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Abstract: This paper introduces a cognitive psychological experiment that was conducted to analyze
how traditional film editing methods and the application of cognitive event segmentation theory
perform in virtual reality (VR). Thirty volunteers were recruited and asked to watch a series of short
VR videos designed in three dimensions: time, action (characters), and space. Electroencephalograms
(EEG) were recorded simultaneously during their participation. Subjective results show that any of
the editing methods used would lead to an increased load and reduced immersion. Furthermore, the
cognition of event segmentation theory also plays an instructive role in VR editing, with differences
mainly focusing on frontal, parietal, and central regions. On this basis, visual evoked potential (VEP)
analysis was performed, and the standardized low-resolution brain electromagnetic tomography
algorithm (sLORETA) traceability method was used to analyze the data. The results of the VEP
analysis suggest that shearing usually elicits a late event-related potential component, while the
sources of VEP are mainly the frontal and parietal lobes. The insights derived from this work can be
used as guidance for VR content creation, allowing VR image editing to reveal greater richness and
unique beauty.

Keywords: EEG; VR film; cognitive event segmentation theory; visual evoked potential

1. Introduction

With the rapid development of virtual reality technology, the integration of VR tech-
nology and film has gradually become an important breakthrough in traditional screen
cinema [1], and VR films have shone at major film festivals, such as Venice, Sundance,
and Golden Shaker. Immersive and interactive VR films might present people with the
most extreme visual impact and sensory experience to date, enabling viewers to actively
watch multi-threaded films while breaking numerous traditional rules of film shooting
and editing.

In traditional cinema, filmmakers have developed a series of film editing rules for bet-
ter transitions between scenes, collectively known as “continuity editing” [2,3]. According
to the theory of cognitive event segmentation, editing connects clips shot at different times
and places. Although the visual content might change dramatically according to different
editing methods, viewers can effortlessly perceive the discontinuous flow of information
as a series of coherent events [4], e.g., the 180-degree rule [5], which may smooth out the
changes between scenes, and whose violation can cause confusion and discontent among
the audience. However, the emergence and development of VR films have subverted and
reconstructed traditional film narrative modes. The direction of the camera is controlled by
the audience, the editing techniques, such as camera orientation and zoom, are no longer
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applicable in traditional films, and attention guidance becomes the editing method of VR
films [6].

The focus of recent additional research has turned to the neural mechanisms behind
films. Hasson et al. [7] also proposed the concept of Neurocinematography in 2008, where
the impact of films on viewers can be measured by brain activity. Linking cinematography
to cognitive neuroscience is a great impetus to find the connection between neuroscience
and art. According to the current research, electrocardiogram (ECG) [1,8], functional
magnetic resonance imaging (fMRI) [9,10], blood pressure (BP), and electroencephalogram
(EEG) [11] can be used as assessment indicators. The electroencephalogram (EEG) is one
of the oldest technologies to measure neuronal activity of the human brain [12]. The
main neuroimaging techniques that can be used to study brain networks or network
neuroscience include EEG, MEG, and MRI. The most prominent feature of EEG is the
ultra-high temporal resolution compared to other imaging modalities (mainly compared to
MRI techniques). EEG, as a non-invasive technical feature, could record cerebral evoked
potentials from the skull surface to reflect neurophysiological changes in the brain during
cognition, providing a reliable basis for studying information processing, such as attention,
perception, emotion, movement, decision making, and judgment [13]. However, one
of the fatal problems is that EEG has a severe volume conduction effect. To solve this
problem, Pascual-Marqui used the standardized low-resolution brain electromagnetic
tomography algorithm (sLORETA) traceability method to obtain the current distribution
and intensity deeper in the cortex [14]. Lorenzo-López et al. used sLORETA to study
EEG signals under a visual search task and found that neural activity in the anterior
cingulate gyrus, limbic system, and occipitotemporal regions was lower in the group
of older adults than the corresponding activity in the group of young adults [15].For
conventional 2D films, it has been demonstrated that film clipping can cause certain
physiological responses, such as lowered heart rate [16] and lowered blood pulse [13].
In addition, when Anderson [17] explored cortical activation patterns during viewing
montage videos with the help of fMRI techniques, finding that viewing videos with
continuous clips would activate temporal, parietal, occipital, and frontal regions of the
brain, especially the right hemisphere regions. Experimental results by Heimann [10]
showed that, relative to still shots, transporting the mirror could activate the brain’s sensory-
motor areas and stimulate motor imagery even when filming still objects. SangHee et al. [18]
compared sports, news, and advertising images in both 2D and VR environments, realizing
that stronger beta wave vibrations are presented when viewing VR stereoscopic effects and
fast-paced kinetic videos. Matranfernandez et al. [19] compared the EEG signals of subjects
viewing 930 clips from five Hollywood movies and found that ERPs would produce larger
amplitudes in longer scenes and differ in amplitude between and within movies, which is
presumably related to editing techniques.

