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ABSTRACT Head pose estimation based on a single image is a challenging endeavor because of the 

complex background conditions and characteristics of the human face. In this report, we propose a Multi 

stage Regression-Capsule Network (MR-CapsNet) to predict head posture based on a single image input. In 

the study, we used the residual attention block and squeeze-and-excitation block to extract features in three 

levels. CapsNet overcomes the shortcomings of the traditional convolutional neural network and 

implements module aggregation to describe the spatial relationship of features after aggregation, in addition 

to realizing a compact and robust model using a multi-stage regression scheme. We tested our method on 

the AFLW2000 and BIWI datasets obtaining mean absolute errors of 4.26% and 3.95%, respectively. In 

addition, we discuss the accuracy of our method in the case of eye or mouth occlusion. The results of 

comprehensive experiments reveal that our method can accurately predict head posture. 

 

INDEX TERMS Head pose estimation, Multi-stage Regression, Squeeze-and-excitation Block, Capsule 

Network 

I. INTRODUCTION 

The development of a variety of perceptual devices has 

served as the basis for recent advancements in personalized 

entertainment. Head pose estimation is an essential part of 

human-computer interaction, which can provide information 

on the direction of human attention. The prediction of head 

pose based on a single image is still a challenging task. The 

head pose can be represented by a three-dimensional vector 

that includes the top view, roll, and yaw angles [1]. To 

extract head pose information from images, it is necessary to 

determine the feature mapping between two- and three-

dimensional space. The head pose estimation task involves 

inferring the head pose direction based on images acquired 

using a camera. In a driving system, it is possible to ascertain 

the driver's attention and consciousness based on position 

information [2]. Head pose information is also important for 

human-computer interaction [3]. The system can interact 

with the user’s head monitoring software [4][5] to estimate 

the level of interest. 
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The process of head pose estimation and related tasks is 

often associated with many challenges, such as imaging 

problems due to the camera system, complex backgrounds, 

blurred targets caused by different light sources, and target 

occlusion problems [6]. In real space, the use of human 

vision to obtain information often results in significant 

challenges. Human vision is often too fuzzy to perceive 

distant objects, and in the case of dim or poor lighting, head 

pose estimation may result in failure. Therefore, in the field 

of computer vision, the face alignment method is used in 

many face detection algorithms [7][8], which places the 

target information in the same semantic domain as that of the 

simplified object being detected. In previous studies, the 

influence of the background on the target was effectively 

eliminated using facial localization and image clipping, and 

the impact of noise caused by an image-independent target 

was reduced [9]. 

The traditional workflow is based on deep learning, 

especially convolutional neural networks (CNNs) [10]. These 

traditional networks have a wide range of learning 

capabilities, but they also have some key shortcomings. For 

example, the lack of local equivariant features leads to weak 

generalization ability necessitating additional parameters for 

the construction of a deep network whereby the location 

relationship between local and global features is no longer 

well-maintained [11], and the robustness is not high. To 

overcome the shortcomings of CNNs, CapsNet was recently 

proposed by Sabor [12]. Each capsule in CapsNet is a group 

of neurons that can represent different instantiation 

parameters related to different targets and their probability of 

existence. There has been significant interest in the use of 

CapsNet in different application fields and the development 

of different variants. CapsNet has a particularly important 

feature,a unique "routing" process can effectively handle the 

transformation model. Only when the son-capsule is 

consistent with the predicted value, it can be transformed into 

the parent capsule. Recently, a technique was incorporated 

into CapsNet to enhance its robustness to transformation. 

CapsNet is highly sensitive to the image background, which 

contributes the accuracy of head pose estimation and 

classification as the detailed information on the position and 

pose of the object has to be retained, which in turn is useful 

in learning relations, determining the exact position of the 

extracted features, and establishing the representation of the 

object in terms of partial hierarchical structures [13]. 

