dimensional state inputs to M dimensional actions
(output). An RL agent selects the best action from the outputs
of DNNs [39] using Q-learning concept. Using DNNs for
function approximation sometimes result in unstable learning
performance. To ease this problem, temporal difference and
batch learning techniques are used. A DRL agent is controlled
with target network every k steps by updating the main

network with respect to the target network. The agent may
get stuck in a local optimal point due to recent trajectories but
by randomly sampling stored experiments, DRL agent learns
how to behave from a broad range of experiences.

2) Advantage Actor-Critic: Another main approach esti-
mates policy function with gradient methods instead of esti-
mating value function. However, policy gradient algorithms are
not effective in large-scale applications due to high variance of
the policy estimation. A general solution to this problem is to
combine policy and value functions with an advantage function
using two individual estimators, where the agent’s behaviour
is controlled with policy and the actions are balanced with
value functions. These models are referred to as actor-critic
RL. Synchronously updating both actor and critic estimators
is known as advantage actor-critic (A2C) RL.

B. Deep Reinforcement Learning for TSC

In this section, we will discuss relevant DRL settings for
single-agent and multi-agent settings. First, we will explain
state, action and reward definitions, and then we will explain
our collaboration technique for the multi-agent RL model.

In this application, the state of the environment is described
as a vector of values for each incoming lane of the intersection.
For one intersection, we created two valued vectors for each
lane: one is average speed and the other is total number of
vehicles. Position and speed of each vehicle can be collected
from individual vehicles for calculating average speed and
number of vehicles using V2I communication. Based on the
information received from vehicles, the DRL agent in the
TSC selects a green phase from among possible green phases.
The TSC at a single intersection (such as Fig. 1) has four
possible green phases: North-South Green (NSG), East-West
Green (EWG), North-South Advance Left Green (NSLG), and
East-West Advance Left Green (EWLG). Each selected green
phase is executed after a yellow phase transition. With the
objective of maximizing cumulative reward, a scalar reward is
computed after each action (phase selection in this case). There
are several reward definitions for TSC settings such as vehicle
waiting time, cumulative delay, and queue length. In our DRL-
based TSC, we used the change of the vehicle waiting time at
an intersection for one cycle as a reward function.

As mentioned earlier, applying deep learning techniques
to RL can help compute the action value functions more
efficiently. For DRL models, designing a neural network
structure for better performance is another critical step. Multi-
layer perceptron (MP), i.e., the standard fully connected neural
network model, is a useful tool for classic data classification.
In this project, we used MP with 4 layers in DQN and 5 layers
in A2C with relu and softmax activation functions for policy
estimations of learning agents.

To test more general cases in DRL-based TSCs, we also
studied a multiple intersection scenario with multi-agent A2C
(MA2C) settings where the interaction among agents is nec-
essary to reach a global optimal performance. In multi-agent
settings, each agent updates its policy by including the current
state and reward functions of neighbor TSCs as well to de-
crease the overall delay in traffic. For this purpose, global state
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is found with concatenation of the local states of neighboring
intersections and reward is generated by summing the local
rewards of neighboring intersections.

IV. ADVERSARIAL ATTACKS ON DRL
In data-driven learning algorithms, a function estimator

tunes the parameters precisely and carefully with respect to
the training set. An adversary can manipulate the training set
by injecting falsified data into the system. A smart way of
attacking the learning agent is to inject carefully-crafted fake
data that has very similar patterns with actual data. In the
white-box attack model, the adversary has knowledge of the
exact learning model and the corresponding output classes, and
will manipulate the input to mislead the model. In the black-
box attack model, the exact learning model is not known but
the adversary can estimate a similar learning model to help
generate input perturbation that can affect the target learning
model.

In a DRL controller, the DNN function estimator, which
estimates the action with respect to a given state, is the most
probable adversarial target. The objective of the adversary is
to craft the data input in order to lead DNN to a wrong action.
When the DNN of DRL is under attack, it may select an
incorrect action. For targeting DRL-based controllers, adver-
sarial attacks can be launched sequentially at every time step
to mislead the system as quickly as possible or strategically at
specific time steps to hide itself from the controller center. In
this study, we simulated sequential FGSM and JSMA attack
strategies on DRL-based TSCs, which plays a critical role in
traffic management systems. The threat model of adversarial
attacks on DRL-TSCs is shown in Fig 1.