Less research has been done on VR movies, especially for VR film shot grouping,
mainly on specific cinematography [20], shot guidance, perspective [21], depth of field
changes [22], and compositing and rendering techniques [23], etc. Tricart Celine [24]
provides a practical guide about using virtual reality in filmmaking in Virtual Reality
Filmmaking: Techniques & Best Practices for VR Filmmakers, including narrative, documentary,
and live event production, which covers the way to make a film in VR from beginning
to end. Since traditional filmmaking techniques for directing audience attention are not
directly applicable in VR films, practices such as panning or changing camera movements
are no longer defined by the filmmaker, but by the audience. In this regard, some guidance
methods for VR films have been proposed [25]. Syrett et al. [26] suggested that although
there are some elements may distract the viewer in VR films environment, participants can
generally follow the plot and characters. However, directing the viewer’s attention is still
a challenge. Sylvia et al. [27] categorized these attention-guiding methods and provided
a taxonomy based on the different characteristics. Katrin et al. [28] compared continuity
edits and cuts-across the line events under VR and 2D conditions and found that jump cuts
and nonlinear clips would usually cause ERP components in the early stage.
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The purpose of this paper is to study factors affecting immersion and load by de-
signing image stimulation experiments with different editing techniques in VR scenes,
simultaneously collecting scalp EEG signals and analyzing their characteristics. Based
on the clipping design in three dimensions, namely space, time, and action, this paper
will analyze and compare the psychological and physiological characteristics according to
different VR image stimuli.

In brief, the main contributions of this paper are as follows:

• Electroencephalograms (EEG) and visual evoked potential (VEP) analysis were per-
formed, and the standardized low resolution brain electromagnetic tomography algo-
rithm (sLORETA) traceability method was used to analyze the data.

• It was found that different editing techniques lead to different physiological and psy-
chological indicators of viewers, while the physiological and psychological perception
results tend to be the same.

• It is proven that the cognitive event segmentation theory also plays an instructive role
in virtual reality editing. Even though VR movies are different from traditional movies
in terms of presentation and viewing style to a certain extent, viewers’ perception
of events in edited VR movies is similar to that of traditional photography. The
experimental results will provide an experimental reference for VR movie research
and necessary theoretical support for VR movie editing. Therefore, it has good
academic and application value.

The rest of the paper is organized as follows. Section 2 describes the specific experi-
mental procedure, data acquisition methods, and details the methods for pre-processing
EEG data and classification. Section 3 presents detailed experimental results. A discussion
is presented in Section 4. Finally, conclusions are made in Section 5.

2. Materials and Methods

To minimize experimental error, a pre-experiment was conducted before the formal
experiment. The formal experiment consisted of a subjective questionnaire (NASA task
load index (NASA-TLX) [29], an immersion questionnaire (IPQ) [30]) and a set of visually
induced EEG-based experiments. The variables studied are hypothesized to affect the
user’s perception of presence, spatial perception, and comfort of the experimental content,
and to various degrees, but none of them will affect viewing.