The classic head pose estimation methods include machine 

learning [14][15] as well as appearance template [16][17], 

geometric model-based [18][19], depth image-based [20], 

and landmark-based methods. To estimate the head pose 

from an image, it is necessary to perform a mapping from 

two- to three-dimensional space. Compared to traditional 

RGB images, depth images can retrieve missing 3D 

information from 2D images and provide additional 

information to estimate head posture. At present, the depth 

camera has not been popularized and can only be used in 

certain fixed places. Moreover, the required computational 

burden and memory is too large for small servers. In the 

landmark-based method, Adrian [21] proposed converts 2D 

landmark annotations into 3D, to reasonably enhance and 

summarize the existing data set. In the course of studying the 

various aspects of face alignment with respect to different 

factors, training of the neural network model achieved 

excellent accuracy. Other methods include the component-

based discrimination method proposed by Lin [22], which 

uses a discriminative search algorithm to identify the shape 

of the face in the component. The classifier can detect the 

facial components in the configuration of the face component 

to effectively improve the accuracy and efficiency of face 

detection. These methods first recognize the road signs of the 

face, and then use them to predict the head pose. In the 

model-based method, Martins [23] proposed a framework to 

automatically estimate the pose of the human head in a 

single-view image. This method uses a 3D rigid model of the 

human body as an approximation of the human head, 

combined with an active appearance model. With respect to 

facial feature extraction and tracking, Krinidis [24] proposed 

a method to estimate head pose in a single-view video 

sequence. First, a face detector is used to detect the face; then 

a deformable surface model approximates the tracking 

technology of facial image strength; and finally, a feature 

vector is used to realize the head pose. Estimation methods 

use key points of the face to construct three-dimensional 

head models, and then obtain the result by training the 

appearance model. FSA-Net [25] uses a hierarchical coarse-

to-fine classification strategy, then a soft phase stepwise 

regression scheme to extract intermediate features followed 

by aggregation and regression to predict the final head pose. 

Based on the deep learning method [26], a convolutional 

neural network (CNN)-based model is constructed using 

CNN to estimate the pose of the human head in low-

resolution multi-modal RGB-D data. Kumar et al. [27] 

proposed a method to correlate the trajectory of key points 

with the trajectory of the head posture, which changes the 

prediction results in accordance with the transformation of 

landmarks. Yang [28] proposed an advanced capsule network 

of RS-CapsNet, which improves the capsule network on the 

basis of the original network architecture and addresses the 

shortcomings of the capsule network pertaining to weak 

feature extraction ability and multiple training parameters, to 

achieve good performance in image classification. Xia et al. 

[29] proposed a face marker-assisted pose estimation method. 

In their work, they combined landmark-based face images 

with channel-level grayscale images for head pose prediction 

[30]. Ranjan et al. [31] regularized the shared parameters of 

the CNN, and a synergy effect was established between 

different fields and tasks such as smile detection, age 

estimation, and face recognition. Gu et al. [32] proposed a 

face feature tracking algorithm based on an RNN. Hyperface 

[33] uses a CNN to learn common features in the middle 

layer, which are then inputted into the multitask learning 
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network for face detection, head pose estimation, and facial 

gender information. FacePoseNet [34] uses a CNN to 

perform 3D head pose regression, based on camera 

positioning, as auxiliary information for target recognition to 

improve precision. HopeNet [8] calculates the yaw, pitch, 

and roll angles by combining Resnet50 [35] and multiple loss 

functions. Zhao used multi-feature fusion to obtain head pose 

estimation. Wu used hog and pyramid settings to describe 

local gradient features and global shape features of the image 

of the face to facilitate head pose estimation in the local 

occlusion state [36]. Abate [37] proposed the Web-shaped 

Model algorithm to encode the posture of the face, and then 

regression for further face posture prediction. This method 

improves the sensitivity of head posture estimation and 

prediction accuracy. Recent studies have shown that 

multitask learning [38] can achieve better results compared to 

a single task.  

Hence, the main contributions of this paper are: 

1. We proposed a head pose prediction model based on 

multi-stage Regression-CapsNet (MR-CapsNet). We built a 

detection model based on feature extraction, feature 

aggregation, and multi-stage regression. The model can 

obtain multi-stage feature information. The probability vector 

of different stage features are then dynamically combined to 

predict and improve the accuracy of head pose estimation. 

2. We created an accurate feature extraction network, 

which uses an efficient attentional mechanism model to 

combine the residual attentional block [38] and squeeze-

excitation (SE) block [39]. The network does not only 

enhance the feature information extraction ability of the 

network, but also highlights useful features while suppressing 

useless ones. This structure can better explain the spatial 

relationship of target features and more accurately estimates 

the head posture. 

3. We first applied the capsule neural network to the head 

pose estimation task. We applied the capsule structure of the 

network during the feature aggregation stage of head pose 

estimation, then constructed intermediate capsules using the 

"vertical and horizontal sliding method Windows" to select 

feature information, and finally used the linear combination 

method between capsules to enhance the representative 

ability of capsules. Compared with traditional CNN, our 

method can better discern the spatial relationship of features 

and improve the prediction accuracy of partially occluded 

faces. 

The structure of this paper is as follows: the second section 

introduces the theoretical basis of the model in our algorithm, 

the third section provides the training details and 

experimental results, and the fourth section presents the 

conclusion. 
II. METHOD 

The flowchart in Figure 1 illustrates our head pose 

estimation algorithm based on the capsule neural network 

and multi-stage regression. The algorithm can be divided into 

three parts: (1) The feature extraction network performs the 

main feature extraction; (2) Capsule network performs 

feature aggregation on feature information; (3) Multi-stage 

regression obtains the probability vector of each stage. 

