
Research Article
AMultitask Learning Model with Multiperspective Attention and
Its Application in Recommendation

Yingshuai Wang ,1,2 Dezheng Zhang ,1,2 and Aziguli Wulamu1,2

1Department of Computer, School of Computer and Communication Engineering,
University of Science and Technology Beijing (USTB), Beijing 100083, China
2Beijing Key Laboratory of Knowledge Engineering for Materials Science Beijing,
University of Science and Technology Beijing (USTB), Beijing 100083, China

Correspondence should be addressed to Yingshuai Wang; b20190318@xs.ustb.edu.cn

Received 13 June 2021; Revised 5 September 2021; Accepted 30 September 2021; Published 15 October 2021

Academic Editor: Jin Jing

Copyright © 2021 Yingshuai Wang et al.)is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Training models to predict click and order targets at the same time. For better user satisfaction and business effectiveness,
multitask learning is one of the most important methods in e-commerce. Some existing researches model user representation
based on historical behaviour sequence to capture user interests. It is often the case that user interests may change from their past
routines. However, multi-perspective attention has broad horizon, which covers different characteristics of human reasoning,
emotions, perception, attention, andmemory. In this paper, we attempt to introduce the multi-perspective attention and sequence
behaviour into multitask learning. Our proposed method offers better understanding of user interest and decision. To achieve
more flexible parameter sharing and maintaining the special feature advantage of each task, we improve the attention mechanism
at the view of expert interactive. To the best of our knowledge, we firstly propose the implicit interaction mode, the explicit hard
interaction mode, the explicit soft interaction mode, and the data fusionmode inmultitask learning.We do experiments on public
data and lab medical data.)e results show that our model consistently achieves remarkable improvements to the state-of-the-
art method.

1. Introduction

In the real world, there are some scenarios for multitask
learning. In the e-commerce field, we need to increase
click through rate (CTR) and order conversion rate (CVR)
at the same time. In the music field, we need to improve
the song opening rate and the effective playback rate. In
the Chinese medical case recommendation, we need to
improve the click rate of medical records and the user
satisfaction. To improve the recommendation accuracy,
Chen et al. [1] propose an improved collaborative filtering
algorithm, which introduces the Bhattacharyya similarity
calculation into the traditional calculation formula.
However, the single-task learning cannot take into ac-
count multiple indicators at the same time. In this context,
the study of multitask learning emerges. On the bases of

shared bottom, multi-gate mixture of experts (MMOE) [2]
designs different gate networks for different tasks. By
updating the weights of experts, it is better to describe the
characteristics about all tasks. It has an improved effect on
some tasks that are not very related to each other. In video
recommendation, in order to improve user engagement
and user satisfaction, Zhao et al. [3] propose shallow
subnetwork. It also solves the online and offline problem
of sample bias. As is known to all, order behaviour occurs
after the click action.)e model training process is
performed in the click sample subspace, and applied in the
entire space online, which will cause sample deviation.
Wen et al. [4] add these intermediate behaviours to the
model by improving loss function. Previous multitask
learning manually turns hyperparameters, which could
not balance the network flexibility and performance cost.

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 8550270, 13 pages
https://doi.org/10.1155/2021/8550270

mailto:b20190318@xs.ustb.edu.cn
https://orcid.org/0000-0001-5457-3240
https://orcid.org/0000-0002-0647-3154
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8550270

Subnetwork routing (SNR) [5] is not sensitive to the
strength of the correlation between tasks. It can be
combined to learn a good structure and can realize flexible
parameter sharing. Qin et al. [6] propose a model, which
can combine MMOE and Long Short-Term Memory
(LSTM) together.)e model applies user behaviour se-
quence feature in multitask learning scenarios. Real ap-
plication scenarios always face the challenge of data
sparsity, data heterogeneity, and complex multiobjective,
which the MMOE and LSTM try to solve.)e Progressive
Layered Extraction (PLE) [7] network is proposed, whose
purpose is to leverage the seesaw phenomenon in mul-
titask learning. To solve the negative transformer prob-
lem, on the one hand, PLE model splits the experts into
shared expert and private expert; on the other hand, PLE
model divides the sample space by loss function. Wang
et al. [8] propose a Multitask-Aware Fairness (MTAF)
method to improve fairness in multitask learning. Xi et al.
[9] propose an Adaptive Information Transfer Multitask
(AITM) framework, which constructs the sequential de-
pendence among multistep conversions by the Adaptive
Information Transfer (AIT) module. Low-rank decom-
posed self-attention network (Light-SAN) [10] is pro-
posed, which learns the context-aware representation via
users’ history items and mines sequential relations among
items efficiently. Gating-Enhanced Multitask Neural
Networks (Gem-NN) [11] design a gating mechanism
between embedding layer and MLP, which learns feature
interaction and manages information flow. Multiple-Level
Sparse Sharing Model (MSSM) [12] is proposed, which
includes a field-level sparse connection module (FSCM)
and a cell-level sparse sharing module (CSSM).)e FSCM
can learn features selectively and the CSSM can share
knowledge across all tasks efficiently. To resolve the se-
lection bias and data sparsity issue, Hierarchically
Modelling both Micro and Macro behaviour (HM3) [13] is
proposed for CVR prediction, which employs micro and
macro post-click behaviour in a multitask learning mode.
Zhao et al. [14] propose multiple relational attention
network, which employs attention mechanism to improve
prediction accuracy.)e model structure comes from
three perspectives: the first is task and feature, the second
is feature and feature, and the third is task and task. In
recommendation systems, the pareto algorithm is applied
to the multiobjective learning, which can make at least one
objective better without harming the other objective.)e
loss function refers to the KKT condition and the relax
constraints, and then the model updates the weights at
each batch. With the idea of knowledge distillation, Tang
et al. [15] propose a novel model, which employs domi-
nant feature to guide multitask learning.)e feature
matching algorithm combines original feature and
dominant feature, which maps them to a new hidden
space and improves the efficiency of multitask informa-
tion sharing. Wang et al. [16] propose a new model to
improve relation extraction algorithm.)e embedding
layer represents sharing information, which uses Bidi-
rectional Encoder Representation from Transformer