2.1. The Participants

Briefly, thirty participants with an average age of 23.63 ± 1.33 years were recruited
for this experiment, of whom 16 were male and 14 were female. There was no literature
mentioning that the gender of normal adults would affect the content of this study. Thus,
the effect of gender would be neglected in this experiment. The subjects were all Shanghai
University students, all right-handed, with normal or corrected visual acuity and no
history of psychiatric disorders. Before the formal experiment, participants were given
15 min to familiarize themselves with the experimental environment and operation, after
which they were instructed to watch a video clip. All participants signed an informed
consent form before the experiment and were given appropriate remuneration at the end
of the experiment.

2.2. Experimental Materials and Hardware Equipment

According to the event segmentation theory, a continuous domain in three dimensions
of time, action (character), and space is defined, corresponding to C1, C2, and C3 separately.
C1 indicates a discontinuity in space, time, and action, C2 illustrates a discontinuity in time
or action (character), which is subdivided into C2-1 (continuous in time, discontinuity in
action) and C2-2 (continuous in action, discontinuity in time). C3, which essentially refers
to the change of viewpoint in the same scene is subdivided into 30◦ and 180◦ according to
the angle of spatial change, denoted as C3-30 and C3-180 respectively (as in Figure 1). Note
that C0 stands for the continuous video without clipping. Only 1 FOI under all conditions
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was found and it remains constant. Thus, there were 6 different conditions. Each condition
corresponded to 25 scenes, resulting in a total of 150 stimuli. All experimental materials
were produced using Unity 2018.4, post-processed with Adobe After Effects CC 2018. The
video format was encoded with H.264, the resolution was 4096 ∗ 2048, and the frame speed
was 30 frames per second.
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Figure 1. Shown are clips of the experimental material. The left (front) and right (back) are before
and after the editing of each of the five editing types.

The virtual reality environment was implemented in Unity 2018.4, running on a
PC with a 3.4 GHz Intel Xeon E5-1230 V5 processor, 32 GB RAM, and an NVIDIA GTX
1070D. The PC monitor used was an AOC 24-inch LCD and the HMD headset monitor an
HTC VIVE.

2.3. Experimental Procedure

The experiment was conducted in a closed, soundproof environment where the par-
ticipant sat comfortably in front of a monitor, keeping his head dry and clean, and then
wore a 64-channel EEG cap with channels distributed according to the International 10–20
System brain electrodes. Conductive paste was applied to the corresponding locations of
the electrodes to reduce impedance, and attention was always paid to the signal transmis-
sion of each acquisition channel on the EEG cap. HTC VIVE HMD was needed to watch
VR images.

To reduce noise interference, subjects were informed in advance that they should not
talk nor clench their teeth and to minimize blinking during the viewing of the video. Before
starting the experiment, a 3-min open-eye resting state signal was collected to familiarize
the subjects with the experimental environment through a pre-experiment, and then the
subjects were instructed to watch the corresponding images. The experimental procedure
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is shown in Figure 2. Before each new scene was viewed, participants were given 3 s to
familiarize themselves with the scene to reduce the difference in the familiarity of each
participant with the environment, followed by a stimulus image of 5 s in length. The
subjective scale shall be filled out after each trial, and the order of presentation shall be
randomly rotated between trials. The duration of viewing, scoring, and resting time was
controlled by the subjects. The entire experiment took about 80 min.
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2.4. Data Recording and Processing