Fig. 1: TSC is controlled with a DRL agent and an adversary
that can attack the agent with falsified data which perturbs
the input state. While adversary can input directly for FGSM
attack, it can use compromised vehicles for JSMA attack.

A. Fast Gradient Sign Method

A clever attack model, fast gradient sign method (FGSM)
introduced in [4], calculates the gradient of the cost function

with respect to DNNs to maximize the perturbation using
the L∞ distance. Adversarial input is generated by adding
generated adversarial data to the input state as follow:

η = ε ∗ sign(∇xJ(θ,xxx, a)) (1)

where ε is the attack magnitude, J is the cost function of DNN,
and θ is the model parameters. ∇x refers to the gradient of the
cost function related to model input state xxx, and true action a.

The FGSM attack designed to be fast and effective by
generating infinitesimal perturbation that is close to the true
input with perturbation parameter e.g., ε = 0.007. FGSM
attack model is untargeted where the attacker does not spec-
ify the target action when FGSM is launched. The optimal
perturbation η satisfies ||η||∞ < ε.

The perturbation amount η is added to the input data x:

xxxadv = xxx+ η. (2)

In DRL-TSC, FGSM attack perturbs all the input features
with very low values, therefore, launching this attack from
the communication network requires to modify all the state
dimensions that corresponds to each traffic lanes. The attack
model assumes that the attacker has access to the input gate of
DRL agents. By using this gate, an attacker perturbs the input
state xxx right before it goes into the DNN where Q values for
each action is estimated. Launching FGSM with the black box
settings is also possible. In this case, the attacker will not be
able to access to the DRL agent directly, it only has access to
the data pipeline of the DRL agent.

B. Jacobian-based Saliency Map Attack

Another attack model, jacobian based saliency map attack
(JSMA), utilizes forward derivative is presented in [5]. The
intuition of JSMA attack is to find the influence of each state
feature xxxi to a specified output action a and then perturb only
those specified feature dimensions. This influence relies on the
jacobian matrix of outputs with respect to each action taken
by the DRL agent using the forward gradient of the DNNs to
construct adversarial saliency maps.

The adversary can control which input feature to perturb
with respect to constructed saliency maps to achieve the
desired goal. In this attack model, an attacker selects a target
action for the DRL agent where the output of the DNN is Q
values for each action. With a greedy mechanism, an action
is selected from the DNN during the test phase with respect
to given state xxx as:

at = argmax
a

Q(xxx, a) (3)

where at refers to the selected action by thr DRL agent at
time t.

In our case, an adversary tries to mislead the DRL agent
to select a wrong action and for this purpose, the output Q
value for the desired action should be increased. The Q values
are the probabilities of corresponding actions. The adversary
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can increase the desired Q values estimated through DNNs by
using the saliency map:

S+(x(i), a) =


0 if ∂f(xxx)(a)

∂x(i)
< 0 or

∑
a′ 6=a

∂f(xxx)(a′)
∂x(i)

> 0(
∂f(xxx)(a)

∂x(i)

) ∣∣∣∣∣ ∑a′ 6=a

∂f(xxx)(a′)
∂x(i)

∣∣∣∣∣ otherwise

(4)
where i is the input feature of state xxx, a is the action
corresponding to the input, and a′ is the other actions of DRL
agent. In Equation 4, the first line of the expression rejects
the negative target derivative with respect to action a and
positive derivatives with respect to other actions a′ of input
state xxx feature i. The second line of Equation 4 extracts the
positive forward derivative of state xxx of feature i given the
action a. Based on the constructed saliency map, an adversary
selects which input feature to perturb in order to mislead the
agent for selecting the wrong action. Higher S+(x(i), a) values
mean the attacker can more easily determine if increasing this
feature either increase the Q value of the target action a or
decrease the Q values of other actions. In the JSMA model,
the attacker first selects which action to perturb randomly then
based on that selected action it creates the saliency map. Using
the saliency map the attacker finds the best features to perturb.

The threat model for JSMA attack is different from the
FGSM attack. Since JSMA perturbs specific features based
on the saliency map, it is possible to launch this attack by
compromising the communication between vehicles and TSC
units. In this attack model, an attacker can use compromised
vehicles and/or Sybil vehicles to broadcast falsified informa-
tion in order to increase or decrease the corresponding feature
dimension values.