First, we preprocess the input image to detect the head 

region. Then we output the detected image as input into the 

feature extraction network. In this network, we divide the 

feature extraction into three stages. Each stage is processed 

by a residual attention block and an SE block to improve 

feature processing, to strengthen feature weights of key 

information, and to enhance facial feature extraction 

capabilities. There is continuity between the stages to ensure 

that the effect of feature extraction is enhanced layer by layer. 

Then, the feature maps obtained in these three stages are 

inputted into the feature aggregation network. We 

constructed the intermediate capsule through feature 

selection so that our capsule neural network would be more 

sensitive to spatial information. The capsule neural network 

linearly combines the information graphs, and passes them 

through a dynamic routing algorithm to obtain richer feature 

information, which enhances the network's ability to 

understand the extracted facial features and reduces the 

impact of missing facial feature information on the prediction 

results. Finally, we combine the feature maps of the three 

stages to perform multi-stage regression to obtain the 

required probability vectors to improve our prediction 

accuracy. 
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FIGURE 1. Flow of proposed algorithm

A.  FEATURE EXTRACTION 

Our network is based on the network proposed by Song et al. 

[38], which is a compact model for age estimation from a 

single image. Our feature extraction network has three 

branches. Each branch consists of convolution, weight 

normalization, activation, three basic residual blocks, a 

pooling layer, and SE blocks. In addition, residual attention 

blocks are embedded into each stage. The structure of the 

residual attention block is also composed of convolution, 

weight normalization, channel, spatial attention, and a fusion 

layer, similar to the structure depicted in Fig. 1. Different 

filter cores and down-sampling methods are used for the 

residual unit. The feature maps with different kernel sizes are 

combined by multiplying the elements of the two feature 

maps generated by channel attention. Then, the features maps 

are inputted into the aggregation space, which focuses on the 

process of constructing the head rotation. This is illustrated in 

Fig. 2. 
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FIGURE 2. Flow of the feature extraction algorithm

1) PROBLEM FORMULATION 

Recently, head pose estimation based on a single facial 

image was studied with respect to convolutional networks. 

Usually, a set of trained facial images  

( ) ( ) ( ){ }1 1 2 2, , , ,..., ,n nx y x y x y is used, where 
i

x  indicates 

the i-th facial image and 
i

y indicates the 
i

x head pose 3D 
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vector. The head pose vector can be subdivided into three 

angles: yaw, pitch angle, and roll. The goal is to learn the 

mapping function F, and obtain  ɶ ( )y F x= to predict the head 

pose angle of the input image， 

ɶ
0

R

i ii
y p l p l

=
= =
�� �
i i         （1） 

where R indicates the range of the head pose angle, and 
i

p  

indicates the probability of the 3D vector
i

l . In addition, to 

ensure the accuracy of the algorithm, we use the Mean 

Absolute Error (MAE) as the evaluation standard to reduce 

the error between the predicted head pose angle and the 

ground truth label, 

( ) �
1

1 N

n nn
J x y y

N =
= −           （2） 

where � ( )n ny F x= is the predicted pose for the training 

image nx . 

2) FACE DETECTION 

In the unconstrained case, the human head may have a large 

angle conversion and low resolution in a remote image; 

therefore, a relatively stable head detector is required. We 

chose MTCNN [40] as our detector, which can achieve real-

time head detection at different scales and angles for a 

complex background. MTCNN combines face region 

detection with face key point detection, and its framework is 

similar to a cascade. It can be divided into three layers: P-net, 

R-Net, and O-net, which yields a robust detection. 

3) RESIDUAL ATTENTION BLOCK 

The residual attention block is a type of attention unit that 

promotes facial feature extraction via transform-ations as 

follows: 

� �
/ / /

: , ,H W C H W CF X X X R X R× × × ×→ ∈ ∈   (3) 
( )F • can be regarded as a standard convolution operation 

along the channel and spatial dimensions. For the channel, 

we used the multi-scale kernel and pooling operations to map 

features to obtain distinguishable vectors, and then the results 

were fused by channel multiplication. The calculation of the 

space dimension is the same as that of channel size. Figure 3 

depicts a more detailed description of the architecture of the 

residual attention block. 

Channel-Wise Multiplication

GlobalMaxPool

GlobalAvgPool

Fully Connected 

Layer

Element-Wise Addition

Channel-Wise Addition

Input feature

 FIGURE 3. Architecture of the residual attention block 

4) SQUEEZE-AND-EXCITATION(SE) BLOCK 

The SE block is a type of attention block based on a feature 

graph channel. The core idea of an SE block is to learn the 

feature weights according to the loss, increase in the weights 

of the effective feature map, and to be able to reduce the 

weights of invalid or small feature maps to achieve better 

results. It has been demonstrated that SE blocks can improve 

the performance of a network with minimal computational 

cost. The architecture of the SE block is shown in Fig. 4.  

SE blocks map any given input graph into the network 

module. 
/ / /

: U,X ,UH W C H W C

tr
F X R R× × × ×→ ∈ ∈

 （4） 

Here, X is the input graph and U is the extracted feature. 

