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Semisupervised learning is an idea that addresses how to use a large number of unlabeled samples and a limited number of labeled
samples to learn decision knowledge together. In this paper, we propose a multitask multiview semisupervised learning model
based on partial differential equation random field and Hilbert independent standard probability image genus attribute model,
i.e., shared semantics. In the framework of the image-like genus attribute model, data from different data sources are generated
by their shared hidden space representation. Different from the traditional model, this paper uses the Hilbert independence
criterion to inscribe the shared relationship of hidden expressions. Meanwhile, to exploit the correlations between labels in the
label space as well, this paper uses the partial differential equation random field to inscribe the correlations between different
kinds of labels in the label space and the correlations between hidden features and labels. Using the variational expectation-
maximization algorithm, the whole generative process model can be inferred. To verify the effectiveness of the model, two
artificial datasets and three real datasets are tested in this paper, and the experimental results verify the effectiveness of the
algorithm in the paper. On the one hand, it not only improves the classification accuracy of the multiclassification problem
and the multilabel problem; it also outputs the association structure between different kinds of labels and between hidden

features and labels.

1. Introduction

Data contains a rich value, and nowadays, in the era of big
data, the application of massive high-dimensional data lacks
suitable means. The multilabel learning framework is to
address these multisemantic phenomena. In the framework,
each data object is described by an example (feature vector),
which can belong to multiple categories. When machine
learning and data mining techniques are applied to high-
dimensional multilabel data, an important issue is a dimen-
sional catastrophe. Therefore, multilabel feature selection
techniques have emerged. In the past few years, multilabel
feature selection has attracted the attention of many
researchers and some excellent algorithms have emerged
[1]. However, they still have some problems that are difficult

to solve: (1) to select features, existing feature selection algo-
rithms usually adopt one of these two strategies: selecting a
common subset of features for all tags that are discriminative
to all tags (shared features) or selecting features for each tag
separately that are discriminative to themselves (class fea-
tures), these important features play an important role dur-
ing the label recognition process, and they are important for
the recognition ability of the selected features; (2) exploring
and exploiting label relevance in feature selection are consid-
ered an important idea to improve the performance of the
algorithm; although existing algorithms have achieved good
results, it is necessary to explore new methods to improve
the performance of the algorithm recently. In addition, exist-
ing multilabel feature selection algorithms tend to exploit
label global correlation. However, label relevance is usually


https://orcid.org/0000-0001-5347-9885
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4784411

local and shared by local regions of the dataset; (3) existing
multilabel feature algorithms are usually modeled based on
the raw label information of the data; however, this label
information cannot fully express the rich semantics of the
object; on the one hand, the relevant labels are of different
importance to the example because the relevant labels of
the example usually describe it with different degrees. On
the other hand, the label importance cannot be provided
directly by the data annotator.

In traditional supervised learning, the learner learns
from a large number of labeled examples to build a model
for predicting future example labels. The “label” here is the
output corresponding to the example, which is the category
of the example in classification problems, and the real-
valued output corresponding to the example in regression
problems. At the same time, with the rapid development of
data collection and storage technologies, it has become quite
easy to collect a large number of unlabeled examples, while it
is relatively difficult to obtain a large number of labeled
examples because obtaining these labels can be labor-
intensive [2]. The large amount and low cost of unlabeled
data can be used to assist supervised learning to improve
the prediction efliciency and accuracy as well as reduce the
prediction cost. If only a small number of labeled examples
are used, it is often difficult to train a learning system with
strong generalization ability; on the other hand, if only a
small number of “expensive” labeled examples are used
instead of a large number of “cheap” unlabeled examples,
it is a great waste of data resources. On the other hand, it
is a great waste of data resources if only a small number of
“expensive” labeled examples are used instead of a large
number of “cheap” unlabeled examples. Therefore, how to
use a large number of unlabeled examples to improve the
learning performance when there are few labeled examples
has become one of the most concerning issues in current
machine learning research [3]. In this paper, we study a
semisupervised association learning method based on partial
differential equations for sparse representation of image
class attributes, focusing on the problems of solving semisu-
pervised multilabel learning and semisupervised multiclassi-
fication learning.