The characteristic channels selected for statistical analysis of EEG were frontal region
(Fz, F3, F4, FCz, FC3, FC4), parietal region (Pz, P3, P4), central region (Cz, C3, C4, CP3,
CP4), temporal region (TP7, TP8, T7, T8, P7, P8), and occipital region (POz, PO3, PO4, Oz,
PO7, PO8) [31]. The subjects’ EEG data were acquired via Neuroacle EEG Recorder V2.0.1,
a toolbox of the software Matlab 2016 (Math Works, USA), with a sampling frequency of
1000 Hz and electrode impedances all less than 5 kQ. Data were preprocessed through
EEGLab. Five useless channels were removed (AFz was used as the ground electrode,
and two vertical and two horizontal EEGs were recorded; the electrode at T6 was dam-
aged), filtered with a bandpass of 0.1–90 Hz, and then filtered with 50 Hz and 100 Hz
trap filters to remove industrial frequency interference [32]. After the interpolation of
bad leads and rejection of bad segments, oculoelectric artifacts were removed using the
independent component analysis (ICA) method [33]. Depending on the task, the data were
extracted by segmentation, selecting data from the scene before the editing point as the
baseline of each stimulus segment, and excluding segmented data with obvious artifacts
(wave amplitude > ±100 µV) [34]. Baseline drift was re-referenced [11] and eliminated.
Chella et al. [35] showed that the error of this zero-reference method was significantly
smaller than that of whole-brain averaging, bilateral mastoid averaging, and Cz referencing.
After the completion of pre-processing, data such as frequency and power were obtained,
and the EEG signals in the α-band (8–13 Hz), β-band (13–18 Hz), and θ-band (4–7 Hz)
were filtered out by wavelet transform. The mean energy of the EEG signal of the 25 test
segments corresponding to the channels was extracted, and the energy of the data segment
in the frequency band was represented by the logarithm of the sum of the squares of all
data points in the frequency band with a base of 10, which is shown in Equation (1).

E(k) = lg
[
∑n

i=1 x(k)i
2
]
, (1)
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where k represents the number of trials in the data segment (k = 1 in this experiment), n
represents the number of data points in each segment, and x(k)i represents the value of the
ith point in the kth data segment [31].

For the VEP, the same feature channels as the EEG statistical analysis were selected for
statistical analysis (occipital region: POz, PO3, PO4, Oz, PO7, PO8). The data were filtered
offline with a band-pass filter of 0.1–30 Hz, using the scene before the edit point as the
baseline for each trial and selecting the first second of content after the start of the clip for
analysis. VEP was calculated by averaging over trials and participants. Based on previous
literature detecting time windows of interest [28], four time windows were selected to
analyze ERP maxima on the scalp surface: Time window 1 = 140–190 ms after stimulus
onset, Time window 2 = 180–220 ms after stimulus onset, Time window 3 = 250–380 ms
after stimulus onset, and Time window 4 = 400–650 ms after stimulus onset.

2.5. Verification of Differences in VR Editing Methods Based on SVM

In order to further explore the most suitable frequency band for the classification
of viewing load under the neural mechanism of the human brain, this paper adopts a
support vector machine learning method to establish an SVM classification model based
on EEG energy feature parameters to train and identify the energy induced by films
with different VR editing methods for classification. Currently, the mainstream EEG
classification methods include linear classifiers, such as support vector machines [36] and
neural networks [37], among which SVM is the most widely used and effective classifier [9].
Although SVMs are binary classifiers, they can be used in multi-class problems by using
a one-vs-one or one-vs-all strategy. Unlike neural networks, SVMs would not require a
large number of training samples to solve the classification problem well. For linearly
indistinguishable data, SVM can map to a high-dimensional feature space and find the
optimal hyperplane in this space.

3. Results

In this paper, one-way repeated measures analysis of variance (ANOVA) was used
for subjective and objective data, and simple effects analysis was performed if interactions
between factors were found. All analyses were performed with p < 0.05 as the significance
level measure, and the Greenhouse-Geisser method was used to correct degrees of freedom
and p values. All statistical analyses were performed using SPSS 22.0 (IBM, Armonk,
NY, USA).