To establish the dependence between channels, we need to 

squeeze the feature u, and aggregate the feature graph to 

obtain a graph with dimensions W H× , which is used as the 

feature descriptor. Then, ( )sq
F • ，the spatial information of 

the global receptive field of each feature graph, is placed into 

the feature graph, which is referred to as the a descriptor. The 

network layer can then obtain information of the global 

receptive field, based on the descriptor feature map. To 

address the problem of exploiting the correlation between 

channels, SE blocks use the ( )sqF • squeeze operation to 

build correlations between the channels. 

1 1

1
(u ) (i, j)

H W

c sq c c

i j

z F u
H W = =

= =
×          (5) 

where the subscript c represents the channel, 
u

c represents the two-dimensional matrix with channel C in 

U. 

Next, the aggregate information obtained from the 

compression operation is used to fully capture the 

dependency on channel dimensions. To achieve this goal, we 

use the following: 

( ) ( )( ) ( )( )2 1,w ,exF g z W W W zσ σ σ• = = i i i  (6) 

where σ  is the Relu function, 1W , 2
W  are the two fully 

connected layers. The second fully connected layer is 

followed by the sigmoid function. After these operations are 

completed, the weights of the feature map are obtained, and 

these weights are fused with the original view features: 

( ),scale c c c cF u s u s=           (7) 

where ( ),
scale c c

F u s  denotes 
c

s  and the feature map   
H W

cu R
×∈ scaling index is multiplied by. The function of the 

two full connection layers is to fuse the feature map 

information of each channel. After the exception operation, a 

set of channel weights S' is generated, which represents the 

weight of the feature maps between the channels. The 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3119615, IEEE
Access

 

 

enhanced feature map can then be obtained by multiplying S' 

and the input feature map. 
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FIGURE 4. Architecture of the SE block 

B. FEATURE AGGREGATION 

The role of the aggregation module is to aggregate a small 

number of representative features of the calculated feature 

maps into local maps. For the aggregation module, we 

consider CNN and CapsNet. We determined that CNN is 

ideal for capturing the existence of features because its 

convolution structure is designed for this purpose. However, 

when exploring the relationship between feature attributes, 

CNN is not optimal, causing the input image to lose the exact 

target information of the feature detector. As such, CNN does 

not successfully identify the object in case of rotation or 

other similar situations. In head pose estimation, the human 

head often has a large rotation angle, and a method based on 

CapsNet is proposed to overcome the limitations of the CNN 

method. 

The CapsNet in this work was inspired by the RS-

CapsNet architecture, which is designed for feature fusion. 

Therefore, we use CapsNet as our aggregation module for the 

features. In addition, to reduce the amount of calculation and 

capsules, we use a 1 1×  convolution layer to reduce the 

number of channels. We remodel all the realized feature 

maps into capsules, using the linear relationship between the 

capsules to fuse features and halve the capsule to enhance its 

ability to express features. We obtain different types of 

capsules for different local feature maps, implement a 

dynamic routing algorithm for them, and construct capsules 

that can represent most of the objects. Each local feature map 

can construct 
3

N  capsule networks, where each capsule is 

2D  Finally, the intermediate capsule constructed using the 

local feature map and the original capsule obtained by feature 

mapping are used to obtain the classified capsule. 

1) FEATURE SELECTION 

We first divide the feature map generated by the last 

convolution operation of the input image into small local 

feature maps, which are then used to construct the 

"intermediate capsule." This capsule can represent most of 

the detected objects. The intermediate capsule and the 

original capsule obtained by feature mapping are used to 

obtain the classified capsule. Regarding the problem of "how 

to slice the feature map," we recommend using vertical and 

horizontal sliding windows, as illustrated in Fig. 5. There are 

two reasons for selecting the vertical and horizontal sliding 

window methods. First, for objects with horizontal, vertical, 

or other symmetrical structures, the "vertical and horizontal 

sliding window" method is more conducive to maintaining 

their integrity; second, we expect to use the maximum 

number of small local feature maps. Compared with the 

traditional sliding window method shown in Fig. 5, the " 

Improved sliding window" method allows for more local 

feature maps. 

 

(a)Traditional sliding windows 

 
(b) Improved sliding windows 

FIGURE 5. (a) ：traditional sliding windows method, (b) ：the improved 

sliding windows is a vertical and horizontal sliding method 

2) LINEAR COMBINATION BETWEEN CAPSULES 

To address the problem of the presence of redundant 

information in the background of the input image, we use a 

linear relationship in the capsule, and remodel the feature 

map into capsules such that each capsule represents the 

detection object in the input image. We then construct a 

connection between the capsules in the same position, and 

finally use the linear relationship of the capsule in the input 

image. The aforementioned linear combination method is 

utilized to flatten the capsules, maintain their length in [0,1], 

cause their direction to be constant, and provide a more 

nonlinear relationship for the entire network. Fig. 6 shows 

the linear combination method between capsules with the 

same pixel location. 
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FIGURE 6. Linear combination between capsules. 