(BERT) pretrained model as initial computing part.)e
model introduces knowledge distillation to use the in-
formation of auxiliary tasks better. According to the
multitask learning framework, Shao et al. [17] introduce
attention map convolutional layer to mine the bilateral
high-order feature graph from user and commodity.)e
model can dynamically capture the users’ implicit interest
for commodity. Yao et al. [18] propose a strong aggre-
gation multitask learning method, which can group tasks
by learning representation vectors.)is method assumes
that one task is a linear combination of other tasks.)e
correlation between tasks is calculated through the sta-
tistical coefficient. Based on the knowledge graph, Yu et al.
[19] propose a multitask feature learning method using
the knowledge graph to calculate the embedding vector
assist the recommendation task finally. Conversation
recommendation is becoming an important part of
e-commerce. In order to improve the prediction effect via
mining sequence feature, Chen et al. [20] employ the
graph structure cascade and node sequence diffusion.)e
model proposes a sharing representation layer, which
helps to understand the task of cascading relationship.)e
sequence knowledge is learned from the share represen-
tation layer, which can encode the cascade structure and
sequence node well. Most multitask build network
through multilayer feature sharing.

However, the above studies in multitask learning are
based on feature engineering and knowledge represen-
tation, without introducing multi-perspective attention.
We integrate coarse-grained attention, fine-grained at-
tention, boosting expert mode, and expert-level self-at-
tention; therefore, different task experts can interact
better.

)e rest of this paper is organized as follows. Section 2
introduces application of recommendation system in aca-
demic and industry. Section 3 discusses the recall stage, the
ranking stage, and the diversity stage in the recommender
system, and describes our specific improvement methods.
Section 4 makes experiment in public data set, and compares
the baseline. Section 5 draws conclusion and proposes
prospects.

)e main contributions of our proposed model are
summarized as follows:

(1) We introduce coarse-grained attention and fine-
grained attention in the gate network. Each task layer
learns a query vector for each expert, and inner
product is taken on the query vector and the expert,
then regarding the result as the attention.)e gate
attention methods achieve better performance than
the base MMOE.

(2) Inspired by the fact that the gradient boosting tree is
better than random forest, we design the gradient
boosting expert network, which enhances the in-
teraction among different experts.

(3) To the best of our knowledge, we are the first to
introduce the expert-level multi-head self-attention
into multitask learning and get better effectiveness.

2 Computational Intelligence and Neuroscience

(4) We design the time-space sequence feature into
multitask learning and improve the loss function,
which can support multiple-source datasets.

(5) We conduct extensive experiments on Ali-CCP data
and confirm the superiority of our proposed model
over representative state-of-the-art method.

2. Related Work

2.1. Multitask Learning Architecture. In the deep neural
network, the click task and the order task are weighted in
different proportions, and then they are processed as positive
samples.)e idea of a single-task model is difficult to find
trade-off between click and order tasks.)e model pays
more attention to a certain part so that it learns information
perhaps deviated from the original sample distribution. In
addition, the single-task processing ignores some infor-
mation, which contains rich correlation among tasks. Use
multitask learning to optimize multiple targets at the same
time. Share parameters to learn correlation. Subtask learns
the differences of the sample distribution. By this way, we
improve generation ability of the model.

As is known to all, most multitask learning networks
have feature parameter sharing module, which is divided
into hard sharing and soft sharing specifically. Hard sharing
feature is constructed at the bottom layer and completely
shared.)e upper layer introduces different networks so as
to predict their respective tasks. When the tasks are more
relevant, hard sharing is much more effective. Negative
transfer will occur when tasks are not very relevant. If the
effect of one task increases, the effect of another task de-
creases. In order to solve this problem, Google proposes
MMOE model.)e model constructs gate control mecha-
nism for each task, which brings better effects. Tencent
proposes the PLE model. Trying to introduce multiple layers
of shared experts and private experts resolves the hetero-
geneous relationship between tasks furtherly.)e structure
of MMOE model is shown in Figure 1.

yk � h
k

f
k
(x)􏼐 􏼑,

f
k
(x) � 􏽘

n

i�1
g

k
(x)ifi(x),

(1)

where 􏽐
n
i�1 gk(x)i � 1, gk(x)i represents the output logits of

gating at the ith expert, which is used to calculate the weight
of the ith expert. fi(x) denotes the ith expert network; hk(.)

means the hidden layer. Furtherly, the gate network equa-
tion is as follows:

g
k
(x) � softmax Wgkx􏼐 􏼑. (2)

2.1.1. Expert Network Part

Step 1. Construct a neural network for each expert and
get the output y.

y � X∗ hidden1 ∗ hidden2, (3)

where X means the input features, whose shape is
[batch size, feature size]. hidden1 indicates the units of
the first expert hidden layer, with the shape of [feature
size, units of the first hidden layer]. hidden2 shows the
units of the second expert hidden layer, with the shape
of [units of the first hidden layer, units of the second
hidden layer]. As a result, the shape of y is [batch size,
units of the second hidden layer].
Step 2. Build a list of expert outputs, which is used to
restore the output of each expert.
Step 3. In the last dimension of expert output, we use
flatten operation to stack the y; then we store it as a
tensor.)e tensor shape is [batch size, units of the
second hidden layer, the number of experts].