V. SEQUENTIAL ANOMALY DETECTION FOR DRL-TSCS

The attackers can exploit a wide range of vulnerabilities in
DRL-TSCs, and attack patterns are generally unpredictable.
Therefore, it is hard to model a defense mechanism for a broad
range of anomalies. Besides, defining a parametric model,
which tries to fit a probability distribution to the data, is not
practical. Due to life threatening effect of misbehaved DRL-
TSCs, it is critical to detect and mitigate adversarial attacks in
a timely manner. Considering the major challenges in DRL-
TSC, non-parametric sequential anomaly detectors are suitable
for detecting streaming anomalies in online settings. There
are three main reasons why we employed a non-parametric
sequential statistical anomaly detector for adversarial attacks
on DRL-TSCs: (i) consecutive adversarial samples are more
harmful for DRL controllers and need to be detected quickly,
(ii) standard outlier detectors are susceptible to false alarms
due to not considering temporal correlations in data, (iii) non-
parametric sequential detectors have less miss-match error that
results in lower detection error.

Statistical anomaly detectors operate by comparing the sum-
mary statistics extracted from the training set in offline phases
and summary statistic of data in online phases for detecting po-
tential anomalies. Since no single statistical property captures
all anomaly types, we present a sequential anomaly detection
model that extracts multiple summary statistics and leverages

an ensemble model for the online test phase. In this section,
we first explain three summary statistic extraction models that
are distance-based, PCA-based and Robust Autoencoder-based
and present the online sequential detection algorithm.

Let us first explain the data representation that is used
for the rest of the paper. The monitoring system observes
d dimensional data instance {xxx1i , . . . ,xxxdi } that forms a set
of nominal streaming data X = {xxx : j = 1, 2, . . . , N}.
Depending on the TSC setting and DRL model the size of
d can change. In our experiments, DRL collects the summary
statistics from each lane and forms the d dimensional state xxxt
at time t.

A. GEM-based Summary Statistic

The Geometric Entropy Minimization (GEM) method de-
fines an acceptance region for the offline training set based
on the nearest neighbor statistics with respect to significance
level α [40]. A GEM-based computationally efficient sum-
mary statistic extraction method using bipartite kNN graph
is presented in [41]. In the training phase, summary statistics
extracted as described in the following.

We begin with randomly partitioning the anomaly free
dataset XN into two subsets S1 and S2 with sizes N1 and
N2 where N = N1 +N2. Then, for each data point xxxj ∈ S2,
we find the kNN euclidean distance ej from S1. Sum of the
distances of xxxj to its nth nearest neighbor in S1 can be denoted
as:

dj =

k∑
i=1

ej(i). (5)

Once {dj : xxxj ∈ S2} is computed and sorted in ascending
order, we refer to this baseline set as DDDGEM .

B. PCA-based Summary Statistic

High dimensional observation may exhibit sparse data struc-
ture so the underlying independent data dimension can be
lower than the actual data dimension. When we represent
data xxxj in lower dimension as yyyj , the remaining parts rrrj is
the residuals. Adversarial noise injected to the actual data is
mainly represented in residuals rrrj , hence the magnitude of
the residuals ‖rrrj‖2 are expected to be higher than normal
data. Recently a PCA-based online anomaly detection model
is proposed in [42]. Based on this intuition, and the same
partitioning strategy, we follow the PCA-based training steps
for set S1.

1) Compute the sample mean xxx and sample covariance
matrix Q

2) Then, compute the eigenvalue {λj : j = 1, 2, ..., p} and
the eigenvectors {vvvj : j = 1, 2, ..., p} of Q

3) Determine the dimension of yyyt, r, with respect to the
desired level of data variance γ,

4) Form the eigenmatrix corresponding the largest r eigen-
values λ1,λ2, ..., λr: VVV , [vvv1, vvv2, ..., vvvr]
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5) Compute the residual term rrrj−PCA for every sample xxxj
in set S2 as follows:

yyyj = xxx+ VVV VVV T (xxxj − xxx)
rrrj−PCA = xxxj − yyyj (6)

= (IIIp − VVV VVV T )(xxxj − xxx)

6) Finally form the residual term vector DDDPCA with
{‖rrrj−PCA‖2 : xxxj ∈ S2} in ascending order.

C. Robust Deep Autoencoder Summary Statistic

A deep autoencoder-based noise and outlier extraction
technique is proposed in [28] as an unsupervised Robust
Deep Autoencoder (RDA) anomaly detection algorithm. The
proposed RDA learns the normal data behaviours with a
regularization penalty term using different norms. The idea
of the RDA combines the powerful nature of the Robust PCA
model [43] with autoencoders that recover low dimensional yyyt
iteratively by removing the residuals rrrt from the data xxxt.