3.1. Subjective Data

The NASA-TLX table evaluates the experimenter’s perceived load in six dimensions:
Mental Demand (MD), Physical Demand (PD), Temporal Demand (TD), Effort (E), Perfor-
mance (P), and Frustration Level (FL). The IPQ table consists of a three-factor structure of
spatial presence (SP), involvement (INV), and reality (REAL). The level of load and immer-
sion is expressed as the level of the scale score. For the subjective data, the questionnaire
results of all volunteers are averaged and analyzed, and the statistical results are shown in
Table 1.

Table 1. Participants’ load sense score statistics.

Group Load Immersion

C0 184.72 81.385 4.400 9.3941
C1 195.86 83.635 −3.467 10.8841

C2-1 212.99 103.279 −4.167 11.9340
C2-2 231.94 102.753 −1.800 11.1244

C3-30 225.90 115.002 −2.600 12.7863
C3-180 236.20 104.177 −6.333 13.6895
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The analysis revealed significant image modality type grouping effects for both load
(F(3.283,223.222) = 13.086, p < 0.001, χ2 = 98.018) and immersion (F(3.146, 91.247) = 7.822,
p < 0.001, χ2 = 32.581) questionnaire results. For load, C0 stimuli evoked a significantly
lower load than C2-1, C2-2, C3-30, and C3-180 stimuli evoked sensation (C1: p < 0.001,
C2-2: p = 0.001 < 0.05, C3-30: p = 0.009 < 0.05, C3-180: p < 0.001). For immersion, C1 stimuli
evoked significantly higher immersion than C1, C2-1, C2-2, C3-30, and C3-180 stimuli (C1:
p < 0.001, C2-1: p = 0.002 < 0.05, C2-2: p = 0.012 < 0.05, C3-30: p = 0.002 < 0.05, C3-180:
p < 0.001). In contrast, no effects of load and immersion were found between other groups
(as shown in Figure 3).
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Figure 3. Subjective data. (a) NASA Task Load Index (NASA-TLX) total load mean; (b) immersion (IPQ) mean for each
group, * indicates p < 0.05.

3.2. Classification Results

The SVM-based VR editing method disparity validation experiment randomly di-
vided the training and test sets in a 7:3 ratio for the number of samples [38]. The difference
recognition effect of θ, α, β, θ + α, α + β, and θ + β band features on VR image presentation
was compared, and the results are shown in Table 2. It can be observed that θ + β band
features play the greatest effect on disparity recognition, with the classification accuracy of
92.590%, which is much higher than other groups. For the energy induced by movies with
different VR editing methods, the recognition accuracy of β-wave band is much higher
than other bands, reaching 87.012%, which is 34.821% higher than that of θ-wave band
and 67.809% higher than that of α-wave band. This is similar to the results of Li et al. [39],
who recorded EEG signals from 18 subjects to analyze the neurophysiological processes
occurring during the code comprehension task and the possibility of distinguishing be-
tween expert programmers and beginners, and the results indicated that high-frequency
bands such as β were the main feature. With this result, we further analyzed the EEG
signals of each brain region corresponding to the theta and beta wave bands evoked by
different conditions.

Table 2. Accuracy results of classification under different frequency bands.

Classifier Frequency Band Accuracy

SVM

θ 52.191%
α 19.203%
β 87.012%

θ + α 19.402%
α + β 92.590%
θ + β 22.948%
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3.3. EEG Data Analysis
3.3.1. Characterization of EEG Spectra in the Beta Wave Frequency Band

For the beta wave frequency band, the interaction effect between brain functional
regions—image pattern type group was investigated. Then, an analysis of variance for
each brain functional region datum was performed with respect to the image pattern type
group factor. The results showed that no effect of image pattern type grouping was found
in the frontal, parietal, occipital, or central regions (as shown in Figure 4).
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Figure 4. The distribution of EEG waves in brain regions with the beta wave frequency band.

3.3.2. Characterization of EEG Spectra in the Theta Wave Frequency Band

For the theta wave frequency band, the interaction effect between brain functional
regions * image pattern type group was investigated. Then, an analysis of variance for
each brain functional region data was performed with respect to the image pattern type
group factor.