2.1.2. Gate Network Part

Step 1. Construct a neural network for each gate and get
the gate output y.

y � X∗ hidden1 ∗ hidden2, (4)

where X means the input features, whose shape is
[batch size, feature size]. hidden1 indicates the units of
the first gate hidden layer, with the shape of [feature
size, units of the first hidden layer]. hidden2 shows the
units of the second gate hidden layer, with the shape of
[units of the first gate hidden layer, units of the second
gate hidden layer]. As a result, the shape of y is [batch
size, units of the second gate hidden layer].
Step 2. Construct a gate dictionary named gates output,
whose key is the task name and whose value is the
output y of the last gate network layer.

gates_output[task] � y. (5)

Step 3. Convert gate output into weights, y is expanded
on the axis index-1. After that, the number of neurons
in the last layer of expert is copied as weights matrix.
)e shape of weights matrix is [batch size, units of the
second expert hidden layer, units of the second gate
hidden layer].
Step 4. Using expert output and gating weights, we
calculate the tensor which is connected to the tower.
Both the expert output after stacking and the weights
after expanded dimension have the same shape. Given a
scalar inner product, we get a vector with shape [batch
size, units of the second expert hidden layer, units of the
second gate hidden layer]. We do reduce-sum opera-
tion in the last dimension, which calculates the final
expert gate output.)e shape is [batch size, units of the
second expert hidden layer].

2.2. Multitask Learning in Recommendation. In recom-
mendation scenario, the parameters that can be debugged
for multitask learning mainly include the following:

Computational Intelligence and Neuroscience 3

(1) Label weight: it is similar to the class weight in the
deep neural network configuration, to control the
sample ratio of each label.

(2) Loss weight: setting the weight of loss function for
each task.)e parameter needs to be adjusted by
multiple rounds, and then the optimal combination
is selected.

(3) Export weight: the weight for predicting score of
each task, which can be set higher weight for the
better task based on the test result.

(4) Task number: setting the number of tasks.
(5) Expert number: the number of experts. Each expert

is a two-layer fully connected network.)e pre-
diction scores are weighted by the output of gating
network as the input of the tower network of each
task.

(6))e number of experts’ layers.
(7))e number of hidden units.
(8))e number of gate network’s layers.
(9))e number of tower network’s layers.

)e parameters turning of core neural network is as
shown in Figure 2.

)e model training mechanism is as shown in Figure 3.

3. The Proposed Scheme

We think there are two parts where MMOE can be im-
proved.)e first point is how experts share the parameters
with each other, and how to add attention mechanisms
effectively.)e second point is the design of the loss
function, and how to balance the learning of different tasks.

3.1. Coarse-Grained Attention Gate Network. In MMOE
model, gate network is a linear transformation, which learns
parameters from the original features.)e expression skills

of gate are insufficient. We use the attention mechanism to
calculate the model weights, which are updated with the
model trained. We improve the calculation of the original
gate network, which is from a linear translation to an inner
product operator.

By the guidance of the experts, the model weights are
constructed.)e design of gate network introduces the prior
knowledge of experts. From the view of expert neuron di-
mension, the output of each neuron is different. Attention is
added in the neuron dimension. We add weights in the gate
control perspective, and change the gate attention mecha-
nism. We make the improvements on the basis of MMOE,
which is shown in Figure 4.

Gate improvement part is as Figure 4 shows. MMOE
calculates the weights of different experts by fusing the
original feature and gate net output. Inspired by the
attention mechanism, each task layer learned a
query vector for each expert network. Take inner product
between the query vector and the expert network.)en
regard the result of inner product as the attention weight
of the task’s corresponding expert.

)e improvement scheme is expressed in the following
formula:

ye � fe we1 ∗X∗we2 + be(􏼁, (6)

where X represents the original input, we1 and we2 denote
the matrix parameters of expert network, be is the bias of
expert network, and fe(.) represents the transformation
function from the original input to the expert vector.

yg � σ wg ∗ eg + bg􏼐 􏼑, (7)

where wg is the parameter of the gate network, eg is the
query vector for the initialize gate network, bg is the bias of
the gate network, and σ represents the mapping operator.

yatt � h ye(􏼁⊙ t yg􏼐 􏼑, (8)

Expert 2 Expert kExpert 1

Input Features

gategate

click tower order tower

order predictionclick prediction

Figure 1:)e multi-gate multi-expert network.

4 Computational Intelligence and Neuroscience

where h, t denote transform function and ⊙ means inner
product operation.

Gate-improved attention is more associated with expert
matching and more specific to task representation.

3.1.1. 4e Part of Expert

Step 1. Build a neural network for each expert and get
the output y.

Y � [N, F]∗ [F, 256]∗ [256, 128] � [N, 128]. (9)

Step 2. Build a list of experts output, which stores the
result of expert.
Step 3. Stack the experts output in the last dimension,
and the tensor shape is [N, 128, 8].

3.1.2. 4e Part of Gate Network Improvements

Step 1. Build a neural network for each gate.)e gate
has one layer with a shape of [1, 128], in which 128 is
the number of neurons in the last layer of MMOE
expert units.
Step 2. Store the gates output of each task in the dic-
tionary named gates output.
Step 3. Stack experts output in the second dimension
and calculate the expert’s result with the tensor shape is
being [N, 8, 128]. We construct expert weight query
vector for each task.)e query vector is obtained by
multiply product operation of gate output [1, 128] and
expert [N, 8, 128].
Step 4. Make elementwise operation on gates and expert
output with expanded dimensions, using the broadcast

adjust the weight of different task, take linear weight
calculation for the subtasks as ranking score

adjust the weight of the loss function to
balance the importance of subtasks

adjust the ratio of positive and negative samples to
increase the model's attention of positive samples

Label
Weight

Loss Weight

Export
Weight

Hyper
parameters

Figure 2:)e parameters turning architecture of core multitask learning.

loss_weight Bloss_weight A

TrainLoss

Loss A Loss B

Label BLabel A

Label_weight BLabel_weight A Task A Task B

Expert i Expert j

Shared Layer

Embedding

InPut

Output Predict

expert_weight Bexpert_weight A

Figure 3: Flowchart of the model training mechanism.