3) DYNAMIC ROUTING ALGORITHM 

In the capsule network, the length of the capsule represents 

the probability that the target is correctly detected.  

Dynamic routing based on EM uses the maximum likelihood 

estimator and clustering technology to group capsules into a 

part–whole relationship. 

The coupling system of higher capsules is calculated by 

estimating their activation degree and their probability values. 

In network regularization training, routing is not combined 

with image reconstruction. By converting convolution and 

routing to a specific computing domain, the number of 

parameters can be significantly reduced to achieve better 

results. 

Based on the results of the comparison, dynamic routing 

based EM is more suitable when the image size changes. 

The dynamic routing algorithm works as follows: 

 

Algorithm 1 Dynamic Routing 

Routing 
ɵ( ), ,j i r lu  

for all capsule i in layer 1l −  and j in layer 

: b 0
ij

l ←  

for r iterations do 

for all capsule i in layer 

( )1:
i i

l C softmax b− ←  

for all capsule j in layer 
ɵ:

j ij iji
l s c u←  

for all capsule j in layer 

: v (S )j jl squash=  

for all capsule  in layer 1l −  and j in 

layer  
ɵ: j iij ij j

l b b u v← + i  

return j
v  

 

C. MULTISTAGE REGRESSION 

In traditional age estimation, to improve the accuracy and 

simplicity of age classification, usually one year is used as 

the interval. However, given the large number of network 

parameters and the need for a large amount of computing 

resources, the training network becomes both complex and 

time-consuming. To address this shortcoming and maintain 

the accuracy of age prediction, the scale of the deep neural 

network is reduced to produce a more compact and effective 

network, which can transform a regression into a multi-stage 

process.  

As shown in Fig.7, the structure of the multi-stage 

regression module is as follows: the main branch is 

composed of 1×1 convolution; ReLU activation function, 

pooling layer, and three function quantities are output 

through three branches, respectively. The first branch outputs 

θ  directly through the full connection layer and the tanh 

activation function. The second branch outputs p
��

through the 

dropout layer, the full connection layer, the tanh activation 

function, the full connection layer and the softmax function. 

The third branch outputs β
��

 via the dropout layer, the full 

connection layer, tanh activation function, the full connection 

layer and tanh activation function. 

Input 
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（1,1）
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β
��
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FIGURE 7. Stage prediction module
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The model predicts Head Pose based on multistage 

regression: 
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where ( )0 1, , ,
R
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��

 is the index distribution of each 

probability, which is taken from the top level of the model,  

l
�

 is the representative index of each probability, and i
s  

represents the width of stage I before adjustment. To 

determine the error of the result; 
i

θ  is the factor that 

determines the degree of change of the stage width; 
s

β
��

 is the 

offset vector; and s

i
l  is the size. Given an input image, the 

parameters of each stage, ( ), ,
i i

i

s s

sp β θ
�� ��

 are outputted. Finally, 

we print our predicted value ɶy . 

The multistage regression formula can be applied to any 

regression problem. In this study, we apply multistage 

regression to head pose estimation. Unlike the age estimation 

problem, the pose estimation problem obtains vectors instead 

of a scalar. 

Ⅲ. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we describe our experimental process in detail 

as shown in Fig.8. The experiment was divided into four 

parts. In the first part, we introduced the evaluation criteria 

for the experiment. In the second part, we described some 

basic experimental settings. In the third part, we provide the 

details of the experimental training. Finally, we present the 

results of head posture prediction using different assessment 

schemes. 

 

Experiments and 

Discussion

Experimental Criterion

 Experimental Setting

Experimental Result 

and Analysis 

Training Deatails

1) Evaluation of the IN-

THE-WILD Model

2) Evaluation of the 

LABORATORY Model

3) Evaluation in the 

Partially Occluded Case

1) CapsNet Setting

2)IN-THE-WILD 

Model Setting

3)LABORATORY 

Model Setting

4) Experimental 

Platform

 

FIGURE 8. Experimental framework 

A.  EXPERIMENTAL CRITERION 

In the following experiments, we evaluate the experimental 

results using MAE: 

1

1 N

i iI
MAE l l

N =
= − ɵ

            (9) 

where ilɵ  and 
i

l  are the ground truth label and the final 

predicted value of the yaw, pitch, roll angles of the i-th image, 

respectively, and N is the total number of images of the test 

set clock. 

B.   EXPERIMENTEL SETTING 

1） CAPSNET SETTING 

We consider that n is the number of intermediate capsules 

generated by each feature map 
3

N . This value cannot be too 

large because the capsule is different from that of a CNN as it 

is generated by the routing process, represents the 

characteristics of the target object rather well, and does not 

contain too much superfluous information. Moreover, the 

value cannot be too small because we obtain the 

classification capsule based on the weight of the sub capsule. 