The training procedure of the RDA-based summary extrac-
tion model starts with pre-training the model with the sample
set S1. After pre-training the model with certain number of
episodes, which is 10 in our experiments, RDA is trained with
sample set S2 and summary statistic DDDRDA = {‖rrrj−RDA‖2 :
xxxj ∈ S2} is formed as a baseline .

D. Sequential Anomaly Detector

In the test phase, summary statistics dt−GEM , ‖rrrt−PCA‖2
and ‖rrrt−RDA‖2 of each anomaly detection model is found
for the new data point xxxt independently. The anomaly score is
expected to be higher in the case of adversarial attack. Since
the procedure is the same for all three models, we explain the
remaining anomaly statistic extraction algorithm for the GEM
model as an example. For a new data point xxxt, once dt−GEM

summary score is computed using (5), tail probability of pt
would be computed with respect to baseline set DDDGEM as
follow:

pt =
1

N2

∑
xxxj=S2

1{dj > dt−GEM} (7)

which shows the fraction of the baseline summary statistics
DDDGEM greater than dt. Given the significance level α, we
can get a real valued statistical score in log scale with

sGEM = log(
α

pt
), (8)

if the tail probability pt < α, we can consider xxxt as an outlier.
We follow the same approach in equations (7) and (8) to
calculate sPCA and sRDA scores. Since the three scores are
independent from each other, they can be calculated in parallel.
For extracting the final anomaly score, we sanitized the three
anomaly scores using a simple averaging as follows:

st =
1

3

∑
(sGEM , sPCA, sRDA) (9)

Note that the anomaly scores st can be positive or negative
values with respect to the existence of anomalies. Instead of

Algorithm 1 Proposed Nonparametric Anomaly Detection
Offline Phase

1: Partition the training set XN into two subsets S1 and S2 with
sizes N1 and N2.

2: Compute GEM baseline set DDDGEM = {dj : xxxj ∈ S2}
3: Compute PCA baseline set DDDPCA = {‖rrrj−PCA‖2 : xxxj ∈ S2}
4: Compute RDA baseline set DDDRDA = {‖rrrj−RDA‖2 : xxxj ∈ S2}

Online Detection Phase
1: Initialization: t← 0, g0 ← 0.
2: while gt < h do
3: t← t+ 1.
4: Obtain the new data point xxxt.
5: Compute statistic sGEM , sPCA and sRDA

6: Form ensemble statistic st with averaging as in (9)
7: gt ← max{0, gt−1 + ŝt}.
8: end while
9: Declare an anomaly and stop the procedure.

sample-by-sample anomaly declaration we propose to use a
model-free CUSUM-like anomaly detection approach [44]:

gt ← max{0, gt−1 + st}, g0 = 0

T = inf{t : max{0, gt ≥ h} (10)

where gt refers to the decision statistic. The anomaly is de-
clared if enough sequential anomaly evidence is accumulated.
The detection threshold h is chosen to strike a balance between
minimum detection delay and lower false alarm rate. While a
lower detection threshold h results in lower detection delay, it
enables higher false alarm rates. The summary of the proposed
anomaly detection technique is shown in Algorithm 1. The
proposed sequential anomaly detector is also robust against
system misbehaviour due to the nature of the cumulative
anomaly detection model.

Fig. 2: Traffic scenario for multi-agent multi-intersection
TSCs.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3118972, IEEE Open
Journal of Intelligent Transportation Systems

8

VI. ADVERSARIAL ATTACK PERFORMANCE

In this section, we evaluated the impact of adversarial at-
tacks on DRL-based TSCs using SUMO [45] real-time vehic-
ular traffic simulator, with Tensorflow Python API1 for DRL-
based controller and CleverHans Python API for adversarial
input generation built upon Tensorflow [46]. We simulated
both a single-intersection and a multi-intersection environment
with DQN and A2C DRL-based TSCs [1], [39]. For the
single-intersection scenario, we observed similar results for
DQN and A2C DRL-based TSCs. For the rest of the paper,
we only present results for DQN for the single-intersection
case. Value-based DQN approaches do not perform well for
large environments. Therefore, we only simulated the multi-
agent A2C (MA2C) model based RL controllers for multiple
intersections traffic scenario organized in 2x2 grid topology.