Computational Intelligence and Neuroscience 5

mechanism. We obtain the initial query vector with the
shape of [N, 8, 128], and then aggregate using reduce-
sum function in the last dimension. We get attention
dot tensor with the shape of [N, 8].
Step 5. By expanding and copying the attention dot
tensor, we calculate the expert weights with the shape of
[N, 128, 8].)e shape of weights and the shape of
experts are the same.
Step 6. We add weights for the experts and calculate the
final output of [N, 128].

Our main improvement is using the expert information
to design a query vector for each gate, by the attention
mechanism.)e fine-grained attention based on the coarse-
grained attention makes different weight values in the
embedding dimension.)e description about fine-grained
attention is shown in following part.

3.2. Fine-GrainedAttentionGateNetwork. In the dimension
of the expert neuron and the dimension of the embedding,
we employ attention together. In this way, the gate control
network is not only a simple two-layer fully connected
network, but also the result of combining the initial gate with
the expert by attention mechanism.)e model learns the
fine-grained query vector for each task.

3.2.1. Expert Network Part. It is the same as the expert
network part of MMOE coarse-grained attention.

3.2.2. Attention Gate Network Part.)e coarse-grained
attention constructs the neural network for each gate with
the shape of [1, 128]. And then, the gate network and
expert with the shape of [N, 8, 128] make multiply product
operation. We design query network for each task with the
shape of [N, 8, 128], in which 128 dimensions are different
while 8 dimensions are the same.)e fine-grained

attention is different in both 128 dimensions and 8 di-
mensions, which can better adapt the different correlation
tasks.

3.3. Gradient Boosting Expert Network. In MMOE model,
the experts can be regarded as random forest. In order to
make different experts interact better, we improve the
experts’ mode from random forest to gradient boosting
decision tree. We construct an expert list named hub-list,
which is used to store the output of each expert. When the
hub-list is traversed, the information will be appended at
the end of the list. If there is no element in the expert hub
center, we feed the previous extracted feature into the
neural network. If there are elements in the expert hub
center, we feed the last layer of the expert hub jointed
with the previous extracted feature into the neural net-
work.)e idea that the random forest is improved to the
gradient boosting tree mainly occurs in the expert part.

3.3.1. Expert Network Improvement Part. We set up an
expert output, which is used to store the prediction score of
each expert. If it is the first expert, the receiving input is the
original feature. If it is a latter expert, the receiving input is
the original feature and the prediction value of the former
expert. By this way, it is equivalent to increasing the
number of feature columns. With the construction of
neural network, it has no effect on the final outputs of
expert.)e shape is [N, 128], and after stacking, it is
[N, 128, 8].

3.3.2. Gate Network Part. Like the native MMOE model, we
construct a neural network, whose output shape is [N, 8].
And then we expand the dimension and turn it into
[N, 128, 8]. By the tensor of this shape, we add weights for
the experts. We aggregate and calculate the output with
shape of [N, 128] finally.

Input Features

Expert kExpert 2Expert 1click query
embedding

order query
embedding

raw inputinit ord vec

order query embedding

query
emb

expert
emb

order prediction

order tower

click prediction

click tower

click query embedding

expert
emb

query
emb

raw inputinit clk vec

.

.

.

.
. .

. .

Figure 4:)e framework of coarse-grained attention network.

6 Computational Intelligence and Neuroscience

3.4. Explicit Self-Attention Expert Interaction. In the paper
[21], the method of self-attention is used to interact among
different features. Drawing lessons from this idea, we regard
the output of different experts as abstract high-level features,
and design an interactive network layer.

As is shown in Figure 5, on the basis of MMOE, we add
an expert interaction layer, using a multi-head attention
mechanism.)e output after the interaction is used as a
high-order feature. We employ an inner product operation
between expert output and the high-order feature, and feed
the results into the tower network of each task. By automatic
interaction, the knowledge could be learned from experts to
mine the user interests better.

Specifically, we adopt the key-value attention mecha-
nism to capture combination among different experts.
Taking the expert m as an example, we define the correlation
between expert m and expert k under a specific attention
head h as follows:

α(h)
m,k �

exp f
h

em, ek(􏼁􏼐 􏼑

􏽐
M
l�1 exp f

h
em, el(􏼁􏼐 􏼑

, (10)

where fh(·) is an attention function, em denotes the expert
m, and ek denotes the expert k; in this work, we employ inner
product as attention function.

f
h

em, ek(􏼁 �〈W(h)
queryem, W

(h)
keyek〉,

􏽥e
(h)
m � 􏽘

M

k�1
α(h)

m,k W
(h)
valueek􏼐 􏼑,

(11)

where W(h)
query and W

(h)
key are transformation matrices that

map the original expert space into a new space. W
(h)
value is the

value space matric, and 􏽥e(h)
m is vector of expert m (under head

h); furthermore, we combine h head as expert-output.
Feature-level multi-head self-attention is introduced to

feature engineering, and then input to the expert network.

)e result is worse than the expert-level mode, so we choose
the better one.