If it is too small, it cannot achieve a good effect. Therefore, 

we set 
3

N  to 16.  

Given that the original capsule 
2

D  is constructed directly 

from the feature map, there is significant surplus information. 

Thus, the routing intermediate capsule better represents the 

target. Therefore, we changed the size of the original capsule 

2
D to 8. 

2） IN-THE-WILD MODEL SETTING 

There are three head pose estimation datasets used in the 

experiment, consisting of 300W-LP [30], AFLW2000 [30] 

and BIWI [41]. 

We trained the IN-THE-WILD model using the 300W-LP 

dataset. 300W-LP is a simulation dataset based on the 300W 

dataset and the 3DMM dataset. A 3D model is constructed 

using a 2D image to simulate head pose estimation. The 

model is then gradually flipped to further enhance the effect 

of the dataset. The dataset contains large-angle images, and 

122450 flipped images are expanded on this basis. It is a 

good dataset for training head pose estimation models. 

AFLW2000 is a challenging dataset, which consists of a 

large-scale face database with multiple poses and multiple 

angles It provides real 3D facial pose angle landmarks for the 

first 2000 images of the AFLW dataset, including pose 

changes of different characters under different scenes and 

luminosity. We use the AFLW2000 dataset to test the model, 

which can verify the generalization ability of the model. 

3） LABORATORY MODEL SETTING 

We trained the laboratory model using the BIWI dataset.  

The BIWI dataset was created using Kinect sensors. It 

consists of 24 sequences with a total number of 15.6 K 
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frames, and includes 1000 high-quality 3D face pose data 

samples captured using RGBD cameras, including 24 RGBD 

cameras capturing 20 different people and 24 videos of 20 

different characters, head pose range including 

approximately ±75° yaw and ±60° pitch. The dataset consists 

of about 15,000 images, including not only RGB images, but 

also depth images and annotations. Unlike the other two 

datasets, which were collected from the field, all BIWI 

images were taken indoors, it can verify the detection ability 

of the model in the indoor environment. 

4） EXPERIMENTAL PLATFORM 

In this work, all experiments were conducted on a platform 

with a Windows 10 operating system, an NIVIDIA GeForce 

RTX 2060 with 8 GB graphics memory, and an Intel Core i7-

4790K with 16 GB memory. The software platform is 

Python 3.7.3, based on the Keras and Tensorflow1 

framework. 

C.  TRAINING DETAILS 

We used Adam [42] as the optimizer for training, and the 

initial learning rate was set to 0.001. The learning rate was 

decreased by 0.1 times every 30 periods. To enhance the 

ability to process blurred and zoomed images, random 

clipping and random scaling were applied to the training 

images to augment the training data. The 3D rotation of the 

Z-axis in the X-Y-Z axis was consistent with the 2D rotation, 

thus the rotation of the head along the X-Y-Z axis was fixed. 

Therefore, to establish a better relationship between image 

and head posture, we converted the Euler angle of Z-Y-X to 

X-Y-Z to reduce the average prediction error. 

For the IN-THE-WILD model, training was performed 

on the 300W-LP dataset, whereas the AFLW2000 and BIWI 

datasets were used for testing. When using the BIWI dataset 

for evaluation, we only considered images with rotation 

angles in [–99° and 99°]. The batch size for the training and 

testing sets was 16. 

For the laboratory model, 70% of the training was 

performed on the BIWI dataset, and the rest was used for 

testing. The training and test batch sizes were set to 8. 

D.  EXPERIMENTAL RESULT AND ANALYSIS 

1)  EVALUATION OF THE IN-THE-WILD MODEL 

The IN-THE-WILD model was trained using the 300W-LP 

dataset. Tables 1 and 2 summarize our methods, for which 

the AFLW2000 and BIWI datasets were used for comparison 

with the latest method, using MAE as the evaluation standard. 

Our method achieved excellent results compared to other 

advanced approaches. HopeNet [8] uses Resnet50 to separate 

yaw, roll, and pitch, and uses MAE and cross-entropy to 

estimate the fine-grained head posture. FSA-Net [25] uses 

the SSR net collective attention module for soft phase 

aggregation. 3DDFA [30] matches CNN and RGB images, 

evaluates shape-related parameters, and transforms the head 

into a dense 3D model to facilitate detection even in a closed 

environment. FAN [21] is a landmark detection method that 

solves 2D-3D problems by merging features of landmarks 

across multiple layers. Figure 9 compares our model with 

FSA-Net and HopeNet on a few examples, further 

demonstrating the robustness of our model. 
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FIGURE 9. Pose estimation on the AFLW2000 dataset. From top to bottom, the GroundTruth, results of Hopenet, results of FSA-Net and our results. 