Experimental settings for DRL-TSCs: A single intersec-
tion DQN-DRL agent has 4 incoming roads with 500 meters
long. MA2C-DRL model coordinates multiple agents at 4
connected intersections as shown in Fig 2 with individual
DRL agents. One traffic intersection has only 3 incoming roads
while the other three intersections have 4 incoming roads. The
roads connecting the different intersections are 1000 meters
long, while the roads on the edges are 500 meters long.
The traffic for both single intersection and multi-intersection
is generated with the arrival rate of one vehicle per second
spanning 1-hour simulation time. The DRL agent selects
among four possible green phases as described in Section
III-B. For each arrival, travel route is assigned with random
origin and destination selection. We trained both DQN and
MA2C agents on the same parameters with 2000 experience
replay buffer size, γ = 0.95 discount factor, 0.00001 learning
rate for DQN and actor network and 0.000005 learning rate
for critic network, respectively. We applied the same DRL
configurations for all attack experiments.

We implemented FGSM and JSMA adversarial attacks for
both white-box and black-box attacks. One technical challenge
we faced is the lack of computational resources to launch these
adversarial attacks continuously (for more than 5 episodes), as
it requires high memory footprints due to the batch gradient
of the NNs2. All our experiments compare the performance
of DRL TSCs with three baselines. One of the baselines is
standard fixed time TSC where traffic lights are allocated to
different phases with pre-defined durations. We also compared
our method with two adaptive controller methods: queue-based
actuated TSC, and max-pressure-based TSC [8]. Maximum
phase duration for both actuated controller and max-pressure
controller is set to be 45 seconds. All the attacks experimented
in this paper starts after 15 episodes and the attack continues
for 5 episodes, where every episode spans one hour of traffic
simulation. After the attack terminates, we observed the perfor-
mance of the learning agent for an additional 20 episodes. In
the absence of attack, DQN achieves the second lowest total

1Allows to create and train ML models without loss of speed or perfor-
mance.

2We employed transfer learning while simulating adversarial attacks on both
single-intersection DQN and multi-intersection A2C scenarios. We saved the
NN model weights after training the agents, and launched the attack using
the latest NN weights. We repeated this for each attack episode.

waiting time (only slightly inferior to Maxpressure) for the
single-intersection case while multi-agent A2C model achieves
the lowest total waiting time for multiple-intersection scenario.

A. White-box Insider Attack

Regardless of the DNN structure, learning models are
vulnerable to white-box adversarial attacks, even with a very
slight perturbation on input data. White-box adversarial attacks
assume that the attacker has access to the target model of
learning policy.

1) Attack Model: Using the target model, launching an
adversarial attack with FGSM and JSMA models on the DNN
of RL agents is possible.The adversary launches the attacks on
DRL-based TSCs by injecting anomaly to the original input
state. Since DNN is the policy of a learning agent, selecting
correct action of the DRL agent will be affected by the white-
box attack.

For FGSM attack, an attacker will perturb the input state
with very small changes that are invisible by the controller.
As pointed out in the original FGSM paper [4], minimal
perturbation leads to the DNN to classify output to a wrong
class. We used the same attack magnitude ε = 0.007 as in the
original FGSM attack [4] for DQN and A2C TSC simulations.

For JSMA attack, the attacker constructs the saliency map
of given input state with respect to randomly selected action
using the forward gradient of the DNN. In this attack model,
we found that the attacker needs to perturb at least 40% of
the feature dimensions to mislead the DRL agent, hence, we
selected γ = 0.4 as an input parameter for our experiments.

2) Results: Fig. 3 and Fig. 4 show the results from FGSM
and JSMA, respectively. After the attack is launched, both
DQN and A2C TSCs perform poorly during the attack duration
with FGSM and JSMA attacks. Although DRL settings are dif-
ferent, single-intersection TSC (Fig. 3(a) and 4(a)) and multi-
agent multi-intersection TSC (Fig. 3(b) and 4(b)) are both
affected, and the total waiting time in the traffic exceeds even
the fixed-time controller. While the total waiting time increases
almost 10x for single-intersection, it increases almost 6x for
multi-intersection immediately after the white-box FGSM and
JSMA attacks are launched. DRL agents cannot respond to
these attack models and the attack continuously effects the
learning agents as long as the DRL agent is targeted because
the DQN and A2C agents do not recognize the attacks. For
FGSM attack, the total waiting time decreases to pre-attack
levels in 5 episodes after the attack ends in both the single-
intersection DQN and the multi-intersection A2C cases. On the
other hand, for JSMA attack, the total waiting time decreases
to the pre-attack levels immediately right after the attack ends.