3.5. Deep Interest Sequence Feature Applied into Multitask
Learning.)e improvedMMOE_DINmodel introduces the
sequence feature to bottom layer.)e sequence feature can
capture the correlation of user’s behavior better.)e un-
derlying features are processed by the way of deep interest
network. On the basis of user sequence features, we design
the embeddings, which represent spatial information and
time information.)e spatial information embedding
method is as shown in Figure 6.

)e time-embedding information method is as shown in
Figure 7.

We normalize the timestamp as days, and make some
mathematic operations.)e mathematic operations include
exponential function operation, sine function operation,
cosine function operation, root operation, square operation,
and logarithmic operation. And then, we concatenate them
into a large embedding vector.

3.6. Improve Loss Function with Multitask Learning.
Recently, artificial intelligence is gradually developing
from the perceptual intelligence to cognitive intelligence.
Deep learning is the mainstream technology in the rec-
ommendation system rank stage. More and more scholars
[22, 23] try to introduce cognitive intelligence into rec-
ommendation. Recommendation system has multiple
scenarios, and the data is heterogeneous. Traditional
multitask learning joint training requires data feature to
be aligned. Combining heterogeneous data from multiple
scenarios to train model, we propose a feature space
mapping operator.)e above operator can project the
heterogeneous data into the same feature space via pro-
cessing multiple network layers. From the perspective of

Embedding layer

Input layer

Expert 1 Expert 2 Expert k Order gate

Order tower

Order
prediction

Click
prediction

Click tower

Expert interaction

Click gate

Figure 5:)e framework of explicit self-attention expert interaction.

Computational Intelligence and Neuroscience 7

cognitive intelligence, it is easier for multiple experts to
share collective wisdom in the same feature space.)e
data cognition fusion scheme is as shown in Figure 8. For
the cognitive learning of multitask shared parameters, we
design a custom loss function. In the learning process, the
features extracted from the current data source are
regarded as real data, and its label is set as real label.)e
features extracted from the other data sources are
regarded as fake data, and the corresponding labels are set
as fake label. In this way, in multitask learning, with the
multisource feature iteration training, the discriminator is
difficult to distinguish the shared data sources, so as to
achieve the shared cognitive effect.

)e multitask learning model makes feature space
mapping for the data from different sources so that the
multisource data are in the same feature space. We construct
the following cognitive loss function, where ck

i is real or fake
label, and add it to basic loss function.

Limprove � 􏽘
K

k�1
􏽘

Nk

i�1
c

k
i log D Sk(i)(􏼁(􏼁. (12)

4. Experiment

In this section, we evaluate the performance of our proposed
novel model on the public Ali-CCP data. Experimental
comparison shows the effectiveness of our model, which
outperforms the state-of-art methods for multitask learning.

4.1. Datasets.)e public dataset Ali-CCP containing 42
million train samples and 43 million test samples, which
extracted from Taobao’s Recommender System.)e train
dataset storage is 10G, and the test dataset storage is 8G. CTR
and CVR are two tasksmodeling actions of click and purchase
in the dataset.)e dataset contains labels section and features

using mask logic, configure position where the mask is needed, and
return the result of the position lookup table

using tf.nn.embedding_lookup to query position embedding in the
vacubulary dictionary

mathematic sin and cos transformed matrix as a vacubulary

even position sin transform, odd position cos transform

calculate the parameters of sin and cos

get item
position ID

configure item position
embedding dimention

set the maximum number
of positions

Figure 6:)e spatial information embedding method.

log arithmic operation for
timestamp

timestamp convert to day
calculate using normal

convert to day normal expand
dimension

truncate the result of log
arithm operation

square
operation

radical
operation

cosnine
operationsine operationexponential

operation

Concat

Figure 7:)e time-embedding information method.

8 Computational Intelligence and Neuroscience

section.)e labels consist of click label and conversion label.
)e features consist of feature field id, feature id, and feature
value. Features include user features, item features, combi-
nation features, and context features.)e data detail in-
struction is in the page below (https://tianchi.aliyun.com/
dataset/dataDetail?dataId�408&userId�1). We randomly
select 10% of the train dataset as the validation dataset to test
the evaluate index of all models.

4.2. BaselineModels. We compare our proposed model with
the following baseline and mainstream models:

MLP [24].We use theMulti-Layer Perceptron structure
as our baseline, which is a single-task model.
Shared Bottom [25].)e model with Expert-Bottom
pattern shares several low-level network layers for all
the tasks, and each task has its own tower.
ESMM [4, 26].)e model with Probability-Trans-
former pattern is used to predict the post-click con-
version rate, which can relieve the sample selection bias
problem via training on the entire space.
OMOE [2].)e model with Expert-Bottom pattern
integrates experts by sharing one gate among all
tasks.
MMOE [2].)e model with Expert-Bottom pattern
integrates experts by multiple gates among all tasks.
CGC [7].)e model with Expert-Bottom pattern
separates task-shared experts and task-specific experts,
which is designed to solve the multitask negative
transfer problem.
PLE [7].)e Progressive Layered Extraction (PLE) with
Expert-Bottom pattern, and is made up by multilayer
CGC.

Unified cognitive
concept

Map to the same
feature space

Cognitive
concept 2

Cognitive
concept 1

Normalized
data 1

Normalized
data 2

Source data 2Source data 1

Cognitive
concept n

Normalized
data 2

Source data n

Multi-source heterogeneous data

Figure 8:)e framework of cognitive intelligence with multitask learning.

Table 1: Hyperparameter settings.

Hyperparameter Value
Label weight Positive sample, negative sample� 1 :1
Loss weight Click task, order task� 1 : 0.02
Export weight Click task, order task� 0.8 : 0.2
Task number 2
Expert number 8
Hidden unit 256 128 64
Learning rate 0.001
Batch size 1000
Epoch 5

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

cli
ck

 au
c

or
de

r a
uc

diff embedding dimension performance

click
order

8 16 32 64 128 256

0.6915 0.6920 0.6926 0.6925 0.6924 0.6923
0.6401 0.6403 0.6408 0.6411 0.6406 0.6405

Figure 9:)e AUC of different embedding dimension.