2. Related Work

The main traditional machine learning is supervised learn-
ing and unsupervised learning. Among the classic scenarios
of supervised learning are the two main categories of classi-
fication and regression. Semisupervised learning, which has
received a lot of attention in the last decade or so, is dedi-
cated to using a large number of unlabeled samples to com-
plement a relatively small number of manually labeled
samples, thus hopefully training a more accurate classifier
than if only manually labeled samples were used.
Self-training methods, proposed in the literature [4],
were the first methods to use samples without class labels
for supervised learning. This class of methods mainly uses
the idea of iteration, where supervised learning is repeated
continuously, and the resulting optimally labeled results
are applied to the next round and added to the sample set
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along with the class labels to continue iteration and iterative
supervision. The advantage of this method is its simplicity
and ease of operation, but it is prone to erroneous errors
thus leading to a vicious circle in the iteration. The literature
[5] first proposed “semisupervised” and can use semisuper-
vised for classification. In [6], it is shown that the use of
unlabeled samples can mitigate the “Hughes” phenomenon
in small samples, and this idea has led to widespread interest
in unlabeled samples and semisupervised learning. The liter-
ature [7] proposed semisupervised learning for deep genera-
tive models. The first semisupervised distance metric
learning method was proposed in the literature [8]. The lit-
erature [9] proposed a particle swarm optimization algo-
rithm based on a semisupervised classifier for solving the
classification problem of Chinese text. The literature [10]
proposed a semisupervised hashing method for dealing with
the retrieval problem of large-scale images. The literature
first proposed the minimum partitioning operator, where
the source node is a positively labeled sample instance and
the target node is a negatively labeled sample instance, to
find a set of edges that can split the source and target nodes
after deletion, and this set of edges in the graph cut, and the
graph is also split into two independent parts. After that,
there are other algorithms that gradually emerged; the liter-
ature [11] studied the energy function minimization and
confirmed the high efficiency of the graph cut algorithm.
The literature [12] proposed the proportional cut method
as well as the normalized cut method. The literature [13]
summarized the streamlined semisupervised learning
method and proposed the popular regularization method.
After that, the literature [14] proposed the regularization of
online stream shapes, which improves the applicability of
stream shape regularization in large-scale data. The litera-
ture [15] used strong domain knowledge to construct graphs
and then performed semisupervised learning for character
recognition based on graphs. The edges in the graph are a
combination of temporal, color, and face edges, such that
the graph reflects strong domain knowledge, a deep under-
standing of the problem structure, and how to use unanno-
tated data. The literature [16, 17] improves the problem of
overadjustment of affiliation in AFCC algorithms and pro-
poses an improved class of semisupervised fuzzy clustering
algorithms. The literature [18] investigated the effect of pair-
wise constraint attributes on the effect of semisupervised
clustering.

3. Semisupervised Association Learning Based
on Partial Differential Equations for Sparse
Representation of Genus Attributes of
Image Classes

3.1. Algorithm for Sparse Representation of Attributes of
Image Classes Based on Partial Differential Equations. The
sparse representation of image class properties based on par-
tial differential equations is the problem of solving the opti-
mal solution of an energy generalized function about images,
which is an ill-posed inverse problem, so regularization the-
ory is applied to transform the ill-posed problem into an ill-
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posed problem. The following convex combined variational
regularization model is first proposed [19]:
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where p is the definition domain of the image;  is the image
after noise reduction; a is the noisy image; b is the gradient
operator; ¢ is the regularization parameter; and p is the var-
iational order control parameter; the first term on the right
side of the equation is the loyalty term, and the second term
is the regularization term that has a soothing effect on the
image. The model in this section has the following cases.

(1) When m = 1, the model in this section can be rewrit-
ten as
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At this point, the model degenerates to a TV model with
the regularization operator as a first-order variation. From
the previous section, it is clear that the model has good
edge-preserving performance but produces a “step effect.”