B. Black-box External Attack

In the black-box attack scenario, the attacker does not have
a precise knowledge about the model. Here, we investigate the
vulnerability of the DNN policies for DRL-based TSCs when
the attacker does not have access to the actual target model.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3118972, IEEE Open
Journal of Intelligent Transportation Systems

9

(a) FGSM attack for single-intersection DQN model. (b) FGSM attack for multiple intersections Multi-agent A2C model

Fig. 3: FGSM White-box and black-box attack results for DQN and multi-agent A2C with 0.007 attack magnitude using
FGSM attack model. Attack continues 5 episodes from 15 to 20. Both white-box and black-box attacks continuously effects
the performance of DRL agent while attack continues.

(a) JSMA attack for single-intersection DQN model (b) JSMA attack for multiple intersection multi-agent A2C model

Fig. 4: JSMA attack continues a) with 10% of data perturbation for single agent DQN model and b) with 40% of data
perturbation for multi-agent A2C model. The attack injects falsified data by selecting specific lanes of the intersection. The
attack starts at episode 15 and lasts for 5 episode and ends in episode 20.

1) Attack Model: The transferability of trained DNNs al-
lows attacker to train a separate learning model and use it
to generate adversarial perturbation. Both FGSM and JSMA
adversarial attacks require knowledge of DNNs for calculating
gradients regarding to the DNN policy. Practically it is not
hard to train a separate policy for TSCs using real traffic maps
on traffic simulators, and an attacker can do this training at
a very low cost. In this work, we are proposing a practical
black-box attack strategy where the attacker uses the same
number of layers for training a different DNN policy as the
original learning agent. Also, for training a separate DNN,
the attacker considers linear activation functions instead of
the ReLU and Random Uniform DNN initialization technique

instead of Glorot initialization [47]. We assumed that the
attacker is not able to predict true travel demand on the
simulator. Therefore, we trained our adversarial policy with
slightly different traffic demands. Since we simulate the same
adversarial attacks with black-box attack settings, to have a
precise comparison, we kept the same attack magnitudes as
ε = 0.007 for FGSM attack and γ = 0.4 for JSMA attack
similar to white-box attacks.

2) Results: The results of black-box adversarial attacks on
DRL TSCs have similar patterns with the white-box attacks
for FGSM attack model. However, the impact of the JSMA
attack decreases to the half compared to white-box JSMA
attacks in terms of the total waiting time. The results for the
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Fig. 5: Feature-based vectorized state representation.

three baseline TSCs are almost identical across two adversarial
attack models. Red dashed lines in Fig. 3 and Fig. 4 shows the
adversarial attack results for DQN and multi-agent A2C under
black-box attacks. Similar to the white-box settings, the DRL
agent is severely impacted by the attack resulting in average
9x and 6x increase in total waiting time in single and multi-
intersection scenarios respectively during the FGSM attack.
The black-box JSMA attack increases the total waiting time 5x
and 3x for single intersection and multi-intersection scenarios
likewise FGSM attack. The impact of the attack continues
throughout 5 attack episodes by performing worse than the
other three control methods in both attack cases. Similar to
the white-box attack case, while the recovery period of DRL
agent under FGSM attack is about 4 episodes after the episode
24th, DRL agent recovers itself immediately after the attack
terminates for JSMA attack.

C. Robustness Against Noise

1) Noise Injection Model: After assessing the vulnerability
of DRL-TSCs against specific adversarial attacks, it is also
essential to test the performance of TSCs in the presence
of intrinsic noise. The impact of the noise on the learning
agents is discussed in terms of the action selection [48] and
state observation [49]. Here, we evaluate the performance
of the DRL-TSC controller when additive noise is injected
into the state observation as measurement noise. For each
experiment, noise is injected with fixed zero mean and varying
standard-deviations between 0.05 and 0.6. We followed the
same attack procedure as we did for FGSM and JSMA attacks
and injected noise to the DRL agent after training with 15
episodes. Also, zero mean noise might result in some state
features to go below zero. To prevent this, negative values are
filtered with floor function. There are two scenarios with noisy
state observation. The observation might be noisy in training
or in the implementation phase due to unexpected conditions
of the environment.