Computational Intelligence and Neuroscience 9

https://tianchi.aliyun.com/dataset/dataDetail?dataId=408&userId=1
https://tianchi.aliyun.com/dataset/dataDetail?dataId=408&userId=1

Using Ali-CCP dataset, we adopt a two-layer MLP
network with DICE activation and hidden layers for each
task in both MTL models. Hyperparameters turned are
shown in Table 1.

4.3. Experiment Setting
Hyperparameter Study
In order to study the effectiveness of hyperparameters,

we try the random search, grid search, and anneal methods.

(1) Considering the category embedding dimension, we
do experiment by varying embedding dimension [8,
16, 32, 64, 128, 256, 512, 1024], and the results are
shown in Figure 9. We can see that the effects of the
model are slightly affected by the embedding di-
mension.)e embedding dimension is related to the
model complexity and volume.
Smaller embedding dimension leads to fitting the
data distribution insufficiently, while larger em-
bedding dimension increases the model com-
plexity; proper embedding dimension will
produce the best effect. Making a trade-off be-
tween the fitting ability and complexity, we finally
select embedding dimension � 32 in all the
experiments.

(2) We study the impact of export weight; there is seesaw
phenomenon among two different tasks. However,
the export weight brings improvement overall the
performance.We finally set the export weight of click
task as 0.8 and order task as 0.2.

(3) We study the impact of epoch number in the dataset
and report the AUC performance on the entire test
dataset as shown in Figure 10. We finally set the
epoch number as 5 in all the experiments.

(4) We study the number of layers in our proposed model;
the effectiveness of AUC and log-loss is as follows. As
the number of neural network layers increases, the
AUC first increases then decreases and the log-loss is
opposite trend.)erefore, we finally choose 3 layers in
all experiments, which is as shown in Figure 11.

4.4. Experiment Results. Compared with the baseline
MMOE, ESMM, and CGC, we demonstrate the effectiveness
of our approach on Ali-CCP public dataset. We show that
the proposed method improves the accuracy of multitask
models. Offline evaluator of our model brings significant
improvement. In order to obtain accurate prediction results,
we repeat experiments 5 times for each model, among which
the best offline effect is shown in Table 2.

To evaluate the effectiveness of our proposed model, we
adopt four widely used metrics in experiments, i.e., AUC,
Log-loss, CLICK@2, and ORDER@2.

AUC: area under curve, which reflects the ranking
ability.)e score ranges from 0 to 1, and the higher the
better.)e AUC formula is as follows:

AUC �
1

D+

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 D−

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
x+∈D+

􏽘
x− ∈D−

I f x
+

(􏼁>f x
−

()(􏼁, (13)

where D+ and D− denote the set of positive and negative
samples, |D+| and |D−| mean the number of samples in D+

and D−, f(.) is the prediction function, and I(·) is the
indicator function.

Log-Loss. In multitask learning, a common equation of joint
log-loss is the weighted sum of the individual task log-loss.

L θ1, . . . , θK(􏼁 � 􏽘
K

k�1
wkLk θk(􏼁, (14)

where K is the number of tasks, Lk(·) is the loss function, wk

is the loss weight, and θk is the task parameters.

Lk θk(􏼁 � yk × −log sigmoid 􏽢yk(􏼁(􏼁(􏼁 + 1 − yk(􏼁

× −log 1 − sigmoid 􏽢yk(􏼁(􏼁(􏼁,
(15)

0.630

0.635

0.640

0.645

0.650

1 2 3 4 5 6 7 8
epoch

to
ta

l_
au

c

diff epoch auc

Figure 10:)e total AUC of different epochs.

0.6350

0.6375

0.6400

0.6425

0.6450

0.6475

0.6500

0.6525

0.6550

au
c

auc
logloss

layers of network
1 2 3 4

1.55

1.60

1.65

1.70

1.75

1.80

lo
gl

os
s

Figure 11:)e AUC and log-loss of different network layers.

10 Computational Intelligence and Neuroscience

where yk denotes the real label, 􏽢yk denotes the predict value,
and sigmoid is the activate function.

CLICK@2. It is the probability of actual click number in the
prediction top N score.

CLKICK@2 �
top 􏽢yn(􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌n

N
. (16)

ORDER@2. It is the probability of actually buy number in the
prediction top N score.

ORDER@2 �
top 􏽢yn(􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌n

N
, (17)

where n denotes the number of real click/buy sample in the
top N score, and Nequals 2 in our paper.

In order to reduce the accidental error of the experiment,
we repeat the training process of each improved model for 5

times. Table 3 shows the average increase of 5 times for each
model.

As mentioned above, in order to increase the credibility
of the experiment, we repeated the training process 5 times
for each model.

Custom evaluation indicators: In order to compare
model effects more fairly, we evaluate models from multiple
perspectives. Besides AUC, we customize two categories of
offline evaluation indicators: CLK@N and ORD@N.

CLICK@N: In the top N commodities recommended by
the model, the proportion of the number of commodities
which the users click.

ORDER@N: In the topN commodities recommended by
the model, the proportion of the number of commodities
which the users purchase.

In order to reduce the accidental error of the experiment,
we repeated the training process of each improved model for
5 times. Table 4 shows the average of 5 custom evaluation for
each model.

Table 2:)e performance of different models.