(2) When m =0, the model in this section can be rewrit-

ten as
/12
min K(x) = WJ (1+ p)Vydydx,

(3) When m € (0, 1), the model in this section is similar
to the TVBH model, taking into account both first-
order and second-order variables and is a fusion of
the TV and BH models

In summary, the choice of parameter m determines the
filtering form and filtering performance of the new model.
As the parameters are often tried to be scraped together by
a large number of experiments or the best value is obtained
empirically, it is a rough evaluation of the global content and
ignores the local features of the image.

Next, the local features of the image are considered to
improve the adaptivity of the model in this section by replac-
ing the constant m with an edge diffusion function m(z),
and a variable-order variational model is proposed, which
is optimized in the following new model form [20].
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To better detect detailed information such as edge tex-
ture contained in the image, the construction of the feature
detection factor A concerning the edge diffusion function
m(A) incorporates both gradient and local entropy feature
detection operators.

3.1.1. Image Gradient. The gradient table characterizes the
magnitude and direction of change of the image gray value,
so the gradient modulus is commonly used to distinguish the
edge regions and nonedge regions of the image. The gradient
of edge regions is larger, and the gradient of flat regions is
smaller, but the gradient of some detail information is not
much different from that of flat regions, and the gradient
at noise points is even larger than that of edges, so that the
gradient edge detection operator may misjudge the weak
edge regions and strong noise points in the image with rich
details, resulting in the loss of detail information or incom-
plete noise reduction of the processed image.

3.1.2. Image Local. Local entropy characterizes how drasti-
cally the grayscale values of pixels in local regions of an
image change and thus can reflect the richness of the infor-
mation contained in the image. The entropy value of a gray-
scale image f of size k = [ is defined as
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where f (i, j) denotes the gray value of the pixel located at the
point (i, j) of the image; P(i, j) denotes the distribution prob-
ability of the gray value of the pixel at the point (i, ) in a
local neighborhood of size k #; H denotes the local entropy
of the image. Through the local entropy, the local character-
istics of the image can be effectively determined, and the
local entropy value is larger in the edge detail region with
complex grayscale distribution and smaller in the flat region
with the uniform grayscale distribution. In addition, local
entropy has strong noise immunity, and independent noise



points have little effect on it. Therefore, local entropy can be
widely used in image processing.

The continuous first-, second-, and fourth-order differ-
ential operators as well as the scattering operator are first
discretized. In addition, to further improve the speed of the
split Bregman algorithm computation, periodic boundary
conditions are used to make the FFT applicable to the split
Bregman algorithm. Let y be a two-dimensional grayscale
image region of size k * [, and the coordinates of the image
column and row directions are denoted by x and y, respec-
tively. The first-order forward differencing at pixel (3, f)
along the coordinate x and y directions is noted as
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The first-order backward differential is noted as
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3.2. Semisupervised Associative Learning in the Sparse
Representation of Image Class Attributes Based on Partial
Differential Equations. Data from different regions, genera-
tions, and individuals are characterized by a huge amount
of data and also contain a great deal of information. In the
new technological era, there is an urgent need to analyze
data from different sources and to integrate them efficiently
to obtain information about their intrinsic structure. In the
face of certain complex challenges, it is possible to under-
stand and analyze them in steps and solve them one by
one in a smaller individual perspective so that the original
challenges are solved. A comparison of unsupervised image
classification and supervised image classification processes
based on deep learning is shown in Figure 1. In recent years,
deep learning algorithms have been continuously updated
with the latest performance results for image classification
tasks, showing a strong burst of power, but they also face
some specific challenges and still have room for improve-
ment. In addition to common problems such as time-
consuming training process, high hardware requirement
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standards, and difficulty in portability, there are also some
domain-specific problems [21].

Certain teams in machine learning work on theories and
algorithms related to semisupervised associative learning of
sparse representations of image-like attributes based on par-
tial differential equations, integrating multiple single solu-
tions into a comprehensive answer that yields a convincing
answer for all viewers. It possesses better accuracy and
robustness and is more stable than using a particular model.
This model has been successfully implemented in several
directions. The tasks of semisupervised associative learning
are mainly classified into classification tasks, clustering tasks,
and semisupervised learning tasks, which specifically enable
specific processes such as collaborative filtering, anomaly
detection, distributed computing, and multisource data
fusion, making it a powerful tool for data analysis. By the
assistance of a single learning model, one is exploring the
unknown dataset from a single perspective and can only
get a one-sided learning result, but if one can brainstorm
and explore the unknown dataset through several different
perspectives with the help of a semisupervised associative
learning model, then one can perform several learning pro-
cesses simultaneously and eventually, one or more learning
results can be obtained as well. The overall framework of
semisupervised associative learning is shown in Figure 2.