The blue line indicates the direction the subject is facing. The green line represents the downward direction and the red line is pointing to the side.

Figure 9 displays the ground truth, the results of HopeNet [8], 

the results of FSA-Net [25], and our results. The blue line 

indicates the direction the subject is facing; the green line 

indicates the downward direction; and the red line represents 

the side. The performance of the method is based on 

landmarks and depends on the underlying face alignment 

algorithm, whereas our method does not rely on other 

auxiliary aspects. 

For further analysis, we applied our algorithm to two 

additional cases (no CapsNet block and SENet block); 

CapsNet block is the part for feature fusion, and SENet is an 

attention mechanism network added to feature extraction. All 

calculations were performed according to the MAE standard 

to better demonstrate the process on the IN-THE-WILD 

Model. 

As shown in Table 1, this method performs best when 

tested on the AFLW dataset, reaching the minimum on yaw, 

pitch, and roll with an average deviation angle value of 4.26. 

Compared with other methods, the detection result value of 

this method changed significantly. Therefore, the method in 

this paper is the best in detection performance. As shown in 

Table 2, this method also displayed the best performance 

when tested on the BIWI dataset. It reached the minimum on 

yaw, pitch, and roll with an average deviation angle value of 

3.95. Therefore, it was confirmed that the method in this 

paper is the best in detection performance. 

TABLE 1. Comparisons with the state-of-the-art methods on the AFLW2000 dataset. All are trained on the 300W-LP dataset. 

Method Yaw(deg) Pitch(deg) Roll(deg) Avg(deg) 

3DDFA [30] 5.40 8.53 8.25 7.39 

FAN [21] 6.36 12.2 8.71 9.11 

HopeNet [8] 6.47 6.57 5.44 6.16 

FSA-Net [25] 4.50 6.08 4.64 5.07 

Ours (no SENet block) 4.13 5.34 4.24 4.57 

Ours (no CapsNet block) 4.61 5.86 4.58 5.01 

Ours 4.25 4.96 3.57 4.26 
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TABLE 2.  Comparisons with the state-of-the-art methods on the BIWI dataset. All are trained on the 300W-LP dataset. 

Method Yaw(deg) Pitch(deg) Roll(deg) Avg(deg) 

3DDFA [30] 36.2 12.3 8.78 19.1 

FAN [21] 8.53 7.48 7.63 7.89 

HopeNet [8] 5.17 6.98 3.39 5.18 

FSA-Net [25] 4.27 4.96 2.76 4.00 

Ours (no SENet block) 4.40 4.88 3.25 4.17 

Ours (no CapsNet block) 4.61 5.76 3.47 4.61 

Ours 4.14 4.66 3.06 3.95 
 

 

2) EVALUATION OF THE LABORATORY MODEL 

The laboratory model was trained using 70% of the BIWI 

dataset. This dataset contains a variety of model assessment 

information. In addition to RGB color information, depth 

image information and time information can also be used.  

As shown in Table 3, Martin et al. [19] estimated head 

posture using a depth camera to obtain a depth image. 

Drouard et al. [14] used the hybrid method of linear 

regression to acquire a high-dimensional feature vector to 

determine the head posture. The table also records the time 

spent by each method to test the image.  

As shown in Table 3, the performance of the proposed 

method on the BIWI training dataset was relatively good. 

The deviation angle on yaw is 2.64, which is the lowest value 

among all methods, and the average deviation angle is 

slightly higher than that of Hopenet [8] with 3.31 degrees. 

However, for the method proposed in this manuscript, the 

shortest run time is 0.53ms, and the test efficiency is the 

highest. Therefore, the experimental results demonstrate that 

this method has certain advantages with respect to detection 

error and test time in the indoor environment. 

 
TABLE 3.  Comparisons with the state-of-the-art methods on the BIWI dataset. 70% of videos are used for training and 30% 

for testing 

Method Input Yaw(deg) Pitch (deg) Roll (deg) Avg(deg)  Runtime(ms) 

Martin [19] Depth 3.6 2.5 2.6 2.9 0.76 

Drouard [14] RGB 4.24 5.43 4.13 4.60 0.68 

FSA-Net [25] RGB 2.89 4.29 3.60 3.60 0.60 

HopeNet [8] RGB 3.29 3.39 3.00 3.23 0.56 

Ours (no SENet block) RGB 3.31 3.42 3.39 3.37 0.62 

Ours (no CapsNet block) RGB 3.46 4.16 3.41 3.68 0.49 

Ours RGB 2.64 3.98 3.33 3.31 0.53 
 

 

3) EVALUATION IN THE PARTIALLY OCCLUDED CASE 

In order to verify the performance capability of the method in 

covering the head, we tested the accuracy of our algorithm 

under different occlusion conditions. As shown in Fig. 10, 

we divided the facial region into two areas: eyes and mouth. 