The results showed that there were significant effects in the frontal region (F(5145) = 6.738,
p < 0.001, χ2 = 20.519), in the parietal region (F(5145) = 2.909, p = 0.16 < 0.05, χ2 = 28.324),
in the central region (F(5145) = 8.650, p < 0.001, χ2 = 15.367), and in the occipital region
(F(5145) = 2.538, p = 0.31 < 0.05, χ2 = 26.582), all with significant imaging pattern type
grouping (Group) effects. The analysis showed that in the frontal region, the energy evoked
by C1 stimuli is significantly higher than the energy evoked by C0 (p = 0.003 < 0.05),
C2-2 (p = 0.002 < 0.05), C3-30 (p = 0.006 < 0.05), and C3-180 (p = 0.004 < 0.05) stimulus.
In the parietal region, the energy evoked by C1 stimuli is significantly higher than the
energy evoked by C0 (p = 0.025 < 0.05), C2-1 (p = 0.007 < 0.05), and C3-180 (p = 0.01 < 0.05)
stimulus. In the central zone, the energy evoked by C1 stimuli is significantly higher than
the energy evoked by C0 (p < 0.001), C2-1 (p = 0.006 < 0.05), C2-2 (p = 0.0005 < 0.05), C3-30
(p = 0.008 < 0.05), and C3-180 (p = 0.001 < 0.05) stimulus. In the occipital region, the energy
evoked by C1 stimuli is significantly higher than those evoked by C2-1 (p = 0.035 < 0.05)
and C2-2 (p = 0.0014 < 0.05) stimuli (as shown in Figure 5).
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3.3.3. Brain Topography

Figure 6 is a brain topographic map based on the average energy of all subjects.
Among them, red indicates higher brain wave activity while blue indicates lower brain
wave activity. According to the energy distribution of the brain topographic map, the energy
induced by C0 stimulation is relatively low in the frontal lobe, parietal lobe, and occipital
lobe, while the energy induced by C1 stimulation is relatively high in the same region.
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Figure 6 is a brain topographic map based on the average energy of all subjects.
Among them, red indicates higher brain wave activity, while blue indicates lower brain
wave activity. According to the energy distribution of the brain topographic map, the energy
induced by C0 stimulation is relatively low in the frontal lobe, parietal lobe, and occipital
lobe, while the energy induced by C1 stimulation is relatively high in the same region.

3.3.4. VEP Data Analysis

For each of the four selected time windows, an ANOVA analysis was conducted on the
image pattern type grouping factor for each time window datum, in which the interaction
effect time window-image pattern type group was investigated. The results demonstrated a
significant image pattern type grouping effect in the fourth time window (F(5145) = 12.262,
p < 0.001, χ2 = 11.537). No effect of image pattern type grouping was found in any of the
remaining windows (as shown in Figure 7).
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For window 4 (400–600 ms), energy values were significantly lower for C0 than for
C-2-1 (p < 0.001) and C3-180 (p < 0.001). This indicates a significant difference between
baseline and different clips, mainly in posterior regions, showing a late positivity.

3.3.5. VEP Sources Analysis

The sLORETA traceability method in the LORETA software was used to compare
the current density distribution and density intensity of brain activation areas under
stimulation in two control groups (C0 and C2-1, C0 and C3-180), and the traceability results
of P4-6 were analyzed for comparison.

As can be seen from Tables 3 and 4 and Figure 8, the difference in current density
of VEP sources compared to C0 and C1 is mainly in the precuneus. The difference in
the current density of VEP sources compared to C0 and C2-1 is mainly in the inferior
frontal gyrus. The difference in current density of VEP sources compared to C0 and C3-180
is mainly in the precuneus. The results indicate that the clip stimuli mainly responded
to the higher cognitive areas, which could be the further processing of cognitive and
visual information at the cognitive level, thus responding to the visual cortical areas of the
human brain.
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Table 3. Statistical comparison of VEP source current density between C0 and C2-1.