Semisupervised clustering is mainly guided by super-
vised information to the traditional clustering algorithm,
and the two types of supervised information are class labels
and pairwise constraints. When introducing supervised infor-
mation, the supervised information needs to be selected prop-
erly, and the amount of effective information selected is high,
which has a positive impact on time and results in the subse-
quent clustering process; at the same time, it is also necessary
to identify and consider whether the supervised information is
reliable and avoid wrong supervised information as much as
possible or too redundant amount of information, such as
two samples labeled as must-link constraints, but the amount
of information of two samples even if the unlabeled
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information is also in a cluster, which will not have any effect
on the results, and at this point, the labeling cost is considered
wasteful. To optimize the supervised information, scholars try
to select the supervised information through active learning to
achieve more accurate screening results. Two typical algo-
rithms that combine active learning with semisupervised clus-
tering are the APCKmeans algorithm and the IASSCF
framework. Each marker has its original characteristics, which
have an important role and function for the inherent proper-
ties of the marker itself, providing stronger evidence for the
existence of certain marker properties in the sample. There-
fore, multitag learning can be performed more effectively
through the study of class attributes. Feature selection is
achieved through the study of class attributes; however, some
of the features processed through the class attribute approach
may still have redundancy, and the redundancy in the feature
space can be effectively addressed through mutual information
theory. Mutual information can be formulated as a main-
stream statistical algorithm based on the extension and expan-
sion of information theory and statistical theory, which can
provide an accurate description of the correlation that exists
between most samples and categories with each other. First,
a sparse representation of class attributes is performed. How-
ever, for the features processed through the class genus attri-
butes, there may still exist a certain redundancy; therefore,
combining information entropy to all features in the new fea-
ture, space separately calculates their mutual information with
the marker space based on the size of the mutual information
the sequential arrangement of features obtains the relevant
feature subset; and then further considers the redundancy of
the feature space through the mutual information theory
based on the study of the class genus attributes. This is more
effective to improve the multitag classification accuracy.

The fine-grained features are the most characteristic and
important information in the process of image sparse repre-
sentation. To further learn finer discriminative features, local
regions with discriminative features are further localized, finer
fine-grained features are learned, and fine-grained features of
different scales are fused for classification. Specifically, firstly,
different regions in the image are scored using anchors of dif-
ferent sizes, and the discriminative local regions in the original
image are initially filtered, and the local regions with less infor-
mation are filtered out to reduce the interference of the regions
with poor effective information on the classification results
and effectively reduce the computational cost. Secondly,
zooming in on the images of key regions after filtering and
locating them with discriminative regions for the second time
enables the designed model to capture finer features in the
images and obtain higher-quality fine-grained feature infor-
mation. Finally, the weights between images of different scales
are learned, and the interscale weights are used to fuse the fine-
grained image information of different scales to provide a rich
decision basis for the final fine-grained image classification
results. The fine-grained image information at different scales
collaborates to jointly correct the final classification results. In
fine-grained images, individual local regions contain different
amounts of information, and thus, they contribute differently
to the accurate recognition of various fine-grained images.
The information-rich local regions contain more discrimina-
tive feature information which contributes to enhancing the
correct recognition of the model for different fine-grained
images. Therefore, for the final feature representation, the
analysis focuses on the fine-grained features of the effective
information-rich local regions, while weakening the informa-
tion of those local regions with less information. To further
improve the classification performance of the model and



effectively fuse the feature information of discriminative
regions at different scales, it is necessary to constrain the
weights of the learned fine-grained features at different scales
using partial differential equations.