Models Click AUC best Order AUC best Loss
MMOE (base1) 0.6209 0.6645 1.6027
ESMM (base2) 0.6203 0.6712 1.6105
CGC (base3) 0.6311 0.6708 1.6112
Coarse-grained attention 0.6395 0.6957 1.5843
Fine-grained attention 0.6339 0.6884 1.5827
Expert with boost mode 0.6409 0.6804 1.7268
Add auto interact layer 0.6432 0.6824 1.6891
Sequence MMOE 0.6413 0.6870 1.6152
Improve loss function 0.6407 0.6924 1.5997
Coarse-grained attention + auto interact layer + sequence feature + improve loss function 0.6513 0.6966 1.5784

Table 3:)e improvements of different models.

Models Clk AUC improve Ord AUC improve
MMOE (base) Baseline 1 Baseline 1
ESMM (base) Baseline 2 Baseline 2
CGC (base) Baseline3 Baseline 3
Coarse-grained attention +2.46% +4.00%
Fine-grained attention +1.57% +2.91%
Expert with boost mode +2.69% +1.74%
Add auto interact layer +3.06% +2.02%
Sequence MMOE +2.75% +2.71%
Improve loss function +2.65% +3.51%
Coarse-grained attention + auto interact layer + sequence feature + improve loss function +4.35% +4.14%

Table 4:)e custom evaluation of different models.

Models CLICK@2 ORDER@2
MMOE 0.1927 0.1477
ESMM 0.1925 0.1490
CGC 0.1931 0.1487
Coarse-grained attention 0.1957 0.1573
Fine-grained attention 0.1953 0.1463
Expert with boost mode 0.1936 0.1478
Add auto interact layer 0.1958 0.1521
Sequence MMOE 0.1941 0.1504
Improve loss function 0.1932 0.1488
Coarse-grained attention +Add auto interact layer + Sequence MMOE+ improve loss function 0.1969 0.1582

Computational Intelligence and Neuroscience 11

From all the above tables, we can see that our methods
bring positive improvements.

4.5. Ablation Study. From Tables 2–4, comparing to base
MMOE, we can see that every proposed point has im-
provement. Sequence feature can bring +3.65% in AUC due
to the feature engineering improvement. Coarse-grained
attention can bring +3.41% in AUC, and fine-grained at-
tention can bring +2.11% in AUC. Coarse-grained and fine-
grained are two patterns of attention methods. We choose
coarse-grained considering the fine-grained attention may
lead to overfitting. Boosting expert mode and auto interact
layer mode are all used to describe the expert interaction,
and we select the auto interact layer because it performs
better. Furthermore, we improve the loss function to better
support multisource datasets feeding, and the model
structure is more generic. Finally, we integrate the above
four methods, and the prediction effect is significantly
improved. click@2 and order@2 of each model are shown as
in Figure 12.)e experiment is repeated 5 times and the
error fluctuation is small. It can be seen that our new in-
tegrating model has the best effect.

5. Conclusions

In this paper, we propose five improvement methods about
the multitask learning, which focus on the expert interaction
and gate attention mechanism. In the public data set, there is
a significant improvement comparing with the MMOE
model. We optimize the gate network, which relies on in-
troducing the coarse-grained and fine-grained attention
mechanism. By a linear transformation, the gate network of
native MMOE pays more attention to the expert using the
original input, so the expression ability is insufficient. We
calculate the weights of the gate using the attention
mechanism.We upgrade the calculation of the gate network,
which is from a linear transformation to multiple matrix
inner product operations. We introduce the gradient
boosting tree in the MMOE experts, which improve both the

knowledge representation and the efficiency of mutual
communication reasoning. Multihead attention is applied
on the expert feature extraction layer, which can represent
high-order features better. In addition, we fuse sequence
DIN and MMOE, which make the multitask learning
consider the relevance of features.

In further work, we will introduce cognitive intelligence
in multitask learning more.)e cognitive intelligence can
give full play to the wisdom of experts. Expert system based
on frames and expert system based on models are regarded
as different experts in the multitask learning algorithm. We
will build a broader recommendation system, which use
multi-experts and multitask to work collaboratively.

Data Availability

)e Ali-CCP public dataset has been used in the experi-
ments. Ali-CCP dataset is a public dataset containing 84
million samples extracted from Taobao’s Recommender
System. CTR and CVR (Conversion Rate) are two tasks
modeling actions of click and purchase in the dataset.)e
dataset url is https://tianchi.aliyun.com/dataset/dataDetail?
dataId�408.

Conflicts of Interest

)ere are no conflicts of interest regarding the publication of
this paper.

Acknowledgments

)is work was supported by the National Key Research and
Development Program (no. 2017YFB1002304).

References

[1] H. Chen, H. Sun, M. Cheng, andW. Yan, “A recommendation
approach for rating prediction based on user interest and trust
value,” Computational Intelligence and Neuroscience,
vol. 2021, Article ID 6677920, 9 pages, 2021.

MMOE CGA AIM SeqFeat imp-loss proposed

0.25

0.20

0.15

0.10

0.05

0.00

cli
ck

@
2

clk@2 of different models

0.1927 0.1957 0.1958 0.1941 0.1932 0.1969

(a)

MMOE CGA AIM SeqFeat imp-loss proposed

0.25

0.20

0.15

0.10

0.05

0.00

or
de

r@
2

ord@2 of different models

0.1477 0.1573 0.1521 0.1504 0.1488 0.1582

(b)

Figure 12: Click@2 and order@2 of different models.

12 Computational Intelligence and Neuroscience

https://tianchi.aliyun.com/dataset/dataDetail?dataId=408
https://tianchi.aliyun.com/dataset/dataDetail?dataId=408

[2] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi,
“Modeling task relationships in multi-task learning with
multi-gate mixture-of-experts,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1930–1939, London, UK, August 2018.