Talairach Coordinate(TAL)
Brodmann Area Lobe Structure

X Y Z

−54 20 4 45 Frontal Lobe Inferior Frontal Gyrus
−54 34 −2 47 Frontal Lobe Inferior Frontal Gyrus



Sensors 2021, 21, 7176 12 of 16

Table 4. Statistical comparison of VEP source current density between C0 and C3-180.

Talairach Coordinate(TAL)
Brodmann Area Lobe Structure

X Y Z

−5 −70 50 7 Parietal Lobe Precuneus

4. Discussion
4.1. Subjective Rating

For the trans-axial behavior of traditional images, George et al. demonstrated that this
editing technique would confuse and disorient the viewer [5] but would not change the
viewer’s enjoyment of the images. The NASA-TLX results show that C0 provides the least
load perception and is statistically different from C2-1, C2-2, C3-30, and C3-108. Similar
results could also be seen in the IPQ table. The results of the IPQ scale showed that C0
obtained the highest immersion score, and the differences among C1, C2-1, C2-2, C3-30,
and C3-108 were all statistically significant. The C0 group had the highest immersion
score and the lowest load perception score on the subjective scale. The other five editing
methods reduced the immersion of VR images for viewers to a certain extent and were
accompanied by a higher load perception. While C0 has the least effect on immersion and
load perception, C-180 has the greatest effect, which is similar to the traditional editing
method, i.e., trans-axis can also cause discomfort to viewers in VR images.

4.2. EEG Results

Frontal areas are associated with cognitive and motor functions, and parietal areas
are associated with higher sensory processing, language functions, and spatial sense. The
primary function of the temporal lobe is to process auditory stimuli, and the occipital area
is the visual cortex, the main center for processing visual stimuli, and is also responsible for
language, abstract concepts, and motor sensation [40]. A study of Ray William [41] showed
that beta waves reflect emotional and cognitive processing in the brain. Increasing energy
in the theta band of frontal areas is a marker for anxiety and situations requiring cognitive
control [42]. Increasing beta-band energy responds to higher arousal and is associated
with the increasing emotional intensity of alertness [43], attention [44,45], stress, anxiety,
and agitation [46]. Changes in beta activity in the sensorimotor cortex are associated with
sensorimotor control and peripheral muscle activity [47]. Experiments of Kosti et al. [48],
on the other hand, demonstrated that theta and beta band energies were associated with
cognitive effort, with a significant increase in arousal in beta and theta band energies in
more complex tasks.

Compared to several other types of clips, unrelated clips of the film stimulated an
increase in theta activity, especially in the frontal, parietal, and central regions. In addition,
the occipital area, that is the visual cortex, was replaced by both the area with the largest
differences and the frontal and central areas, which might be associated with higher cogni-
tive and emotional processing, leading to greater differences. For the stimulation of images
before and after the clips, the temporal, character, and spatial changes were manifested in a
deeper processing of information at the cognitive level and visual information processing,
thus responding to induce a greater degree of energy arousal in the visual cortex area,
motor cortex area, and higher sensory processing area of the human brain. That is, for
clips, similar movies are likely to be used, but the brain processes the content without
“consciousness”. Furthermore, there were no significant differences within the C2 and
C3 groups.

4.3. VEP Results

A study by Maffongelli exploring content and structure violations in action observa-
tion observed a late P4-6 in anterior regions following syntactic violations, associated with
post-perceptual processes possibly serving an adjustment to the detected violation [49].
The results of this paper show that significantly higher potentials (P4-6) were produced
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in C2-1 and C3-180. These perceptions may be related to the belief that these changes
may be of relevance to post-perceptual processes. Late P4-6 may be related to viewers’
thinking about their own perceptual conditions. For these common traditional editing
methods, participants can be well adapted. However, for larger changes, such as a change
of central characters in the film, audiences will consciously evaluate and make decisions
about changes in video content.