It is known that the proportion of pairwise constraint
information in the total data sample is very small, so we
add the concept of partial differential equation to describe
the data samples with constraints and adjust the weight mea-
sure of pairwise constraint information, and consider the
case that the boundary points of clusters have fuzzy divi-
sions, and force the active addition of constraint information
to the fuzzy boundary, and propose an improved partial dif-
ferential equation-based active semisupervised fuzzy cluster-
ing algorithm is proposed, hoping to improve the traditional
SFCM algorithm and MEC algorithm. The ASFCM-CE
algorithm is improved mainly from two perspectives: (1)
the self-information and constraint information are
described by partial differential equations, and weights 0
are added to adjust the objective function; (2) there must
be pairwise constraints to control the clustering boundary;
i.e., pairwise constraints are added actively for fuzzy bound-
ary points. In general, the amount of labeled data in the
dataset is much smaller than the amount of unlabeled data,
and at this time, it is not enough to guide the pairwise con-
straints only by 0. At this time, we adjust the weights of the
labeled data so that the constraint information can better
guide the subsequent iterations.

The proposed semisupervised association learning algo-
rithm process based on partial differential equations for
sparse representation of image class attributes is divided into
three main stages. First, features are randomly selected from
all candidate features to form a series of random feature sub-
spaces. Second, weighted constraint selection and constraint
projection are performed on the above subspaces to improve
the clustering quality. Third, a scheme is designed for inte-
grating the clustering solutions generated in each subspace
to obtain a more robust uniform clustering solution.

4. Experimental Design and Conclusion

To verify the clustering effect of the proposed partial differ-
ential equation-based semisupervised association learning
algorithm for sparse representation of image attributes, the
clustering effect of the ARSCE method on several real data
sets is evaluated based on normalized mutual information
in this section. To ensure the validity of the experimental
results and avoid the influence of chance, the method is
run 20 times for each experiment, and the average of the
20 times is calculated as the final experimental result. The
extraction rate of the used pairwise constraint set is set to
0.2; ie., 20% of the real label set is extracted to construct
must-link and cannot-link constraint sets.

The effect of sampling rate on clustering performance is
first explored in terms of standard mutual information
(NMI), where the sampling rate determines the number of
features in each subspace. This experiment was conducted
on 3 datasets, namely, Alizadeh-2000-v3, Armstrong-2002-
v2, and lymphoma. Here, the sampling rate was varied
between 4 and 8. Figure 3 demonstrates the effect of sam-
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F1Gurek 3: Effect of feature sampling rate on clustering performance.

pling rate on clustering performance. As can be seen from
the figure, in general, the performance improves with an
increased sampling rate. This means that more and more
informative features are selected to facilitate clustering.
However, when the sampling rate reaches a certain value, a
clear downward trend in the clustering performance can be
noticed. A possible reason for this is the selection of redun-
dant features in this setup, which negatively affects the clus-
tering. In most cases, the optimal sampling rate is between 3
and 4, while for the Armstrong-2002-v2 dataset, the optimal
value of the sampling rate is between 2 and 3. By another
way, different data have their own more desirable sampling
rates. In this case, the optimal sampling rate needs to be cho-
sen specifically. From the feature selection perspective, this
paper argues that it is necessary to explore a more reasonable
strategy in constructing a random feature subspace by select-
ing more efficient information features. Thus, multiple dif-
ferent clustering partitions with satisfactory performance
can be generated.

Next, the effect of pairwise constraints on clustering perfor-
mance is explored by increasing the percentage of pairwise con-
straints. In general, a larger percentage of pairwise constraints
indicates that more supervised information is available to drive
the clustering method for better clustering performance.
Figure 4 shows the effect of pairwise constraints on perfor-
mance for the six datasets. From the figure, it can be observed
that the overall clustering performance shows an increasing
trend at different levels as the number of pairwise constraints
increases. This implies that these pairwise constraints provide
effective supervisory information, which helps the clustering
process when discovering the clustering-friendly space. When
the number of paired constraints is all set to a tolerance of 10,
with equal division in the range 0-100, the five compared algo-
rithms show higher overall accuracy on large data samples than
on small data samples, with the ASFCM-CE algorithm being
the most prominent among the five. However, when observed
separately on the large data sample dataset, the ASFCM-CE
algorithm is less stable compared to the other algorithms, and
there are even several instances where the SCE-SSC algorithm
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is more accurate than the ASFCM-CE algorithm. Although the
ASFCM-CE algorithm is less stable in the 0-100 pairs, because
of the large dataset, the overall accuracy still shows an increas-
ing and stable trend if divided by 0-300 pairs.