2) Results: We first trained our DRL agent with noisy data.
It is seen that both DQN and MA2C agents are robust to
measurement noise up to a certain standard deviation: 0.4
for the DQN agent and 0.2 for the MA2C agent. The DRL
performance fluctuates in the first few episodes during training.
Noise larger than 0.4 for DQN and 0.2 for MA2C results in a

higher total waiting time and hence increased congestion. The
DRL agent learns how to behave in a noisy environment with a
lower noise magnitude and reaches optimal performance after
enough training. Regarding the implementation phase, noise
above the 0.2 standard deviation affects the single intersection
DQN agent. On the other hand, the noise deteriorates the
performance of the MA2C agent after 0.1 standard deviation.
Besides, the additive noise impacts the DRL agent for DQN
and MA2C continuously during the noise injection phase.
After the noisy episode ends, the DRL agents behave as the
second-best controller following the max-pressure for single
intersection DQN and the best controller for multi-intersection
MA2C. The higher noise has a twofold impact on DRL-TSC.
First, noisy data causes more congestion during the attack
period, and it takes time for the DRL agent to return to normal
behavior when the noise disappears.

VII. ADVERSARIAL DETECTION PERFORMANCE

After showing the vulnerability of DRL-TSCs against ad-
versarial attacks, we evaluate the proposed statistical anomaly
detection model on DRL-TSCs. The nature of adversarial
attack for white-box and black-box attack settings are almost
the same in terms of the data perturbation. Therefore, in this
section, we only evaluated the detection performance on white-
box FGSM and JSMA adversarial attacks on single intersec-
tion DQN-TSC and multi-intersection MA2C-TSC (see Fig.
2). We also use the same attack magnitudes and DRL settings
as described in Section VI for evaluating the performance of
statistical detectors.

For evaluating the ensemble statistical detection perfor-
mance, we compare the proposed algorithm with individual
adversarial detectors PCA, RDA and GEM models. We use the
same CUSUM-like detection structure on each model. Note
that each anomaly detection algorithm is most effective in
recognizing different anomaly types. While noise injections
on all input vectors such as FGSM attacks can be detected by
PCA anomaly detection model easily, selective perturbation-
based anomalies such as JSMA can be detected with RDA and
GEM models effectively.

We quantified the detection performance in terms of three
metrics. Quick and accurate detection performance is pre-
sented with average detection delay vs false alarm rates,
which is our first result representation. Later, we present
the performance of sequential detectors on ROC (Receiver
Operating Characteristics) curve and AUC (Area Under The
Curve) scores which are the two leading performance metrics
for classification tasks. While ROC is the probability curve for
true positive rate vs false positive rate, AUC score quantifies
how much the model is capable of distinguishing between
classes.

A. Sequential Detector Setup

To generate training and test sets for sequential detectors, we
collect anomaly-free training states and test sets that include
anomalies from the DRL-TSCs. For single intersection TSC
model, the DRL setup has relatively low dimensional state
format since each lane corresponds to two dimensions in state



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2021.3118972, IEEE Open
Journal of Intelligent Transportation Systems

11

(a) FGSM on DQN-based single intersection DRL-TSC (b) JSMA on DQN-based single intersection DRL-TSC

(c) FGSM on MA2C-based multiple intersection DRL-TSC (d) JSMA on MA2C-based multiple intersection DRL-TSC

Fig. 6: Comparison of sequential detection performances in terms of average detection delay vs false alarm period.

vector which are the number of vehicle and average speed.
This form of state known as feature-based vectorized state
representation (Se Fig. 5). The number of vehicle and average
speed per lane states are concatenated to form final state
representation. For example, the state definition for our single
intersection DQN-TSC , which has 4 incoming roads with a
4 lane single intersection, is 32 units column vector.

Regarding the single-intersection DQN, sequential detectors
are trained with 1 episode of anomaly-free traffic flow. Then,
the detectors are trained on FGSM and JSMA adversar-
ial attacks using 50 test episodes where adversarial attack
starts after 200 state samples. Regarding the multi-intersection
MA2C, we followed similar data collection procedure with
slight changes. In our MA2C model, every intersection has
a different number of approaching lanes, therefore, the state
dimensions varies in MA2C model. We have 3 groups of state

representation for 4 intersections as 82, 86, 92. After collecting
neighborhood information, two of four intersections have the
same size of state dimensions. Due to having different state
dimensions, each agent of MA2C model is trained and tested
separately, then, test results are concatenated. Adversarial
attack for 1 episode is highly time consuming. Hence, the
number of test samples are relatively low which is 35 MA2C
episodes. In total, we have 105 test trials for MA2C-TSC
model.