4.4. VEP Sources Results

It has been shown that the increased mental load of working memory tasks is mainly
manifested in multiple frontal and parietal lobes [50]. The results of the VEP source
showed that the differences between the clips were mainly found in the frontal and parietal
regions, rather than the occipital region, which is the visual processing area. It could
be speculated that the change of character and the violation of the 180◦ rule of editing
methods could bring a greater load to the audience. Meanwhile, the clip stimuli mainly
responded to the higher cognitive areas, which might be the further processing of cognitive
and visual information at the cognitive level, thus responding to the visual cortical areas of
the human brain.

In summary, both subjective and objective data could confirm the disruption of the
continuity of viewing by editing, but the impact of different editing methods varies, as
the frontal and occipital lobes are more sensitive to changes in characters and changes in
perspective. Viewers can accept temporal changes more naturally than spatial changes and
are less likely to feel a sense of jumpiness and stress. Compared to the relevant clips, a film
violating the 180◦ rule will cause a higher load on the viewer and a much less immersive
viewing experience.

5. Conclusions

VR films form a different immersion and load from traditional films due to their unique
presentation. While Neurocinematography is booming, using cognitive neuroscience to
study the VR field has become a new trend. Through analyzing EEG energy features and
subjective data on immersion and load, this paper focused on VR movie editing based
on Neurocinematography, and used EEG energy features, elicit visual evoked potentials
(VEP), and SVM’s viewing load classification model to compare different frequency bands
of EEG for different editing recognition verification, and to investigate how traditional
movie editing methods perform during the application in virtual reality and traceability
of VEP data using the sLORETA traceability method. The results of subjective scales and
objective data are similar. Since VR movies present 360◦ panoramic views, all editing
methods would affect the perception of the virtual reality environment, producing stronger
energy arousal. In the three dimensions of time, motion, and space, the change in motion
had the least impact on the viewer, while the change in space had the greatest impact.
Moreover, even if the presentation modes were completely different, the cognitive event
segmentation theory was equally instructive for virtual reality editing, and viewers could
understand VR films more naturally with relevant editing compared to irrelevant editing.
In the comparison of cuts across the line events and long shot films, there was a significant
difference in energy arousal, which was reflected in both the subjective and objective scales.
However, the differences between clips are not felt in people’s consciousness but in higher
cognitive areas, such as the prefrontal and parietal regions.

In order to avoid confounding factors and effectively control variables, the materials
in this experiment were short videos. Therefore, some of the findings in this paper may
not be applied outside of our study. Currently, studies on VR movie editing are relatively
few. Thus, there are still many areas deserving in-depth study, such as the impact of
elements, including emotion, duration, and storyline, on the viewer. Since the user’s
viewing experience could be influenced by a variety of factors, a comprehensive study
taking a wider variety of factors into consideration is necessary.
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43. Kamińskia, J.; Brzezickab, A.; Golac, M.; Wróbela, A. Beta band oscillations engagement in human alertness process. Int. J.
Psychophysiol. 2012, 85, 125–128. [CrossRef] [PubMed]

44. Vernon, D.; Egner, T.; Cooper, N.; Compton, T.; Neilands, C.; Sheri, A.; Gruzelier, J. The effect of training distinct neurofeedback
protocols on aspects of cognitive performance. Int. J. Psychophysiol. 2003, 47, 75–85. [CrossRef]

45. Kiiski, H.; Bennett, M.; Rueda-Delgado, L.M.; Farina, F.R.; Knight, R.; Boyle, R.; Roddy, D.; Grogan, K.; Bramham, J.; Kelly, C.; et al.
EEG spectral power, but not theta/beta ratio, is a neuromarker for adult ADHD. Eur. J. Neurosci. 2020, 51, 2095–2109. [CrossRef]

46. Hasan, R.A.; Sulaiman, S.; Ashykin, N.; Abdullah, M.N.; Ali, S.J.S. Workplace Mental State Monitoring during VR-Based Training
for Offshore Environment. Sensors 2021, 21, 4885. [CrossRef]
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