To verify the stability of different multitag feature selec-
tion algorithms, the stability of the algorithms can be
expressed by iterative validation. Since predictive classifica-
tion has a large variation in results on different datasets
using different evaluation metrics, the results are all normal-
ized between 1 and 10 as a general criterion. Finally, the sta-
bility index is represented by the standardized values.
Figure 5 shows the stability of the six algorithms on the six
datasets. In the figure, the LSFIE algorithm provides a very
stable solution on 5 datasets and the stability index is also
between 8.2 and 9.8. On the Genbase dataset, the stability
index is also between 7.3 and 8.4, which also yields fairly sta-
ble results. In summary, the results show that the LSFIE
algorithm is better stable and its stability index values do
not fluctuate much and are better. The results of the LSFIE
algorithm are unstable on very few datasets but are more sta-
ble and slightly better on most datasets.

This paper also explores the effect of the number of inte-
grated members on the clustering performance based on nor-
malized mutual information (NMI), as shown in Figure 6.
From the figure, it can be seen that the performance shows
an increasing trend as the number of integration members
increases. This means that more integration members can pro-
vide more informative and auxiliary information for better
clustering. When the number of members reaches a certain
threshold, it will reduce the improvement in performance, in
line with the law of diminishing marginal benefit, and reach-
ing the same performance improvement at this time means
adding more cost, which needs to be balanced between com-
putational cost and performance improvement.

The effect of the feature detection factor A on the cluster-
ing performance is studied according to normalized mutual
information (NMI), as shown in Figure 7. In this study,
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the value of A was varied by changing it between 0.1 and
0.9. It can be noted from Figure 7 that when A increases,
the clustering performance shows a rapid upward trend
before peaking, followed by a decreasing trend of varying
degrees. In addition to this observation, it can be found that
for different datasets, there are respective appropriate A. This
suggests that the method in this paper is sensitive to A,
which is used to control the distribution of the weight asso-
ciation graph in the newly learned space. The optimal value
of the equilibrium parameter A is between 0.4 and 0.6 in
most cases, except on the dataset nci9 where the optimal
value of A is between 0.6 and 0.8. In this paper, we argue that
the distribution of data samples on different clusters is some-
what different from the distribution of other data sets.
Therefore, it is necessary to choose its more optimal value
to adjust the weights of the learned association graph to
obtain better performance.
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In general, the more the number of pairwise constraints,
the better the clustering effect should be; however, according
to the above analysis, the clustering effect of both PD-SSC
and CE-SSC algorithms tends to decrease with the increase of
the number of pairwise constraints. The possible reason for this
phenomenon is that to simplify the experimental process, a
fixed penalty coefficient is chosen, and when the number of
pairwise constraints increases, the weight of the penalty term
in the objective function will increase, which affects the cluster-
ing effect. In this case, the penalty coeflicient decreases as the
number of pairwise constraints increases, and the weight of
the penalty term is reduced to obtain a better clustering effect.
Taking the iris-wine data set as an example, the penalty coeffi-
cients are reduced appropriately as the number of pairwise con-
straints increases, and the penalty coefficients are 0.7 for the
CE-SSC algorithm and 0.9 for the PD-SSC algorithm, where
N is the number of pairwise constraints. After the penalty coef-
ficients were adjusted, the values of the three indicators of the
PD-SSC algorithm showed a fluctuating upward trend, and
the clustering effect was significantly improved. In Figure 8,
the index value of the CE-SSC algorithm increases continu-
ously when the number of pairwise constraints is greater than
35; the index value of the PD-SSC algorithm increases slightly
when the number of pairwise constraints is greater than 15;
the index value of the CE-SSC algorithm decreases continu-
ously when the number of pairwise constraints is 20-80 and
then increases slightly. The index value of the PD-SSC algo-
rithm reaches the highest value at the number of pairwise con-
straints of 20, but the overall trend is slightly increasing. This is
one of the reasons for introducing the semisupervised correla-
tion learning algorithm based on partial differential equations
for the sparse representation of attributes of image classes.