The two regions were then occluded separately to calculate 

the accuracy for the non-occluded face area. The occlusion 

rate of the entire face from top to bottom as well as in the 

opposite direction was 0%, 12.5%, 25%, 37.5%, 50%, 

corresponding to two important feature intervals of the eye 

area and the mouth area, respectively. 

 

Occlusion for Eye Area

Occlusion for Mouth Area

Occlusion Rate 0% 12.5% 25% 37.5% 50%  

FIGURE 10. Example of facial image with different occlusion rates for 
eye and Mouth Areas. 

Table 4 displays the relative accuracy rate for the head 

postures with occlusion of the eye area. When the occlusion 

rate reaches 50%, the eye area is blocked and the mouth area 

is active; the relative accuracy rate is 82.97%.  
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Table 5 displays the relative accuracy rate for the head 

postures with occlusion of the mouth area. When the 

occlusion rate reaches 50%, the mouth area is blocked and 

the eye area is active; the relative accuracy rate is 89.81%.  

Table 6 displays the relative accuracy rate of the head 

postures of each algorithm with occlusion of the eye area. 

The results show that the proposed algorithm is the best in 

the case of occlusion of each eye.  

Table 7 displays the relative accuracy rate of the head 

postures of each algorithm with occlusion of the mouth area. 

The results show that the proposed algorithm is the best in 

the case of occlusion of the mouth.  

Compared to the eye region, the mouth region contributes 

less to the head pose estimation. This shows that our method 

can address the problems associated with wearing masks or 

head-covering. Compared with other algorithms for 

occlusion experiments, the method proposed in this paper has 

the highest accuracy rate, which proves the superiority of our 

model with respect to occlusion. 
 

 
TABLE 4.  Accuracy of Head Posture Recognition with Occlusion of Eye 

Area 

Occlusion Accurate (%) 

Rate Yaw Pitch Roll Avg 

0% 99.23 86.71 90.86 92.27 

12.5% 98.75 87.55 89.64 91.98 

25% 96.17 85.23 86.78 89.39 

37.5% 93.41 82.28 82.25 85.98 

50% 89.22 80.85 78.85 82.97 

 
TABLE 5.  Accuracy of Head Posture Recognition with Occlusion of 

Mouth Area 

Occlusion Accurate (%) 

Rate Yaw Pitch Roll Avg 

0% 99.23 86.71 90.86 92.27 

12.5% 98.98 87.40 91.51 92.63 

25% 98.54 83.78 89.53 90.62 

37.5% 98.76 82.07 90.52 90.45 

50% 98.08 81.56 89.78 89.81 

 
 

TABLE 6. Comparisons with the state-of-the-art methods with Occlusion 
of Eye Area 

Occlusion 

Rate 

Accurate (%)  

3DDFA 

[30] 

FAN 

[21] 

HopeNet 

[8] 

FSA-

Net [25] 
Ours 

0% 90.33 92.01 92.13 92.15 92.27 

12.5% 88.45 89.73 90.34 91.79 91.98 

25% 83.12 88.21 88.92 89.12 89.39 

37.5% 78.94 84.17 84.93 85.23 85.98 

50% 75.52 80.52 81.34 81.98 82.97 

 
 

TABLE 7.  Comparisons with the state-of-the-art methods with 
Occlusion of Mouth Area 

Occlusion 

Rate 

Accurate (%)  

3DDFA 

[30] 

FAN 

[21] 

HopeNet 

[8] 

FSA-

Net [25] 
Ours 

0% 90.33 92.01 92.13 92.15 92.27 

12.5% 89.47 92.21 92.42 92.56 92.63 

25% 86.26 88.94 90.03 90.35 90.62 

37.5% 83.62 87.73 89.54 90.16 90.45 

50% 82.38 85.22 88.36 89.39 89.81 

 

IV. CONCLUSION AND FUTURE WORK 

In this study, we developed a deep neural network model 

MR-CapsNet to predict head posture. Our method can infer 

the head posture from only an image without additional 

factors such as a depth map or facial markers. Initially, 

MTCNN [37] was used to detect the target, which was then 

divided into three levels. A residual attention block and SE 

block were used for feature extraction. CapsNet is an 

emerging network that is more sensitive to posture 

information, as reflected in facial expressions, than a 

traditional CNN. Therefore, we combined the extracted 

feature map with CapsNet to obtain more accurate attitude 

information. Finally, a multi-stage regression function was 

used to predict head posture. The MAE of our model is 

superior to that of other advanced methods. 

In the future, we will continue to improve our model. At 

present, the detection ability in outdoor environments is not 

ideal. To further improve the pertinence and accuracy of 

prediction, additional low-resolution datasets need to be 

integrated. Currently, capsules are emerging; however, there 

are no relevant application examples of CapsNet in the field 

of head posture estimation, which requires further attention. 

In this study, although only the estimation of head posture 

was considered, the overall framework is widely applicable. 
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