B. Results

Fig. 6 shows average detection delay vs false alarm proba-
bility results for the proposed ensemble model compared with
the other statistical anomaly detectors. We observe that the
proposed ensemble model has the lowest detection delay vs
lower false alarm probability on FGSM attack to the single
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(a) FGSM on DQN-based single intersection DRL-TSC (b) JSMA on DQN-based single intersection DRL-TSC

(c) FGSM on MA2C-based multiple intersection DRL-TSC (d) JSMA on MA2C-based multiple intersection DRL-TSC

Fig. 7: ROC curves for different attacks and TSC settings with the proposed anomaly detection model.

intersection DQN model (Fig 6(a)) and JSMA attack to multi-
intersection MA2C model (Fig 6(d)). The ensemble model also
performs closer to the other statistical detectors for JSMA
to single intersection DQN (Fig 6(b)) and FGSM to multi-
intersection MA2C (Fig. 6(c)). Due to invisible nature of
FGSM attack, all detectors have higher detection delays. The
proposed ensemble model is the second best detector among
all. Except for FGSM attacks on MA2C, the ensemble model
detects the adversarial samples within less than 10 samples.
This means that the ensemble detector informs the DRL
agent within 10 adversarial samples, which is small enough
for taking an action against adversarial attack. The ensemble
model is able to handle multiple adversarial attack types on
different controller settings. The results can be extended to a
broader range of adversarial attacks that may target the DRL-
TSCs. One proposed mitigation strategy on top of detecting

the anomalies is switching to another TSC model such as max-
pressure TSC after attacks are detected.

Next, we analyzed the overall detection performance with
ROC curve and AUC scores. Since anomaly detectors are
simple binary classifiers, evaluating the accuracy of anomaly
detectors with the ROC classifier curve is important where the
curve does not assume any distribution on data for producing
classification performance. As depicted on Fig 7 and sup-
ported by the AUC scores in Table I, the proposed ensemble
model outperforms all the other statistical detectors. While
the statistics in bold shows the best detection performance,
statistics in green tells the second best detection performance
in Table I. It is clear from the statistics in green that different
statistical anomaly detectors performs differently on different
threat models, however, the proposed ensemble model has a
clear advantage over the other detectors with almost perfect
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detection performance.

TABLE I: AUC scores for different baselines for all configu-
rations

TSC-Attack PCA RDA GEM Ensemble

DQN-FGSM 0.9844 0.9749 0.9839 0.9895
DQN-Jacob 0.9950 0.9980 0.9979 0.9994

MA2C-FGSM 0.9549 0.9258 0.9028 0.9637
MA2C-Jacob 0.9942 0.9951 0.9954 0.9978

VIII. CONCLUSIONS

We have demonstrated the impact of adversarial attacks
on DRL-based TSCs for a single-intersection and multiple
intersection cases using different threat models. First, we
evaluated the adverse impact of two adversarial attack models:
FGSM and JSMA using white-box, and practical black-box
settings. The results show that the performance of a DRL agent
decreases sharply after the attack starts in all attack models and
total waiting time increases become worse than the standard
TSC methods. While, white-box FGSM and JSMA attacks
affects the learning performance with similar impact. black-
box FGSM attacks has severer impact compared to black-box
JSMA attacks. Second, we presented a non-parametric online
anomaly detection model which detects different anomalies
sequentially by combining three existing anomaly detection
models with a CUSUM-like algorithm. Through realistic
SUMO traffic simulations, we evaluate the online detection
performance of various anomaly detection approaches in the
presence of adversarial attacks. The results show that the
proposed ensemble model achieves superior performance in
detecting anomalies in all threat models compared to other
existing anomaly detectors.

The proposed study provides a security mechanism for
known attack models. However, there are still some limitations
that need to be addressed with further studies. While there
are many different attack models, the vulnerability of DRL-
TSCs should be evaluated with more threat models. This paper
provides a novel anomaly detection model for DRL-TSCs but
practical mitigation strategies and internal system robustness
mechanisms should also be investigated. For future work,
we plan to investigate other types of adversarial attacks and
provide an integration mechanism with the proposed anomaly
detection model and internal robustness mechanisms.
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