In addition, the comparative results of recent semisuper-
vised clustering integration methods and the proposed
method are analyzed. The homogeneous algorithms include
neural gas-based clustering integration algorithm (NGCE),
stochastic K-means-based clustering integration algorithm
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Ficure 8: Different algorithm metric values after adjusting the
penalty factor.

(RSKE), bagging-based K -means clustering integration algo-
rithm (BAGKE), hierarchical clustering integration algorithm
(HCCE), clustering integration algorithm using constraint
propagation (E2CPE), incremental semisupervised clustering
integration algorithm (ISSCE), and double weighted semisu-
pervised integration clustering algorithm (DCCP). The follow-
ing observations can be obtained: (1) E2CPE can achieve
better performance compared to NGCE, RSKE, BAGKE, and
HCCE methods because E2CPE methods use constraint prop-
agation techniques to make better use of supervised informa-
tion, which helps guide the clustering process. This
illustrates the effectiveness of pairwise constraints to improve
the quality of clustering. (2) Both constraint weighting and
constraint projection weighting transform the feature sub-
space into a space that is friendly to clustering, yielding
high-quality clustering solutions with sufficient diversity. This
can be seen from the fact that both ISSCE and DCECP achieve
better performance than E2CPE on most datasets. (3) The
proposed method in this paper achieves the best or at least bet-
ter performance on all datasets, which indicates the necessity
of using adaptive clustering integration to assign appropriate
weights to the underlying clustering solutions and combine
them to form a better clustering partition. In other words, it
validates the effectiveness of the diffusion fusion approach.

5. Conclusion

In this paper, semisupervised associative learning based on par-
tial differential equations for image genus attribute coefficient
representation is used as the research background, and the
problems of partial differential equations for image genus attri-
bute representation, solving semisupervised multilabel learn-
ing, and semisupervised multiclassification learning are
primarily studied. As the data magnitude increases and the
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structure becomes increasingly complex, a new semisupervised
associative learning integration method based on partial differ-
ential equation image class attribute coefficient representation
is proposed in this paper to better handle the data clustering
problem. These problems are very common in the field of
machine learning, and there is a large amount of related work.
Unlike traditional approaches to these individual problems,
this paper is a reinterpretation of these two problems from a
new perspective by combining matrix complementation and
generative models, respectively, and tests the effectiveness on
several simulated and real datasets. The goal of feature selection
is to obtain a subset of features that satisty the conditions under
some specific evaluation metric criteria, which is essentially a
comprehensive optimization problem for the objective. The
amount of information of each feature is generally calculated
when performing feature selection, and then, all features are
ranked according to their information size, and the desired
number of features is selected. In this paper, when performing
multitag feature selection, rough set theory can effectively eval-
uate imprecise and unstable data, to analyze and process the
data more efficiently, uncover the potential connotation, and
reveal the potential law. According to the principle of maxi-
mum correlation and minimum redundancy, the correlation
between features and tokens is calculated based on the affilia-
tion in the rough set, and then, the Kendall correlation coeffi-
cient is used to measure the redundancy between unselected
features and selected features, and finally, the correlation and
redundancy are made to calculate the difference, and the differ-
ences are ranked for magnitude, and the desired features are
selected. Finally, the experimental results on multiple datasets
illustrate the effectiveness of the algorithm. Traditionally in
multitag learning, tags are predicted from the same set of attri-
butes, ignoring certain features of the tags themselves. These
unique attributes have strong discriminative power for the
tokens, so strengthening the study of class attributes can be
more effective for multitoken learning. The proposed algo-
rithm in this paper, after a sparse representation of the class
attributes, then computes the mutual information between
the features and the token space, then ranks the features
according to the magnitude of the mutual information, and
selects the desired subset of features. The experiments also ver-
ify that the proposed algorithm is feasible.
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