[3] Z. Zhao, L. Hong, and L. Wei, “Recommending what video to
watch next: a multitask ranking system,” in Proceedings of the
13th ACM Conference on Recommender Systems, pp. 43–51,
Copenhagen, Denmark, September 2019.

[4] H. Wen, J. Zhang, and Y. Wang, “Entire space multi-task
modeling via post-click behavior decomposition for con-
version rate prediction,” in Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 2377–2386, Xi’an, China, July
2020.

[5] J. Ma, Z. Zhao, J. Chen, A. Li, L. Hong, and E. H. Chi, “Snr:
sub-network routing for flexible parameter sharing in multi-
task learning,” Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 33, pp. 216–223, 2019.

[6] Z. Qin, Y. Cheng, Z. Zhao, Z. Chen, D. Metzler, and J. Qin,
“Multitask mixture of sequential experts for user activity
streams,” in Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
pp. 3083–3091, New York, NY, USA, July 2020.

[7] H. Tang, J. Liu, M. Zhao, and X. Gong, “Progressive layered
extraction (PLE): a novel multi-task learning (MTL)model for
personalized recommendations,” in Proceedings of the Four-
teenth ACM Conference on Recommender Systems, pp. 269–
278, New York, NY, USA, September 2020.

[8] Y. Wang, X. Wang, and A. Beutel, “Understanding and im-
proving fairness-accuracy trade-offs in multi-task learning,”
arXiv preprint arXiv:2106.02705, 2021.

[9] D. Xi, Z. Chen, and P. Yan, “Modeling the sequential de-
pendence among audience multi-step conversions with multi-
task learning in targeted display advertising,” arXiv preprint
arXiv:2105.08489, 2021.

[10] X. Fan, Z. Liu, and J. Lian, “Lighter and better: low-rank
decomposed self-attention networks for next-item recom-
mendation,” in Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 1733–1737, Montreal, Canada, July 2021.

[11] H. Fei, J. Zhang, and X. Zhou, “GemNN: gating-enhanced
multi-task neural networks with feature interaction learning
for CTR prediction,” in Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 2166–2171, Montreal, Canada, July
2021.

[12] K. Ding, X. Dong, and Y. He, “MSSM: a multiple-level sparse
sharing model for efficient multi-task learning,” in Proceed-
ings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pp. 2237–2241, Montreal, Canada, July 2021.

[13] H. Wen, J. Zhang, and F. Lv, “Hierarchically modeling micro
and macro behaviors via multi-task learning for conversion
rate prediction,” arXiv preprint arXiv:2104.09713, 2021.

[14] J. Zhao, B. Du, L. Sun, F. Zhuang, W. Lv, and H. Xiong,
“Multiple relational attention network for multi-task learning
ACM reference format: multiple relational attention network
for multi-task learning,” in Proceedings of the Kdd,
pp. 1123–1131, Anchorage, AK, USA, August 2019.

[15] F. Tang, C. Xiao, F. Wang, J. Zhou, and L. H. Lehman,
“Retaining privileged information for multi-task learning,” in
Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining,
pp. 1369–1377, Anchorage, AK, USA, August 2019.

[16] W. Wang and W. Hu, “Improving relation extraction by
multi-task learning,” in Proceedings of the 2020 4th High
Performance Computing and Cluster Technologies Conference
& 2020 3rd International Conference on Big Data and Arti-
ficial Intelligence, pp. 152–157, Qingdao, China, July 2020.

[17] C.-J. Shao, H.-M. Fu, and P.-J. Cheng, “Improving one-class
recommendation with multi-tasking on various preference
intensities,” in Proceedings of the Fourteenth ACM Conference
on Recommender Systems, pp. 498–502, New York, NY, USA,
September 2020.

[18] Y. Yao, J. Cao, and H. Chen, “Robust task grouping with
representative tasks for clustered multi-task learning,” in
Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 1408–
1417, Anchorage, AK, USA, August 2019.

[19] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo,
““Multi-task feature learning for knowledge graph enhanced
recommendation,” in Proceedings of the World Wide Web
Conference WWW 2019, pp. 2000–2010, San Francisco, CA,
USA, May 2019.

[20] X. Chen, K. Zhang, F. Zhou, G. Trajcevski, T. Zhong, and
F. Zhang, “Information cascades modeling via deepmulti-task
learning,” in Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 885–888, Paris, France, July 2019.

[21] A. K. Sangaiah, H. Lu, and Q. Hu, “Cognitive science and
artificial intelligence for human cognition and communica-
tion,” IEEE Consumer Electronics Magazine, vol. 9, no. 1,
pp. 72-73, 2019.

[22] X. Luo, “AliCoCo: alibaba E-commerce cognitive concept
net,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 313–327, Portland,
OR, USA, June 2020.

[23] F.-Z. Hibbi, O. Abdoun, and E. K. Haimoudi, “Knowledge
management in the expert model of the smart tutoring sys-
tem,” in Proceedings of the 3rd International Conference on
Networking, Information Systems & Security, pp. 1–4, Mar-
rakech, Morocco, March 2020.

[24] M. W. Gardner and S. R. Dorling, “Artificial neural networks
(the multilayer perceptron)—a review of applications in the
atmospheric sciences,” Atmospheric Environment, vol. 31,
no. 14-15, 1998.

[25] R. Caruana, “Multitask learning,” Machine Learning, vol. 28,
no. 1, pp. 41–75, 1997.

[26] X. Ma, L. Zhao, G. Huang et al., “Entire space multi-task
model: an effective approach for estimating post-click con-
version rate,” in Proceedings of the SIGIR Conference,
pp. 1137–1140, Tianjin, China, September 2018.

Computational Intelligence and Neuroscience 13

